1
|
Kajumba MM, Kakooza-Mwesige A, Nakasujja N, Koltai D, Canli T. Treatment-resistant depression: molecular mechanisms and management. MOLECULAR BIOMEDICINE 2024; 5:43. [PMID: 39414710 PMCID: PMC11485009 DOI: 10.1186/s43556-024-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
Due to the heterogeneous nature of depression, the underlying etiological mechanisms greatly differ among individuals, and there are no known subtype-specific biomarkers to serve as precise targets for therapeutic efficacy. The extensive research efforts over the past decades have not yielded much success, and the currently used first-line conventional antidepressants are still ineffective for close to 66% of patients. Most clinicians use trial-and-error treatment approaches, which seem beneficial to only a fraction of patients, with some eventually developing treatment resistance. Here, we review evidence from both preclinical and clinical studies on the pathogenesis of depression and antidepressant treatment response. We also discuss the efficacy of the currently used pharmacological and non-pharmacological approaches, as well as the novel emerging therapies. The review reveals that the underlying mechanisms in the pathogenesis of depression and antidepressant response, are not specific, but rather involve an interplay between various neurotransmitter systems, inflammatory mediators, stress, HPA axis dysregulation, genetics, and other psycho-neurophysiological factors. None of the current depression hypotheses sufficiently accounts for the interactional mechanisms involved in both its etiology and treatment response, which could partly explain the limited success in discovering efficacious antidepressant treatment. Effective management of treatment-resistant depression (TRD) requires targeting several interactional mechanisms, using subtype-specific and/or personalized therapeutic modalities, which could, for example, include multi-target pharmacotherapies in augmentation with psychotherapy and/or other non-pharmacological approaches. Future research guided by interaction mechanisms hypotheses could provide more insights into potential etiologies of TRD, precision biomarker targets, and efficacious therapeutic modalities.
Collapse
Affiliation(s)
- Mayanja M Kajumba
- Department of Mental Health and Community Psychology, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Pediatrics and Child Health, Mulago National Referral Hospital, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah Koltai
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, USA
| | - Turhan Canli
- Department of Psychology, Stony Brook University, New York, USA
- Department of Psychiatry, Stony Brook University, New York, USA
| |
Collapse
|
2
|
Garbusow M, Ebrahimi C, Riemerschmid C, Daldrup L, Rothkirch M, Chen K, Chen H, Belanger MJ, Hentschel A, Smolka MN, Heinz A, Pilhatsch M, Rapp MA. Pavlovian-to-Instrumental Transfer across Mental Disorders: A Review. Neuropsychobiology 2022; 81:418-437. [PMID: 35843212 DOI: 10.1159/000525579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/13/2022] [Indexed: 11/19/2022]
Abstract
A mechanism known as Pavlovian-to-instrumental transfer (PIT) describes a phenomenon by which the values of environmental cues acquired through Pavlovian conditioning can motivate instrumental behavior. PIT may be one basic mechanism of action control that can characterize mental disorders on a dimensional level beyond current classification systems. Therefore, we review human PIT studies investigating subclinical and clinical mental syndromes. The literature prevails an inhomogeneous picture concerning PIT. While enhanced PIT effects seem to be present in non-substance-related disorders, overweight people, and most studies with AUD patients, no altered PIT effects were reported in tobacco use disorder and obesity. Regarding AUD and relapsing alcohol-dependent patients, there is mixed evidence of enhanced or no PIT effects. Additionally, there is evidence for aberrant corticostriatal activation and genetic risk, e.g., in association with high-risk alcohol consumption and relapse after alcohol detoxification. In patients with anorexia nervosa, stronger PIT effects elicited by low caloric stimuli were associated with increased disease severity. In patients with depression, enhanced aversive PIT effects and a loss of action-specificity associated with poorer treatment outcomes were reported. Schizophrenic patients showed disrupted specific but intact general PIT effects. Patients with chronic back pain showed reduced PIT effects. We provide possible reasons to understand heterogeneity in PIT effects within and across mental disorders. Further, we strengthen the importance of reliable experimental tasks and provide test-retest data of a PIT task showing moderate to good reliability. Finally, we point toward stress as a possible underlying factor that may explain stronger PIT effects in mental disorders, as there is some evidence that stress per se interacts with the impact of environmental cues on behavior by selectively increasing cue-triggered wanting. To conclude, we discuss the results of the literature review in the light of Research Domain Criteria, suggesting future studies that comprehensively assess PIT across psychopathological dimensions.
