1
|
Shoae-Hagh P, Razavi BM, Sadeghnia HR, Mehri S, Karimi G, Hosseinzadeh H. Molecular and Behavioral Neuroprotective Effects of Clavulanic Acid and Crocin in Haloperidol-Induced Tardive Dyskinesia in Rats. Mol Neurobiol 2024:10.1007/s12035-024-04566-x. [PMID: 39520654 DOI: 10.1007/s12035-024-04566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Clavulanic acid (ClvA), a beta-lactamase inhibitor, is being explored for its significant neuroprotective potential. The effects of ClvA were assessed both individually and in combination with crocin (Cr), an antioxidant derived from saffron, in the context of tardive dyskinesia (TD). In rat haloperidol (Hp)-induced-TD (1 mg/kg, i.p. 21 days), the effects of ClvA (50, 100, 150 mg/kg) and Cr (10, 20, 40 mg/kg) were assessed via vacuous chewing movements (VCM) and tongue protrusion (TP). Striatal malondialdehyde (MDA) and glutathione (GSH) were measured spectrophotometrically. Based on the results, ClvA (100 mg/kg) and Cr (10 mg/kg) were determined with sub-effective doses. Glutamate transporter-subtype1 (GLT1), dopamine active transporter (DAT), vesicular monoamine transporter-type2 (VMAT2), Bax/Bcl2, cleaved Caspase3, phosphorylated AKT/AKT, IL1β, and TNFα levels were quantified using western blotting in sub-effective doses and their combination. The behavioral results of catalepsy and orofacial dyskinesia demonstrated model establishment. Hp decreased GLT1 (p < 0.05), DAT (p < 0.01), VMAT2 (p < 0.001), GSH and pAKT/AKT (p < 0.0001); increased TNFα (p < 0.05), IL1β, cleaved Caspase3 (p < 0.001); MDA and Bax/Bcl2 (p < 0.0001). ClvA 100 mg/kg reversed the decreased GLT1 and VMAT2 (p < 0.01), alongside the increased MDA (p < 0.0001) and VCM (p < 0.05). It also increased AKT phosphorylation (p < 0.05). No effects were noted on DAT, GSH, Bax/Bcl2, or inflammatory factors. However, the combination with Cr at 10 mg/kg influenced ClvA on DAT (p < 0.01) and resulted in a significant increase in GSH (p < 0.0001). Additionally, there was a marked decrease in TNFα (p < 0.0001) and IL1β (p < 0.001), enhancing its effects on reducing MDA and increasing pAKT/AKT (p < 0.0001). The combination adversely affected GLT1. ClvA protects against TD via GLT1 and VMAT2; combined with Cr, it enhances antioxidant effects, improves DAT, and requires dose optimization for GLT1 disruption.
Collapse
Affiliation(s)
- Parisa Shoae-Hagh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Tsartsalis S, Tournier BB, Gloria Y, Millet P, Ginovart N. Effect of 5-HT2A receptor antagonism on levels of D2/3 receptor occupancy and adverse behavioral side-effects induced by haloperidol: a SPECT imaging study in the rat. Transl Psychiatry 2021; 11:51. [PMID: 33446643 PMCID: PMC7809418 DOI: 10.1038/s41398-020-01179-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
Several studies suggested that 5-HT2A receptor (5-HT2AR) blockade may provide a more favorable efficacy and side-effect profile to antipsychotic treatment. We hypothesized that a combined haloperidol (a D2/3 receptor (D2/3R) antagonist) and MDL-100,907 (a 5-HT2AR antagonist) treatment would reverse the side effects and the neurochemical alterations induced by haloperidol alone and would potentialize its efficacy. We thus chronically treated male Mdr1a knock-out rats with several doses of haloperidol alone or in combination with a saturating dose of a MDL-100,907. Receptor occupancy at clinically relevant levels was validated with a dual-radiotracer in-vivo SPECT imaging of D2/3R and 5-HT2AR occupancy. Experimental tests of efficacy (dizocilpine-disrupted prepulse inhibition (PPI) of the startle reflex) and side effects (catalepsy, vacuous chewing movements) were performed. Finally, a second dual-radiotracer in-vivo SPECT scan assessed the neurochemical changes induced by the chronic treatments. Chronic haloperidol failed to reverse PPI disruption induced by dizocilpine, whilst administration of MDL-100,907 along with haloperidol was associated with a reversal of the effect of dizocilpine. Haloperidol at 0.5 mg/kg/day and at 1 mg/kg/day induced catalepsy that was significantly alleviated (by ~50%) by co-treatment with MDL-100,907 but only at 0.5 mg/kg/day dose of haloperidol. Chronic haloperidol treatment, event at doses as low as 0.1 mg/kg/day induced a significant upregulation of the D2/3R in the striatum (by over 40% in the nucleus accumbens and over 20% in the caudate-putamen nuclei), that was not reversed by MDL-100,907. Finally, an upregulation of 5-HT2AR after chronic haloperidol treatment at a moderate dose only (0.25 mg/kg/day) was demonstrated in frontal cortical regions and the ventral tegmental area. Overall, a partial contribution of a 5-HT2AR antagonism to the efficacy and side-effect profile of antipsychotic agents is suggested.
Collapse
Affiliation(s)
- Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland. .,Division of Psychiatric Specialties, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
| | - Benjamin B. Tournier
- grid.150338.c0000 0001 0721 9812Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Yesica Gloria
- grid.150338.c0000 0001 0721 9812Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Millet
- grid.150338.c0000 0001 0721 9812Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nathalie Ginovart
- grid.8591.50000 0001 2322 4988Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Servonnet A, Uchida H, Samaha AN. Continuous versus extended antipsychotic dosing in schizophrenia: Less is more. Behav Brain Res 2020; 401:113076. [PMID: 33345826 DOI: 10.1016/j.bbr.2020.113076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/28/2022]
Abstract
Antipsychotic drugs temper psychotic symptoms by interacting with dopamine D2 receptors to reduce dopamine neurotransmission. Currently, the standard of care involves antipsychotic treatment protocols that achieve steady-state levels of medication. Maintaining patients on continuous treatment is thought to be necessary to keep them stabilised. However, continuous antipsychotic exposure increases the risk of adverse effects over time. These effects include metabolic and cardiovascular disorders, extrapyramidal complications, and dopamine receptor supersensitivity, the latter of which could potentially promote both treatment tolerance and psychosis relapse. In the present review, we describe evidence showing that continuous exposure to antipsychotic drugs can not only worsen long-term outcome, but-past acute phase treatment-it is also unnecessary to effectively manage schizophrenia symptoms. We also describe evidence that regular but extended dosing, allowing predictable periods of lower antipsychotic levels/D2 occupancy, is both safe and effective in patients, and it greatly reduces drug exposure overall. Studies in laboratory animals show that compared to continuous antipsychotic exposure, regular but extended dosing actually has superior antipsychotic-like efficacy, and it also substantially reduces the likelihood of both motor side effects and dopamine receptor supersensitivity. We propose that regular, but extended dosing should be considered in the long-term treatment of people with schizophrenia, because the available evidence suggests it can be just as effective as continuous treatment, while decreasing overall drug exposure and potentially reducing harmful side effects.
Collapse
Affiliation(s)
- Alice Servonnet
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada; Groupe de recherche sur le système nerveux central, Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
4
|
The Effects of Antipsychotics on the Synaptic Plasticity Gene Homer1a Depend on a Combination of Their Receptor Profile, Dose, Duration of Treatment, and Brain Regions Targeted. Int J Mol Sci 2020; 21:ijms21155555. [PMID: 32756473 PMCID: PMC7432375 DOI: 10.3390/ijms21155555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Antipsychotic agents modulate key molecules of the postsynaptic density (PSD), including the Homer1a gene, implicated in dendritic spine architecture. How the antipsychotic receptor profile, dose, and duration of administration may influence synaptic plasticity and the Homer1a pattern of expression is yet to be determined. Methods: In situ hybridization for Homer1a was performed on rat tissue sections from cortical and striatal regions of interest (ROI) after acute or chronic administration of three antipsychotics with divergent receptor profile: Haloperidol, asenapine, and olanzapine. Univariate and multivariate analyses of the effects of topography, treatment, dose, and duration of antipsychotic administration were performed. Results: All acute treatment regimens were found to induce a consistently higher expression of Homer1a compared to chronic ones. Haloperidol increased Homer1a expression compared to olanzapine in striatum at the acute time-point. A dose effect was also observed for acute administration of haloperidol. Conclusions: Biological effects of antipsychotics on Homer1a varied strongly depending on the combination of their receptor profile, dose, duration of administration, and throughout the different brain regions. These molecular data may have translational valence and may reflect behavioral sensitization/tolerance phenomena observed with prolonged antipsychotics.
