1
|
Zheng X, Chu B. The biology of mitochondrial carrier homolog 2. Mitochondrion 2024; 75:101837. [PMID: 38158152 DOI: 10.1016/j.mito.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The mitochondrial carrier system is in charge of small molecule transport between the mitochondria and the cytoplasm as well as being an integral portion of the core mitochondrial function. One member of the mitochondrial carrier family of proteins, mitochondrial carrier homolog 2 (MTCH2), is characterized as a critical mitochondrial outer membrane protein insertase participating in mitochondrial homeostasis. Accumulating evidence demonstrate that MTCH2 is integrally linked to cell death and mitochondrial metabolism, and its genetic alterations cause a variety of disease phenotypes, ranging from obesity, Alzheimer's disease, and tumor. To provide a comprehensive insight into the current understanding of MTCH2, we present a detailed description of the physiopathological functions of MTCH2, ranging from apoptosis, mitochondrial dynamics, and metabolic homeostasis regulation. Moreover, we summarized the impact of MTCH2 in human diseases, and highlighted tumors, to assess the role of MTCH2 mutations or variable expression on pathogenesis and target therapeutic options.
Collapse
Affiliation(s)
- Xiaohe Zheng
- Department of Pathology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China
| | - Binxiang Chu
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China.
| |
Collapse
|
2
|
González C, Martínez‐Sánchez L, Clemente P, Toivonen JM, Arredondo JJ, Fernández‐Moreno MÁ, Carrodeguas JA. Dysfunction of Drosophila mitochondrial carrier homolog (Mtch) alters apoptosis and disturbs development. FEBS Open Bio 2024; 14:276-289. [PMID: 38013241 PMCID: PMC10839352 DOI: 10.1002/2211-5463.13742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Mitochondrial carrier homologs 1 (MTCH1) and 2 (MTCH2) are orphan members of the mitochondrial transporter family SLC25. Human MTCH1 is also known as presenilin 1-associated protein, PSAP. MTCH2 is a receptor for tBid and is related to lipid metabolism. Both proteins have been recently described as protein insertases of the outer mitochondrial membrane. We have depleted Mtch in Drosophila and show here that mutant flies are unable to complete development, showing an excess of apoptosis during pupation; this observation was confirmed by RNAi in Schneider cells. These findings are contrary to what has been described in humans. We discuss the implications in view of recent reports concerning the function of these proteins.
Collapse
Affiliation(s)
- Cristina González
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Lidia Martínez‐Sánchez
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Paula Clemente
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Janne Markus Toivonen
- LAGENBIO, Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2)Universidad de ZaragozaSpain
- IIS AragónZaragozaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Juan José Arredondo
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Miguel Ángel Fernández‐Moreno
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER)Facultad de Medicina, UAMMadridSpain
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas Sols‐MorrealeThe Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasMadridSpain
| | - José Alberto Carrodeguas
- IIS AragónZaragozaSpain
- Institute for Biocomputation and Physics of Complex Systems (BIFI)University of ZaragozaSpain
- Department of Biochemistry and Molecular and Cellular Biology, School of SciencesUniversity of ZaragozaSpain
| |
Collapse
|
3
|
Manjunath LE, Singh A, Sahoo S, Mishra A, Padmarajan J, Basavaraju CG, Eswarappa SM. Stop codon read-through of mammalian MTCH2 leading to an unstable isoform regulates mitochondrial membrane potential. J Biol Chem 2020; 295:17009-17026. [PMID: 33028634 PMCID: PMC7863902 DOI: 10.1074/jbc.ra120.014253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3' UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3' UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through-deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sarthak Sahoo
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ashutosh Mishra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jinsha Padmarajan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
4
|
Rottiers V, Francisco A, Platov M, Zaltsman Y, Ruggiero A, Lee SS, Gross A, Libert S. MTCH2 is a conserved regulator of lipid homeostasis. Obesity (Silver Spring) 2017; 25:616-625. [PMID: 28127879 DOI: 10.1002/oby.21751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE More than one-third of U.S. adults have obesity, causing an alarming increase in obesity-related comorbidities such as type 2 diabetes. The functional role of mitochondrial carrier homolog 2 (MTCH2), a human obesity-associated gene, in lipid homeostasis was investigated in Caenorhabditis elegans, cell culture, and mice. METHODS In C. elegans, MTCH2/MTCH-1 was depleted, using RNAi and a genetic mutant, and overexpressed to assess its effect on lipid accumulation. In cells and mice, shRNAs against MTCH2 were used for knockdown and MTCH2 overexpression vectors were used for overexpression to study the role of this gene in fat accumulation. RESULTS MTCH2 knockdown reduced lipid accumulation in adipocyte-like cells in vitro and in C. elegans and mice in vivo. MTCH2 overexpression increased fat accumulation in cell culture, C. elegans, and mice. Acute MTCH2 inhibition reduced fat accumulation in animals subjected to a high-fat diet. Finally, MTCH2 influenced estrogen receptor 1 (ESR1) activity. CONCLUSIONS MTCH2 is a conserved regulator of lipid homeostasis. MTCH2 was found to be both required and sufficient for lipid homeostasis shifts, suggesting that pharmacological inhibition of MTCH2 could be therapeutic for treatment of obesity and related disorders. MTCH2 could influence lipid homeostasis through inhibition of ESR1 activity.