Collapse
Affiliation(s)
- Maria Garbusow
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Claudia Ebrahimi
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Carlotta Riemerschmid
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Luisa Daldrup
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Marcus Rothkirch
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Ke Chen
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Hao Chen
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Matthew J Belanger
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Angela Hentschel
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Maximilan Pilhatsch
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany.,Department of Psychiatry and Psychotherapy, Elblandklinikum, Radebeul, Germany
| | - Michael A Rapp
- Area of Excellence Cognitive Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Carratalá-Ros C, López-Cruz L, Martínez-Verdú A, Olivares-García R, Salamone JD, Correa M. Impact of Fluoxetine on Behavioral Invigoration of Appetitive and Aversively Motivated Responses: Interaction With Dopamine Depletion. Front Behav Neurosci 2021; 15:700182. [PMID: 34305547 PMCID: PMC8298758 DOI: 10.3389/fnbeh.2021.700182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Impaired behavioral activation and effort-related motivational dysfunctions like fatigue and anergia are debilitating treatment-resistant symptoms of depression. Depressed people show a bias towards the selection of low effort activities. To determine if the broadly used antidepressant fluoxetine can improve behavioral activation and reverse dopamine (DA) depletion-induced anergia, male CD1 mice were evaluated for vigorous escape behaviors in an aversive context (forced swim test, FST), and also with an exercise preference choice task [running wheel (RW)-T-maze choice task]. In the FST, fluoxetine increased active behaviors (swimming, climbing) while reducing passive ones (immobility). However, fluoxetine was not effective at reducing anergia induced by the DA-depleting agent tetrabenazine, further decreasing vigorous climbing and increasing immobility. In the T-maze, fluoxetine alone produced the same pattern of effects as tetrabenazine. Moreover, fluoxetine did not reverse tetrabenazine-induced suppression of RW time but it reduced sucrose intake duration. This pattern of effects produced by fluoxetine in DA-depleted mice was dissimilar from devaluing food reinforcement by pre-feeding or making the food bitter since in both cases sucrose intake time was reduced but animals compensated by increasing time in the RW. Thus, fluoxetine improved escape in an aversive context but decreased relative preference for active reinforcement. Moreover, fluoxetine did not reverse the anergic effects of DA depletion. These results have implications for the use of fluoxetine for treating motivational symptoms such as anergia in depressed patients.
Collapse
Affiliation(s)
| | | | | | | | - John D Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
4
|
Oizumi H, Imai R, Suzuki T, Omiya Y, Tanaka KF, Mimura M, Mizoguchi K. Ninjin'yoeito, a traditional Japanese Kampo medicine, suppresses the onset of anhedonia induced by dysfunction in the striatal dopamine receptor type 2-expressing medium spiny neurons. Neuroreport 2021; 32:869-874. [PMID: 34029288 PMCID: PMC8240642 DOI: 10.1097/wnr.0000000000001667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Recent studies have suggested that ninjin'yoeito (NYT), a traditional Japanese Kampo medicine, improves diminished motivation in humans and animals, rendering it a novel therapeutic option for impaired motivation. To better characterize the effect of NYT on motivation, we examined its effect on motivated behaviors in mice. METHODS Mouse models of neurodegeneration-related apathy, in which striatal dopamine receptor type 2-expressing medium spiny neurons (D2-MSNs) were progressively damaged by diphtheria toxin expression, were chosen. RESULTS The decrease in effort-based operant responding for rewards (sucrose pellets), indicative of the mouse's motivated behavior, in the affected mice was not suppressed by chronic treatment with NYT suspended in drinking water at 1% (w/v). Mice were then subjected to a sucrose preference test, wherein they freely chose to ingest tap water and a sucrose solution without being required to exert effort. The affected mice showed a decline in preference for sucrose over tap water, relative to nonaffected controls, indicating anhedonia-like traits. In contrast to the diminished operant behavior, the anhedonic behavior in the affected mice was prevented by the NYT administration. Furthermore, NYT did not affect the size of Drd2 mRNA disappearance in the striatum of affected mice, suggesting that the NYT effect was unrelated to DTA-mediated neurodegeneration. CONCLUSION These results demonstrate that the beneficial effect of NYT on motivation is mediated, at least in part, through the potentiation of hedonic capacity by certain neuromodulatory pathways.
Collapse
MESH Headings
- Anhedonia/drug effects
- Anhedonia/physiology
- Animals
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Drugs, Chinese Herbal/pharmacology
- Gene Expression
- Japan
- Medicine, Kampo/methods
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Motivation/drug effects
- Motivation/physiology
- Neurons/drug effects
- Neurons/metabolism
- Receptors, Dopamine D2/biosynthesis
- Receptors, Dopamine D2/genetics
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki
| | - Ryota Imai
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki
| | - Toru Suzuki
- Department of Neuropsychiatry, Keio University School of Medicine
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuji Omiya
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
5
|
Knockout of the Serotonin Transporter in the Rat Mildly Modulates Decisional Anhedonia. Neuroscience 2021; 469:31-45. [PMID: 34182055 DOI: 10.1016/j.neuroscience.2021.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022]
Abstract
Serotonin transporter gene variance has long been considered an essential factor contributing to depression. However, meta-analyses yielded inconsistent findings recently, asking for further understanding of the link between the gene and depression-related symptoms. One key feature of depression is anhedonia. While data exist on the effect of serotonin transporter gene knockout (5-HTT-/-) in rodents on consummatory and anticipatory anhedonia, with mixed outcomes, the effect on decisional anhedonia has not been investigated thus far. Here, we tested whether 5-HTT-/- contributes to decisional anhedonia. To this end, we established a novel touchscreen-based go/go task of visual decision-making. During the learning of stimulus discrimination, 5-HTT+/+ rats performed more optimal decision-making compared to 5-HTT-/- rats at the beginning, but this difference did not persist throughout the learning period. During stimulus generalization, the generalization curves were similar between both genotypes and did not alter as the learning progress. Interestingly, the response time in 5-HTT+/+ rats increased as the session increased in general, while 5-HTT-/- rats tended to decrease. The response time difference might indicate that 5-HTT-/- rats altered willingness to exert cognitive effort to the categorization of generalization stimuli. These results suggest that the effect of 5-HTT ablation on decisional anhedonia is mild and interacts with learning, explaining the discrepant findings on the link between 5-HTT gene and depression.