Collapse
|
5
|
Tsartsalis S, Tournier BB, Millet P. In vivo absolute quantification of striatal and extrastriatal D 2/3 receptors with [ 123I]epidepride SPECT. EJNMMI Res 2020; 10:66. [PMID: 32548681 PMCID: PMC7297889 DOI: 10.1186/s13550-020-00650-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
Background [123I]epidepride is a high-affinity radiotracer used in single-photon emission computed tomography (SPECT) imaging of the D2/3 receptors. It binds with high affinity to striatal and extrastriatal receptors. Nevertheless, its slow kinetics in the striatum impedes quantification in this region. Thus, an approach that would allow a simultaneous quantification of both striatal and extrastriatal D2/3 receptors would be of interest for preclinical and clinical SPECT neuroimaging. We describe a partial saturation protocol that allows us to produce an in vivo Scatchard plot and thus estimate Bavail and appKd separately in both striatal and extrastriatal regions, through a single dynamic SPECT session. To validate this approach, a multi-injection protocol is used for the full kinetic modeling of [123I]epidepride using a two-tissue compartment, 5-parameter model (2T-5k). Methods Eighteen male rats were used. Binding parameters were estimated using the multi-injection protocol. Various simulations were performed to estimate the optimal conditions for the partial saturation protocol, which was applied at the region and voxel level. The results of the partial saturation study were compared to those obtained with the 2T-5k model. To illustrate the interest of the partial saturation approach, we performed a preliminary study of the effect of a chronic, subcutaneous administration of haloperidol (1 mg/kg/day), a D2 receptor antagonist, on the Bavail of [123I]epidepride in the rat striatum. Results A series of simulations demonstrated that a mass of 3 ug/kg of unlabeled epidepride allows the formation of an in vivo Scatchard plot. The partial saturation study led to robust estimations of Bavail in all brain regions that highly correlated (r = 0.99) with the corresponding values from the multi-injection study. A chronic haloperidol treatment resulted in a 17.9% increase in the Bavail values in the left Caudate Putamen nucleus (CP) (p = 0.07) and a 13.8% increase in the right CP (p = 0.12). Conclusion A partial saturation method allowed the robust quantification of D2/3 receptors in striatal and extrastriatal D2/3 receptors with a single-scan approach. This approach may be applied in the mapping of the D2/3 receptor in translational biological studies and potentially, in clinical SPECT imaging.
Collapse
Affiliation(s)
- Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air 2, CH1226, Thônex, Switzerland.,Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air 2, CH1226, Thônex, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air 2, CH1226, Thônex, Switzerland. .,Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Wei H, Zapata RC, Lopez-Valencia M, Aslanoglou D, Farino ZJ, Benner V, Osborn O, Freyberg Z, McCarthy MJ. Dopamine D 2 receptor signaling modulates pancreatic beta cell circadian rhythms. Psychoneuroendocrinology 2020; 113:104551. [PMID: 31884319 PMCID: PMC7787223 DOI: 10.1016/j.psyneuen.2019.104551] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023]
Abstract
Antipsychotic drugs (APD) have clinically important, adverse effects on metabolism that limit their therapeutic utility. Pancreatic beta cells produce dopamine and express the D2 dopamine receptor (D2R). As D2R antagonists, APDs alter glucose-stimulated insulin secretion, indicating that dopamine likely plays a role in APD-induced metabolic dysfunction. Insulin secretion from beta cells is also modulated by the circadian clock. Disturbed circadian rhythms cause metabolic disturbances similar to those observed in APD-treated subjects. Given the importance of dopamine and circadian rhythms for beta cells, we hypothesized that the beta cell dopamine system and circadian clock interact and dually regulate insulin secretion, and that circadian manipulations may alter the metabolic impact of APDs. We measured circadian rhythms, insulin release, and the impact of dopamine upon these processes in beta cells using bioluminescent reporters. We then assessed the impact of circadian timing on weight gain and metabolic outcomes in mice treated with the APD sulpiride at the onset of light or dark. We found that molecular components of the dopamine system were rhythmically expressed in beta cells. D2R stimulation by endogenous dopamine or the agonist bromocriptine reduced circadian rhythm amplitude, and altered the temporal profile of insulin secretion. Sulpiride caused greater weight gain and hyperinsulinemia in mice when given in the dark phase compared to the light phase. D2R-acting drugs affect circadian-dopamine interactions and modulate beta cell metabolic function. These findings identify circadian timing as a novel and important mechanism underlying APD-induced metabolic dysfunction, offering new possibilities for therapeutic interventions.
Collapse
Affiliation(s)
- Heather Wei
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161, USA
| | - Rizaldy C. Zapata
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | | | - Despoina Aslanoglou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Valerie Benner
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161, USA
| | - Olivia Osborn
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Michael J. McCarthy
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161, USA,Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, San Diego, CA 92161, USA,Corresponding author at: VA San Diego Healthcare System, 3350 La Jolla Village Dr MC116A, San Diego, CA 92161 USA
| |
Collapse
|
7
|
Antipsychotic-evoked dopamine supersensitivity. Neuropharmacology 2020; 163:107630. [DOI: 10.1016/j.neuropharm.2019.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
|
8
|
Guma E, Rocchetti J, Devenyi GA, Tanti A, Mathieu AP, Lerch JP, Elgbeili G, Courcot B, Mechawar N, Chakravarty MM, Giros B. Role of D3 dopamine receptors in modulating neuroanatomical changes in response to antipsychotic administration. Sci Rep 2019; 9:7850. [PMID: 31127135 PMCID: PMC6534671 DOI: 10.1038/s41598-019-43955-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
Clinical research has shown that chronic antipsychotic drug (APD) treatment further decreases cortical gray matter and hippocampus volume, and increases striatal and ventricular volume in patients with schizophrenia. D2-like receptor blockade is necessary for clinical efficacy of the drugs, and may be responsible for inducing these volume changes. However, the role of other D2-like receptors, such as D3, remains unclear. Following our previous work, we undertook a longitudinal study to examine the effects of chronic (9-week) typical (haloperidol (HAL)) and atypical (clozapine (CLZ)) APDs on the neuroanatomy of wild-type (WT) and dopamine D3-knockout (D3KO) mice using magnetic resonance imaging (MRI) and histological assessments in a sub-region of the anterior cingulate cortex (the prelimbic [PL] area) and striatum. D3KO mice had larger striatal volume prior to APD administration, coupled with increased glial and neuronal cell density. Chronic HAL administration increased striatal volume in both WT and D3KO mice, and reduced PL area volume in D3KO mice both at trend level. CLZ increased volume of the PL area of WT mice at trend level, but decreased D3KO PL area glial cell density. Both typical and atypical APD administration induced neuroanatomical remodeling of regions rich in D3 receptor expression, and typically altered in schizophrenia. Our findings provide novel insights on the role of D3 receptors in structural changes observed following APD administration in clinical populations.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada.,Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada
| | - Jill Rocchetti
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Axel P Mathieu
- Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, M5T3H7, Canada.,Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, M5G1X8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G1L7, Canada.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Guillaume Elgbeili
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada
| | - Blandine Courcot
- Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada.,Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada.,Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, H3A2B4, Canada
| | - Bruno Giros
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada. .,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada. .,Sorbonne University, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U 1130, UPMC Univ Paris 06, UM119, 75005, Paris, France.
| |
Collapse
|
9
|
Napier TC, Persons AL. Pharmacological insights into impulsive-compulsive spectrum disorders associated with dopaminergic therapy. Eur J Neurosci 2018; 50:2492-2502. [PMID: 30269390 DOI: 10.1111/ejn.14177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022]
Abstract
Impulsive-compulsive spectrum disorders are associated with dopamine agonist therapy in some patients. These untoward outcomes occur with direct-acting, full and partial agonists at D2 dopamine family receptors. The disorders typically emerge during chronic treatment, and exhibit common features that are independent of the neurological or psychiatric pathology for which the initial therapy was indicated. It is well-documented that the brain is 'plastic', changing in response to alterations to internal factors (e.g., disease processes), as well as external factors (e.g., therapies). The complexities of these clinical scenarios have eluded a clear depiction of the neurobiology for impulsive-compulsive spectrum disorders and engendered considerable debate regarding the mechanistic underpinnings of the disorders. In this opinion, we use pharmacological concepts related to homeostatic compensation subsequent to chronic receptor activation to provide a unifying construct. This construct helps explain the occurrence of impulsive-compulsive spectrum disorders across disease states, and during therapy with full and partial agonists.
Collapse
Affiliation(s)
- T Celeste Napier
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA.,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | - Amanda L Persons
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA.,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Physician Assistant Studies, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
10
|
Amato D, Vernon AC, Papaleo F. Dopamine, the antipsychotic molecule: A perspective on mechanisms underlying antipsychotic response variability. Neurosci Biobehav Rev 2018; 85:146-159. [DOI: 10.1016/j.neubiorev.2017.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
|
11
|
Servonnet A, Minogianis EA, Bouchard C, Bédard AM, Lévesque D, Rompré PP, Samaha AN. Neurotensin in the nucleus accumbens reverses dopamine supersensitivity evoked by antipsychotic treatment. Neuropharmacology 2017; 123:10-21. [DOI: 10.1016/j.neuropharm.2017.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022]
|
12
|
Salem H, Pigott T, Zhang XY, Zeni CP, Teixeira AL. Antipsychotic-induced Tardive dyskinesia: from biological basis to clinical management. Expert Rev Neurother 2017; 17:883-894. [PMID: 28750568 DOI: 10.1080/14737175.2017.1361322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tardive dyskinesia (TD) is a chronic and disabling movement disorder with a complex pathophysiological basis. A significant percentage of patients does not receive correct diagnosis, resulting in delayed or inaccurate treatment and poor outcome. Therefore, there is a critical need for prompt recognition, implementation of efficacious treatment regimens and long-term follow up of patients with TD. Areas covered: The current paper provides an overview of emerging data concerning proposed pathophysiology theories, epidemiology, risk factors, and therapeutic strategies for TD. Expert commentary: Despite considerable research efforts, TD remains a challenge in the treatment of psychosis as the available strategies remain sub-optimal. The best scenario will always be the prophylaxis or prevention of TD, which entails limiting the use of antipsychotics.