Collapse
Affiliation(s)
- Veerle Rottiers
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Adam Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Michael Platov
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yehudit Zaltsman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Antonella Ruggiero
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sergiy Libert
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Landgraf K, Strobach A, Kiess W, Körner A. Loss of mtch2 function impairs early development of liver, intestine and visceral adipocytes in zebrafish larvae. FEBS Lett 2016; 590:2852-61. [PMID: 27468124 DOI: 10.1002/1873-3468.12330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 01/28/2023]
Abstract
The mitochondrial carrier homologue 2 (MTCH2) has been shown to be essential for embryogenesis in mice, and variants in the MTCH2 locus have been linked to obesity in humans. Here, we investigated the importance of mtch2 for embryogenesis and adipocyte formation in zebrafish in vivo. We show that mtch2 is conserved in zebrafish and broadly expressed during embryogenesis. Knock-down of mtch2 results in impaired development of liver and intestine, and is associated with a reduced number of adipocytes and impaired postembryonic growth. The findings indicate an essential role for mtch2 during organ development and adipogenesis in vivo.
Collapse
Affiliation(s)
- Kathrin Landgraf
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Germany.,Medical Center AdiposityDiseases (IFB), University of Leipzig, Germany
| | - Ariane Strobach
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Germany.,Medical Center AdiposityDiseases (IFB), University of Leipzig, Germany
| |
Collapse
|
6
|
Bar-Lev Y, Moshitch-Moshkovitz S, Tsarfaty G, Kaufman D, Horev J, Resau JH, Tsarfaty I. Mimp/Mtch2, an Obesity Susceptibility Gene, Induces Alteration of Fatty Acid Metabolism in Transgenic Mice. PLoS One 2016; 11:e0157850. [PMID: 27359329 PMCID: PMC4928869 DOI: 10.1371/journal.pone.0157850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022] Open
Abstract
Objective Metabolic dysfunctions, such as fatty liver, obesity and insulin resistance, are among the most common contemporary diseases worldwide, and their prevalence is continuously rising. Mimp/Mtch2 is a mitochondrial carrier protein homologue, which localizes to the mitochondria and induces mitochondrial depolarization. Mimp/Mtch2 single-nucleotide polymorphism is associated with obesity in humans and its loss in mice muscle protects from obesity. Our aim was to study the effects of Mimp/Mtch2 overexpression in vivo. Methods Transgenic mice overexpressing Mimp/Mtch2-GFP were characterized and monitored for lipid accumulation, weight and blood glucose levels. Transgenic mice liver and kidneys were used for gene expression analysis. Results Mimp/Mtch2-GFP transgenic mice express high levels of fatty acid synthase and of β-oxidation genes and develop fatty livers and kidneys. Moreover, high-fat diet–fed Mimp/Mtch2 mice exhibit high blood glucose levels. Our results also show that Mimp/Mtch2 is involved in lipid accumulation and uptake in cells and perhaps in human obesity. Conclusions Mimp/Mtch2 alters lipid metabolism and may play a role in the onset of obesity and development of insulin resistance.