Collapse
|
6
|
McDevitt RA, Marino RAM, Tejeda HA, Bonci A. Serotonergic inhibition of responding for conditioned but not primary reinforcers. Pharmacol Biochem Behav 2021; 205:173186. [PMID: 33836219 DOI: 10.1016/j.pbb.2021.173186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Serotonin is widely implicated as a modulator of brain reward function. However, laboratory studies have not yielded a consensus on which specific reward-related processes are influenced by serotonin and in what manner. Here we explored the role of serotonin in cue-reward learning in mice. In a first series of experiments, we found that acute administration of the serotonin reuptake inhibitors citalopram, fluoxetine, or duloxetine all reduced lever pressing reinforced on an FR1 schedule with presentation of a cue that had been previously paired with delivery of food. However, citalopram had no effect on responding that was reinforced with both cue and food on an FR1 schedule. Furthermore, citalopram did not affect nose poke responses that produced no auditory, visual, or proprioceptive cues but were reinforced with food pellets on a progressive ratio schedule. We next performed region-specific knock out of tryptophan hydroxylase-2 (Tph2), the rate-limiting enzyme in serotonin synthesis. Viral delivery of Cre recombinase was targeted to dorsal or median raphe nuclei (DRN, MRN), the major sources of ascending serotonergic projections. MRN but not DRN knockouts were impaired in development of cue-elicited approach during Pavlovian conditioning; both groups were subsequently hyper-responsive when lever pressing for cue presentation. The inhibitory effect of citalopram was attenuated in DRN but not MRN knockouts. Our findings are in agreement with prior studies showing serotonin to suppress responding for conditioned reinforcers. Furthermore, these results suggest an inhibitory role of MRN serotonin neurons in the initial attribution of motivational properties to a reward-predictive cue, but not in its subsequent maintenance. In contrast, the DRN appears to promote the reduction of motivational value attached to a cue when it is presented repeatedly in the absence of primary reward.
Collapse
Affiliation(s)
- Ross A McDevitt
- Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD, United States of America; Comparative Medicine Section, National Institute on Aging, Baltimore, MD, United States of America.
| | - Rosa Anna M Marino
- Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Hugo A Tejeda
- Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD, United States of America; Neuromodulation and Synaptic Integration Unit, National Institute on Mental Health, Bethesda, MD, United States of America
| | - Antonello Bonci
- Global Institutes on Addictions, Miami, FL, United States of America
| |
Collapse
|
7
|
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev 2020; 119:138-167. [PMID: 32931805 DOI: 10.1016/j.neubiorev.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans - which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.
Collapse
|
8
|
Oizumi H, Miyazaki S, Tabuchi M, Endo T, Omiya Y, Mizoguchi K. Kamikihito Enhances Cognitive Functions and Reward-Related Behaviors of Aged C57BL/6J Mice in an Automated Behavioral Assay System. Front Pharmacol 2020; 11:1037. [PMID: 32765263 PMCID: PMC7379479 DOI: 10.3389/fphar.2020.01037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
The cognitive and psychological domains of frailty in the elderly have drawn increasing attention given the aging of society. However, therapeutics to treat minor deficits in cognition and mental state in the elderly remain an unmet need. Kamikihito (KKT), a traditional Japanese Kampo medicine indicated for neuroses, anxiety, and insomnia, is effective for treating cognitive dysfunction and depressive-like behaviors in animal models, suggesting that it may have therapeutic potential for treating cognitive and/or mental frailty. In this study, we first validated the known anxiolytic effects of KKT in a conventional maze test. We then introduced an automated behavioral assay system, IntelliCage, to evaluate the therapeutic potential of KKT for age-related and diverse central functions by performing sequential behavioral tasks in young and aged mice to assess basal activities, cognitive functions, perseveration, and hedonic-related behaviors. Although young mice treated with KKT did not exhibit changes in diurnal variation, KKT-administered aged mice exhibited an accelerated decline in voluntary activity during the early part of the light period, implying that KKT may promote sleep onset in aged mice. Neither place learning acquisition for gaining rewards nor subsequent behavioral flexibility performance was altered by KKT in the young group, whereas the aged KKT group exhibited significantly enhanced performance in both phases of learning relative to age-matched controls. Conversely, perseverative nose-pokes (NPs) to gain rewards observed during place learning, indicative of compulsivity, were attenuated by KKT in both age groups. Regarding hedonic processing, aged mice exhibited a decreased preference for sweet solutions compared to young mice, which was effectively reversed by KKT treatment. Furthermore, KKT elevated high-effort choices for high-value reward in an effort-based decision-making paradigm in both age groups, implying augmentation of motivational behaviors by KKT. Collectively, KKT exerted various beneficial effects in cognitive and emotional domains, several of which were more evident in aged mice than in young mice, suggesting the potential of KKT for treating cognitive and mental frailty.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Shinji Miyazaki