Collapse
Affiliation(s)
- Haitham Salem
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA.,b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Teresa Pigott
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Xiang Y Zhang
- b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Cristian P Zeni
- c Pediatric mood disorder/ADHD program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| | - Antonio L Teixeira
- a Harris County psychiatric center, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA.,b Neuropsychiatry program, Department Psychiatry and behavioral sciences, McGovern medical school , The university of texas health science center at Houston , TX , USA
| |
Collapse
|
13
|
Miksys S, Wadji FB, Tolledo EC, Remington G, Nobrega JN, Tyndale RF. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:140-148. [PMID: 28454738 DOI: 10.1016/j.pnpbp.2017.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
Abstract
Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects.
Collapse
Affiliation(s)
- Sharon Miksys
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Canada.
| | | | - Edgor Cole Tolledo
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Canada.
| | - Gary Remington
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Department of Psychological Clinical Sciences, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada.
| | - Jose N Nobrega
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada; Department of Psychology, University of Toronto, Canada.
| | - Rachel F Tyndale
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada.
| |
Collapse
|
14
|
Lister J, Andreazza AC, Navaid B, Wilson VS, Teo C, Nesarajah Y, Wilson AA, Nobrega JN, Fletcher PJ, Remington G. Lipoic acid and haloperidol-induced vacuous chewing movements: Implications for prophylactic antioxidant use in tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:23-29. [PMID: 27565433 DOI: 10.1016/j.pnpbp.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 01/30/2023]
Abstract
Tardive dyskinesia (TD), a potentially irreversible antipsychotic (AP)-related movement disorder, is a risk with all currently available antipsychotics. AP-induced vacuous chewing movements (VCMs) in rats, a preclinical model of TD, can be attenuated by antioxidant-based treatments although there is a shortage of well-designed studies. Lipoic acid (LA) represents a candidate antioxidant for the treatment of oxidative stress-related nervous system disorders; accordingly, its effects on AP-induced VCMs and striatal oxidative stress were examined. Rats treated with haloperidol decanoate (HAL; 21mg/kg every 3weeks, IM) for 12weeks were concurrently treated with LA (10 or 20mg/kg, PO). VCMs were assessed weekly by a blinded rater, and locomotor activity was evaluated as were striatal lipid peroxidation markers and serum HAL levels. VCMs were decreased by the lower dose (nonsignificant), whereas a significant increase was recorded with the higher dose of LA. HAL decreased locomotor activity and this was unaffected by LA. Striatal malondialdehyde (MDA) levels in HAL-treated rats were reduced by both LA doses, while 4-hydroxynonenal (4-HNE) levels were predictive of final VCM scores (averaged across weeks 10-12). Study limitations include differences between antipsychotics in terms of oxidative stress, LA dosing, choice of biomarkers for lipid peroxidation, and generalizability to TD in humans. Collectively, current preclinical evidence does not support a "protective" role for antioxidants in preventing TD or its progression, although clinical evidence offers limited evidence supporting such an approach.
Collapse
Affiliation(s)
- Joshua Lister
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ana C Andreazza
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Bushra Navaid
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Celine Teo
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - José N Nobrega
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Barakauskas VE, Moradian A, Barr AM, Beasley CL, Rosoklija G, Mann JJ, Ilievski B, Stankov A, Dwork AJ, Falkai P, Morin GB, Honer WG. Quantitative mass spectrometry reveals changes in SNAP-25 isoforms in schizophrenia. Schizophr Res 2016; 177:44-51. [PMID: 26971072 PMCID: PMC5017887 DOI: 10.1016/j.schres.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 11/24/2022]
Abstract
SNAP-25 and syntaxin are presynaptic terminal SNARE proteins altered in amount and function in schizophrenia. In the ventral caudate, we observed 32% lower SNAP-25 and 26% lower syntaxin, but greater interaction between the two proteins using an in vitro assay. SNAP-25 has two isoforms, SNAP-25A and B, differing by only 9 amino acids, but with different effects on neurotransmission. A quantitative mass spectrometry assay was developed to measure total SNAP-25, and proportions of SNAP-25A and B. The assay had a good linear range (50- to 150-fold) and coefficient of variation (4.5%). We studied ventral caudate samples from patients with schizophrenia (n=15) previously reported to have lower total SNAP-25 than controls (n=13). We confirmed 27% lower total SNAP-25 in schizophrenia, and observed 31% lower SNAP-25A (P=0.002) with 20% lower SNAP-25B amounts (P=0.10). Lower SNAP-25A amount correlated with greater SNAP-25-syntaxin protein-protein interactions (r=-0.41, P=0.03); the level of SNAP-25B did not. Administration of haloperidol or clozapine to rats did not mimic the changes found in schizophrenia. The findings suggest that lower levels of SNAP-25 in schizophrenia may represent a greater effect of the illness on the SNAP-25A isoform. This in turn could contribute to the greater interaction between SNAP25 and syntaxin, and possibly disturb neurotransmission in the illness.
Collapse
Affiliation(s)
- Vilte E Barakauskas
- BC Mental Health and Addictions Research Institute, Vancouver, BC,Department of Psychiatry, University of British Columbia, Vancouver, BC
| | - Annie Moradian
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC
| | - Alasdair M. Barr
- BC Mental Health and Addictions Research Institute, Vancouver, BC,Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC
| | - Clare L Beasley
- BC Mental Health and Addictions Research Institute, Vancouver, BC,Department of Psychiatry, University of British Columbia, Vancouver, BC
| | - Gorazd Rosoklija
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute; and Department of Psychiatry, Columbia University, New York, NY, USA,Macedonian Academy of Sciences and Arts, University “SS. Cyril and Methodius,” Skopje, Macedonia
| | - J John Mann
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute; and Department of Psychiatry, Columbia University, New York, NY, USA
| | - Boro Ilievski
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute; and Department of Psychiatry, Columbia University, New York, NY, USA,Institute for Pathology, University “SS. Cyril and Methodius,” Skopje, Macedonia
| | - Aleksandar Stankov
- Institute of Forensic Medicine, Criminology and Medical Deontology, University “SS. Cyril and Methodius,” Skopje, Macedonia
| | - Andrew J Dwork
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute; and Department of Psychiatry, Columbia University, New York, NY, USA,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Gregg B Morin
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - William G Honer
- BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Shi J, Tan YL, Wang ZR, An HM, Li J, Wang YC, Lv MH, Yan SX, Wu JQ, Soares JC, De Yang F, Zhang XY. Ginkgo biloba and vitamin E ameliorate haloperidol-induced vacuous chewingmovement and brain-derived neurotrophic factor expression in a rat tardive dyskinesia model. Pharmacol Biochem Behav 2016; 148:53-8. [DOI: 10.1016/j.pbb.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 02/02/2023]
|
17
|
Li M. Antipsychotic-induced sensitization and tolerance: Behavioral characteristics, developmental impacts, and neurobiological mechanisms. J Psychopharmacol 2016; 30:749-70. [PMID: 27371498 PMCID: PMC4944179 DOI: 10.1177/0269881116654697] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antipsychotic sensitization and tolerance refer to the increased and decreased drug effects due to past drug use, respectively. Both effects reflect the long-term impacts of antipsychotic treatment on the brain and result from the brain's adaptive response to the foreign property of the drug. In this review, clinical evidence of the behavioral aspect of antipsychotic sensitization and tolerance is selectively reviewed, followed by an overview of preclinical literature that examines these behavioral characteristics and the related pharmacological and nonpharmacological factors. Next, recent work on the developmental impacts of adolescent antipsychotic sensitization and tolerance is presented and recent research that delineates the neurobiological mechanisms of antipsychotic sensitization and tolerance is summarized. A theoretical framework based on "drug learning and memory" principles is proposed to account for the phenomena of antipsychotic sensitization and tolerance. It is maintained that antipsychotic sensitization and tolerance follow basic principles of learning or acquisition ("induction") and memory ("expression"). The induction and expression of both effects reflect the consequences of associative and nonassociative processing and are strongly influenced by various pharmacological, environmental, and behavioral factors. Drug-induced neuroplasticity, such as functional changes of striatal dopamine D2 and prefrontal serotonin (5-HT)2A receptors and their mediated signaling pathways, in principle, is responsible for antipsychotic sensitization and tolerance. Understanding the behavioral characteristics and neurobiological underpinnings of antipsychotic sensitization and tolerance has greatly enhanced our understanding of mechanisms of antipsychotic action, and may have important implications for future drug discovery and clinical practice.