Collapse
Affiliation(s)
- Yamit Bar-Lev
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel
| | - Dafna Kaufman
- Van Andel Research Institute, Grand Rapids, Michigan, 49503, United States of America
| | - Judith Horev
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James H. Resau
- Van Andel Research Institute, Grand Rapids, Michigan, 49503, United States of America
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
7
|
Tan CT, Zhou QL, Su YC, Fu NY, Chang HC, Tao RN, Sukumaran SK, Baksh S, Tan YJ, Sabapathy K, Yu CD, Yu VC. MOAP-1 Mediates Fas-Induced Apoptosis in Liver by Facilitating tBid Recruitment to Mitochondria. Cell Rep 2016; 16:174-185. [DOI: 10.1016/j.celrep.2016.05.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/08/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022] Open
|
8
|
Nelo-Bazán MA, Latorre P, Bolado-Carrancio A, Pérez-Campo FM, Echenique-Robba P, Rodríguez-Rey JC, Carrodeguas JA. Early growth response 1 (EGR-1) is a transcriptional regulator of mitochondrial carrier homolog 1 (MTCH 1)/presenilin 1-associated protein (PSAP). Gene 2015; 578:52-62. [PMID: 26692143 DOI: 10.1016/j.gene.2015.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 01/25/2023]
Abstract
Attempts to elucidate the cellular function of MTCH1 (mitochondrial carrier homolog 1) have not yet rendered a clear insight into the function of this outer mitochondrial membrane protein. Classical biochemical and cell biology approaches have not produced the expected outcome. In vitro experiments have indicated a likely role in the regulation of cell death by apoptosis, and its reported interaction with presenilin 1 suggests a role in the cellular pathways in which this membrane protease participates, nevertheless in vivo data are missing. In an attempt to identify cellular pathways in which this protein might participate, we have studied its promoter looking for transcriptional regulators. We have identified several putative binding sites for EGR-1 (Early growth response 1; a protein involved in growth, proliferation and differentiation), in the proximal region of the MTCH1 promoter. Chromatin immunoprecipitation showed an enrichment of these sequences in genomic DNA bound to EGR-1 and transient overexpression of EGR-1 in cultured HEK293T cells induces an increase of endogenous MTCH1 levels. We also show that MTCH1 levels increase in response to treatment of cells with doxorubicin, an apoptosis inducer through DNA damage. The endogenous levels of MTCH1 decrease when EGR-1 levels are lowered by RNA interference. Our results indicate that EGR-1 is a transcriptional regulator of MTCH1 and give some clues about the cellular processes in which MTCH1 might participate.
Collapse
Affiliation(s)
- María Alejandra Nelo-Bazán
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain.
| | - Pedro Latorre
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Department of Animal Production and Food Science and Technology, University of Zaragoza, Spain.
| | | | - Flor M Pérez-Campo
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL University of Cantabria, 39008 Santander, Cantabria, Spain.
| | - Pablo Echenique-Robba
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Instituto de Química Física Rocasolano, CSIC, Madrid, Spain; Zaragoza Scientific Center for Advanced Modeling (ZCAM), Universidad de Zaragoza, Spain; Departamento de Física Teórica, Universidad de Zaragoza, Spain; Unidad Asociada IQFR-BIFI, Madrid-Zaragoza, Spain.
| | | | - José Alberto Carrodeguas
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain; Unidad Asociada IQFR-BIFI, Madrid-Zaragoza, Spain.
| |
Collapse
|
9
|
Goldman A, Rodríguez-Casuriaga R, González-López E, Capoano CA, Santiñaque FF, Geisinger A. MTCH2 is differentially expressed in rat testis and mainly related to apoptosis of spermatocytes. Cell Tissue Res 2015; 361:869-83. [DOI: 10.1007/s00441-015-2163-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/26/2015] [Indexed: 11/30/2022]
|
10
|
Rocheteau P, Vinet M, Chretien F. Dormancy and quiescence of skeletal muscle stem cells. Results Probl Cell Differ 2015; 56:215-35. [PMID: 25344673 DOI: 10.1007/978-3-662-44608-9_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The skeletal muscle of vertebrates has a huge regenerative capacity. When destroyed after different types of injury, this organ can regenerate very quickly (less than 20 days following myotoxin injection in the mouse) ad integrum and repeatedly. The cell responsible for this regeneration is the so-called satellite cell, the muscle stem cell that lies on top of the muscle fibre, a giant, multinucleated cell that contains the contractile material. When injected in the muscle, satellite cells can efficiently differentiate into contractile muscle fibres. The satellite cell shows great therapeutic potential; and its regenerative capacity has triggered particular interest in the field of muscular degeneration. In this review we will focus on one particular property of the satellite cell: its quiescence and dormancy. Indeed adult satellite cells are quiescent; they lie between the basal lamina and the basement membrane of the muscle fibre, ready to proliferate, and fuse in order to regenerate myofibers upon injury. It has recently been shown that a subpopulation of satellite cells is able to enter dormancy in human and mice cadavers. Dormancy is defined by a low metabolic state, low mobility, and a long lag before division when plated in vitro, compared to quiescent cells. This definition is also based on current knowledge about long-term hematopoietic stem cells, a subpopulation of stem cells that are described as dormant based on the same criteria (rare division and low metabolism when compared to progeny which are dividing more often). In the first part of this review, we will provide a description of satellite cells which addresses their quiescent state. We will then focus on the uneven distribution of satellite cells in the muscle and describe evidence that suggests that their dormancy differs from one muscle to the next and that one should be cautious when making generalisations regarding this cellular state. In a second part, we will discuss the transition between active dividing cells in developing animals to quiescence. This mechanism could be used or amplified in the switch from quiescence to dormancy. In a third part, we will review the signals and dynamics that actively maintain the satellite cell quiescent. The in-depth understanding of these mechanisms is key to describing how dormancy relies on quiescent state of the cells. In a fourth part, we will deal with dormancy per se: how dormant satellite cells can be obtained, their characteristics, their metabolic profile, and their molecular signature as compared to quiescent cells. Here, we will highlight one of the most important recent findings: that quiescence is a prerequisite for the entry of the satellite cell into dormancy. Since dormancy is a newly discovered phenomenon, we will review the mechanisms responsible for quiescence and activation, as these two cellular states are better known and key to understanding satellite cell dormancy. This will allow us to describe dormancy and its prerequisites.