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Masahiro Tabuchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | | - Yuji Omiya
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | |
Collapse
|
9
|
5-HT2C receptor blockade reverses SSRI-associated basal ganglia dysfunction and potentiates therapeutic efficacy. Mol Psychiatry 2020; 25:3304-3321. [PMID: 30120415 PMCID: PMC6378140 DOI: 10.1038/s41380-018-0227-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 11/09/2022]
Abstract
Serotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons. SSRI-induced motor deficits can be reversed by systemic or SNr-localized 5-HT2C receptor antagonism. SSRIs induce SNr hyperactivity and SNc hypoactivity that can also be reversed by systemic 5-HT2C receptor antagonism. Optogenetic inhibition of SNc DAergic neurons mimics the motor deficits due to chronic SSRI treatment, whereas local SNr 5-HT2C receptor antagonism or optogenetic activation of SNc DAergic neurons reverse SSRI-induced motor deficits. Lastly, we find that 5-HT2C receptor antagonism potentiates the antidepressant and anxiolytic effects of SSRIs. Together our findings demonstrate opposing roles for 5-HT2C receptors in the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists for both reduction of motor side effects of SSRIs and augmentation of therapeutic antidepressant and anxiolytic effects.
Collapse
|
10
|
Dorsal raphe serotonin neurons inhibit operant responding for reward via inputs to the ventral tegmental area but not the nucleus accumbens: evidence from studies combining optogenetic stimulation and serotonin reuptake inhibition. Neuropsychopharmacology 2019; 44:793-804. [PMID: 30420603 PMCID: PMC6372654 DOI: 10.1038/s41386-018-0271-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 01/16/2023]
Abstract
The monoamine neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) exerts an inhibitory influence over motivation, but the circuits mediating this are unknown. Here, we used an optogenetic approach to isolate the contribution of dorsal raphe nucleus (DRN) 5-HT neurons and 5-HT innervation of the mesolimbic dopamine (DA) system to motivated behavior in mice. We found that optogenetic stimulation of DRN 5-HT neurons enhanced downstream 5-HT release, but this was not sufficient to inhibit operant responding for saccharin, a measure of motivated behavior. However, combining optogenetic stimulation of DRN 5-HT neurons with a low dose of the selective serotonin reuptake inhibitor (SSRI) citalopram synergistically reduced operant responding. We then examined whether these effects could be recapitulated if optogenetic stimulation specifically targeted 5-HT terminals in the ventral tegmental area (VTA) or nucleus accumbens (NAc) of the mesolimbic DA system. Optogenetic stimulation of 5-HT input to the VTA combined with citalopram treatment produced a synergistic decrease in responding for saccharin, resembling the changes produced by targeting 5-HT neurons in the DRN. However, this effect was not observed when optogenetic stimulation targeted 5-HT terminals in the NAc. Taken together, these results suggest that DRN 5-HT neurons exert an inhibitory influence over operant responding for reward through a direct interaction with the mesolimbic DA system at the level of the VTA. These studies support an oppositional interaction between 5-HT and DA systems in controlling motivation and goal-directed behavior, and have important implications for the development and refinement of treatment strategies for psychiatric disorders such as depression and addiction.
Collapse
|
11
|
Sukoff Rizzo SJ, Crawley JN. Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders. Annu Rev Anim Biosci 2017; 5:371-389. [PMID: 28199172 DOI: 10.1146/annurev-animal-022516-022754] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.
Collapse
Affiliation(s)
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, California 95817;
| |
Collapse
|
12
|
Fischer AG, Ullsperger M. An Update on the Role of Serotonin and its Interplay with Dopamine for Reward. Front Hum Neurosci 2017; 11:484. [PMID: 29075184 PMCID: PMC5641585 DOI: 10.3389/fnhum.2017.00484] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 01/02/2023] Open
Abstract
The specific role of serotonin and its interplay with dopamine (DA) in adaptive, reward guided behavior as well as drug dependance, still remains elusive. Recently, novel methods allowed cell type specific anatomical, functional and interventional analyses of serotonergic and dopaminergic circuits, promising significant advancement in understanding their functional roles. Furthermore, it is increasingly recognized that co-release of neurotransmitters is functionally relevant, understanding of which is required in order to interpret results of pharmacological studies and their relationship to neural recordings. Here, we review recent animal studies employing such techniques with the aim to connect their results to effects observed in human pharmacological studies and subjective effects of drugs. It appears that the additive effect of serotonin and DA conveys significant reward related information and is subjectively highly euphorizing. Neither DA nor serotonin alone have such an effect. This coincides with optogenetically targeted recordings in mice, where the dopaminergic system codes reward prediction errors (PE), and the serotonergic system mainly unsigned PE. Overall, this pattern of results indicates that joint activity between both systems carries essential reward information and invites parallel investigation of both neurotransmitter systems.