Collapse
Affiliation(s)
- Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
18
|
de Bartolomeis A, Tomasetti C, Iasevoli F. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine Receptor Antagonism. CNS Drugs 2015; 29:773-99. [PMID: 26346901 PMCID: PMC4602118 DOI: 10.1007/s40263-015-0278-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dopamine partial agonism and functional selectivity have been innovative strategies in the pharmacological treatment of schizophrenia and mood disorders and have shifted the concept of dopamine modulation beyond the established approach of dopamine D2 receptor (D2R) antagonism. Despite the fact that aripiprazole was introduced in therapy more than 12 years ago, many questions are still unresolved regarding the complexity of the effects of this agent on signal transduction and intracellular pathways, in part linked to its pleiotropic receptor profile. The complexity of the mechanism of action has progressively shifted the conceptualization of this agent from partial agonism to functional selectivity. From the induction of early genes to modulation of scaffolding proteins and activation of transcription factors, aripiprazole has been shown to affect multiple cellular pathways and several cortical and subcortical neurotransmitter circuitries. Growing evidence shows that, beyond the consequences of D2R occupancy, aripiprazole has a unique neurobiology among available antipsychotics. The effect of chronic administration of aripiprazole on D2R affinity state and number has been especially highlighted, with relevant translational implications for long-term treatment of psychosis. The hypothesized effects of aripiprazole on cell-protective mechanisms and neurite growth, as well as the differential effects on intracellular pathways [i.e. extracellular signal-regulated kinase (ERK)] compared with full D2R antagonists, suggest further exploration of these targets by novel and future biased ligand compounds. This review aims to recapitulate the main neurobiological effects of aripiprazole and discuss the potential implications for upcoming improvements in schizophrenia therapy based on dopamine modulation beyond D2R antagonism.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy.
| | - Carmine Tomasetti
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy
| | - Felice Iasevoli
- Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine of Napoli "Federico II", Via Pansini, 5, Edificio n.18, 3rd floor, 80131, Naples, Italy
| |
Collapse
|
19
|
Collins CM, Wood MD, Elliott JM. Chronic administration of haloperidol and clozapine induces differential effects on the expression of Arc and c-Fos in rat brain. J Psychopharmacol 2014; 28:947-54. [PMID: 24989643 DOI: 10.1177/0269881114536788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The modulation of genes implicated in synaptic plasticity following administration of antipsychotic drugs has been instrumental in understanding their possible mode of action. Arc (Arg 3.1) is one such gene closely associated with changes in synaptic plasticity. In this study we have investigated the changes in expression of Arc protein following acute and chronic administration of a typical antipsychotic (haloperidol) and an atypical antipsychotic (clozapine) by means of immunohistochemistry compared to the prototypic gene marker c-Fos. In dorsal striatum haloperidol (1 mg/kg) significantly increased Arc expression following both acute and chronic (21 day) administration with evidence of modulation in induction after repeated dosing. No significant changes were observed following either acute or chronic administration of clozapine (20 mg/kg). In the nucleus accumbens shell both clozapine and haloperidol induced Arc expression following acute administration, again with evidence of modulation after chronic dosing. The pattern of induction of Arc expression following haloperidol and clozapine in both dorsal and ventral striatum was similar to that for c-Fos. In medial prefrontal and cingulate cortex, Arc expression was significantly decreased by clozapine but not haloperidol without any indication of modulation following chronic dosing, whereas no significant changes in c-Fos expression were observed with either drug. Since synaptic modulation mediated by Arc is associated with down-regulation of the AMPA glutamate receptor, this study suggests a mechanism whereby enhanced glutamate receptor efficacy in medial cortical areas may be a component of antipsychotic drug action.
Collapse
Affiliation(s)
- Cheryl M Collins
- Leicester School of Pharmacy, De Montfort University, Leicester, UK Current address: Loxbridge Research, Royal Free Hampstead NHS Trust, London, UK
| | - Martyn D Wood
- GlaxoSmithKline, Harlow, UK Current address: CNS Research, UCB S.A., B-1420 Braine -l'Alleud, Belgium
| | - J Martin Elliott
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
20
|
Remington G, Fervaha G, Foussias G, Agid O, Turrone P. Antipsychotic dosing: found in translation. J Psychiatry Neurosci 2014; 39:223-31. [PMID: 24467943 PMCID: PMC4074233 DOI: 10.1503/jpn.130191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the field of schizophrenia research, as in other areas of psychiatry, there is a sense of frustration that greater advances have not been made over the years, calling into question existing research strategies. Arguably, many purported gains claimed by research have been "lost in translation," resulting in limited impact on diagnosis and treatment in the clinical setting. There are exceptions; for example, we would argue that different lines of preclinical and clinical research have substantially altered how we look at antipsychotic dosing. While this story remains a work in progress, advances "found in translation" have played an important role. Detailing these changes, the present paper speaks to a body of evidence that has already shifted clinical practice and raises questions that may further alter the manner in which antipsychotics have been administered over the last 6 decades.
Collapse
Affiliation(s)
- Gary Remington
- Correspondence to: G. Remington, Complex Mental Illness Division, Schizophrenia Program, Centre for Addiction and Mental Health, 250 College St., Toronto ON M5T 1R8;
| | | | | | | | | |
Collapse
|
21
|
Lister J, Nobrega JN, Fletcher PJ, Remington G. Oxidative stress and the antipsychotic-induced vacuous chewing movement model of tardive dyskinesia: evidence for antioxidant-based prevention strategies. Psychopharmacology (Berl) 2014; 231:2237-49. [PMID: 24752659 DOI: 10.1007/s00213-014-3582-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022]
Abstract
RATIONALE Despite decades of research, tardive dyskinesia (TD) remains a poorly understood iatrogenic movement disorder with few effective treatments and no known cure. Accordingly, the development of an innocuous strategy to prevent or mitigate antipsychotic (AP)-associated TD would represent an important clinical advance. Supporting evidence for antioxidant (AX)-based treatment regimens can be found in the preclinical literature, where AP-induced vacuous chewing movements (VCMs) in rats are attenuated by the concurrent administration of direct and indirect AXs. OBJECTIVES Our aim was to review the preclinical literature examining the role of AX-promoting treatments in the prevention of AP-induced VCMs in rats. METHODS A literature search using Google Scholar and PubMed was performed. Relevant results were qualitatively reviewed. RESULTS Studies featuring a variety of naturally occurring and synthetic AX treatments were identified and included in the review. The majority of studies used haloperidol (HAL), a typical AP, to induce VCMs. Studies revealed reduced VCMs in co-treated rats, with favorable changes seen in markers of oxidative stress (OS) and AX status, but were limited by their short durations. CONCLUSIONS Some preclinical evidence suggests that the inclusion of a naturally occurring and benign AX compound as an adjunct to AP treatment may help guard patients against TD, but additional long-duration studies are needed. This AX-based strategy is further substantiated by accumulating evidence of preexisting OS abnormalities in schizophrenia (SZ).
Collapse
Affiliation(s)
- Josh Lister
- Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada,
| | | | | | | |
Collapse
|
22
|
Withdrawal symptoms and rebound syndromes associated with switching and discontinuing atypical antipsychotics: theoretical background and practical recommendations. CNS Drugs 2013; 27:545-72. [PMID: 23821039 DOI: 10.1007/s40263-013-0079-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the widespread use of atypical or second-generation antipsychotics, switching treatment has become current practice and more complicated, as the pharmacological profiles of these agents differ substantially despite their similarity in being 'atypical'. All share the ability to block dopamine D₂ receptors, and most of them also block serotonin 5-HT2A receptors. Apart from these common features, some atypical antipsychotics are also able to block or stimulate other dopamine or serotonin receptors, as well as histaminergic, muscarinergic or adrenergic receptors. As a result of the varying receptor affinities, in switching or discontinuing compounds several possible pitfalls have to be considered, including the occurrence of withdrawal and rebound syndromes. This article reviews the pharmacological background of functional blockade or stimulation of receptors of interest in regard to atypical antipsychotics and the implicated potential withdrawal and rebound phenomena. A MEDLINE search was carried out to identify information on withdrawal or rebound syndromes occurring after discontinuation of atypical antipsychotics. Using the resulting literature, we first discuss the theoretical background to the functional consequences of atypical antipsychotic-induced blockade or stimulation of neurotransmitter receptors and, secondly, we highlight the clinical consequences of this. We then review the available clinical literature on switching between atypical antipsychotics, with respect to the occurrence of withdrawal or rebound symptoms. Finally, we offer practical recommendations based on the reviewed findings. The systematic evaluation of withdrawal or rebound phenomena using randomized controlled trials is still understudied. Knowledge of pharmacological receptor-binding profiles may help clinicians in choosing adequate switching or discontinuation strategies for each agent. Results from large switching trials indicate that switching atypical antipsychotics can be performed in a safe manner. Treatment-emergent adverse events during or after switching are not always considered to be, at least in part, associated with the pre-switch antipsychotic. Further studies are needed to substantiate the evidence gained so far on different switching strategies. The use of concomitant medication, e.g., benzodiazepines or anticholinergic drugs, may help to minimize symptoms arising from the discontinuation or switching of antipsychotic treatment.