Collapse
Affiliation(s)
- Pierre Rocheteau
- Human histopathology and animal models, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | | | | |
Collapse
|
11
|
Huang B, Lu M, Jolly MK, Tsarfaty I, Onuchic J, Ben-Jacob E. The three-way switch operation of Rac1/RhoA GTPase-based circuit controlling amoeboid-hybrid-mesenchymal transition. Sci Rep 2014; 4:6449. [PMID: 25245029 PMCID: PMC4171704 DOI: 10.1038/srep06449] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/01/2014] [Indexed: 10/25/2022] Open
Abstract
Metastatic carcinoma cells exhibit at least two different phenotypes of motility and invasion - amoeboid and mesenchymal. This plasticity poses a major clinical challenge for treating metastasis, while its underlying mechanisms remain enigmatic. Transitions between these phenotypes are mediated by the Rac1/RhoA circuit that responds to external signals such as HGF/SF via c-MET pathway. Using detailed modeling of GTPase-based regulation to study the Rac1/RhoA circuit's dynamics, we found that it can operate as a three-way switch. We propose to associate the circuit's three possible states to the amoeboid, mesenchymal and amoeboid/mesenchymal hybrid phenotype. In particular, we investigated the range of existence of, and the transition between, the three states (phenotypes) in response to Grb2 and Gab1 - two downstream adaptors of c-MET. The results help to explain the regulation of metastatic cells by c-MET pathway and hence can contribute to the assessment of possible clinical interventions.
Collapse
Affiliation(s)
- Bin Huang
- 1] Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA [2] Department of Chemistry, Rice University, Houston, TX 77005-1827, USA
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA
| | - Mohit Kumar Jolly
- 1] Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA [2] Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA
| | - Ilan Tsarfaty
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine
| | - José Onuchic
- 1] Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA [2] Department of Chemistry, Rice University, Houston, TX 77005-1827, USA [3] Department of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA [4] Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
| | - Eshel Ben-Jacob
- 1] Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA [2] Department of Biosciences, Rice University, Houston, TX 77005-1827, USA [3] School of Physics and Astronomy and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
12
|
Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes. Sci Rep 2013; 3:2173. [PMID: 23838847 PMCID: PMC3707025 DOI: 10.1038/srep02173] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/20/2013] [Indexed: 12/26/2022] Open
Abstract
Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene wide association studies) for obesity and T2D in human adipocytes. The mRNA expression of lipid and glucose metabolism genes was changed upon the treatment of human primary adipocytes with SPIONs. mRNA of GULP1, SLC30A8, NEGR1, SEC16B, MTCH2, MAF, MC4R, and TMEM195 were severely induced, whereas INSIG2, NAMPT, MTMR9, PFKP, KCTD15, LPL and GNPDA2 were down-regulated upon SPIONs stimulation. Since SEC16B gene assist the phagocytosis of apoptotic cells and this gene were highly expressed upon SPIONs treatment in adipocytes, it is logic to assume that SPIONs may play a crucial role in this direction, which requires more consideration in the future.
Collapse
|
13
|
Yamamoto T, Tamaki H, Katsuda C, Nakatani K, Terauchi S, Terada H, Shinohara Y. Molecular basis of interactions between mitochondrial proteins and hydroxyapatite in the presence of Triton X-100, as revealed by proteomic and recombinant techniques. J Chromatogr A 2013; 1301:169-78. [DOI: 10.1016/j.chroma.2013.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023]
|
14
|
Katz C, Zaltsman-Amir Y, Mostizky Y, Kollet N, Gross A, Friedler A. Molecular basis of the interaction between proapoptotic truncated BID (tBID) protein and mitochondrial carrier homologue 2 (MTCH2) protein: key players in mitochondrial death pathway. J Biol Chem 2012; 287:15016-23. [PMID: 22416135 DOI: 10.1074/jbc.m111.328377] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The molecular basis of the interaction between mitochondrial carrier homologue 2 (MTCH2) and truncated BID (tBID) was characterized. These proteins participate in the apoptotic pathway, and the interaction between them may serve as a target for anticancer lead compounds. In response to apoptotic signals, MTCH2 recruits tBID to the mitochondria, where it activates apoptosis. A combination of peptide arrays screening with biochemical and biophysical techniques was used to characterize the mechanism of the interaction between tBID and MTCH2 at the structural and molecular levels. The regions that mediate the interaction between the proteins were identified. The two specific binding sites between the proteins were determined to be tBID residues 59-73 that bind MTCH2 residues 140-161, and tBID residues 111-125 that bind MTCH2 residues 240-290. Peptides derived from tBID residues 111-125 and 59-73 induced cell death in osteosarcoma cells. These peptides may serve as lead compounds for anticancer drugs that act by targeting the tBID-MTCH2 interaction.
