1
|
Azargoonjahromi A. Current Findings and Potential Mechanisms of KarXT (Xanomeline-Trospium) in Schizophrenia Treatment. Clin Drug Investig 2024; 44:471-493. [PMID: 38904739 DOI: 10.1007/s40261-024-01377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Standard schizophrenia treatment involves antipsychotic medications that target D2 dopamine receptors. However, these drugs have limitations in addressing all symptoms and can lead to adverse effects such as motor impairments, metabolic effects, sedation, sexual dysfunction, cognitive impairment, and tardive dyskinesia. Recently, KarXT has emerged as a novel drug for schizophrenia. KarXT combines xanomeline, a muscarinic receptor M1 and M4 agonist, with trospium, a nonselective antimuscarinic agent. Of note, xanomeline can readily cross blood-brain barrier (BBB) and, thus, enter into the brain, thereby stimulating muscarinic receptors (M1 and M4). By doing so, xanomeline has been shown to target negative symptoms and potentially improve positive symptoms. Trospium, on the other hand, is not able to cross BBB, thereby not affecting M1 and M4 receptors; instead, it acts as an antimuscarinic agent and, hence, diminishes peripheral activity of muscarinic receptors to minimize side effects probably stemming from xanomeline in other organs. Accordingly, ongoing clinical trials investigating KarXT's efficacy in schizophrenia have demonstrated positive outcomes, including significant improvements in the Positive and Negative Syndrome Scale (PANSS) total score and cognitive function compared with placebo. These findings emphasize the potential of KarXT as a promising treatment for schizophrenia, providing symptom relief while minimizing side effects associated with xanomeline monotherapy. Despite such promising evidence, further research is needed to confirm the efficacy, safety, and tolerability of KarXT in managing schizophrenia. This review article explores the current findings and potential mechanisms of KarXT in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Ali Azargoonjahromi
- Shiraz University of Medical Sciences, Janbazan Blv, 14th Alley, Jahrom, Shiraz, 7417773539, Fars, Iran.
| |
Collapse
|
2
|
Lawn T, Giacomel A, Martins D, Veronese M, Howard M, Turkheimer FE, Dipasquale O. Normative modelling of molecular-based functional circuits captures clinical heterogeneity transdiagnostically in psychiatric patients. Commun Biol 2024; 7:689. [PMID: 38839931 PMCID: PMC11153627 DOI: 10.1038/s42003-024-06391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Advanced methods such as REACT have allowed the integration of fMRI with the brain's receptor landscape, providing novel insights transcending the multiscale organisation of the brain. Similarly, normative modelling has allowed translational neuroscience to move beyond group-average differences and characterise deviations from health at an individual level. Here, we bring these methods together for the first time. We used REACT to create functional networks enriched with the main modulatory, inhibitory, and excitatory neurotransmitter systems and generated normative models of these networks to capture functional connectivity deviations in patients with schizophrenia, bipolar disorder (BPD), and ADHD. Substantial overlap was seen in symptomatology and deviations from normality across groups, but these could be mapped into a common space linking constellations of symptoms through to underlying neurobiology transdiagnostically. This work provides impetus for developing novel biomarkers that characterise molecular- and systems-level dysfunction at the individual level, facilitating the transition towards mechanistically targeted treatments.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Matthew Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Research & Development Advanced Applications, Olea Medical, La Ciotat, France.
| |
Collapse
|
3
|
Metz CN, Brines M, Pavlov VA. Bridging cholinergic signalling and inflammation in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:51. [PMID: 38734678 PMCID: PMC11088617 DOI: 10.1038/s41537-024-00472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA.
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
4
|
Vasiliu O, Budeanu B, Cătănescu MȘ. The New Horizon of Antipsychotics beyond the Classic Dopaminergic Hypothesis-The Case of the Xanomeline-Trospium Combination: A Systematic Review. Pharmaceuticals (Basel) 2024; 17:610. [PMID: 38794180 PMCID: PMC11124398 DOI: 10.3390/ph17050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Although the dopamine hypothesis of schizophrenia explains the effects of all the available antipsychotics in clinical use, there is an increasing need for developing new drugs for the treatment of the positive, negative, and cognitive symptoms of chronic psychoses. Xanomeline-trospium (KarXT) is a drug combination that is based on the essential role played by acetylcholine in the regulation of cognitive processes and the interactions between this neurotransmitter and other signaling pathways in the central nervous system, with a potential role in the onset of schizophrenia, Alzheimer's disease, and substance use disorders. A systematic literature review that included four electronic databases (PubMed, Cochrane, Clarivate/Web of Science, and Google Scholar) and the US National Library of Medicine database for clinical trials detected twenty-one sources referring to fourteen studies focused on KarXT, out of which only four have available results. Based on the results of these trials, the short-term efficacy and tolerability of xanomeline-trospium are good, but more data are needed before this drug combination may be recommended for clinical use. However, on a theoretical level, the exploration of KarXT is useful for increasing the interest of researchers in finding new, non-dopaminergic, antipsychotics that could be used either as monotherapy or as add-on drugs.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, “Dr. Carol Davila” University Emergency Central Military Hospital, 010816 Bucharest, Romania
| | - Beatrice Budeanu
- Faculty of Medicine, « Carol Davila » University of Medicine and Pharmacy, 050474 Bucharest, Romania; (B.B.); (M.-Ș.C.)
| | - Mihai-Ștefan Cătănescu
- Faculty of Medicine, « Carol Davila » University of Medicine and Pharmacy, 050474 Bucharest, Romania; (B.B.); (M.-Ș.C.)
| |
Collapse
|
5
|
McLean RT, Buist E, St Clair D, Wei J. Autoantibodies against acetylcholine receptors are increased in archived serum samples from patients with schizophrenia. Schizophr Res 2024; 267:8-13. [PMID: 38508027 DOI: 10.1016/j.schres.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Previous studies have demonstrated that the levels of IgG against neurotransmitter receptors are increased in patients with schizophrenia. Genome-wide association (GWA) studies of schizophrenia confirmed that 108 loci harbouring over 300 genes were associated with schizophrenia. Although the functional implications of genetic variants are unclear, theoretical functional alterations of these genes could be replicated by the presence of autoantibodies. This study examined the levels of plasma IgG antibodies against four neurotransmitter receptors, CHRM4, GRM3, CHRNA4 and CHRNA5, using an in-house ELISA in 247 patients with schizophrenia and 344 non-psychiatric controls. Four peptides were designed based on in silico analysis with computational prediction of HLA-DRB1 restricted and B-cell epitopes. The relationship between plasma IgG levels and psychiatric symptoms, as defined by the Operational Criteria Checklist for Psychotic Illness and Affective Illness (OPCRIT), were examined. The results showed that the levels of plasma IgG against peptides derived from CHRM4 and CHRNA4 were significantly increased in patients with schizophrenia compared with control subjects, but there was no significant association of plasma IgG levels with any symptom domain or any specific symptoms. These preliminary results suggest that CHRM4 and CHRNA4 may be novel targets for autoantibody responses in schizophrenia, although the pathogenic relationship between increased serum autoantibody levels and schizophrenia symptoms remains unclear.
Collapse
Affiliation(s)
- Ryan Thomas McLean
- Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK.
| | - Elizabeth Buist
- Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK; New Craigs Hospital, Inverness, UK
| | - David St Clair
- Department of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Jun Wei
- Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| |
Collapse
|
6
|
Leber A, Ramachandra R, Ceban F, Kwan ATH, Rhee TG, Wu J, Cao B, Jawad MY, Teopiz KM, Ho R, Le GH, Ramachandra D, McIntyre RS. Efficacy, safety, and tolerability of xanomeline for schizophrenia spectrum disorders: a systematic review. Expert Opin Pharmacother 2024; 25:467-476. [PMID: 38515004 DOI: 10.1080/14656566.2024.2334424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION We systematically reviewed extant studies evaluating the efficacy and tolerability of xanomeline and xanomeline-trospium (KarXT) for treatment of adults with schizophrenia. METHODS In accordance with PRISMA guidelines, articles were systematically searched for in databases and clinical trial registries. RESULTS A total of 4 preclinical trials and 3 randomized controlled trials (RCTs) were included in this review. A 4-week RCT observed a difference of 24.0 points (SD 21.0) in the Positive and Negative Syndrome Scale (PANSS) total score between xanomeline and placebo groups (p = 0.039). A 5-week RCT observed PANSS total score changes from baseline to week 5, including -17.4 and -5.9 points in KarXT and placebo groups, respectively (LSMD -11.6 points; 95% CI -16.1 to -7.1; p < 0.001; d = 0.75). Another 5-week RCT observed PANSS total score changes from baseline to week 5, including -21.2 (SE 1.7) and -11.6 (SE 1.6) points in KarXT and placebo groups, respectively (LSMD -9.6; 95% CI -13.9 to -5.2; p < 0.0001; d = 0.61). Side effects include constipation, nausea, vomiting, dyspepsia, and dry mouth. CONCLUSION KarXT offers an innovative non-D2 blocking approach, representing a promising treatment avenue for schizophrenia.
Collapse
Affiliation(s)
- Alexia Leber
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Ranuk Ramachandra
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Felicia Ceban
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela T H Kwan
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Jie Wu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, P. R. China
| | - Muhammad Youshay Jawad
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Institute for Mental Health Policy Research, Centre for Addictions and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, USA
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Gia Han Le
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Diluk Ramachandra
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Peralta V, de Jalón EG, Moreno-Izco L, Peralta D, Janda L, Sánchez-Torres AM, Cuesta MJ. The effect of anticholinergic burden of psychiatric medications on major outcome domains of psychotic disorders: A 21-year prospective cohort study. Schizophr Res 2024; 264:386-393. [PMID: 38237360 DOI: 10.1016/j.schres.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 01/07/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Most medications used to treat psychotic disorders possess anticholinergic properties. This may result in a considerable anticholinergic burden (ACB), which may have deleterious effects on long-term outcomes. The extent to which cumulative ACB over years of treatment with psychotropic medications impacts different outcome domains remains unknown. METHODS This was a naturalistic study of 243 subjects with first-episode psychosis aimed at examining the cumulative effect of ACB of psychotropic medications administered over the illness course (ACB-years exposure) on several outcome domains assessed after a mean 21-year follow-up. Associations between ACB and the outcomes were modelled accounting for relevant confounding factors by using hierarchical linear regression analysis. RESULTS Over the study period, 81.9 % of the participants were dispensed at least one drug with strong anticholinergic effects for at least 1 year; at the follow-up visit, 60.5 % of the participants continued to take medications with strong ACB. ACB-years exposure was uniquely related to severity of negative symptoms (β = 0.144, p = 0.004), poor psychosocial functioning (β = 0.186, p < 0.001) and poor cognitive performance (β = -0.273, p < 0.001). This association pattern was independent of a schizophrenia diagnosis. Most of the associations between ACB at the follow-up visit and the outcomes were accounted for ACB-years exposure. CONCLUSION Lifetime ACB of psychotropic medications has deleterious effects on the outcome of psychotic disorders. Clinicians should avoid prescribing medications with strong ACB, since there are numerous alternatives within each psychotropic drug group for prescribing medications with low ACB.