Collapse
|
23
|
Creed MC, Hamani C, Bridgman A, Fletcher PJ, Nobrega JN. Contribution of decreased serotonin release to the antidyskinetic effects of deep brain stimulation in a rodent model of tardive dyskinesia: comparison of the subthalamic and entopeduncular nuclei. J Neurosci 2012; 32:9574-81. [PMID: 22787043 PMCID: PMC6622267 DOI: 10.1523/jneurosci.1196-12.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023] Open
Abstract
Mechanisms whereby deep brain stimulation (DBS) of the subthalamic nucleus (STN) or internal globus pallidus (GPi) reduces dyskinesias remain largely unknown. Using vacuous chewing movements (VCMs) induced by chronic haloperidol as a model of tardive dyskinesia (TD) in rats, we confirmed the antidyskinetic effects of DBS applied to the STN or entopeduncular nucleus (EPN, the rodent homolog of the GPi). We conducted a series of experiments to investigate the role of serotonin (5-HT) in these effects. We found that neurotoxic lesions of the dorsal raphe nuclei (DRN) significantly decreased HAL-induced VCMs. Acute 8-OH-DPAT administration, under conditions known to suppress raphe neuronal firing, also reduced VCMs. Immediate early gene mapping using zif268 in situ hybridization revealed that STN-DBS inhibited activity of DRN and MRN neurons. Microdialysis experiments indicated that STN-DBS decreased 5-HT release in the dorsolateral caudate-putamen, an area implicated in the etiology of HAL-induced VCMs. DBS applied to the EPN also suppressed VCMs but did not alter 5-HT release or raphe neuron activation. While these findings suggested a role for decreased 5-HT release in the mechanisms of STN DBS, further microdialysis experiments showed that when the 5-HT lowering effects of STN DBS were prevented by pretreatment with fluoxetine or fenfluramine, the ability of DBS to suppress VCMs remained unaltered. These results suggest that EPN- and STN-DBS have different effects on the 5-HT system. While decreasing 5-HT function is sufficient to suppress HAL-induced VCMs, 5-HT decrease is not necessary for the beneficial motor effects of DBS in this model.
Collapse
Affiliation(s)
- Meaghan C. Creed
- Department of Pharmacology and Toxicology
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health
| | - Clement Hamani
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Ontario M5T 1R8, Canada
| | - Alanna Bridgman
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health
| | - Paul J. Fletcher
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health
- Department of Psychiatry
- Biopsychology Section, Center for Addiction and Mental Health
| | - José N. Nobrega
- Department of Pharmacology and Toxicology
- Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health
- Department of Psychiatry
- Department of Psychology, and
| |
Collapse
|
24
|
Bachus SE, Yang E, McCloskey SS, Minton JN. Parallels between behavioral and neurochemical variability in the rat vacuous chewing movement model of tardive dyskinesia. Behav Brain Res 2012; 231:323-36. [PMID: 22503783 DOI: 10.1016/j.bbr.2012.03.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 11/18/2022]
Abstract
The widely accepted rat vacuous chewing movement model for tardive dyskinesia could be more fully mined through greater focus on individual variability in vulnerability to this neuroleptic-induced behavior. We have examined parallels between behavioral and neurobiological variability within a cohort in order to evaluate the role that neurobiological factors might play in determining susceptibility to tardive dyskinesia. Inter-observer reliability and individual consistency across time, in both spontaneous and neuroleptic-induced vacuous chewing movements, were empirically demonstrated. While this behavior increased across 8 months of observation in both vehicle controls and haloperidol-treated rats, pre-treatment baselines were predictive of final levels across individuals only in the vehicle control group, not the haloperidol-treated group. Haloperidol-induced elevations in neostriatal D2 and GAD(67) mRNA were not correlated with individual variability in haloperidol-induced vacuous chewing movements. Ambient noise during the observations was found to exacerbate chronic haloperidol-induced, but not spontaneous vacuous chewing movements. Significant correlations were found among the haloperidol-treated rats between nigral and tegmental GAD(67) and tegmental α7 mRNA levels, measured by in situ hybridization histochemistry, and vacuous chewing movements, specifically in the noisy conditions. Variability in these secondary responses to primary striatal dopamine and GABA perturbations may play a role in determining vulnerability to vacuous chewing movements, and by analogy, tardive dyskinesia. Both the differential predictive value of baseline vacuous chewing movements and the differential effect of noise, between controls and haloperidol-treated rats, add to evidence that haloperidol-induced vacuous chewing movements are regulated, in part, by different mechanisms than those mediating spontaneous vacuous chewing movements.
Collapse
Affiliation(s)
- Susan E Bachus
- Department of Psychology, St. Mary's College of Maryland, 18952 E. Fisher Rd., St. Mary's City, MD 20686-3001, USA.
| | | | | | | |
Collapse
|
25
|
Blanchet PJ, Parent MT, Rompré PH, Lévesque D. Relevance of animal models to human tardive dyskinesia. Behav Brain Funct 2012; 8:12. [PMID: 22404856 PMCID: PMC3338072 DOI: 10.1186/1744-9081-8-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/09/2012] [Indexed: 11/15/2022] Open
Abstract
Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia.
Collapse
Affiliation(s)
- Pierre J Blanchet
- Faculty of Dental Medicine, University of Montreal, PO Box 6128, Succ, Centre-ville, Montreal, QC H3C 3J7, Canada.
| | | | | | | |
Collapse
|
26
|
Abstract
This review summarizes the current state of knowledge regarding the proposed mechanisms by which antipsychotic agents reduce the symptoms of schizophrenia while giving rise to adverse side effects. The first part summarizes the contribution of neuroimaging studies to our understanding of the neurochemical substrates of schizophrenia, putting emphasis on direct evidence suggestive of a presynaptic rather than a postsynaptic dysregulation of dopaminergic neurotransmission in this disorder. The second part addresses the role of D(2) and non-D(2) receptor blockade in the treatment of schizophrenia and highlights a preponderant role of D(2) receptors in the mechanism of antipsychotic action. Neuroimaging studies have defined a narrow, but optimal, therapeutic window of 65-78 % D(2) receptor blockade within which most antipsychotics achieve optimal clinical efficacy with minimal side effects. Some antipsychotics though do not conform to that therapeutic window, notably clozapine. The reasons for its unexcelled clinical efficacy despite subthreshold levels of D(2) blockade are unclear and current theories on clozapine's mechanisms of action are discussed, including transiency of its D(2) receptor blocking effects or preferential blockade of limbic D(2) receptors. Evidence is also highlighted to consider the use of extended antipsychotic dosing to achieve transiency of D(2) blockade as a way to optimize functional outcomes in patients. We also present some critical clinical considerations regarding the mechanisms linking dopamine disturbance to the expression of psychosis and its blockade to the progressive resolution of psychosis, keeping in perspective the speed and onset of antipsychotic action. Finally, we discuss potential novel therapeutic strategies for schizophrenia.
Collapse
Affiliation(s)
- Nathalie Ginovart
- Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
27
|
Remington G, Mann S, McCormick P, Nobrega JN, Hahn M, Natesan S. Modeling chronic olanzapine exposure using osmotic minipumps: pharmacological limitations. Pharmacol Biochem Behav 2011; 100:86-9. [PMID: 21839766 DOI: 10.1016/j.pbb.2011.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/24/2011] [Accepted: 07/27/2011] [Indexed: 11/17/2022]
Abstract
Animal models can face unique challenges in mirroring what occurs in humans. This is the case for antipsychotics in rodents, where these drugs are metabolized much more rapidly. One strategy to address this issue has been the use of osmotic minipumps to ensure continuous antipsychotic exposure over prolonged intervals, which is routinely the case when these same drugs are administered to humans. More recently, it has been identified that with olanzapine this approach may be compromised by oxidative degradation, a process that can be observed within days. Further, in vivo evidence has reported progressive decreases in plasma levels over a 1-month interval. To address this issue in vitro, osmotic minipumps (n=4), with olanzapine at a concentration resulting in a dose of 7.5mg/kg/day in vivo, were placed in saline-filled Falcon tubes and immersed in a water bath. Olanzapine concentrations were assessed in the minipumps as well as the surrounding water bath at baseline, 1h, and days 1, 7, 14, 21, and 28. Minipump results indicated a monophasic exponential decay and a half-life of 14.8 days (95% CI=13.1-17.1 days). Results from the water bath demonstrated a linear increase in olanzapine up to and including day 21, followed thereafter by a decrease to day 28. It is concluded that administration of olanzapine via osmotic minipump is viable in animal models to mirror what occurs in humans, although the interval should be confined to 2 weeks. As well, strategies in dissolving olanzapine to diminish oxidation are discussed.
Collapse
Affiliation(s)
- Gary Remington
- Department of Psychiatry, University of Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
Iasevoli F, Ambesi-Impiombato A, Fiore G, Panariello F, Muscettola G, de Bartolomeis A. Pattern of acute induction of Homer1a gene is preserved after chronic treatment with first- and second-generation antipsychotics: effect of short-term drug discontinuation and comparison with Homer1a-interacting genes. J Psychopharmacol 2011; 25:875-87. [PMID: 20147574 DOI: 10.1177/0269881109358199] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Homer1a is a glutamate-related gene whose expression is induced by antipsychotics acutely (i.e. 90 min after treatment). Acute Homer1a expression is preserved after prolonged antipsychotic treatments, while the effects of short-term discontinuation after chronic antipsychotic treatment have not yet been assessed. Here, we studied early and long-term effects on gene expression by antipsychotics for Homer1a and other components of glutamatergic synapses. In the first paradigm, we evaluated Homer1a acute expression by single administration of antipsychotics (haloperidol 0.8 mg/kg, ziprasidone 10 and 4 mg/kg, clozapine 15 mg/kg). Haloperidol and ziprasidone induced Homer1a in the striatum. Induction by ziprasidone was dose-dependent. These results suggest that acute Homer1a expression correlates with dopaminergic affinity and motor side effects of antipsychotics. In the second paradigm, we studied antipsychotic-mediated long-term changes in Homer1a and glutamate-related genes. Rats were treated (21 days) with haloperidol 0.8 mg/kg, ziprasidone 4 mg/kg, or vehicle, and then sacrificed at 90 min (early time-point) or 24 h (delayed time-point) after last injection. Gene expression at these two time-points was compared. Homer1a preserved its pattern of expression at the early but not at the delayed time-point. Significant changes were also observed for PSD-95. The results suggest that Homer1a preserves its expression profile after chronic antipsychotics.