Collapse
Affiliation(s)
- Chen Katz
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Mei H, Chen W, Jiang F, He J, Srinivasan S, Smith EN, Schork N, Murray S, Berenson GS. Longitudinal replication studies of GWAS risk SNPs influencing body mass index over the course of childhood and adulthood. PLoS One 2012; 7:e31470. [PMID: 22355368 PMCID: PMC3280302 DOI: 10.1371/journal.pone.0031470] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/11/2012] [Indexed: 11/30/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple common variants associated with body mass index (BMI). In this study, we tested 23 genotyped GWAS-significant SNPs (p-value<5*10-8) for longitudinal associations with BMI during childhood (3-17 years) and adulthood (18-45 years) for 658 subjects. We also proposed a heuristic forward search for the best joint effect model to explain the longitudinal BMI variation. After using false discovery rate (FDR) to adjust for multiple tests, childhood and adulthood BMI were found to be significantly associated with six SNPs each (q-value<0.05), with one SNP associated with both BMI measurements: KCTD15 rs29941 (q-value<7.6*10-4). These 12 SNPs are located at or near genes either expressed in the brain (BDNF, KCTD15, TMEM18, MTCH2, and FTO) or implicated in cell apoptosis and proliferation (FAIM2, MAP2K5, and TFAP2B). The longitudinal effects of FAIM2 rs7138803 on childhood BMI and MAP2K5 rs2241423 on adulthood BMI decreased as age increased (q-value<0.05). The FTO candidate SNPs, rs6499640 at the 5 '-end and rs1121980 and rs8050136 downstream, were associated with childhood and adulthood BMI, respectively, and the risk effects of rs6499640 and rs1121980 increased as birth weight decreased. The best joint effect model for childhood and adulthood BMI contained 14 and 15 SNPs each, with 11 in common, and the percentage of explained variance increased from 0.17% and 9.0*10(-6)% to 2.22% and 2.71%, respectively. In summary, this study evidenced the presence of long-term major effects of genes on obesity development, implicated in pathways related to neural development and cell metabolism, and different sets of genes associated with childhood and adulthood BMI, respectively. The gene effects can vary with age and be modified by prenatal development. The best joint effect model indicated that multiple variants with effects that are weak or absent alone can nevertheless jointly exert a large longitudinal effect on BMI.
Collapse
Affiliation(s)
- Hao Mei
- Department of Epidemiology, Tulane University, New Orleans, Louisiana, United States of America
| | - Wei Chen
- Tulane Center for Cardiovascular Health, Tulane University, New Orleans, Louisiana, United States of America
| | - Fan Jiang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, Louisiana, United States of America
| | - Sathanur Srinivasan
- Tulane Center for Cardiovascular Health, Tulane University, New Orleans, Louisiana, United States of America
| | - Erin N. Smith
- Department of Pediatrics and Rady's Children's Hospital, University of California at San Diego, School of Medicine, La Jolla, California, United States of America
| | - Nicholas Schork
- Scripps Genomic Medicine and Scripps Translational Science Institute, La Jolla, California, United States of America
| | - Sarah Murray
- Scripps Genomic Medicine and Scripps Translational Science Institute, La Jolla, California, United States of America
| | - Gerald S. Berenson
- Tulane Center for Cardiovascular Health, Tulane University, New Orleans, Louisiana, United States of America
| |
Collapse
|
16
|
Lamarca V, Marzo I, Sanz-Clemente A, Carrodeguas JA. Exposure of any of two proapoptotic domains of presenilin 1-associated protein/mitochondrial carrier homolog 1 on the surface of mitochondria is sufficient for induction of apoptosis in a Bax/Bak-independent manner. Eur J Cell Biol 2008; 87:325-34. [PMID: 18375015 DOI: 10.1016/j.ejcb.2008.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 02/01/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022] Open
Abstract
Presenilin 1-associated protein/mitochondrial carrier homolog 1 (PSAP/Mtch1) is a proapoptotic outer mitochondrial membrane protein first identified as a presenilin 1-associated protein. The mechanism by which it induces apoptosis upon overexpression in cultured cells is so far unknown. We had previously reported that deletion of two independent regions of PSAP/Mtch1 is required to prevent apoptosis. We now report that mitochondrial targeting of the region containing both proapoptotic domains, or any of them independently, to the outer membrane is sufficient to induce apoptosis. On the other hand, targeting of that region to the surface of the endoplasmic reticulum does not induce apoptosis, indicating that attachment of those domains to the outer mitochondrial membrane, and not just cytosolic exposure, is a requisite for apoptosis. Overexpression of PSAP/Mtch1 in cultured cells causes mitochondrial depolarization and apoptosis that does not depend on Bax or Bak, since apoptosis is induced in mouse embryonic fibroblasts lacking these two proteins. Our results suggest that apoptosis induced by PSAP/Mtch1 likely involves the permeability transition pore.