Collapse
Affiliation(s)
- Victor Peralta
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Elena García de Jalón
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Lucía Moreno-Izco
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - David Peralta
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain
| | - Lucía Janda
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain
| | - Ana M Sánchez-Torres
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Manuel J Cuesta
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain
| |
Collapse
|
8
|
Tandon R, Nasrallah H, Akbarian S, Carpenter WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res 2024; 264:1-28. [PMID: 38086109 DOI: 10.1016/j.schres.2023.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.
Collapse
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI 49008, United States of America.
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati College of Medicine Cincinnati, OH 45267, United States of America
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Dusseldorf, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, United States of America; Greater Los Angeles Veterans' Administration Healthcare System, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY 11004, United States of America
| | - Dolores Malaspina
- Department of Psychiatry, Neuroscience, Genetics, and Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannhein/Heidelberg University, Mannheim, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Michael Owen
- Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jordan W Smoller
- Center for Precision Psychiatry, Department of Psychiatry, Psychiatric and Neurodevelopmental Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
9
|
Eack SM, Wojtalik JA, Keshavan MS. Anticholinergic medications in the treatment of psychoses: Pharmacological subtraction is better than addition. Schizophr Res 2023; 262:40-41. [PMID: 37922842 DOI: 10.1016/j.schres.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jessica A Wojtalik
- Jack, Joseph and Morton Mandel School of Applied Social Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Meyer JM, Correll CU. Increased Metabolic Potential, Efficacy, and Safety of Emerging Treatments in Schizophrenia. CNS Drugs 2023; 37:545-570. [PMID: 37470979 PMCID: PMC10374807 DOI: 10.1007/s40263-023-01022-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Patients with schizophrenia experience a broad range of detrimental health outcomes resulting from illness severity, heterogeneity of disease, lifestyle behaviors, and adverse effects of antipsychotics. Because of these various factors, patients with schizophrenia have a much higher risk of cardiometabolic abnormalities than people without psychiatric illness. Although exposure to many antipsychotics increases cardiometabolic risk factors, mortality is higher in patients who are not treated versus those who are treated with antipsychotics. This indicates both direct and indirect benefits of adequately treated illness, as well as the need for beneficial medications that result in fewer cardiometabolic risk factors and comorbidities. The aim of the current narrative review was to outline the association between cardiometabolic dysfunction and schizophrenia, as well as discuss the confluence of factors that increase cardiometabolic risk in this patient population. An increased understanding of the pathophysiology of schizophrenia has guided discovery of novel treatments that do not directly target dopamine and that not only do not add, but may potentially minimize relevant cardiometabolic burden for these patients. Key discoveries that have advanced the understanding of the neural circuitry and pathophysiology of schizophrenia now provide possible pathways toward the development of new and effective treatments that may mitigate the risk of metabolic dysfunction in these patients. Novel targets and preclinical and clinical data on emerging treatments, such as glycine transport inhibitors, nicotinic and muscarinic receptor agonists, and trace amine-associated receptor-1 agonists, offer promise toward relevant therapeutic advancements. Numerous areas of investigation currently exist with the potential to considerably progress our knowledge and treatment of schizophrenia.
Collapse
Affiliation(s)
- Jonathan M Meyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
11
|
Breier A, Brannan SK, Paul SM, Miller AC. Evidence of trospium's ability to mitigate cholinergic adverse events related to xanomeline: phase 1 study results. Psychopharmacology (Berl) 2023; 240:1191-1198. [PMID: 37036495 PMCID: PMC10102054 DOI: 10.1007/s00213-023-06362-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
RATIONALE The M1/M4 preferring muscarinic receptor agonist xanomeline demonstrated antipsychotic and procognitive effects in patients with Alzheimer's disease or schizophrenia in prior studies, but further clinical development was limited by cholinergic adverse events (AEs). KarXT combines xanomeline with the peripherally restricted muscarinic receptor antagonist trospium with the goal of improving tolerability and is in clinical development for schizophrenia and other neuropsychiatric disorders. OBJECTIVE Test the hypothesis that trospium can mitigate cholinergic AEs associated with xanomeline. METHODS Healthy volunteers enrolled in this phase 1 (NCT02831231), single-site, 9-day, double-blind comparison of xanomeline alone (n = 33) versus KarXT (n = 35). Rates of five prespecified cholinergic AEs (nausea, vomiting, diarrhea, excessive sweating, salivary hypersecretion) were compared between treatment arms. Vital signs, electrocardiograms (ECGs), safety laboratory values, and pharmacokinetic (PK) analyses were assessed. A self-administered visual analog scale (VAS) and clinician-administered scales were employed. RESULTS Compared with xanomeline alone, KarXT reduced composite incidences of the five a priori selected cholinergic AEs by 46% and each individual AE by ≥ 29%. There were no episodes of syncope in KarXT-treated subjects; two cases occurred in the xanomeline-alone arm. The rate of postural dizziness was 11.4% in the KarXT arm versus 27.2% with xanomeline alone. ECG, vital signs, and laboratory values were not meaningfully different between treatment arms. The VAS and clinician-administered scales tended to favor KarXT. PK analysis revealed that trospium did not affect xanomeline's PK profile. CONCLUSIONS Trospium was effective in mitigating xanomeline-related cholinergic AEs. KarXT had an improved safety profile compared with xanomeline alone.
Collapse
Affiliation(s)
- Alan Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Karuna Therapeutics, Boston, MA, USA
| | | | | | | |
Collapse
|
12
|
Jones SE, Harvey PD. Cross-diagnostic determinants of cognitive functioning: the muscarinic cholinergic receptor as a model system. Transl Psychiatry 2023; 13:100. [PMID: 36973270 PMCID: PMC10042838 DOI: 10.1038/s41398-023-02400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Cognitive impairment is a predictor of disability across different neuropsychiatric conditions, and cognitive abilities are also strongly related to educational attainment and indices of life success in the general population. Previous attempts at drug development for cognitive enhancement have commonly attempted to remedy defects in transmitters systems putatively associated with the conditions of interest such as the glutamate system in schizophrenia. Recent studies of the genomics of cognitive performance have suggested influences that are common in the general population and in different neuropsychiatric conditions. Thus, it seems possible that transmitter systems that are implicated for cognition across neuropsychiatric conditions and the general population would be a viable treatment target. We review the scientific data on cognition and the muscarinic cholinergic receptor system (M1 and M4) across different diagnoses, in aging, and in the general population. We suggest that there is evidence suggesting potential beneficial impacts of stimulation of critical muscarinic receptors for the enhancement of cognition in a broad manner, as well as the treatment of psychotic symptoms. Recent developments make stimulation of the M1 receptor more tolerable, and we identify the potential benefits of M1 and M4 receptor stimulation as a trans-diagnostic treatment model.
Collapse
Affiliation(s)
- Sara E Jones
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Philip D Harvey
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL, USA.
- Research Service, Bruce W. Carter VA Medical Center, Miami, FL, USA.
| |
Collapse
|
13
|
Dean B, Bakker G, Ueda HR, Tobin AB, Brown A, Kanaan RAA. A growing understanding of the role of muscarinic receptors in the molecular pathology and treatment of schizophrenia. Front Cell Neurosci 2023; 17:1124333. [PMID: 36909280 PMCID: PMC9992992 DOI: 10.3389/fncel.2023.1124333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Pre-clinical models, postmortem and neuroimaging studies all support a role for muscarinic receptors in the molecular pathology of schizophrenia. From these data it was proposed that activation of the muscarinic M1 and/or M4 receptor would reduce the severity of the symptoms of schizophrenia. This hypothesis is now supported by results from two clinical trials which indicate that activating central muscarinic M1 and M4 receptors can reduce the severity of positive, negative and cognitive symptoms of the disorder. This review will provide an update on a growing body of evidence that argues the muscarinic M1 and M4 receptors have critical roles in CNS functions that are dysregulated by the pathophysiology of schizophrenia. This realization has been made possible, in part, by the growing ability to visualize and quantify muscarinic M1 and M4 receptors in the human CNS using molecular neuroimaging. We will discuss how these advances have provided evidence to support the notion that there is a sub-group of patients within the syndrome of schizophrenia that have a unique molecular pathology driven by a marked loss of muscarinic M1 receptors. This review is timely, as drugs targeting muscarinic receptors approach clinical use for the treatment of schizophrenia and here we outline the background biology that supported development of such drugs to treat the disorder.
Collapse
Affiliation(s)
- Brian Dean
- Synaptic Biology and Cognition Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Andrew B Tobin
- Advanced Research Centre (ARC), School of Molecular Bioscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Richard A A Kanaan
- Department of Psychiatry, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
14
|
Refisch A, Komatsuzaki S, Ungelenk M, Chung HY, Schumann A, Schilling SS, Jantzen W, Schröder S, Mühleisen TW, Nöthen MM, Hübner CA, Bär KJ. Associations of common genetic risk variants of the muscarinic acetylcholine receptor M2 with cardiac autonomic dysfunction in patients with schizophrenia. World J Biol Psychiatry 2023; 24:1-11. [PMID: 35172679 DOI: 10.1080/15622975.2022.2043561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Decreased vagal modulation, which has consistently been observed in schizophrenic patients, might contribute to increased cardiac mortality in schizophrenia. Previously, associations between CHRM2 (Cholinergic Receptor Muscarinic 2) and cardiac autonomic features have been reported. Here, we tested for possible associations between these polymorphisms and heart rate variability in patients with schizophrenia. METHODS A total of three single nucleotide polymorphisms (SNPs) in CHRM2 (rs73158705 A>G, rs8191992 T>A and rs2350782 T>C) that achieved significance (p < 5 * 10-8) in genome-wide association studies for cardiac autonomic features were genotyped in 88 drug-naïve patients, 61 patients receiving antipsychotic medication and 144 healthy controls. Genotypes were analysed for associations with parameters of heart rate variability and complexity, in each diagnostic group. RESULTS We observed a significantly altered heart rate variability in unmedicated patients with identified genetic risk status in rs73158705 A>G, rs8191992 T>A and rs2350782 T>C as compared to genotype non-risk status. In patients receiving antipsychotic medication and healthy controls, these associations were not observed. DISCUSSION We report novel candidate genetic associations with cardiac autonomic dysfunction in schizophrenia, but larger cohorts are required for replication.