Collapse
Affiliation(s)
- Felice Iasevoli
- Laboratory of Molecular Psychiatry and Psychopharmacotherapy, Section of Psychiatry, Department of Neuroscience, University School of Medicine 'Federico II', Naples, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Creed-Carson M, Oraha A, Nobrega JN. Effects of 5-HT2A and 5-HT2C receptor antagonists on acute and chronic dyskinetic effects induced by haloperidol in rats. Behav Brain Res 2011; 219:273-9. [DOI: 10.1016/j.bbr.2011.01.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/06/2011] [Accepted: 01/16/2011] [Indexed: 11/26/2022]
|
30
|
Simpson EH, Kellendonk C, Ward RD, Richards V, Lipatova O, Fairhurst S, Kandel ER, Balsam PD. Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol Psychiatry 2011; 69:928-35. [PMID: 21414604 PMCID: PMC3170714 DOI: 10.1016/j.biopsych.2011.01.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Deficits in incentive motivation, the energizing of behavior in pursuit of a goal, occur in many psychiatric disorders including schizophrenia. We previously reported deficits in both cognition and incentive motivation in a transgenic mouse model of increased striatal-specific dopamine D2 receptor (D2R) density (D2R-OE mice). This molecular alteration is observed in patients with schizophrenia, making D2R-OE mice a suitable system to study the cellular and molecular mechanisms of motivation and avolition, as well as a tool for testing potential therapies against motivational deficits. METHODS Behavioral studies using operant conditioning methods were performed both to further characterize the incentive motivation deficit in D2R-OE mice and test a novel pharmacological treatment target that arose from an unbiased expression study performed using gene chips and was validated by quantitative reverse transcription polymerase chain reaction, in situ hybridization, and immunohistochemistry. RESULTS The reluctance of D2R-OE mice to work is due neither to intolerance for low rates of reward, decreased reactivity to reward, nor increased sensitivity to satiety or fatigue but to a difference in willingness to work for reward. As in patients with schizophrenia, this deficit was not ameliorated by D2R blockade, suggesting that reversal of the motivational deficit by switching off the transgene results from molecular changes downstream of D2R overexpression. We observed a reversible increase in serotonin subtype 2C (5-HT2C) receptor expression in D2R-OE mice. Systemic injection of a 5-HT2C receptor antagonist increased incentive motivation in D2R-OE and control mice. CONCLUSIONS We propose that targeting 5-HT2C receptors may be a useful approach to modulate incentive motivation in psychiatric illness.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Dept. Psychiatry Columbia University
,New York State Psychiatric Institute
| | | | - Ryan D. Ward
- Dept. Psychiatry Columbia University
,New York State Psychiatric Institute
| | | | | | - Stephen Fairhurst
- Dept. Psychiatry Columbia University
,New York State Psychiatric Institute
| | - Eric R. Kandel
- Dept. Psychiatry Columbia University
,Dept. Neuroscience, Columbia University
,New York State Psychiatric Institute
,Howard Hughes Medical Institute
,Kavli Institute for Brain Science
| | - Peter D. Balsam
- Dept. Psychiatry Columbia University
,Dept. Psychology, Barnard College
,New York State Psychiatric Institute
| |
Collapse
|
31
|
Wang M, Pei L, Fletcher PJ, Kapur S, Seeman P, Liu F. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization. Mol Brain 2010; 3:25. [PMID: 20813060 PMCID: PMC2942879 DOI: 10.1186/1756-6606-3-25] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 09/02/2010] [Indexed: 01/06/2023] Open
Abstract
Background All antipsychotics work via dopamine D2 receptors (D2Rs), suggesting a critical role for D2Rs in psychosis; however, there is little evidence for a change in receptor number or pharmacological nature of D2Rs. Recent data suggest that D2Rs form dimers in-vitro and in-vivo, and we hypothesized that schizophrenia, as well as preclinical models of schizophrenia, would demonstrate altered dimerization of D2Rs, even though the overall number of D2Rs was unaltered. Methods We measured the expression of D2Rs dimers and monomers in patients with schizophrenia using Western blots, and then in striatal tissue from rats exhibiting the amphetamine-induced sensitized state (AISS). We further examined the interaction between D2Rs and the dopamine transporter (DAT) by co-immunoprecipitation, and measured the expression of dopamine D2High receptors with ligand binding assays in rat striatum slices with or without acute amphetamine pre-treatment. Results We observed significantly enhanced expression of D2Rs dimers (277.7 ± 33.6%) and decreased expression of D2Rs monomers in post-mortem striatal tissue of schizophrenia patients. We found that amphetamine facilitated D2Rs dimerization in both the striatum of AISS rats and in rat striatal neurons. Furthermore, amphetamine-induced D2Rs dimerization may be associated with the D2R-DAT protein-protein interaction as an interfering peptide that disrupts the D2R-DAT coupling, blocked amphetamine-induced up-regulation of D2Rs dimerization. Conclusions Given the fact that amphetamine induces psychosis and that the AISS rat is a widely accepted animal model of psychosis, our data suggest that D2R dimerization may be important in the pathophysiology of schizophrenia and may be a promising new target for novel antipsychotic drugs.
Collapse
Affiliation(s)
- Min Wang
- Department of Neuroscience, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Considerable focus has been devoted to how much antipsychotic is appropriate for optimal clinical response, although how often antipsychotics need to be administered is also less than clear. Clinicians are aware of the increased risk of relapse related to antipsychotic nonadherence/discontinuation, and current practice dictates continuous antipsychotic exposure with the goal of achieving steady state-levels to maintain effectiveness and prevent relapse. Does this mean we need to (or should) administer antipsychotics at least daily? There is a body of evidence challenging this long-established clinical axiom.
Collapse
Affiliation(s)
- Gary Remington
- Faculty of Medicine, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Shitij Kapur
- Institute of Psychiatry, King’s College London, London, UK
| |
Collapse
|
33
|
D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacology 2009; 34:662-71. [PMID: 18688210 DOI: 10.1038/npp.2008.116] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Long-term occupancy of dopamine D(2)-receptors, as achieved by chronic treatment with antipsychotics, leads to D(2)-receptor upregulation, and this upregulation is thought to be responsible for loss of efficacy and development of tardive dyskinesia. However, little is known about the parameters of D(2)-receptor blockade (duration and percentage of blockade) that lead to upregulation. In this study, we investigated the effects of different degrees (60 vs >80%) and durations (a transient peak vs 24 h/day) of D(2)-receptor blockade on inducing this upregulation. These different patterns of D(2)-receptor occupancy kinetics were produced in cats using bolus vs constant infusion of haloperidol for 4 weeks. D(2)-receptors were measured using positron emission tomography and Scatchard analyses of [(11)C]raclopride binding, before and after withdrawal of treatment. Continuously high (80% for 24 h/day) D(2)-receptor blockade led to a robust upregulation of striatal D(2)-receptors that was maximal at 1-week withdrawal (35+/-5%) and still detectable at 2-week withdrawal (20+/-3%). This pattern of D(2)-receptor blockade also induced behavioral tolerance to the effect of haloperidol on spontaneous locomotor activity. Continuously moderate (60% for 24 h/day) or transiently high (80% for a few hours/day) D(2)-receptor blockade did not produce any of these effects. The long-term effect of haloperidol on D(2)-receptor density and behavioral tolerance thus appears to be dependent not only on a critical threshold of D(2)-receptor blockade but also on the daily duration of D(2)-receptors blockade. This suggests that as far as antipsychotics are concerned, not only dose but disbursment throughout the day have an impact on eventual pharmacodynamic and behavioral outcomes.
Collapse
|
34
|
Less is more: antipsychotic drug effects are greater with transient rather than continuous delivery. Biol Psychiatry 2008; 64:145-52. [PMID: 18295747 DOI: 10.1016/j.biopsych.2008.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/13/2007] [Accepted: 01/18/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND Most studies on the effects of antipsychotics focus on achieving threshold levels of the drug. The speed and frequency with which drug concentrations reach threshold levels and rise and fall within the day are generally ignored. Based on prior data, we predicted that variations in the within-day kinetics of antipsychotic drug delivery would produce different outcomes, even if we held achieved dose, route, and total duration of treatment constant. METHODS We compared the effects of within-day continuous (via minipump) versus transient (via subcutaneous injection) haloperidol treatment (n = 4-9/condition/experiment) at doses that yield equivalent peak levels of striatal D2 receptor occupancy (approximately 74%). RESULTS Over time, transient haloperidol gained efficacy, while continuous haloperidol lost efficacy in two animal models of antipsychotic-like effects (the suppression of amphetamine-induced locomotion and conditioned avoidance responding). This was related to the fact that continuous treatment led to a greater increase in striatal D2 receptor numbers--particularly D2 receptors in a high-affinity state for dopamine--relative to transient treatment and produced behavioral dopamine supersensitivity (as indicated by an enhanced locomotor response to amphetamine following antipsychotic treatment cessation). Treatment kinetics also influenced the postsynaptic response to haloperidol. Transient treatment increased striatal c-fos messenger RNA (mRNA) expression, while continuous treatment did not. CONCLUSIONS Relative to continuous antipsychotic exposure, within-day transient exposure is more efficacious behaviorally and is associated with a distinct molecular and gene expression profile. Thus, differences in the within-day kinetics of antipsychotic treatment can have different efficacy, and the potential clinical implications of this should be explored further.