Collapse
Affiliation(s)
- Violeta Lamarca
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Corona de Aragón, 42, Edificio Cervantes, E-50009 Zaragoza, Spain
| | | | | | | |
Collapse
|
17
|
Schwarz M, Andrade-Navarro MA, Gross A. Mitochondrial carriers and pores: key regulators of the mitochondrial apoptotic program? Apoptosis 2008; 12:869-76. [PMID: 17453157 DOI: 10.1007/s10495-007-0748-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria play a pivotal role in the process of apoptosis. Alterations in mitochondrial structure and function during apoptosis are regulated by proteins of the BCL-2 family, however their exact mechanism of action is largely unknown. Mitochondrial carriers and pores play an essential role in maintaining the normal function of mitochondria, and BCL-2 family members were shown to interact with several mitochondrial carriers/pores and to affect their function. This review focuses on the involvement of several of these mitochondrial carriers/pores in the regulation of the mitochondrial death pathway.
Collapse
Affiliation(s)
- Michal Schwarz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
18
|
Leibowitz-Amit R, Tsarfaty G, Abargil Y, Yerushalmi GM, Horev J, Tsarfaty I. Mimp, a mitochondrial carrier homologue, inhibits Met-HGF/SF-induced scattering and tumorigenicity by altering Met-HGF/SF signaling pathways. Cancer Res 2007; 66:8687-97. [PMID: 16951184 DOI: 10.1158/0008-5472.can-05-2294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have recently shown that Mimp, a mitochondrial carrier protein homologue, is induced by Met-hepatocyte growth factor/scatter factor (HGF/SF) signaling and decreases the mitochondrial membrane potential in DA3 mammary adenocarcinoma cells. We show here that induction of Mimp leads to growth arrest in response to HGF/SF by arresting cells at the S phase of the cell cycle. Induction of Mimp or its transient expression does not lead to apoptosis. Mimp also attenuates HGF/SF-induced cellular scattering in vitro and tumor growth in vivo. The exogenous induction of Mimp at levels similar to its endogenous induction by HGF/SF increases the level of the Met protein and its phosphorylation by HGF/SF but reduces the levels of Shc and prevents the HGF/SF-induced tyrosine phosphorylation of Grb2 and Shc. In contrast, the level of phosphatidylinositol 3-kinase (PI3K) increases following Mimp induction and the level of phosphorylated PI3K in response to HGF/SF is unaffected by the exogenous induction of Mimp. Moreover, exogenous Mimp prevents the HGF/SF-induced transcription of the serum response element-luciferase reporter gene. Our results show that Mimp expression reduces Met-HGF/SF-induced proliferation and scattering by attenuating and altering the downstream signaling of Met. These data show a new link between a tyrosine kinase growth factor receptor and a mitochondrial carrier homologue that regulates cellular growth, motility, and tumorigenicity.
Collapse
Affiliation(s)
- Raya Leibowitz-Amit
- Department of Human Microbiology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Lamarca V, Sanz-Clemente A, Pérez-Pé R, Martínez-Lorenzo MJ, Halaihel N, Muniesa P, Carrodeguas JA. Two isoforms of PSAP/MTCH1 share two proapoptotic domains and multiple internal signals for import into the mitochondrial outer membrane. Am J Physiol Cell Physiol 2007; 293:C1347-61. [PMID: 17670888 DOI: 10.1152/ajpcell.00431.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Presenilin 1-associated protein (PSAP) was first identified as a protein that interacts with presenilin 1. It was later reported that PSAP is a mitochondrial protein that induces apoptosis when overexpressed in cultured cells. PSAP is also known as mitochondrial carrier homolog 1 (Mtch1). In this study, we show that there are two proapoptotic PSAP isoforms generated by alternative splicing that differ in the length of a hydrophilic loop located between two predicted transmembrane domains. Using RT-PCR and Western blot assays, we determined that both isoforms are expressed in human and rat tissues as well as in culture cells. Our results indicate that PSAP is an integral mitochondrial outer membrane protein, although it contains a mitochondrial carrier domain conserved in several inner membrane carriers, which partially overlaps one of the predicted transmembrane segments. Deletion of this transmembrane segment impairs mitochondrial import of PSAP. Replacement of this segment with each of two transmembrane domains, with opposite membrane orientations, from an unrelated protein indicated that one of them allowed mitochondrial localization of the PSAP mutant, whereas the other one did not. Our interpretation of these results is that PSAP contains multiple mitochondrial targeting motifs dispersed along the protein but that a transmembrane domain in the correct position and orientation is necessary for membrane insertion. The amino acid sequence within this transmembrane domain may also be important. Furthermore, two independent regions in the amino terminal side of the protein are responsible for its proapoptotic activity. Possible implications of these findings in PSAP function are discussed.