Collapse
Affiliation(s)
- Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC)1, Jena University Hospital, Jena, Germany
| | - Shoko Komatsuzaki
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Martin Ungelenk
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Ha-Yeun Chung
- Department of Neurology, Section Translational Neuroimmunology, Jena University Hospital, Jena, Germany
| | - Andy Schumann
- Department of Psychosomatic Medicine and Psychotherapy, Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC)1, Jena University Hospital, Jena, Germany
| | - Susann S Schilling
- Department of Psychosomatic Medicine and Psychotherapy, Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC)1, Jena University Hospital, Jena, Germany
| | - Wibke Jantzen
- Department of Psychosomatic Medicine and Psychotherapy, Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC)1, Jena University Hospital, Jena, Germany
| | - Sabine Schröder
- Department of Psychosomatic Medicine and Psychotherapy, Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC)1, Jena University Hospital, Jena, Germany
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany.,Medical Faculty, Cécile and Oskar Vogt Institute of Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Biomedicine, Human Genomics Research Group, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | - Karl-Jürgen Bär
- Department of Psychosomatic Medicine and Psychotherapy, Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC)1, Jena University Hospital, Jena, Germany
| |
Collapse
|
15
|
Structure-activity relationship of pyrazol-4-yl-pyridine derivatives and identification of a radiofluorinated probe for imaging the muscarinic acetylcholine receptor M 4. Acta Pharm Sin B 2023; 13:213-226. [PMID: 36815036 PMCID: PMC9939360 DOI: 10.1016/j.apsb.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
There is an accumulating body of evidence implicating the muscarinic acetylcholine receptor 4 (M4) in schizophrenia and dementia with Lewy bodies, however, a clinically validated M4 positron emission tomography (PET) radioligand is currently lacking. As such, the aim of this study was to develop a suitable M4 PET ligand that allows the non-invasive visualization of M4 in the brain. Structure-activity relationship studies of pyrazol-4-yl-pyridine derivates led to the discovery of target compound 12 - a subtype-selective positive allosteric modulator (PAM). The radiofluorinated analogue, [18F]12, was synthesized in 28 ± 10% radiochemical yield, >37 GBq/μmol and an excellent radiochemical purity >99%. Initial in vitro autoradiograms on rodent brain sections were performed in the absence of carbachol and showed moderate specificity as well as a low selectivity of [18F]12 for the M4-rich striatum. However, in the presence of carbachol, a significant increase in tracer binding was observed in the rat striatum, which was reduced by >60% under blocking conditions, thus indicating that orthosteric ligand interaction is required for efficient binding of [18F]12 to the allosteric site. Remarkably, however, the presence of carbachol was not required for high specific binding in the non-human primate (NHP) and human striatum, and did not further improve the specificity and selectivity of [18F]12 in higher species. These results pointed towards significant species-differences and paved the way for a preliminary PET study in NHP, where peak brain uptake of [18F]12 was found in the putamen and temporal cortex. In conclusion, we report on the identification and preclinical development of the first radiofluorinated M4 PET radioligand with promising attributes. The availability of a clinically validated M4 PET radioligand harbors potential to facilitate drug development and provide a useful diagnostic tool for non-invasive imaging.
Collapse
|
16
|
Kidambi N, Elsayed OH, El-Mallakh RS. Xanomeline-Trospium and Muscarinic Involvement in Schizophrenia. Neuropsychiatr Dis Treat 2023; 19:1145-1151. [PMID: 37193547 PMCID: PMC10183173 DOI: 10.2147/ndt.s406371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/01/2023] [Indexed: 05/18/2023] Open
Abstract
Schizophrenia is a severe mental illness that has its onset in late adolescence or early adulthood and is associated with significant dysfunction across multiple domains. The pathogenesis of schizophrenia remains unknown, but physiologic understanding of the illness has been driven by the dopamine hypothesis. However, acetylcholine (ACh) clearly plays a role with mixed results regarding effect on psychosis. Selective muscarinic M1 and M4 agonists, such as xanomeline, originally developed to aid in cognitive loss with Alzheimer's, showed promise in proof-of-concept study in 20 patients with schizophrenia. Unfortunately, tolerability problems made muscarinic agonists impractical in either condition. However, coadministration of trospium, a lipophobic, non-selective muscarinic antagonist previously used for the treatment of overactive bladder, with xanomeline resulted in a significant reduction of cholinergic adverse effects. A recent randomized, placebo-controlled study of the antipsychotic effects of this combination in 182 patients with acute psychosis revealed improved tolerability with 80% of subjects staying to the end of the 5 weeks study. At the end of the trial, the treatment group saw a -17.4 change in the positive and negative symptom scale (PANSS) score from baseline compared to a -5.9 change in the placebo arm (P < 0.001). Furthermore, the negative symptom subscore, was also superior in the active arm (P < 0.001). These early studies are exciting because they suggest that the cholinergic system may be recruited to treat a severe and disabling disorder with suboptimal treatment options. Xanomeline-trospium combination is currently in phase III studies.
Collapse
Affiliation(s)
- Neil Kidambi
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Omar H Elsayed
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Correspondence: Rif S El-Mallakh, Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, 40202, USA, Tel +1 502 588 4450, Fax +1 502 588 9539, Email
| |
Collapse
|
17
|
Szczurowska E, Szánti-Pintér E, Chetverikov N, Randáková A, Kudová E, Jakubík J. Modulation of Muscarinic Signalling in the Central Nervous System by Steroid Hormones and Neurosteroids. Int J Mol Sci 2022; 24:ijms24010507. [PMID: 36613951 PMCID: PMC9820491 DOI: 10.3390/ijms24010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Muscarinic acetylcholine receptors expressed in the central nervous system mediate various functions, including cognition, memory, or reward. Therefore, muscarinic receptors represent potential pharmacological targets for various diseases and conditions, such as Alzheimer's disease, schizophrenia, addiction, epilepsy, or depression. Muscarinic receptors are allosterically modulated by neurosteroids and steroid hormones at physiologically relevant concentrations. In this review, we focus on the modulation of muscarinic receptors by neurosteroids and steroid hormones in the context of diseases and disorders of the central nervous system. Further, we propose the potential use of neuroactive steroids in the development of pharmacotherapeutics for these diseases and conditions.
Collapse
Affiliation(s)
- Ewa Szczurowska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
| | - Nikolai Chetverikov
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Alena Randáková
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 6, 166 10 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| | - Jan Jakubík
- Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- Correspondence: (E.K.); (J.J.)
| |
Collapse
|
18
|
Cookson J, Jonsson F. A new cholinergic mechanism for antipsychotics: emraclidine and M4 muscarinic receptors. Lancet 2022; 400:2159-2161. [PMID: 36528365 DOI: 10.1016/s0140-6736(22)02421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Affiliation(s)
- John Cookson
- Department of Psychological Medicine, Royal London Hospital, London E1 1BB, UK.
| | - Ferdinand Jonsson
- Department of Psychological Medicine, Royal London Hospital, London E1 1BB, UK
| |
Collapse
|
19
|
Paul SM, Yohn SE, Popiolek M, Miller AC, Felder CC. Muscarinic Acetylcholine Receptor Agonists as Novel Treatments for Schizophrenia. Am J Psychiatry 2022; 179:611-627. [PMID: 35758639 DOI: 10.1176/appi.ajp.21101083] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Schizophrenia remains a challenging disease to treat effectively with current antipsychotic medications due to their limited efficacy across the entire spectrum of core symptoms as well as their often burdensome side-effect profiles and poor tolerability. An unmet need remains for novel, mechanistically unique, and better tolerated therapeutic agents for treating schizophrenia, especially those that treat not only positive symptoms but also the negative and cognitive symptoms of the disease. Almost 25 years ago, the muscarinic acetylcholine receptor (mAChR) agonist xanomeline was reported to reduce psychotic symptoms and improve cognition in patients with Alzheimer's disease. The antipsychotic and procognitive properties of xanomeline were subsequently confirmed in a small study of acutely psychotic patients with chronic schizophrenia. These unexpected clinical findings have prompted considerable efforts across academia and industry to target mAChRs as a new approach to potentially treat schizophrenia and other psychotic disorders. The authors discuss recent advances in mAChR biology and pharmacology and the current understanding of the relative roles of the various mAChR subtypes, their downstream cellular effectors, and key neural circuits mediating the reduction in the core symptoms of schizophrenia in patients treated with xanomeline. They also provide an update on the status of novel mAChR agonists currently in development for potential treatment of schizophrenia and other neuropsychiatric disorders.
Collapse
|
20
|
Eickhoff S, Franzen L, Korda A, Rogg H, Trulley VN, Borgwardt S, Avram M. The Basal Forebrain Cholinergic Nuclei and Their Relevance to Schizophrenia and Other Psychotic Disorders. Front Psychiatry 2022; 13:909961. [PMID: 35873225 PMCID: PMC9299093 DOI: 10.3389/fpsyt.2022.909961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
The basal forebrain cholinergic nuclei (BFCN) provide the main cholinergic input to prefrontal cortices, the hippocampi, and amygdala. These structures are highly relevant for the regulation and maintenance of many cognitive functions, such as attention and memory. In vivo neuroimaging studies reported alterations of the cholinergic system in psychotic disorders. Particularly, a downregulation of nicotinic and muscarinic acetylcholine receptors has been found. Crucially, such alterations in neurotransmission have been associated with cognitive impairments and positive and negative symptoms. Recent pharmacological studies support these findings, as they demonstrated an association between the manipulation of cholinergic transmission and an attenuation in symptom severity. Targeting acetylcholine receptors has therefore become a focus for the development of novel psychopharmacological drugs. However, many open questions remain. For instance, it remains elusive what causes such alterations in neurotransmission. While evidence supports the idea that BFCN structural integrity is altered in schizophrenia, it remains to be determined whether this is also present in other psychotic disorders. Furthermore, it is unclear when throughout the course of the disorder these alterations make their appearance and whether they reflect changes in the BFCN alone or rather aberrant interactions between the BFCN and other brain areas. In this review, the specific role of the BFCN and their projections are discussed from a neuroimaging perspective and with a focus on psychotic disorders alongside future directions. These directions set the stage for the development of new treatment targets for psychotic disorders.
Collapse
Affiliation(s)
- Sofia Eickhoff
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Carnac T. Schizophrenia Hypothesis: Autonomic Nervous System Dysregulation of Fetal and Adult Immune Tolerance. Front Syst Neurosci 2022; 16:844383. [PMID: 35844244 PMCID: PMC9283579 DOI: 10.3389/fnsys.2022.844383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
The autonomic nervous system can control immune cell activation via both sympathetic adrenergic and parasympathetic cholinergic nerve release of norepinephrine and acetylcholine. The hypothesis put forward in this paper suggests that autonomic nervous system dysfunction leads to dysregulation of immune tolerance mechanisms in brain-resident and peripheral immune cells leading to excessive production of pro-inflammatory cytokines such as Tumor Necrosis Factor alpha (TNF-α). Inactivation of Glycogen Synthase Kinase-3β (GSK3β) is a process that takes place in macrophages and microglia when a toll-like receptor 4 (TLR4) ligand binds to the TLR4 receptor. When Damage-Associated Molecular Patterns (DAMPS) and Pathogen-Associated Molecular Patterns (PAMPS) bind to TLR4s, the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway should be activated, leading to inactivation of GSK3β. This switches the macrophage from producing pro-inflammatory cytokines to anti-inflammatory cytokines. Acetylcholine activation of the α7 subunit of the nicotinic acetylcholine receptor (α7 nAChR) on the cell surface of immune cells leads to PI3K/Akt pathway activation and can control immune cell polarization. Dysregulation of this pathway due to dysfunction of the prenatal autonomic nervous system could lead to impaired fetal immune tolerance mechanisms and a greater vulnerability to Maternal Immune Activation (MIA) resulting in neurodevelopmental abnormalities. It could also lead to the adult schizophrenia patient’s immune system being more vulnerable to chronic stress-induced DAMP release. If a schizophrenia patient experiences chronic stress, an increased production of pro-inflammatory cytokines such as TNF-α could cause significant damage. TNF-α could increase the permeability of the intestinal and blood brain barrier, resulting in lipopolysaccharide (LPS) and TNF-α translocation to the brain and consequent increases in glutamate release. MIA has been found to reduce Glutamic Acid Decarboxylase mRNA expression, resulting in reduced Gamma-aminobutyric acid (GABA) synthesis, which combined with an increase of glutamate release could result in an imbalance of glutamate and GABA neurotransmitters. Schizophrenia could be a “two-hit” illness comprised of a genetic “hit” of autonomic nervous system dysfunction and an environmental hit of MIA. This combination of factors could lead to neurotransmitter imbalance and the development of psychotic symptoms.