Collapse
|
35
|
Ilex paraguariensis has antioxidant potential and attenuates haloperidol-induced orofacial dyskinesia and memory dysfunction in rats. Neurotox Res 2007; 12:171-80. [DOI: 10.1007/bf03033914] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Samaha AN, Seeman P, Stewart J, Rajabi H, Kapur S. "Breakthrough" dopamine supersensitivity during ongoing antipsychotic treatment leads to treatment failure over time. J Neurosci 2007; 27:2979-86. [PMID: 17360921 PMCID: PMC6672560 DOI: 10.1523/jneurosci.5416-06.2007] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antipsychotics often lose efficacy in patients despite chronic continuous treatment. Why this occurs is not known. It is known, however, that withdrawal from chronic antipsychotic treatment induces behavioral dopaminergic supersensitivity in animals. How this emerging supersensitivity might interact with ongoing treatment has never been assessed. Therefore, we asked whether dopamine supersensitivity could overcome the behavioral and neurochemical effects of antipsychotics while they are still in use. Using two models of antipsychotic-like effects in rats, we show that during ongoing treatment with clinically relevant doses, haloperidol and olanzapine progressively lose their efficacy in suppressing amphetamine-induced locomotion and conditioned avoidance responding. Treatment failure occurred despite high levels of dopamine D2 receptor occupancy by the antipsychotic and was at least temporarily reversible by an additional increase in antipsychotic dose. To explore potential mechanisms, we studied presynaptic and postsynaptic elements of the dopamine system and observed that antipsychotic failure was accompanied by opposing changes across the synapse: tolerance to the ability of haloperidol to increase basal dopamine and dopamine turnover on one side, and 20-40% increases in D2 receptor number and 100-160% increases in the proportion of D2 receptors in the high-affinity state for dopamine (D2(High)) on the other. Thus, the loss of antipsychotic efficacy is linked to an increase in D2 receptor number and sensitivity. These results are the first to demonstrate that "breakthrough" supersensitivity during ongoing antipsychotic treatment undermines treatment efficacy. These findings provide a model and a mechanism for antipsychotic treatment failure and suggest new directions for the development of more effective antipsychotics.
Collapse
Affiliation(s)
- Anne-Noël Samaha
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8
| | - Philip Seeman
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada M5T 1R8
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada M5S 1A8, and
| | - Jane Stewart
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Quebec, Canada H4B 1R6
| | - Heshmat Rajabi
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Quebec, Canada H4B 1R6
| | - Shitij Kapur
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada M5T 1R8
| |
Collapse
|
37
|
Saldaña M, Bonastre M, Aguilar E, Marin C. Role of nigral NFkappaB p50 and p65 subunit expression in haloperidol-induced neurotoxicity and stereotyped behavior in rats. Eur Neuropsychopharmacol 2006; 16:491-7. [PMID: 16500086 DOI: 10.1016/j.euroneuro.2006.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/09/2005] [Accepted: 01/10/2006] [Indexed: 12/21/2022]
Abstract
Long-term use of typical neuroleptics such as haloperidol may be limited by unwanted motor side effects like tardive dyskinesia (TD) characterized by repetitive involuntary movements, involving the mouth, face and tongue. TD generally persists after haloperidol withdrawal indicating long lasting changes in brain function that are no longer related to the presence of the drug. The precise mechanisms of the neuronal toxicity induced by haloperidol are poorly understood. Haloperidol has been shown to induce the expression of the transcription factor nuclear factor-kappaB (NFkappaB). NFkappaB resembles a heterodimer protein composed of a 50 and a 65 kDa subunits and the role of the NFkappaB subunits on haloperidol-induced toxicity remains still unknown. The aim of the present study is to investigate the role of the p65 and p50 subunits of NFkappaB on the toxicity induced by chronic haloperidol administration in an experimental model of TD. Rats were treated for 21 days with: haloperidol (1mg/kg), clozapine (1mg/kg) or saline. Apomorphine-induced stereotyped behavior was evaluated. Striatal expression of the dopamine transporter (DAT) and the nigral expression of the NFkappaB p65 and p50 subunits were measured by Western Blot. Haloperidol, but not clozapine, increased stereotyped behavior associated to a decreased striatal DAT expression (p<0.01). Haloperidol did not modify the nigral expression of the p65 subunit whereas clozapine decreased it (p<0.01). Both drugs induced a significant decrease in the nigral expression of the NFkappaB p50 (p<0.05 and p<0.01, respectively). The decrease in nigral expression of the p50 subunit may increase the vulnerability of the dopaminergic neurons to a possible neurotoxic effect of p65 subunits in the haloperidol-treated rats.
Collapse
Affiliation(s)
- M Saldaña
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | |
Collapse
|
38
|
Medori R, Mannaert E, Gründer G. Plasma antipsychotic concentration and receptor occupancy, with special focus on risperidone long-acting injectable. Eur Neuropsychopharmacol 2006; 16:233-40. [PMID: 16326078 DOI: 10.1016/j.euroneuro.2005.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 10/12/2005] [Accepted: 10/13/2005] [Indexed: 01/19/2023]
Abstract
Although effective plasma concentration ranges have been established for some antipsychotics, conventional and atypical, there is considerable inter-patient pharmacokinetic variation. Positron-emission tomography (PET) can be used to estimate D(2)-like receptor occupancy in the brain needed for an antipsychotic effect and the level above which extrapyramidal side effects (EPS) develop. For conventional antipsychotics, the window occupancy is approximately 70-80%. For the atypical antipsychotic risperidone, the antipsychotic effect starts at approximately 60% occupancy, with occupancy above 80% leading to EPS. The new formulation, risperidone long-acting injectable (RLAI), comprises risperidone in a biodegradable polymer. It is effective long-term at doses of 25 or 50 mg injected i.m. every 2 weeks. The constant and slow release of the long-acting formulation leads to less fluctuation in plasma levels and to a D(2)-like receptor occupancy which is below the threshold for EPS.
Collapse
|
39
|
Wolf WA, Bieganski GJ, Guillen V, Mignon L. Enhanced 5-HT2C receptor signaling is associated with haloperidol-induced "early onset" vacuous chewing in rats: implications for antipsychotic drug therapy. Psychopharmacology (Berl) 2005; 182:84-94. [PMID: 15986194 DOI: 10.1007/s00213-005-0033-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Haloperidol is a representative of typical antipsychotics that are still in clinical use and which can lead to abnormal motor activity following repeated administration. The mechanisms underlying antipsychotic-induced dyskinesias are not well understood but are widely held to be related to excessive loss of dopamine function. In several models of dopamine hypofunction, serotonin 5-HT2C receptors have been shown to mediate vacuous chewing movements (VCM), a form of abnormal motor activity. It is well established that repeated haloperidol administration also elicits VCM, but there is no information on how repeated haloperidol administration affects 5-HT2C receptor signaling. OBJECTIVES In the present study, we tested the hypothesis that repeated daily administration of haloperidol leads to enhanced serotonin 5-HT2C receptor signaling that is associated with increased 5-HT2C-mediated VCM. METHODS Rats were treated by subcutaneous injection once daily for 21 days with either vehicle, a low dose of haloperidol (0.1 mg kg(-1) day(-1)), or a high dose of haloperidol (1.0 mg kg(-1) day(-1)). Following 1-day withdrawal, rats were either used for behavioral scoring of VCM or sacrificed for biochemical assessment of 5-HT2 receptor-mediated phospholipase C activity and radioligand binding. VCM were scored following two successive "drug" challenges. The first challenge was an injection of vehicle (0.9% saline), and the second challenge was an injection of the 5-HT2C agonist meta-chlorophenylpiperazine (1.0 mg/kg). In this manner, a measure of "spontaneous" and "5-HT2C-elicited" orofacial activity could be made while minimizing animal use. RESULTS Following 21-day haloperidol treatment at either dose, there was an increase in expression of meta-chlorophenylpiperazine-induced VCM. In a separate experiment, meta-chlorophenylpiperazine-induced VCM were shown to be mediated through 5-HT2C receptors. Striatal 5-HT2C receptor-mediated phospholipase C (PLC) activity and high-affinity agonist-labeled 5-HT2C receptors were also increased following either dose of haloperidol as compared to vehicle treatment. GTP-stimulated PLC activity and striatal Gq proteins were unchanged by haloperidol suggesting that enhanced signaling could be accounted for by alterations at the level of the receptor and not at downstream mechanisms. CONCLUSIONS Repeated daily administration of haloperidol leads to an adaptive increase in 5-HT2C signaling which may contribute to abnormal motor function associated with antipsychotic use.