Collapse
Affiliation(s)
- Adrian G Fischer
- Department of Neuropsychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Markus Ullsperger
- Department of Neuropsychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
13
|
Serotonin transporter gene promoter methylation status correlates with in vivo prefrontal 5-HTT availability and reward function in human obesity. Transl Psychiatry 2017; 7:e1167. [PMID: 28675387 PMCID: PMC5538116 DOI: 10.1038/tp.2017.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/08/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022] Open
Abstract
A polymorphism in the promoter region of the human serotonin transporter (5-HTT)-coding SLC6A4 gene (5-HTTLPR) has been implicated in moderating susceptibility to stress-related psychopathology and to possess regulatory functions on human in vivo 5-HTT availability. However, data on a direct relation between 5-HTTLPR and in vivo 5-HTT availability have been inconsistent. Additional factors such as epigenetic modifications of 5-HTTLPR might contribute to this association. This is of particular interest in the context of obesity, as an association with 5-HTTLPR hypermethylation has previously been reported. Here, we tested the hypothesis that methylation rates of 14 cytosine-phosphate-guanine (CpG) 5-HTTLPR loci, in vivo central 5-HTT availability as measured with [11C]DASB positron emission tomography (PET) and body mass index (BMI) are related in a group of 30 obese (age: 36±10 years, BMI>35 kg/m2) and 14 normal-weight controls (age 36±7 years, BMI<25 kg/m2). No significant association between 5-HTTLPR methylation and BMI overall was found. However, site-specific elevations in 5-HTTLPR methylation rates were significantly associated with lower 5-HTT availability in regions of the prefrontal cortex (PFC) specifically within the obese group when analyzed in isolation. This association was independent of functional 5-HTTLPR allelic variation. In addition, negative correlative data showed that CpG10-associated 5-HTT availability determines levels of reward sensitivity in obesity. Together, our findings suggest that epigenetic mechanisms rather than 5-HTTLPR alone influence in vivo 5-HTT availability, predominantly in regions having a critical role in reward processing, and this might have an impact on the progression of the obese phenotype.
Collapse
|
14
|
Luo M, Li Y, Zhong W. Do dorsal raphe 5-HT neurons encode “beneficialness”? Neurobiol Learn Mem 2016; 135:40-49. [DOI: 10.1016/j.nlm.2016.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
15
|
Bailey MR, Simpson EH, Balsam PD. Neural substrates underlying effort, time, and risk-based decision making in motivated behavior. Neurobiol Learn Mem 2016; 133:233-256. [PMID: 27427327 PMCID: PMC5007005 DOI: 10.1016/j.nlm.2016.07.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/16/2022]
Abstract
All mobile organisms rely on adaptive motivated behavior to overcome the challenges of living in an environment in which essential resources may be limited. A variety of influences ranging from an organism's environment, experiential history, and physiological state all influence a cost-benefit analysis which allows motivation to energize behavior and direct it toward specific goals. Here we review the substantial amount of research aimed at discovering the interconnected neural circuits which allow organisms to carry-out the cost-benefit computations which allow them to behave in adaptive ways. We specifically focus on how the brain deals with different types of costs, including effort requirements, delays to reward and payoff riskiness. An examination of this broad literature highlights the importance of the extended neural circuits which enable organisms to make decisions about these different types of costs. This involves Cortical Structures, including the Anterior Cingulate Cortex (ACC), the Orbital Frontal Cortex (OFC), the Infralimbic Cortex (IL), and prelimbic Cortex (PL), as well as the Baso-Lateral Amygdala (BLA), the Nucleus Accumbens (NAcc), the Ventral Pallidal (VP), the Sub Thalamic Nucleus (STN) among others. Some regions are involved in multiple aspects of cost-benefit computations while the involvement of other regions is restricted to information relating to specific types of costs.
Collapse
Affiliation(s)
- Matthew R Bailey
- Department of Psychology, Columbia University, New York, NY, USA.
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA; Barnard College, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor. Neuropsychopharmacology 2016; 41:2566-76. [PMID: 27125304 PMCID: PMC4987855 DOI: 10.1038/npp.2016.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/18/2016] [Accepted: 04/24/2016] [Indexed: 11/08/2022]
Abstract
Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner.