Collapse
|
22
|
Alhusaini M, Eissa N, Saad AK, Beiram R, Sadek B. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep-Wake Cycle Disorder. Front Pharmacol 2022; 13:861094. [PMID: 35721194 PMCID: PMC9198498 DOI: 10.3389/fphar.2022.861094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
A relationship appears to exist between dysfunction of brain histamine (HA) and various neuropsychiatric brain disorders. The possible involvement of brain HA in neuropathology has gained attention recently, and its role in many (patho)physiological brain functions including memory, cognition, and sleep-wake cycle paved the way for further research on the etiology of several brain disorders. Histamine H3 receptor (H3R) evidenced in the brains of rodents and humans remains of special interest, given its unique position as a pre- and postsynaptic receptor, controlling the synthesis and release of HA as well as different other neurotransmitters in different brain regions, respectively. Despite several disappointing outcomes for several H3R antagonists/inverse agonists in clinical studies addressing their effectiveness in Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCH), numerous H3R antagonists/inverse agonists showed great potentials in modulating memory and cognition, mood, and sleep-wake cycle, thus suggesting its potential role in neurocognitive and neurodegenerative diseases such as AD, PD, SCH, narcolepsy, and major depression in preclinical rodent models. In this review, we present preclinical applications of selected H3R antagonists/inverse agonists and their pharmacological effects on cognitive impairment, anxiety, depression, and sleep-wake cycle disorders. Collectively, the current review highlights the behavioral impact of developments of H3R antagonists/inverse agonists, aiming to further encourage researchers in the preclinical drug development field to profile the potential therapeutic role of novel antagonists/inverse agonists targeting histamine H3Rs.
Collapse
Affiliation(s)
- Mera Alhusaini
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ali K Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
23
|
Saleem A, Qurat-ul-Ain, Akhtar MF. Alternative Therapy of Psychosis: Potential Phytochemicals and Drug Targets in the Management of Schizophrenia. Front Pharmacol 2022; 13:895668. [PMID: 35656298 PMCID: PMC9152363 DOI: 10.3389/fphar.2022.895668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Schizophrenia is a chronic mental and behavioral disorder characterized by clusters of symptoms including hallucinations, delusions, disorganized thoughts and social withdrawal. It is mainly contributed by defects in dopamine, glutamate, cholinergic and serotonergic pathways, genetic and environmental factors, prenatal infections, oxidative stress, immune system activation and inflammation. Management of schizophrenia is usually carried out with typical and atypical antipsychotics, but it yields modest benefits with a diversity of side effects. Therefore, the current study was designed to determine the phytochemicals as new drug candidates for treatment and management of schizophrenia. These phytochemicals alter and affect neurotransmission, cell signaling pathways, endocannabinoid receptors, neuro-inflammation, activation of immune system and status of oxidative stress. Phytochemicals exhibiting anti-schizophrenic activity are mostly flavonoids, polyphenols, alkaloids, terpenoids, terpenes, polypropanoids, lactones and glycosides. However, well-designed clinical trials are consequently required to investigate potential protective effect and therapeutic benefits of these phytochemicals against schizophrenia.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qurat-ul-Ain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
24
|
Abstract
Most psychiatric illnesses, such as schizophrenia, show profound sex differences in incidence, clinical presentation, course, and outcome. Fortunately, more recently the literature on sex differences and (to a lesser extent) effects of sex steroid hormones is expanding, and in this review we have focused on such studies in psychosis, both from a clinical/epidemiological and preclinical/animal model perspective. We begin by briefly describing the clinical evidence for sex differences in schizophrenia epidemiology, symptomatology, and pathophysiology. We then detail sex differences and sex hormone effects in behavioral animal models of psychosis, specifically psychotropic drug-induced locomotor hyperactivity and disruption of prepulse inhibition. We expand on the preclinical data to include developmental and genetic models of psychosis, such as the maternal immune activation model and neuregulin transgenic animals, respectively. Finally, we suggest several recommendations for future studies, in order to facilitate a better understanding of sex differences in the development of psychosis.
Collapse
|
25
|
Drug Design Targeting the Muscarinic Receptors and the Implications in Central Nervous System Disorders. Biomedicines 2022; 10:biomedicines10020398. [PMID: 35203607 PMCID: PMC8962391 DOI: 10.3390/biomedicines10020398] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
There is substantial evidence that cholinergic system function impairment plays a significant role in many central nervous system (CNS) disorders. During the past three decades, muscarinic receptors (mAChRs) have been implicated in various pathologies and have been prominent targets of drug-design efforts. However, due to the high sequence homology of the orthosteric binding site, many drug candidates resulted in limited clinical success. Although several advances in treating peripheral pathologies have been achieved, targeting CNS pathologies remains challenging for researchers. Nevertheless, significant progress has been made in recent years to develop functionally selective orthosteric and allosteric ligands targeting the mAChRs with limited side effect profiles. This review highlights past efforts and focuses on recent advances in drug design targeting these receptors for Alzheimer’s disease (AD), schizophrenia (SZ), and depression.
Collapse
|
26
|
Stuke H. Markers of muscarinic deficit for individualized treatment in schizophrenia. Front Psychiatry 2022; 13:1100030. [PMID: 36699495 PMCID: PMC9868756 DOI: 10.3389/fpsyt.2022.1100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Recent clinical studies have shown that agonists at muscarinic acetylcholine receptors effectively reduce schizophrenia symptoms. It is thus conceivable that, for the first time, a second substance class of procholinergic antipsychotics could become established alongside the usual antidopaminergic antipsychotics. In addition, various basic science studies suggest that there may be a subgroup of schizophrenia in which hypofunction of muscarinic acetylcholine receptors is of etiological importance. This could represent a major opportunity for individualized treatment of schizophrenia if markers can be identified that predict response to procholinergic vs. antidopaminergic interventions. In this perspective, non-response to antidopaminergic antipsychotics, specific symptom patterns like visual hallucinations and strong disorganization, the presence of antimuscarinic antibodies, ERP markers such as mismatch negativity, and radiotracers are presented as possible in vivo markers of muscarinic deficit and thus potentially of response to procholinergic therapeutics. Finally, open questions and further research steps are outlined.
Collapse
Affiliation(s)
- Heiner Stuke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| |
Collapse
|
27
|
Kachru N, Holmes HM, Johnson ML, Chen H, Aparasu RR. Antimuscarinic use among older adults with dementia and overactive bladder: a Medicare beneficiaries study. Curr Med Res Opin 2021; 37:1303-1313. [PMID: 33890538 PMCID: PMC9289997 DOI: 10.1080/03007995.2021.1920899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES This study examined the incidence and predictors of antimuscarinic medication use including non-selective antimuscarinics among older adults with dementia and overactive bladder (OAB). METHODS The study used a new-user cohort design involving older adults (≥65 years) with dementia and OAB based on 2013-2015 Medicare data. Antimuscarinics included non-selective (oxybutynin, tolterodine, trospium, fesoterodine) and selective (solifenacin, darifenacin) medications. Descriptive statistics and multivariable logistic regression models were used to determine the incidence and predictors of new antimuscarinic use including non-selective antimuscarinics, respectively. RESULTS Of the 3.38 million Medicare beneficiaries with dementia, over one million (1.05) had OAB (31.03%). Of those, 287,612 (27.39%) were reported as prevalent antimuscarinics users. After applying continuous eligibility criteria, 21,848 (10.34%) incident antimuscarinic users were identified (77.6% non-selective; 22.4% selective). Most frequently reported antimuscarinics were oxybutynin (56.3%) and solifenacin (21.4%). Multivariable analysis revealed that patients ≥75 years, of black race, and those with schizophrenia, epilepsy, delirium, and Elixhauser's score were less likely to initiate antimuscarinics. Women, those with abnormal involuntary movements, bipolar disorder, gastroesophageal reflux disease, insomnia, irritable bowel syndrome, muscle spasm/low back pain, neuropathic pain, benign prostatic hyperplasia, falls/fractures, myasthenia gravis, narrow-angle glaucoma, Parkinson's disease, syncope, urinary tract infection and vulvovaginitis were more likely to initiate antimuscarinics. Further, patients with muscle spasms/low back pain, benign prostatic hyperplasia and those taking higher level anticholinergics had lower odds of receiving non-selective antimuscarinics, whereas white patients, black patients and those with schizophrenia and delirium were more likely to receive them. CONCLUSIONS Nearly one-third of dementia patients had OAB and over one-fourth of them used antimuscarinics. Majority of the incident users were prescribed non-selective antimuscarinics with several demographic and clinical factors contributing to their use. Given the high prevalence of OAB among dementia patients, there is a need to optimize their antimuscarinic use, considering their vulnerability for anticholinergic adverse effects.
Collapse
Affiliation(s)
- Nandita Kachru
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, TX
| | - Holly M. Holmes
- Division of Geriatric and Palliative Medicine, McGovern Medical School at UTHealth, Houston, TX
| | - Michael L. Johnson
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, TX
| | - Hua Chen
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, TX
| | - Rajender R. Aparasu
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, TX
| |
Collapse
|
28
|
Hua LL, Alderman EM, Chung RJ, Grubb LK, Lee J, Powers ME, Upadhya KK, Wallace SB. Collaborative Care in the Identification and Management of Psychosis in Adolescents and Young Adults. Pediatrics 2021; 147:peds.2021-051486. [PMID: 34031232 DOI: 10.1542/peds.2021-051486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pediatricians are often the first physicians to encounter adolescents and young adults presenting with psychotic symptoms. Although pediatricians would ideally be able to refer these patients immediately into psychiatric care, the shortage of child and adolescent psychiatry services may sometimes require pediatricians to make an initial assessment or continue care after recommendations are made by a specialist. Knowing how to identify and further evaluate these symptoms in pediatric patients and how to collaborate with and refer to specialty care is critical in helping to minimize the duration of untreated psychosis and to optimize outcomes. Because not all patients presenting with psychotic-like symptoms will convert to a psychotic disorder, pediatricians should avoid prematurely assigning a diagnosis when possible. Other contributing factors, such as co-occurring substance abuse or trauma, should also be considered. This clinical report describes psychotic and psychotic-like symptoms in the pediatric age group as well as etiology, risk factors, and recommendations for pediatricians, who may be among the first health care providers to identify youth at risk.