Collapse
Affiliation(s)
- Violeta Lamarca
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Corona de Aragón 42, Edificio Cervantes, 50009, Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Alcalá S, Klee M, Fernández J, Fleischer A, Pimentel-Muiños FX. A high-throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release. Oncogene 2007; 27:44-54. [PMID: 17621274 DOI: 10.1038/sj.onc.1210600] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Functional annotation of complex genomes requires the development of novel experimental platforms with increased capacity. Here, we describe a high-throughput system designed to identify cDNAs whose overexpression induces morphologically distinct cell death modalities. The methodology incorporates two robotized steps, and relies on coexpression of library clones with GFP to reveal the morphological features presented by the dying cells. By using this system we screened 135 000 cDNA clones and obtained 90 independent molecules. Interestingly, three death categories were identified, namely; apoptotic, vacuolated and autophagic. Among the pro-apoptotic clones, we found four members of the mitochondrial carrier family: the phosphate and adenine nucleotide (type 3) transporters, and the mitochondrial carrier homologs (MTCHs) 1 and 2. Expression of these molecules induced cytochrome c release and caspase-9-dependent death. One of them, the phosphate carrier, was able to interact with members of the permeability transition pore complex ANT1 and VDAC1, and its binding to ANT1 was stabilized in the presence of apoptotic activators. Depletion of this carrier by siRNA delayed cytochrome c mobilization and apoptosis. These results attribute a previously undescribed apoptotic function to the phosphate carrier and, more generally, suggest that a common property of various mitochondrial transporters was exploited during evolution to regulate apoptosis.
Collapse
Affiliation(s)
- S Alcalá
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | | | | | | | | |
Collapse
|
21
|
Moshitch-Moshkovitz S, Tsarfaty G, Kaufman DW, Stein GY, Shichrur K, Solomon E, Sigler RH, Resau JH, Vande Woude GF, Tsarfaty I. In vivo direct molecular imaging of early tumorigenesis and malignant progression induced by transgenic expression of GFP-Met. Neoplasia 2006; 8:353-63. [PMID: 16790084 PMCID: PMC1592452 DOI: 10.1593/neo.05634] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tyrosine kinase receptor Met and its ligand, hepatocyte growth factor/scatter factor (HGF/SF), play an important role in normal developmental processes, as well as in tumorigenicity and metastasis. We constructed a green fluorescent protein (GFP) Met chimeric molecule that functions similarly to the wild-type Met receptor and generated GFP-Met transgenic mice. These mice ubiquitously expressed GFP-Met in specific epithelial and endothelial cells and displayed enhanced GFP-Met fluorescence in sebaceous glands. Thirty-two percent of males spontaneously developed adenomas, adenocarcinomas, and angiosarcomas in their lower abdominal sebaceous glands. Approximately 70% of adenocarcinoma tumors metastasized to the kidneys, lungs, or liver. Quantitative subcellular-resolution intravital imaging revealed very high levels of GFP-Met in tumor lesions and in single isolated cells surrounding them, relative to normal sebaceous glands. These single cells preceded the formation of local and distal metastases. Higher GFP-Met levels correlated with earlier tumor onset and aggressiveness, further demonstrating the role of Met-HGF/SF signaling in cellular transformation and acquisition of invasive and metastatic phenotypes. Our novel mouse model and high-resolution intravital molecular imaging create a powerful tool that enables direct real-time molecular imaging of receptor expression and localization during primary events of tumorigenicity and metastasis at single-cell resolution.