Collapse
|
17
|
Browne CJ, Fletcher PJ, Zeeb FD. Responding for a conditioned reinforcer or unconditioned sensory reinforcer in mice: interactions with environmental enrichment, social isolation, and monoamine reuptake inhibitors. Psychopharmacology (Berl) 2016; 233:983-93. [PMID: 26690588 DOI: 10.1007/s00213-015-4178-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
Abstract
RATIONALE Environmental factors influence the etiology of many psychiatric disorders. Likewise, environmental factors can alter processes central to motivation. Therefore, motivational deficits present in many disorders may be influenced by early life environmental conditions. OBJECTIVE We examined whether housing animals in different environmental conditions influenced the ability of sensory stimuli to acquire incentive value and whether elevated monoamine activity altered responsing for these stimuli. METHODS Isolation-housed (IH), pair-housed (PH), and environmentally enriched (EE) male C57BL/6N mice were examined in tests of responding for a conditioned reinforcer (CRf) or an unconditioned sensory reinforcer (USRf). The CRf was previously paired with saccharin delivery through Pavlovian conditioning, while the USRf was not conditioned with a reward. Following baseline tests of responding for the CRf or USRf, the effects of elevated monoamine activity were examined. RESULTS At baseline, PH and EE mice responded similarly for the CRf or USRf. IH mice responded more for the CRf but exhibited slower acquisition of responding for the USRf. Administration of citalopram, a serotonin transporter blocker, or atomoxetine, a norepinephrine transporter blocker, decreased responding for the CRf and USRf in all groups. The dopamine transporter blocker GBR 12909 generally increased responding for the CRf and USRf, but further analysis revealed enhanced responding for both reinforcers only in EE mice. CONCLUSIONS Baseline incentive motivation is strongly influenced by the social component of housing conditions. Furthermore, environmental enrichment increased the sensitivity to elevated dopamine activity, while acute elevations in serotonin and norepinephrine inhibit incentive motivation irrespective of housing condition.
Collapse
Affiliation(s)
- Caleb J Browne
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, Canada, M5S 3G3.
| | - Paul J Fletcher
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, Canada, M5S 3G3
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Section of Biopsychology, Campbell Family Mental Health Research Institute, CAMH, 250 College Street, Toronto, ON, Canada, M5T 1R8
| | - Fiona D Zeeb
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Section of Biopsychology, Campbell Family Mental Health Research Institute, CAMH, 250 College Street, Toronto, ON, Canada, M5T 1R8
| |
Collapse
|
18
|
Bailey MR, Jensen G, Taylor K, Mezias C, Williamson C, Silver R, Simpson EH, Balsam PD. A novel strategy for dissecting goal-directed action and arousal components of motivated behavior with a progressive hold-down task. Behav Neurosci 2016; 129:269-80. [PMID: 26030428 DOI: 10.1037/bne0000060] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Motivation serves 2 important functions: It guides actions to be goal-directed, and it provides the energy and vigor required to perform the work necessary to meet those goals. Dissociating these 2 processes with existing behavioral assays has been a challenge. In this article, we report a novel experimental strategy to distinguish the 2 processes in mice. First, we characterize a novel motivation assay in which animals must hold down a lever for progressively longer intervals to earn each subsequent reward; we call this the progressive hold-down (PHD) task. We find that performance on the PHD task is sensitive to both food deprivation level and reward value. Next, we use a dose of methamphetamine (METH) 1.0 mg/kg, to evaluate behavior in both the progressive ratio (PR) and PHD tasks. Treatment with METH leads to more persistent lever pressing for food rewards in the PR. In the PHD task, we found that METH increased arousal, which leads to numerous bouts of hyperactive responding but neither increases nor impairs goal-directed action. The results demonstrate that these tools enable a more precise understanding of the underlying processes being altered in manipulations that alter motivated behavior.
Collapse
Affiliation(s)
| | - Greg Jensen
- Department of Psychology, Columbia University
| | | | | | | | - Rae Silver
- Department of Psychology, Barnard College
| | | | | |
Collapse
|
19
|
Not All Antidepressants Are Created Equal: Differential Effects of Monoamine Uptake Inhibitors on Effort-Related Choice Behavior. Neuropsychopharmacology 2016; 41:686-94. [PMID: 26105139 PMCID: PMC4707815 DOI: 10.1038/npp.2015.188] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 11/08/2022]
Abstract
Motivated behavior can be characterized by behavioral activation and high work output. Moreover, people with depression and other disorders show effort-related motivational symptoms, such as anergia, psychomotor retardation, and fatigue. Effort-based decision making is studied using tasks offering choices between high effort options leading to highly valued reinforcers vs low effort/low reward options, and such tasks could be useful as animal models of motivational symptoms. In the present studies the effort-related effects of the vesicular monoamine transport (VMAT-2) inhibitor tetrabenazine (TBZ) were investigated. TBZ blocks vesicular storage and also produces depressive symptoms in humans. Moreover, TBZ alters effort-based choice in rats, biasing animals toward low effort alternatives. The present studies investigated the ability of acute administration of various monoamine uptake inhibitors to reverse the effects of TBZ. Effort-related effects of TBZ were attenuated by the catecholamine uptake inhibitor and antidepressant bupropion, and this effect of bupropion was reversed by either D1 or D2 family antagonism. The effort-related effects of TBZ were also attenuated by the selective dopamine uptake blocker GBR12909. The 5-HT uptake inhibitor fluoxetine and the norepinephrine uptake inhibitor desipramine failed to reverse the effects of TBZ, and higher doses of these drugs, given alone or in combination with TBZ, led to further behavioral impairments. These results indicate that drugs acting on dopamine transmission are relatively effective at reversing the effort-related effects of TBZ, and are consistent with the hypothesis that drugs that enhance dopamine transmission may be effective at treating effort-related psychiatric symptoms in humans.