Collapse
Affiliation(s)
- Liwei L. Hua
- Catholic Charities of Baltimore, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The M1/M4 preferring muscarinic agonist xanomeline modulates functional connectivity and NMDAR antagonist-induced changes in the mouse brain. Neuropsychopharmacology 2021; 46:1194-1206. [PMID: 33342996 PMCID: PMC8115158 DOI: 10.1038/s41386-020-00916-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Cholinergic drugs acting at M1/M4 muscarinic receptors hold promise for the treatment of symptoms associated with brain disorders characterized by cognitive impairment, mood disturbances, or psychosis, such as Alzheimer's disease or schizophrenia. However, the brain-wide functional substrates engaged by muscarinic agonists remain poorly understood. Here we used a combination of pharmacological fMRI (phMRI), resting-state fMRI (rsfMRI), and resting-state quantitative EEG (qEEG) to investigate the effects of a behaviorally active dose of the M1/M4-preferring muscarinic agonist xanomeline on brain functional activity in the rodent brain. We investigated both the effects of xanomeline per se and its modulatory effects on signals elicited by the NMDA-receptor antagonists phencyclidine (PCP) and ketamine. We found that xanomeline induces robust and widespread BOLD signal phMRI amplitude increases and decreased high-frequency qEEG spectral activity. rsfMRI mapping in the mouse revealed that xanomeline robustly decreased neocortical and striatal connectivity but induces focal increases in functional connectivity within the nucleus accumbens and basal forebrain. Notably, xanomeline pre-administration robustly attenuated both the cortico-limbic phMRI response and the fronto-hippocampal hyper-connectivity induced by PCP, enhanced PCP-modulated functional connectivity locally within the nucleus accumbens and basal forebrain, and reversed the gamma and high-frequency qEEG power increases induced by ketamine. Collectively, these results show that xanomeline robustly induces both cholinergic-like neocortical activation and desynchronization of functional networks in the mammalian brain. These effects could serve as a translatable biomarker for future clinical investigations of muscarinic agents, and bear mechanistic relevance for the putative therapeutic effect of these class of compounds in brain disorders.
Collapse
|
30
|
Schöbi D, Homberg F, Frässle S, Endepols H, Moran RJ, Friston KJ, Tittgemeyer M, Heinzle J, Stephan KE. Model-based prediction of muscarinic receptor function from auditory mismatch negativity responses. Neuroimage 2021; 237:118096. [PMID: 33940149 DOI: 10.1016/j.neuroimage.2021.118096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Drugs affecting neuromodulation, for example by dopamine or acetylcholine, take centre stage among therapeutic strategies in psychiatry. These neuromodulators can change both neuronal gain and synaptic plasticity and therefore affect electrophysiological measures. An important goal for clinical diagnostics is to exploit this effect in the reverse direction, i.e., to infer the status of specific neuromodulatory systems from electrophysiological measures. In this study, we provide proof-of-concept that the functional status of cholinergic (specifically muscarinic) receptors can be inferred from electrophysiological data using generative (dynamic causal) models. To this end, we used epidural EEG recordings over two auditory cortical regions during a mismatch negativity (MMN) paradigm in rats. All animals were treated, across sessions, with muscarinic receptor agonists and antagonists at different doses. Together with a placebo condition, this resulted in five levels of muscarinic receptor status. Using a dynamic causal model - embodying a small network of coupled cortical microcircuits - we estimated synaptic parameters and their change across pharmacological conditions. The ensuing parameter estimates associated with (the neuromodulation of) synaptic efficacy showed both graded muscarinic effects and predictive validity between agonistic and antagonistic pharmacological conditions. This finding illustrates the potential utility of generative models of electrophysiological data as computational assays of muscarinic function. In application to EEG data of patients from heterogeneous spectrum diseases, e.g. schizophrenia, such models might help identify subgroups of patients that respond differentially to cholinergic treatments. SIGNIFICANCE STATEMENT: In psychiatry, the vast majority of pharmacological treatments affect actions of neuromodulatory transmitters, e.g. dopamine or acetylcholine. As treatment is largely trial-and-error based, one of the goals for computational psychiatry is to construct mathematical models that can serve as "computational assays" and infer the status of specific neuromodulatory systems in individual patients. This translational neuromodeling strategy has great promise for electrophysiological data in particular but requires careful validation. The present study demonstrates that the functional status of cholinergic (muscarinic) receptors can be inferred from electrophysiological data using dynamic causal models of neural circuits. While accuracy needs to be enhanced and our results must be replicated in larger samples, our current results provide proof-of-concept for computational assays of muscarinic function using EEG.
Collapse
Affiliation(s)
- Dario Schöbi
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland
| | - Fabienne Homberg
- Boston Scientific Medizintechnik GmbH, Daniel-Goldbach-Strasse 17-27, 40880 Ratingen, Germany
| | - Stefan Frässle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland
| | - Heike Endepols
- Preclinical Imaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Rosalyn J Moran
- Department of Neuroimaging, Institute for Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London Se5 8AF, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N, 3AR, UK
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Cluster of Excellence in Cellular Stress and Aging associated Disease (CECAD), 50931 Cologne, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland.
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland; Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N, 3AR, UK; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| |
Collapse
|
31
|
Brannan SK, Sawchak S, Miller AC, Lieberman JA, Paul SM, Breier A. Muscarinic Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia. N Engl J Med 2021; 384:717-726. [PMID: 33626254 PMCID: PMC7610870 DOI: 10.1056/nejmoa2017015] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The muscarinic receptor agonist xanomeline has antipsychotic properties and is devoid of dopamine receptor-blocking activity but causes cholinergic adverse events. Trospium is a peripherally restricted muscarinic receptor antagonist that reduces peripheral cholinergic effects of xanomeline. The efficacy and safety of combined xanomeline and trospium in patients with schizophrenia are unknown. METHODS In this double-blind, phase 2 trial, we randomly assigned patients with schizophrenia in a 1:1 ratio to receive twice-daily xanomeline-trospium (increased to a maximum of 125 mg of xanomeline and 30 mg of trospium per dose) or placebo for 5 weeks. The primary end point was the change from baseline to week 5 in the total score on the Positive and Negative Syndrome Scale (PANSS; range, 30 to 210, with higher scores indicating more severe symptoms of schizophrenia). Secondary end points were the change in the PANSS positive symptom subscore, the score on the Clinical Global Impression-Severity (CGI-S) scale (range, 1 to 7, with higher scores indicating greater severity of illness), the change in the PANSS negative symptom subscore, the change in the PANSS Marder negative symptom subscore, and the percentage of patients with a response according to a CGI-S score of 1 or 2. RESULTS A total of 182 patients were enrolled, with 90 assigned to receive xanomeline-trospium and 92 to receive placebo. The PANSS total score at baseline was 97.7 in the xanomeline-trospium group and 96.6 in the placebo group. The change from baseline to week 5 was -17.4 points with xanomeline-trospium and -5.9 points with placebo (least-squares mean difference, -11.6 points; 95% confidence interval, -16.1 to -7.1; P<0.001). The results for the secondary end points were significantly better in the xanomeline-trospium group than in the placebo group, with the exception of the percentage of patients with a CGI-S response. The most common adverse events in the xanomeline-trospium group were constipation, nausea, dry mouth, dyspepsia, and vomiting. The incidences of somnolence, weight gain, restlessness, and extrapyramidal symptoms were similar in the two groups. CONCLUSIONS In a 5-week trial, xanomeline-trospium resulted in a greater decrease in the PANSS total score than placebo but was associated with cholinergic and anticholinergic adverse events. Larger and longer trials are required to determine the efficacy and safety of xanomeline-trospium in patients with schizophrenia. (Funded by Karuna Therapeutics and the Wellcome Trust; ClinicalTrials.gov number, NCT03697252.).
Collapse
Affiliation(s)
- Stephen K Brannan
- From Karuna Therapeutics, Boston (S.K.B., S.S., A.C.M., S.M.P.); Columbia University Vagelos College of Physicians and Surgeons, New York (J.A.L.); and Indiana University School of Medicine, Indianapolis (A.B.)
| | - Sharon Sawchak
- From Karuna Therapeutics, Boston (S.K.B., S.S., A.C.M., S.M.P.); Columbia University Vagelos College of Physicians and Surgeons, New York (J.A.L.); and Indiana University School of Medicine, Indianapolis (A.B.)
| | - Andrew C Miller
- From Karuna Therapeutics, Boston (S.K.B., S.S., A.C.M., S.M.P.); Columbia University Vagelos College of Physicians and Surgeons, New York (J.A.L.); and Indiana University School of Medicine, Indianapolis (A.B.)
| | - Jeffrey A Lieberman
- From Karuna Therapeutics, Boston (S.K.B., S.S., A.C.M., S.M.P.); Columbia University Vagelos College of Physicians and Surgeons, New York (J.A.L.); and Indiana University School of Medicine, Indianapolis (A.B.)
| | - Steven M Paul
- From Karuna Therapeutics, Boston (S.K.B., S.S., A.C.M., S.M.P.); Columbia University Vagelos College of Physicians and Surgeons, New York (J.A.L.); and Indiana University School of Medicine, Indianapolis (A.B.)
| | - Alan Breier
- From Karuna Therapeutics, Boston (S.K.B., S.S., A.C.M., S.M.P.); Columbia University Vagelos College of Physicians and Surgeons, New York (J.A.L.); and Indiana University School of Medicine, Indianapolis (A.B.)
| |
Collapse
|
32
|
van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ, Tobin AB, Sexton PM, Christopoulos A. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Front Pharmacol 2021; 11:606656. [PMID: 33584282 PMCID: PMC7878563 DOI: 10.3389/fphar.2020.606656] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The M1 and M4 muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, in particular for Alzheimer's disease and schizophrenia. Due to high sequence homology, selective targeting of any of the M1-M5 mAChRs through the endogenous ligand binding site has been notoriously difficult to achieve. With the discovery of highly subtype selective mAChR positive allosteric modulators in the new millennium, selectivity through targeting an allosteric binding site has opened new avenues for drug discovery programs. However, some hurdles remain to be overcome for these promising new drug candidates to progress into the clinic. One challenge is the potential for on-target side effects, such as for the M1 mAChR where over-activation of the receptor by orthosteric or allosteric ligands can be detrimental. Therefore, in addition to receptor subtype selectivity, a drug candidate may need to exhibit a biased signaling profile to avoid such on-target adverse effects. Indeed, recent studies in mice suggest that allosteric modulators for the M1 mAChR that bias signaling toward specific pathways may be therapeutically important. This review brings together details on the signaling pathways activated by the M1 and M4 mAChRs, evidence of biased agonism at these receptors, and highlights pathways that may be important for developing new subtype selective allosteric ligands to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Emma T. van der Westhuizen
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - K. H. Christopher Choy
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Simon McKenzie-Nickson
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Sophie J. Bradley
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| |
Collapse
|
33
|
Georgiou R, Lamnisos D, Giannakou K. Anticholinergic Burden and Cognitive Performance in Patients With Schizophrenia: A Systematic Literature Review. Front Psychiatry 2021; 12:779607. [PMID: 35027893 PMCID: PMC8748260 DOI: 10.3389/fpsyt.2021.779607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Objective: Cognitive impairment in schizophrenia forms the key cause of the disease's disability, leading to serious functional, and socioeconomic implications. Dopaminergic-cholinergic balance is considered essential to cognitive performance in schizophrenia and patients are often treated with many drugs with anticholinergic properties. This study aims to examine the cognitive impact of anticholinergic burden in patients with schizophrenia. Methods: A systematic literature review was performed on English-language studies published on PubMed, Embase, and Web of Science, from inception to June 2021, to identify research studies that examined the effect of anticholinergic load on cognition in clinically stable patients with schizophrenia. No restrictions on study design, age of participants, or geographical distribution were applied. Two researchers performed independently the screening and shortlisting of the eligible articles. A narrative synthesis of the main characteristics and findings of studies included was reported. Results: In total, 17 articles of varying methodological design met the inclusion criteria. Three of them found statistically significant improvement in cognition after anticholinergic tapering without adverse effects. Thirteen studies found a statistically significant association between high anticholinergic burden and cognitive impairment (neurocognitive composite scores and individual cognitive domains such as learning and memory, executive function, processing speed), apart from a study, related to the specific characteristics of clozapine. Conclusions: Medication with increased anticholinergic load has been found in most of the studies to negatively affect neurocognitive performance of patients with schizophrenia. However, the clinical and methodological heterogeneity of studies included limit our interpretation and conclusions.