Collapse
Affiliation(s)
| | - Galia Tsarfaty
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Sheba Medical Center, Diagnostic Imaging, Ramat Gan, Israel
| | | | - Gideon Y Stein
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Keren Shichrur
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eddy Solomon
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - James H Resau
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | - Ilan Tsarfaty
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Xia S, Laterra J. Hepatocyte growth factor increases mitochondrial mass in glioblastoma cells. Biochem Biophys Res Commun 2006; 345:1358-64. [PMID: 16730650 DOI: 10.1016/j.bbrc.2006.05.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/02/2006] [Indexed: 01/26/2023]
Abstract
Hepatocyte growth factor/scatter factor (HGF) is a multifunctional growth factor that is linked to the initiation and/or progression of numerous malignancies. HGF also alters cancer cell responses to DNA damaging cytotoxic agents. Many cell responses to Met activation require alterations in metabolic activity but how the metabolic machinery responds to Met activation remains poorly defined. Treating human glioblastoma cells with HGF followed by the topoisomerase inhibitor camptothecin was found to increase the activity per cell of the mitochondrial respiratory chain enzyme succinate-tetrazolium reductase (>80% increase, p < 0.05) and the tricarboxylic acid cycle enzyme succinate dehydrogenase (>25% increase, p < 0.05). Treatment with either HGF or camptothecin alone had no effect on enzyme activity. The mitochondrial enzymatic response to HGF was dose- and time-dependent with the maximum increase occurring in cells pre-treated with 30 ng/ml HGF for 48h prior to camptothecin exposure. This enzymatic response was associated with a concurrent increase in mitochondrial mass of comparable magnitude (approximately 56%, p < 0.05) as measured by fluorescent mitochondrial staining and flow cytometry. The mitochondrial mass response to HGF was prevented by the MAP-kinase pathway inhibitor PD98059 and was unaffected by the phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin. These findings suggest that HGF influences cell responses to chemotherapeutic stress, in part, by altering mitochondrial functions through a MAP-kinase dependent increase in mitochondrial mass.
Collapse
Affiliation(s)
- Shuli Xia
- The Kennedy-Krieger Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
23
|
Tsarfaty G, Stein GY, Moshitch-Moshkovitz S, Kaufman DW, Cao B, Resau JH, Vande Woude GF, Tsarfaty I. HGF/SF increases tumor blood volume: a novel tool for the in vivo functional molecular imaging of Met. Neoplasia 2006; 8:344-52. [PMID: 16790083 PMCID: PMC1592450 DOI: 10.1593/neo.05685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular functional and metabolic imaging allows visualization of disease-causing processes in living organisms. Here we present a new approach for the functional molecular imaging (FMI) of endogenous tyrosine kinase receptor activity using Met and its ligand, hepatocyte growth factor/scatter factor (HGF/SF), as a model. HGF/SF and Met play significant roles in the biology and pathogenesis of a wide variety of cancers and, therefore, may serve as potential targets for cancer prognosis and therapy. We have previously shown that Met activation by HGF/SF increases oxygen consumption in vitro and results in substantial alteration of blood oxygenation levels in vivo, as measured by blood oxygenation level-dependent magnetic resonance imaging. Using contrast medium (CM) ultrasound imaging, we demonstrate here that HGF/SF induces an increase in tumor blood volume. This increase is evident in small vessels, including vessels that were not detected before HGF/SF treatment. The specificity of the effect was validated by its inhibition using anti-HGF/SF antibodies. This change in tumor hemodynamics, induced by HGF/SF and measured by CM ultrasound, is further used as a tool for Met FMI in tumors. This novel noninvasive molecular imaging technique may be applied for the in vivo diagnosis, prognosis, and therapy of Met-expressing tumors.
Collapse
Affiliation(s)
- Galia Tsarfaty
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Imaging Radiology, Sheba Medical Center, Ramat Gan, Israel
| | - Gideon Y Stein
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Internal Medicine B, Hasharon Hospital, Rabin Medical Center, Petach Tikva, Israel
| | | | | | - Brain Cao
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - James H Resau
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | - Ilan Tsarfaty
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
24
|
Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol 2005; 53:35-69. [PMID: 15607934 DOI: 10.1016/j.critrevonc.2004.09.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2004] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor plays multiple roles in cancer, by acting as a motility and invasion stimulating factor, promoting metastasis and tumour growth. Furthermore, it acts as a powerful angiogenic factor. The pivotal role of this factor in cancer has indicated HGF as being a potential target in cancer therapies. The past few years have seen rapid progress in developing tools in targeting HGF, in the context of cancer therapies, including development of antagonists, small compounds, antibodies and genetic approaches. The current article discusses the potential value of HGF and its receptor as targets in cancer therapies, the current development in anti-HGF research, and the clinical value of HGF in prognosis and treatment.
Collapse
Affiliation(s)
- Wen G Jiang
- Metastasis and Angiogenesis Research Group, University Department of Surgery, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Coming of Age in the Life of Neoplasia. Neoplasia 2004. [DOI: 10.1593/neo.6-6ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|