Collapse
|
20
|
Bailey MR, Williamson C, Mezias C, Winiger V, Silver R, Balsam PD, Simpson EH. The effects of pharmacological modulation of the serotonin 2C receptor on goal-directed behavior in mice. Psychopharmacology (Berl) 2016; 233:615-24. [PMID: 26558617 PMCID: PMC4878435 DOI: 10.1007/s00213-015-4135-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/24/2015] [Indexed: 01/15/2023]
Abstract
RATIONALE Impaired goal-directed motivation represents a debilitating class of symptoms common to psychological disorders including schizophrenia and some affective disorders. Despite the known negative impact of impaired motivation, there are currently no effective pharmacological interventions to treat these symptoms. OBJECTIVES Here, we evaluate the effectiveness of the serotonin 2C (5-HT2C) receptor selective ligand, SB242084, as a potential pharmacological intervention for enhancing goal-directed motivation in mice. The studies were designed to identify not only efficacy but also the specific motivational processes that were affected by the drug treatment. METHODS We tested subjects following treatment with SB242084 (0.75 mg/kg) in several operant lever pressing assays including the following: a progressive ratio (PR) schedule of reinforcement, an effort-based choice task, a progressive hold down task (PHD), and various food intake tests. RESULTS Acute SB242084 treatment leads to an increase in instrumental behavior. Using a battery of behavioral tasks, we demonstrate that the major effect of SB242084 is an increase in the amount of responses and duration of effort that subjects will make for food rewards. This enhancement of behavior is not the result of non-specific hyperactivity or arousal nor is it due to changes in food consumption. CONCLUSIONS Because of this specificity of action, we suggest that the 5-HT2C receptor warrants further attention as a novel therapeutic target for treating pathological impairments in goal-directed motivation.
Collapse
Affiliation(s)
- Matthew R Bailey
- Department of Psychology, Columbia University, New York, NY, USA.
- Columbia University, Mail Code 5501, 1190 Amsterdam Avenue Room 406, Schermerhorn Hall, New York, NY, 10027, USA.
| | - Cait Williamson
- Department of Psychology, Columbia University, New York, NY, USA
| | - Chris Mezias
- Barnard College, Columbia University, New York, NY, USA
| | | | - Rae Silver
- Department of Psychology, Columbia University, New York, NY, USA
- Barnard College, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY, USA
| | - Peter D Balsam
- Barnard College, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, Box 87, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, Box 87, New York, NY, 10032, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
21
|
Luo M, Zhou J, Liu Z. Reward processing by the dorsal raphe nucleus: 5-HT and beyond. ACTA ACUST UNITED AC 2015; 22:452-60. [PMID: 26286655 PMCID: PMC4561406 DOI: 10.1101/lm.037317.114] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022]
Abstract
The dorsal raphe nucleus (DRN) represents one of the most sensitive reward sites in the brain. However, the exact relationship between DRN neuronal activity and reward signaling has been elusive. In this review, we will summarize anatomical, pharmacological, optogenetics, and electrophysiological studies on the functions and circuit mechanisms of DRN neurons in reward processing. The DRN is commonly associated with serotonin (5-hydroxytryptamine; 5-HT), but this nucleus also contains neurons of the neurotransmitter phenotypes of glutamate, GABA and dopamine. Pharmacological studies indicate that 5-HT might be involved in modulating reward- or punishment-related behaviors. Recent optogenetic stimulations demonstrate that transient activation of DRN neurons produces strong reinforcement signals that are carried out primarily by glutamate. Moreover, activation of DRN 5-HT neurons enhances reward waiting. Electrophysiological recordings reveal that the activity of DRN neurons exhibits diverse behavioral correlates in reward-related tasks. Studies so far thus demonstrate the strong power of DRN neurons in reward signaling and at the same time invite additional efforts to dissect the roles and mechanisms of different DRN neuron types in various processes of reward-related behaviors.
Collapse
Affiliation(s)
- Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingfeng Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhixiang Liu
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
22
|
Sanchez CL, Biskup CS, Herpertz S, Gaber TJ, Kuhn CM, Hood SH, Zepf FD. The Role of Serotonin (5-HT) in Behavioral Control: Findings from Animal Research and Clinical Implications. Int J Neuropsychopharmacol 2015; 18:pyv050. [PMID: 25991656 PMCID: PMC4648158 DOI: 10.1093/ijnp/pyv050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
The neurotransmitters serotonin and dopamine both have a critical role in the underlying neurobiology of different behaviors. With focus on the interplay between dopamine and serotonin, it has been proposed that dopamine biases behavior towards habitual responding, and with serotonin offsetting this phenomenon and directing the balance toward more flexible, goal-directed responding. The present focus paper stands in close relationship to the publication by Worbe et al. (2015), which deals with the effects of acute tryptophan depletion, a neurodietary physiological method to decrease central nervous serotonin synthesis in humans for a short period of time, on the balance between hypothetical goal-directed and habitual systems. In that research, acute tryptophan depletion challenge administration and a following short-term reduction in central nervous serotonin synthesis were associated with a shift of behavioral performance towards habitual responding, providing further evidence that central nervous serotonin function modulates the balance between goal-directed and stimulus-response habitual systems of behavioral control. In the present focus paper, we discuss the findings by Worbe and colleagues in light of animal experiments as well as clinical implications and discuss potential future avenues for related research.