Collapse
Affiliation(s)
- Rafaella Georgiou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Demetris Lamnisos
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Konstantinos Giannakou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
34
|
Functional coupling of M 1 muscarinic acetylcholine receptor to Gα q/11 in dorsolateral prefrontal cortex from patients with psychiatric disorders: a postmortem study. Eur Arch Psychiatry Clin Neurosci 2020; 270:869-880. [PMID: 31807862 DOI: 10.1007/s00406-019-01088-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/23/2019] [Indexed: 01/14/2023]
Abstract
Accumulating studies have implicated intracellular signaling through muscarinic acetylcholine receptors (mAChRs) in psychiatric illness. In the present study, carbamylcholine chloride (carbachol)-induced Gαi/o and Gαq/11 activation was identified in postmortem human prefrontal cortical membranes. The following two sample cohorts were used: subjects [1], consisting of 40 controls without neuropsychiatric disorders, and subjects [2], consisting of 20 with bipolar disorder (BP), 20 major depressive disorder (MDD), 20 schizophrenia, and 20 controls, strictly sex- and age-matched. Carbachol-stimulated [35S]GTPγS binding to human brain membranes was assessed by the two methods, i.e., conventional method using filtration techniques (Gαi/o activation coupled to M2/M4 mAChRs) applied to subjects [1], and [35S]GTPγS binding/immuno precipitation assay (Gαq/11 activation coupled to M1 mAChR) applied to subjects [1] and [2]. The concentration eliciting the half-maximal effect (EC50), maximum percent increase (%Emax), and slope factor were obtained from concentration-response curve of carbachol-induced Gαi/o and Gαq/11 activation. The pEC50 values of both carbachol-induced Gαi/o and Gαq/11 activations in subjects [1] were significantly correlated, though its implications or underlying molecular processes are unclear. The results of M1 mAChR-mediated Gαq/11 activation in subjects [2] indicated no significant disorder-specific alterations. However, the distribution patterns of the pEC50 values showed unequal variances among the groups. There was a significant inverse correlation between the %Emax values and the pEC50 values in subjects with schizophrenia, but not in those with BP or MDD, or controls. These data support the notion that schizophrenia patients consist of biologically heterogeneous subgroups with respect to M1 mAChR-mediated signaling pathways.
Collapse
|
35
|
Wang S, Guo P, Feng M, Qian M, Shen X, Wang G. The efficacy of scopolamine for patients with Parkinson's disease and depression: Two case reports. Asian J Psychiatr 2020; 52:102107. [PMID: 32447268 DOI: 10.1016/j.ajp.2020.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Shikai Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; The Third People's Hospital of Huzhou Municipal, Zhejiang, China
| | - Ping Guo
- The Third People's Hospital of Huzhou Municipal, Zhejiang, China
| | - Min Feng
- The Third People's Hospital of Huzhou Municipal, Zhejiang, China
| | - Mincai Qian
- The Third People's Hospital of Huzhou Municipal, Zhejiang, China
| | - Xinhua Shen
- The Third People's Hospital of Huzhou Municipal, Zhejiang, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
36
|
Das S, Chatterjee SS, Malathesh BC. Anticholinergic medications even in therapeutic range can cause recurrence of psychosis. Gen Psychiatr 2020; 33:e100235. [PMID: 32783023 PMCID: PMC7371018 DOI: 10.1136/gpsych-2020-100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022] Open
Abstract
Anticholinergic drugs are commonly used in psychiatry to attenuate antipsychotic induced extrapyramidal syndrome (EPS). Psychosis as a side effect is generally explained under the rubric of anticholinergic toxicity or induced delirium. Anticholinergic induced worsening of psychosis in patients with normal cognition is extremely rare in literature. Here, we arepresenting a case of young female who was prescribed with multiple anticholinergics to reduce EPS, and each time had worsening of psychosis with intact cognition. We then discussed the possible neurobiological explanation with special reference to muscarinic hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Soumitra Das
- Psychiatry, NorthWestern Mental Health, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
37
|
Deng X, Zhang Y, Rong J, Kumata K, Shao T, Wang G, Hatori A, Mori W, Yu Q, Hu K, Fujinaga M, Shao Y, Josephson L, Sun S, Zhang MR, Liang S. Synthesis and preliminary evaluation of 18F-labeled 1-(6,7-dimethyl-4-(methylamino)-1,3-dihydro-2H-pyrrolo[3,4-c]pyridin-2-yl)-2-(trans-2-(6-fluoropyridin-3-yl)cyclopropyl)ethan-1-one for imaging muscarinic acetylcholine receptor subtype 4. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Caton M, Ochoa ELM, Barrantes FJ. The role of nicotinic cholinergic neurotransmission in delusional thinking. NPJ SCHIZOPHRENIA 2020; 6:16. [PMID: 32532978 PMCID: PMC7293341 DOI: 10.1038/s41537-020-0105-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Delusions are a difficult-to-treat and intellectually fascinating aspect of many psychiatric illnesses. Although scientific progress on this complex topic has been challenging, some recent advances focus on dysfunction in neural circuits, specifically in those involving dopaminergic and glutamatergic neurotransmission. Here we review the role of cholinergic neurotransmission in delusions, with a focus on nicotinic receptors, which are known to play a part in some illnesses where these symptoms appear, including delirium, schizophrenia spectrum disorders, bipolar disorder, Parkinson, Huntington, and Alzheimer diseases. Beginning with what we know about the emergence of delusions in these illnesses, we advance a hypothesis of cholinergic disturbance in the dorsal striatum where nicotinic receptors are operative. Striosomes are proposed to play a central role in the formation of delusions. This hypothesis is consistent with our current knowledge about the mechanism of action of cholinergic drugs and with our abstract models of basic cognitive mechanisms at the molecular and circuit levels. We conclude by pointing out the need for further research both at the clinical and translational levels.
Collapse
Affiliation(s)
- Michael Caton
- The Permanente Medical Group, Kaiser Santa Rosa Department of Psychiatry, 2235 Mercury Way, Santa Rosa, CA, 95047, USA
- Heritage Oaks Hospital, 4250 Auburn Boulevard, Sacramento, CA, 95841, USA
| | - Enrique L M Ochoa
- Heritage Oaks Hospital, 4250 Auburn Boulevard, Sacramento, CA, 95841, USA
- Volunteer Clinical Faculty, Department of Psychiatry and Behavioral Sciences, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Glutamic acid decarboxylase 67 haplodeficiency in mice: consequences of postweaning social isolation on behavior and changes in brain neurochemical systems. Brain Struct Funct 2020; 225:1719-1742. [PMID: 32514634 PMCID: PMC7321906 DOI: 10.1007/s00429-020-02087-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/09/2020] [Indexed: 01/22/2023]
Abstract
Reductions of glutamate acid decarboxylase (GAD67) and subsequent GABA levels have been consistently observed in neuropsychiatric disorders like schizophrenia and depression, but it has remained unclear how GABAergic dysfunction contributes to different symptoms of the diseases. To address this issue, we investigated male mice haplodeficient for GAD67 (GAD67+/GFP mice), which showed a reduced social interaction, social dominance and increased immobility in the forced swim test. No differences were found in rotarod performance and sensorimotor gating. We also addressed potential effects of social deprivation, which is known, during early life, to affect GABAergic function and induces behavioral abnormalities similar to the symptoms found in psychiatric disorders. Indeed, social isolation of GAD67+/GFP mice provoked increased rearing activity in the social interaction test and hyperlocomotion on elevated plus maze. Since GABA closely interacts with the dopaminergic, serotonergic and cholinergic neurotransmitter systems, we investigated GAD67+/GFP and GAD67+/+ mice for morphological markers of the latter systems and found increased tyrosine hydroxylase (TH)-IR fiber densities in CA1 of dorsal hippocampus. By contrast, no differences in numbers and densities of TH-positive neurons of the midbrain dopamine regions, serotonin (5-HT) neurons of the raphe nuclei, or choline acetyltransferase (ChAT)-expressing neurons of basal forebrain and their respective terminal fields were observed. Our results indicate that GAD67 haplodeficiency impairs sociability and increases vulnerability to social stress, provokes depressive-like behavior and alters the catecholaminergic innervation in brain areas associated with schizophrenia. GAD67+/GFP mice may provide a useful model for studying the impact of GABAergic dysfunction as related to neuropsychiatric disorders.
Collapse
|
40
|
Tong L, Li W, Lo MMC, Gao X, Wai JMC, Rudd M, Tellers D, Joshi A, Zeng Z, Miller P, Salinas C, Riffel K, Haley H, Purcell M, Holahan M, Gantert L, Schubert JW, Jones K, Mulhearn J, Egbertson M, Meng Z, Hanney B, Gomez R, Harrison ST, McQuade P, Bueters T, Uslaner J, Morrow J, Thomson F, Kong J, Liao J, Selyutin O, Bao J, Hastings NB, Agrawal S, Magliaro BC, Monsma FJ, Smith MD, Risso S, Hesk D, Hostetler E, Mazzola R. Discovery of [ 11C]MK-6884: A Positron Emission Tomography (PET) Imaging Agent for the Study of M4Muscarinic Receptor Positive Allosteric Modulators (PAMs) in Neurodegenerative Diseases. J Med Chem 2020; 63:2411-2425. [PMID: 32101422 DOI: 10.1021/acs.jmedchem.9b01406] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The measurement of receptor occupancy (RO) using positron emission tomography (PET) has been instrumental in guiding discovery and development of CNS directed therapeutics. We and others have investigated muscarinic acetylcholine receptor 4 (M4) positive allosteric modulators (PAMs) for the treatment of symptoms associated with neuropsychiatric disorders. In this article, we describe the synthesis, in vitro, and in vivo characterization of a series of central pyridine-related M4 PAMs that can be conveniently radiolabeled with carbon-11 as PET tracers for the in vivo imaging of an allosteric binding site of the M4 receptor. We first demonstrated its feasibility by mapping the receptor distribution in mouse brain and confirming that a lead molecule 1 binds selectively to the receptor only in the presence of the orthosteric agonist carbachol. Through a competitive binding affinity assay and a number of physiochemical properties filters, several related compounds were identified as candidates for in vivo evaluation. These candidates were then radiolabeled with 11C and studied in vivo in rhesus monkeys. This research eventually led to the discovery of the clinical radiotracer candidate [11C]MK-6884.