Collapse
Affiliation(s)
- William A Wolf
- Research Service-151, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA.
| | | | | | | |
Collapse
|
40
|
Li M, Budin R, Fleming AS, Kapur S. Effects of chronic typical and atypical antipsychotic drug treatment on maternal behavior in rats. Schizophr Res 2005; 75:325-36. [PMID: 15885524 DOI: 10.1016/j.schres.2004.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 09/01/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Understanding the effects of antipsychotics on maternal behavior is important for understanding the poor quality of mother-infant interaction in schizophrenia. Previous preclinical work has demonstrated that acute treatment with typical and atypical antipsychotics disrupts maternal behavior. However, the effects of chronic antipsychotic treatment on maternal behavior are unknown. This issue is of importance since clinical use of antipsychotic medication requires continuous exposure to these drugs. In this study, we treated postpartum rats with haloperidol (0.25 mg/kg/day) or olanzapine (7.5 mg/kg/day), via osmotic minipumps or daily injections for 3 weeks. Maternal behavior was assessed every third day. On each observation day, maternal behavior was observed twice, once just prior to the daily injection ("trough" as this was 24 h after last injection) and again 2 h after the injection ("peak"). Daily injections of haloperidol and olanzapine significantly disrupted pup retrieval, pup licking, nest building at peak, but this effect was gone by trough. Drug administration via minipumps also disrupted these behaviors, but the effects were less severe. Pup nursing was enhanced by either method of drug administration. No evidence of sensitization or tolerance associated with chronic drug treatment was found. It is concluded that chronic antipsychotic treatment disrupts active maternal behaviors and this disruption, most likely to lead to side effects in humans, should be avoided in future drug development.
Collapse
Affiliation(s)
- Ming Li
- Center for Addiction and Mental Health, Clarke Site, Toronto, Ontario, Canada M5R 1T8
| | | | | | | |
Collapse
|
41
|
Turrone P, Remington G, Kapur S, Nobrega JN. Continuous but not intermittent olanzapine infusion induces vacuous chewing movements in rats. Biol Psychiatry 2005; 57:406-11. [PMID: 15705357 DOI: 10.1016/j.biopsych.2004.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 08/10/2004] [Accepted: 10/18/2004] [Indexed: 11/18/2022]
Abstract
BACKGROUND Continuous, but not intermittent, infusion with a conventional antipsychotic (haloperidol, HAL) can induce the vacuous chewing movement (VCM) syndrome in rats. The objective of this study was to determine whether continuous, versus intermittent, olanzapine (OLZ) infusion differently affects the development of VCMs. METHODS Experiment 1: Animals were treated with 7.5 mg/kg/day of OLZ or vehicle (VEH) via either minipump (MP) or daily subcutaneous (SC) injections for 8 weeks. Experiment 2: A separate group of rats were treated with 15 mg/kg/day of OLZ, or 1 mg/kg/day of HAL or VEH via MP for 8 weeks. Dopamine D2 receptor occupancy levels were measured, ex vivo, with [3H]-raclopride. RESULTS Experiment 1: Rats receiving 7.5 mg/kg/day of OLZ via MP (51% D2 occupancy), but not those receiving the same dose via daily SC injections (94% peak D2 occupancy), showed significant VCM levels compared with control animals (p = .02). Experiment 2: Both OLZ (67% D2 occupancy) and HAL (79% D2 occupancy) led to similar increases in VCMs compared with VEH (p = .005). CONCLUSIONS This study provides strong evidence that even an atypical antipsychotic like OLZ, which rarely gives rise to tardive dyskinesia in the clinic, can lead to the VCM syndrome in rats if the antipsychotic is administered in a method (via MP) that leads to continuous presence of the drug in the brain.
Collapse
Affiliation(s)
- Peter Turrone
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
42
|
Ishiwari K, Betz A, Weber S, Felsted J, Salamone JD. Validation of the tremulous jaw movement model for assessment of the motor effects of typical and atypical antipychotics: effects of pimozide (Orap) in rats. Pharmacol Biochem Behav 2005; 80:351-62. [PMID: 15680188 DOI: 10.1016/j.pbb.2004.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 12/01/2004] [Accepted: 12/03/2004] [Indexed: 11/26/2022]
Abstract
Drug-induced tremulous jaw movements (TJMs) in rats have been used as a model of parkinsonian tremor. Previous studies demonstrated that the typical antipsychotic haloperidol induced TJMs after acute or subchronic administration, while atypical antipsychotics did not. Moreover, it has been suggested that the relative potency for suppression of tacrine-induced TJMs relative to the suppression of lever pressing can be used to discriminate between typical and atypical antipsychotics. In order to validate this model with additional drugs, the present studies assessed the effects of the typical antipsychotic pimozide. In the first series of experiments, the effects of acute pimozide on tacrine-induced TJMs and lever pressing were examined. As with haloperidol, pimozide failed to suppress tacrine-induced TJMs, even at doses considerably higher than those that suppressed lever pressing. In the second group of experiments, rats were given single daily injections of pimozide (0.125-1.0 mg/kg) or tartaric acid vehicle for 13 days, and were observed for TJMs on days 1, 7, and 13. Pimozide induced TJMs in a dose-related manner on all days. The jaw movements occurred largely in the 3-7 Hz frequency range characteristic of parkinsonian tremor. These data support the hypothesis that typical antipsychotics can induce TJMs in rats, and demonstrate that chronic administration of typical antipsychotics is not necessary for induction of TJMs. TJMs induced by acute or subchronic pimozide may be related to early-onset motor syndromes such as drug-induced parkinsonism.
Collapse
Affiliation(s)
- Keita Ishiwari
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | |
Collapse
|
43
|
Rogoza RM, Fairfax DF, Henry P, N-Marandi S, Khan RF, Gupta SK, Mishra RK. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia. Synapse 2005; 54:156-63. [PMID: 15452862 DOI: 10.1002/syn.20078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The typical antipsychotic drug haloperidol causes vacuous chewing movements (VCM) in rats, which are representative of early-Parkinsonian symptoms or later-onset extrapyramidal side effects of tardive dyskinesia (TD) in humans. Haloperidol (HP) has been hypothesized to potentiate increases in oxidative stress or free radical-mediated levels of toxic metabolites in rat striatum while simultaneous upregulating dopamine (DA)-D2 receptors leading to presumed DA supersensitivity. Alpha(alpha)-Phenyl-N-tert-butylnitrone (PBN) is an antioxidant used to combat oxidative stress and measure increases in PBN spin-adduct activity. Thus, the aim of this study was to investigate whether VCMs are related to upregulation of DA-D2 receptors or to increased levels of free radicals produced during oxidative stress, and whether PBN had any protective effects. Rats received daily chronic (28 day) i.p. injections of saline, haloperidol (2 mg/kg), PBN (150 mg/kg), or haloperidol + PBN. The VCM model was used to measure extrapyramidal side effects of drug treatments. Electron spin resonance (ESR) spectroscopy was performed to compare concentrations of free radical species in rats receiving injections of HP + PBN. To examine the upregulation of DA-D2 receptors, binding assays were carried out to assess the increase in DA-D(2) receptor numbers with respect to VCMs following treatment of rats injected with HP, PBN, and HP + PBN. Results of these experiments show that HP-induced VCMs in rats results from increases in oxidative cellular events and may not be related to increases in striatal DA-D(2) receptors.
Collapse
Affiliation(s)
- Raina M Rogoza
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | | | | | |
Collapse
|
44
|
Burger ME, Fachineto R, Alves A, Callegari L, Rocha JBT. Acute reserpine and subchronic haloperidol treatments change synaptosomal brain glutamate uptake and elicit orofacial dyskinesia in rats. Brain Res 2005; 1031:202-10. [PMID: 15649445 DOI: 10.1016/j.brainres.2004.10.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2004] [Indexed: 11/24/2022]
Abstract
Reserpine- and haloperidol-induced orofacial dyskinesia are putative animal models of tardive dyskinesia (TD) whose pathophysiology has been related to free radical generation and oxidative stress. In the present study, the authors induced orofacial dyskinesia by acute reserpine and subchronic haloperidol administration to rats. Reserpine injection (one dose of 1 mg/kg s.c.) every other day for 3 days caused a significant increase in vacuous chewing, tongue protrusion and duration of facial twitching, compared to the control. Haloperidol administration (one dose of 12 mg/kg once a week s.c.) for 4 weeks caused an increase in vacuous chewing, tongue protrusion and duration of facial twitching observed in four weekly evaluations. After the treatments and behavioral observation, glutamate uptake by segments of the brain was analyzed. A decreased glutamate uptake was observed in the subcortical parts of animals treated with reserpine and haloperidol, compared to the control. Importantly, a decrease in glutamate uptake correlates negatively with an increase in the incidence of orofacial diskinesia. These results indicate that early changes in glutamate transport may be related to the development of vacuous chewing movements in rats.
Collapse
Affiliation(s)
- Marilise Escobar Burger
- Departamento de Fisiologia, Centro de Ciências da Saúde, Bioquimica Toxicologica, 97105-900 Santa Maria RS, Brazil.
| | | | | | | | | |
Collapse
|