Collapse
Affiliation(s)
- Ling Tong
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Wenping Li
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Michael Man-Chu Lo
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaolei Gao
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jenny Miu-Chen Wai
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Michael Rudd
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - David Tellers
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Aniket Joshi
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Zhizhen Zeng
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Patricia Miller
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Cristian Salinas
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Kerry Riffel
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Hyking Haley
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Mona Purcell
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Marie Holahan
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Liza Gantert
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Jeffrey W Schubert
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Kristen Jones
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - James Mulhearn
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Melissa Egbertson
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Zhaoyang Meng
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Barbara Hanney
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Robert Gomez
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Scott T Harrison
- Discovery Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Paul McQuade
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Tjerk Bueters
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Jason Uslaner
- Discovery Biology, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - John Morrow
- Discovery Biology, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Fiona Thomson
- Discovery Biology, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Jongrock Kong
- Department of Process Research and Development, Merck & Co., Inc., 126 East Lincoln Avenue Rahway, New Jersey 07065, United States
| | - Jing Liao
- Department of Process Research and Development, Merck & Co., Inc., 126 East Lincoln Avenue Rahway, New Jersey 07065, United States
| | - Oleg Selyutin
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jianming Bao
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Nicholas B Hastings
- Discovery Biology, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Sony Agrawal
- Discovery Biology, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Brian C Magliaro
- Discovery Biology, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Frederick J Monsma
- Discovery Biology, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Michelle D Smith
- Discovery Biology, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Stefania Risso
- Discovery Biology, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - David Hesk
- Department of Process Research and Development, Merck & Co., Inc., 126 East Lincoln Avenue Rahway, New Jersey 07065, United States
| | - Eric Hostetler
- Translational Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Robert Mazzola
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
41
|
Cieślik P, Domin H, Chocyk A, Gruca P, Litwa E, Płoska A, Radulska A, Pelikant-Małecka I, Brański P, Kalinowski L, Wierońska JM. Simultaneous activation of mGlu 2 and muscarinic receptors reverses MK-801-induced cognitive decline in rodents. Neuropharmacology 2019; 174:107866. [PMID: 31785263 DOI: 10.1016/j.neuropharm.2019.107866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/09/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
The activity of an allosteric agonist of muscarinic M1 receptor, VU0357017, and a positive allosteric modulator (PAM) of M5 receptor, VU0238429, were investigated alone or in combination with the mGlu2 receptor PAM, LY487379 using the following behavioural tests: prepulse inhibition (PPI), novel object recognition (NOR), and spatial delayed alternation (SDA). VU0357017 (10 and 20 mg/kg) and VU0238429 (5 and 10 mg/kg) reversed deficits in PPI while VU0238429 (2.5 and 5 mg/kg) was effective in SDA. The simultaneous administration of subeffective doses of M1 or M5 activators (5, 1, or 0.25 mg/kg) with LY487379 (0.5 mg/kg) induced the same effect as that observed for the active dose of each compound. Selective M1 or M5 receptor blockers antagonized the effect exerted by these combinations, and pharmacokinetic studies confirmed independent transport through the blood-brain barrier. The expression of both receptors (M1 and M5) was established in brain structures involved in cognition (neocortex, hippocampus, and entorhinal cortex) in both the rat and the mouse brains by immunofluorescence staining. Specifically, double neuronal staining of mGlu2-M1 and mGlu2-M5 receptors was observed in many areas of the rat brain, while the number of double-stained mGlu2-M1 receptors was moderate in the mouse brain with no mGlu2-M5 colocalization. Finally, the combined administration of subeffective doses of the compounds did not alter prolactin levels or motor coordination, in contrast to the compounds given alone at the highest dose or in combination with standard neuroleptics.
Collapse
Affiliation(s)
- Paulina Cieślik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Helena Domin
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Piotr Gruca
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Ewa Litwa
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland.
| |
Collapse
|
42
|
Vingerhoets C, Bakker G, Schrantee A, van der Pluijm M, Bloemen OJN, Reneman L, Caan M, Booij J, van Amelsvoort TAMJ. Influence of muscarinic M 1 receptor antagonism on brain choline levels and functional connectivity in medication-free subjects with psychosis: A placebo controlled, cross-over study. Psychiatry Res Neuroimaging 2019; 290:5-13. [PMID: 31252222 DOI: 10.1016/j.pscychresns.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 01/18/2023]
Abstract
An increasing number of studies implicate the muscarinic cholinergic system in cognitive dysfunction associated with psychosis. This study examined the effect of muscarinic M1 receptor modulation on anterior cingulate cortex (ACC) and striatal choline concentrations and the relation with cognitive performance, as well as functional connectivity of cognitive networks. Thirty medication-free subjects with a psychosis spectrum disorder and 30 gender, age and IQ-matched healthy control subjects underwent 1H-proton magnetic resonance spectroscopy (1H-MRS) twice, once after placebo and once after a single dose of biperiden (M1 receptor antagonist, 4 mg). A subset of 19 psychotic subjects and 28 controls underwent resting-state functional magnetic resonance imaging (rs-fMRI) as well. No significant differences were found in ACC and striatal choline levels, nor in functional connectivity, between the two groups after placebo. Moreover, M1 antagonism did not significantly affect choline levels or functional connectivity. No correlations were found between choline levels and cognition as well as psychotic symptoms. Our findings do not support an association between the cholinergic system and cognition and psychotic symptoms. However, the lack of group differences in choline concentrations and functional connectivity, both after biperiden and placebo, may indicate that there were no severe cholinergic abnormalities present in our sample.
Collapse
Affiliation(s)
- Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands.
| | - Geor Bakker
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands; Development and Experimental Medicine, Sosei-Heptaris, Cambridge, United Kingdom
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands; Spinoza Centre for Neuroimaging, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands
| | - Oswald J N Bloemen
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; GGZ Centraal, Center for Mental Health Care Innova, Amersfoort, the Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands
| | - Matthan Caan
- Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands; Department of Biomedical Engineering, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University medical center, location Academic Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
43
|
Hopper S, Pavey GM, Gogos A, Dean B. Widespread Changes in Positive Allosteric Modulation of the Muscarinic M1 Receptor in Some Participants With Schizophrenia. Int J Neuropsychopharmacol 2019; 22:640-650. [PMID: 31428788 PMCID: PMC6822142 DOI: 10.1093/ijnp/pyz045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Preclinical and some human data suggest allosteric modulation of the muscarinic M1 receptor (CHRM1) is a promising approach for the treatment of schizophrenia. However, it is suggested there is a subgroup of participants with schizophrenia who have profound loss of cortical CHRM1 (MRDS). This raises the possibility that some participants with schizophrenia may not respond optimally to CHRM1 allosteric modulation. Here we describe a novel methodology to measure positive allosteric modulation of CHRM1 in human CNS and the measurement of that response in the cortex, hippocampus, and striatum from participants with MRDS, non-MRDS and controls. METHODS The cortex (Brodmann's area 6), hippocampus, and striatum from 40 participants with schizophrenia (20 MRDS and 20 non-MRDS) and 20 controls were used to measure benzyl quinolone carboxylic acid-mediated shift in acetylcholine displacement of [3H]N-methylscopolamine using a novel in situ radioligand binding with autoradiography methodology. RESULTS Compared with controls, participants with schizophrenia had lower levels of specific [3H]N-methylscopolamine binding in all CNS regions, whilst benzyl quinolone carboxylic acid-modulated binding was less in the striatum, Brodmann's area 6, dentate gyrus, and subiculum. When divided by subgroup, only in MRDS was there lower specific [3H]N-methylscopolamine binding and less benzyl quinolone carboxylic acid-modulated binding in all cortical and subcortical regions studied. CONCLUSIONS In a subgroup of participants with schizophrenia, there is a widespread decreased responsiveness to a positive allosteric modulator at the CHRM1. This finding may have ramifications it positive allosteric modulators of the CHRM1 are used in clinical trials to treat schizophrenia as some participants may not have an optimal response.
Collapse
Affiliation(s)
- Shaun Hopper
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia,Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia
| | - Geoffrey Mark Pavey
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Andrea Gogos
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia,Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia,The Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia,Correspondence: Professor Brian Dean, Head, The Molecular Psychiatry Laboratories, The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3010, Australia ()
| |
Collapse
|
44
|
Teal LB, Gould RW, Felts AS, Jones CK. Selective allosteric modulation of muscarinic acetylcholine receptors for the treatment of schizophrenia and substance use disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:153-196. [PMID: 31378251 DOI: 10.1016/bs.apha.2019.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Muscarinic acetylcholine receptor (mAChRs) subtypes represent exciting new targets for the treatment of schizophrenia and substance use disorder (SUD). Recent advances in the development of subtype-selective allosteric modulators have revealed promising effects in preclinical models targeting the different symptoms observed in schizophrenia and SUD. M1 PAMs display potential for addressing the negative and cognitive symptoms of schizophrenia, while M4 PAMs exhibit promise in treating preclinical models predictive of antipsychotic-like activity. In SUD, there is increasing support for modulation of mesocorticolimbic dopaminergic circuitry involved in SUD with selective M4 mAChR PAMs or M5 mAChR NAMs. Allosteric modulators of these mAChR subtypes have demonstrated efficacy in rodent models of cocaine and ethanol seeking, with indications that these ligand may also be useful for other substances of abuse, as well as in various stages in the cycle of addiction. Importantly, allosteric modulators of the different mAChR subtypes may provide viable treatment options, while conferring greater subtype specificity and corresponding enhanced therapeutic index than orthosteric muscarinic ligands and maintaining endogenous temporo-spatial ACh signaling. Overall, subtype specific mAChR allosteric modulators represent important novel therapeutic mechanisms for schizophrenia and SUD.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Robert W Gould
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Andrew S Felts
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
45
|
Shah UH, González-Maeso J. Serotonin and Glutamate Interactions in Preclinical Schizophrenia Models. ACS Chem Neurosci 2019; 10:3068-3077. [PMID: 30807107 DOI: 10.1021/acschemneuro.9b00044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The serotonergic and glutamatergic neurotransmitter systems have both been implicated in the pathophysiology of schizophrenia, and there are multiple lines of evidence to demonstrate that they can interact in a functionally relevant manner. Particularly, it has been demonstrated that serotonin (5-hydroxytryptamine) 2A (5-HT2A) receptors and metabotropic glutamate type 2 (mGlu2) receptors can assemble into a functional heteromeric complex and modulate each other's function. This heteromeric complex has been implicated in the mechanism of action of hallucinogens as well as antipsychotic agents, and its role has been demonstrated in both in vitro and in vivo systems. Additionally, the difference in the changes in Gi/o and Gq/11 protein activity when a ligand binds to the heteromeric complex can be used as an index to predict the pro- or antipsychotic properties of an agent. Signaling via the heteromer is dysregulated in postmortem human brain samples of schizophrenia subjects, which may be linked to altered cortical functions. Alternative routes for the functional crosstalk between mGlu2 and 5-HT2A receptors include synaptic and epigenetic mechanisms. This Review highlights the advances made over the past few years in elucidating the structural and functional mechanisms underlying crosstalk between 5-HT2A and mGlu2 receptors in preclinical models of schizophrenia.
Collapse
Affiliation(s)
- Urjita H. Shah
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, United States
| |
Collapse
|
46
|
Cieślik P, Radulska A, Pelikant-Małecka I, Płoska A, Kalinowski L, Wierońska JM. Reversal of MK-801-Induced Disruptions in Social Interactions and Working Memory with Simultaneous Administration of LY487379 and VU152100 in Mice. Int J Mol Sci 2019; 20:ijms20112781. [PMID: 31174329 PMCID: PMC6600181 DOI: 10.3390/ijms20112781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/25/2023] Open
Abstract
Negative and cognitive symptoms of schizophrenia contribute to an impaired social and professional life for schizophrenic patients, and in most cases, these symptoms are treatment resistant. Therefore, identification of new treatment strategies is sorely needed. Metabotropic glutamate receptors (mGlu) and muscarinic (M) receptors for acetylcholine have been considered promising targets for novel antipsychotics. Among them, mGlu2 and M4 subtypes seem to be of particular importance. In the present study, the effect of mutual activation of mGlu2 and M4 receptors was assessed in MK-801-based animal models of negative and cognitive symptoms of schizophrenia, that is, social interaction and novel object recognition tests. Low sub-effective doses of LY487379 (0.5 mg/kg), a positive allosteric activator of the mGlu2 receptor, and VU152100 (0.25−0.5 mg/kg), a positive allosteric modulator of the M4 receptor, were simultaneously administered in the aforementioned tests. Combined administration of these compounds prevented MK-801-induced disturbances in social interactions and object recognition when acutely administered 30 min before MK-801. Prolonged (7 days) administration of these compounds resulted in the loss of effectiveness in preventing MK-801-induced disruptions in the novel object recognition test but not in the social interaction test. In the next set of experiments, MK-801 (0.3 mg/kg) was administered for seven consecutive days, and the activity of the compounds was investigated on day eight, during which time MK-801 was not administered. In this model, based on prolonged MK-801 administration, the effectiveness of the compounds to treat MK-801-induced disruptions was evident at low doses which were ineffective in preventing the behavioural disturbances induced by an acute MK-801 injection. Combined administration of the compounds did not exert better efficacy than each compound given alone. Pharmacokinetic analysis confirmed a lack of possible drug–drug interactions after combined administration of LY487379 and VU152100. Our data show that modulation of M4 and mGlu2 receptors may potentially be beneficial in the treatment of negative and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
47
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium-and Potassium-Activated Adenosine Triphosphatase (Na +, K +-ATPase) Enzyme Activity: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1427. [PMID: 31010095 PMCID: PMC6518254 DOI: 10.3390/ijerph16081427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, several lines of evidence are provided to show that Na + , K + -ATPase activity exerts vital roles in normal brain development and function and that loss of enzyme activity is implicated in neurodevelopmental, neuropsychiatric and neurodegenerative disorders, as well as increased risk of cancer, metabolic, pulmonary and cardiovascular disease. Evidence is presented to show that fluoride (F) inhibits Na + , K + -ATPase activity by altering biological pathways through modifying the expression of genes and the activity of glycolytic enzymes, metalloenzymes, hormones, proteins, neuropeptides and cytokines, as well as biological interface interactions that rely on the bioavailability of chemical elements magnesium and manganese to modulate ATP and Na + , K + -ATPase enzyme activity. Taken together, the findings of this study provide unprecedented insights into the molecular mechanisms and biological pathways by which F inhibits Na + , K + -ATPase activity and contributes to the etiology and pathophysiology of diseases associated with impairment of this essential enzyme. Moreover, the findings of this study further suggest that there are windows of susceptibility over the life course where chronic F exposure in pregnancy and early infancy may impair Na + , K + -ATPase activity with both short- and long-term implications for disease and inequalities in health. These findings would warrant considerable attention and potential intervention, not to mention additional research on the potential effects of F intake in contributing to chronic disease.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, P72 YF10 Bandon, Co. Cork, Ireland.
| |
Collapse
|
48
|
Kaefer K, Malagon-Vina H, Dickerson DD, O'Neill J, Trossbach SV, Korth C, Csicsvari J. Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization. Hippocampus 2019; 29:802-816. [PMID: 30723982 PMCID: PMC6767395 DOI: 10.1002/hipo.23076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/24/2018] [Accepted: 01/15/2019] [Indexed: 01/01/2023]
Abstract
Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single‐unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted‐in‐Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI. These tgDISC1 rats have previously been shown to exhibit DISC1 protein aggregation, disturbances in the dopaminergic system and attention‐related deficits. Recordings were performed during exploration of familiar and novel open field environments and during sleep, allowing investigation of neuronal abnormalities in unconstrained behavior. Compared to controls, tgDISC1 place cells exhibited smaller place fields and decreased speed‐modulation of their firing rates, demonstrating altered spatial coding and deficits in encoding location‐independent sensory inputs. Oscillation analyses showed that tgDISC1 pyramidal neurons had higher theta phase locking strength during novelty, limiting their phase coding ability. However, their mean theta phases were more variable at the population level, reducing oscillatory network synchronization. Finally, tgDISC1 pyramidal neurons showed a lack of novelty‐induced shift in their preferred theta and gamma firing phases, indicating deficits in coding of novel environments with oscillatory firing. By combining single cell and neuronal population analyses, we link DISC1 protein pathology with abnormal hippocampal neural coding and network synchrony, and thereby gain a more comprehensive understanding of CMI mechanisms.
Collapse
Affiliation(s)
- Karola Kaefer
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Hugo Malagon-Vina
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Desiree D Dickerson
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Joseph O'Neill
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, United Kingdom
| | - Svenja V Trossbach
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
| | - Carsten Korth
- Department Neuropathology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, Düsseldorf, Germany
| | - Jozsef Csicsvari
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| |
Collapse
|
49
|
Deng X, Hatori A, Chen Z, Kumata K, Shao T, Zhang X, Yamasaki T, Hu K, Yu Q, Ma L, Wang G, Wang L, Shao Y, Josephson L, Sun S, Zhang MR, Liang S. Synthesis and Preliminary Evaluation of 11 C-Labeled VU0467485/AZ13713945 and Its Analogues for Imaging Muscarinic Acetylcholine Receptor Subtype 4. ChemMedChem 2018; 14:303-309. [PMID: 30589226 DOI: 10.1002/cmdc.201800710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 12/16/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) have five distinct subunits (M1 -M5 ) and are involved in the action of the neurotransmitter acetylcholine in the central and peripheral nervous system. Attributed to the promising clinical efficacy of xanomeline, an M1 /M4 -preferring agonist, in patients of schizophrenia and Alzheimer's disease, M1 - or M4 -selective mAChR modulators have been developed that target the topographically distinct allosteric sites. Herein we report the synthesis and preliminary evaluation of 11 C-labeled positron emission tomography (PET) ligands based on a validated M4 R positive allosteric modulator VU0467485 (AZ13713945) to facilitate drug discovery. [11 C]VU0467485 and two other ligands were prepared in high radiochemical yields (>30 %, decay-corrected) with high radiochemical purity (>99 %) and high molar activity (>74 GBq μmol-1 ). In vitro autoradiography studies indicated that these three ligands possess moderate-to-high in vitro specific binding to M4 R. Nevertheless, further physiochemical property optimization is necessary to overcome the challenges associated with limited brain permeability.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiaofei Zhang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Kuan Hu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Qingzhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Longle Ma
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Gangqiang Wang
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology, College of Nuclear Technology & Chemistry and Biology, Hubei University of Science and Technology, Xianning, China
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.,Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Shaofa Sun
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology, College of Nuclear Technology & Chemistry and Biology, Hubei University of Science and Technology, Xianning, China
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Steven Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
50
|
Hudson MR, Hannan AJ, O’Brien TJ, Jones NC. High-Frequency Neuronal Oscillatory Abnormalities in the Phospholipase C-β1 Knockout Mouse Model of Schizophrenia. Int J Neuropsychopharmacol 2018; 22:221-231. [PMID: 30517689 PMCID: PMC6403088 DOI: 10.1093/ijnp/pyy097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Schizophrenia is a complex neuropsychiatric disorder characterized by psychoses, socioaffective disturbances, and cognitive deficits. The phosphodiesterase enzyme phospholipase C-β1 has been reported to be reduced in postmortem tissue of schizophrenia patients. Dysregulation of neuronal oscillations, particularly those in the higher frequency range such as beta (12-30 Hz) and gamma (30-80 Hz), are also associated with this disorder. We investigated the influence of phospholipase C-β1 gene deletion on cortical oscillatory activity and sensorimotor gating behavior. METHODS Adult phospholipase C-β1 knockout and wild-type C57Bl/6J control mice (total n = 26) underwent surgical implantation of extradural electrodes to allow electrocorticography recordings. Electrocorticography was recorded during prepulse inhibition behavior sessions to measure ongoing and auditory-evoked electrophysiological responses. Mice were also pretreated with antipsychotic drugs haloperidol (0.25 mg/kg), clozapine (2.5 mg/kg), and olanzapine (5 mg/kg). RESULTS Phospholipase C-β1 knockout mice exhibited reduced prepulse inhibition and diminished power and phase synchrony of beta and gamma oscillatory responses to auditory stimuli as well as elevated ongoing beta oscillations. Reductions in prepulse inhibition were highly correlated with the power and phase synchrony of evoked oscillations. Clozapine and olanzapine ameliorated the prepulse inhibition deficit in phospholipase C-β1 knockout mice, but not the electrophysiology abnormalities. CONCLUSIONS Phospholipase C-β1 reduction leads to disturbances to beta and gamma oscillatory dynamics and prepulse inhibition behavior. The strong relationships between these measures demonstrate the importance of event-related oscillatory activity to sensorimotor gating behavior. However, dissociation of these measures observed in the drug studies suggests that abnormalities in neuronal networks may not necessarily need to be corrected for behavioral improvement.
Collapse
Affiliation(s)
- Matthew R Hudson
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, Victoria, Australia
| | - Terence J O’Brien
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, Victoria, Australia,Department of Neuroscience, Central Clinical School, Monash University and Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne Brain Centre, Parkville, Victoria, Australia,Department of Neuroscience, Central Clinical School, Monash University and Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia,Correspondence: Nigel C. Jones, PhD, Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia ()
| |
Collapse
|