Collapse
Affiliation(s)
- C L Sanchez
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - C S Biskup
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - S Herpertz
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - T J Gaber
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - C M Kuhn
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - S H Hood
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| | - F D Zepf
- Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany (Drs Sanchez, Biskup, and Mr Gaber); Jülich Aachen Research Alliance, JARA Translational Brain Medicine, Aachen & Jülich, Germany (Drs Sanchez, Biskup, and Mr Gaber); Department of Pharmacology and Cancer Biology, Duke University, Durham, NC (Drs Sanchez and Kuhn); Department of Psychiatry, Psychotherapy and Psychosomatics, University of Heidelberg, Heidelberg, Germany (Dr Herpertz); School of Psychiatry and Clinical Neurosciences (Dr Hood), and Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences & School of Paediatrics and Child Health (Dr ZEPF), Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Perth, WA, Australia; Specialised Child and Adolescent Mental Health Services, Department of Health in Western Australia, Perth, WA, Australia (Dr ZEPF)
| |
Collapse
|
23
|
Korte SM, Prins J, Krajnc AM, Hendriksen H, Oosting RS, Westphal KG, Korte-Bouws GA, Olivier B. The many different faces of major depression: It is time for personalized medicine. Eur J Pharmacol 2015; 753:88-104. [DOI: 10.1016/j.ejphar.2014.11.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/16/2014] [Accepted: 11/26/2014] [Indexed: 01/11/2023]
|
24
|
Hebart MN, Gläscher J. Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer. Psychopharmacology (Berl) 2015; 232:437-51. [PMID: 25034118 DOI: 10.1007/s00213-014-3682-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/30/2014] [Indexed: 12/29/2022]
Abstract
RATIONALE Human motivation and decision-making is influenced by the interaction of Pavlovian and instrumental systems. The neurotransmitters dopamine and serotonin have been suggested to play a major role in motivation and decision-making, but how they affect this interaction in humans is largely unknown. OBJECTIVE We investigated the effect of these neurotransmitters in a general Pavlovian-to-instrumental transfer (PIT) task which measured the nonspecific effect of appetitive and aversive Pavlovian cues on instrumental responses. METHODS For that purpose, we used selective dietary depletion of the amino acid precursors of serotonin and dopamine: tryptophan (n = 34) and tyrosine/phenylalanine (n = 35), respectively, and compared the performance of these groups to a control group (n = 34) receiving a nondepleted (balanced) amino acid drink. RESULTS We found that PIT differed between groups: Relative to the control group that exhibited only appetitive PIT, we found reduced appetitive PIT in the tyrosine/phenylalanine-depleted group and enhanced aversive PIT in the tryptophan-depleted group. CONCLUSIONS These results demonstrate a differential involvement of serotonin and dopamine in motivated behavior. They suggest that reductions in serotonin enhance the motivational influence of aversive stimuli on instrumental behavior and do not affect the influence of appetitive stimuli, while reductions in dopamine diminish the influence of appetitive stimuli. No conclusions could be drawn about how dopamine affects the influence of aversive stimuli. The interplay of both neurotransmitter systems allows for flexible and adaptive responses depending on the behavioral context.
Collapse
Affiliation(s)
- Martin N Hebart
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, W34, Martinistraße 52, 20251, Hamburg, Germany,
| | | |
Collapse
|
25
|
Dual role of serotonin in the acquisition and extinction of reward-driven learning: Involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors. Behav Brain Res 2015; 277:193-203. [DOI: 10.1016/j.bbr.2014.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/27/2022]
|
26
|
Ethanol effects on multiple fixed-interval, fixed-ratio responding in mice with deletions of the serotonin transporter gene. Behav Pharmacol 2014; 25:92-5. [PMID: 24247279 DOI: 10.1097/fbp.0000000000000011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Serotonin transporter knockout (KO) mice self-administer less ethanol than either heterozygous or wild-type mice; however, the mechanistic basis for this difference remains unclear. Here we examine the possibility that ethanol more readily decreases responding in KO mice, thereby limiting ethanol self-administration. To examine whether KO mice were more sensitive to the response-decreasing effects of ethanol, we administered ethanol (0.2-3.2 g/kg) to mice responding under a multiple fixed-ratio 30-response, fixed-interval 300-s schedule of milk presentation. Ethanol decreased responding similarly in all three genotypes. Fixed-ratio responding tended to be decreased at lower doses than fixed-interval responding. The decreased level of ethanol self-administration in serotonin transporter KO mice is not explained by an increased sensitivity to the response-decreasing effects of ethanol in KO mice, as sensitivity to the response-decreasing effects of ethanol was similar in the KO, heterozygous, and wild-type mice.
Collapse
|
27
|
Enkel T, Berger SM, Schönig K, Tews B, Bartsch D. Reduced expression of nogo-a leads to motivational deficits in rats. Front Behav Neurosci 2014; 8:10. [PMID: 24478657 PMCID: PMC3898325 DOI: 10.3389/fnbeh.2014.00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/07/2014] [Indexed: 12/24/2022] Open
Abstract
Nogo-A is an important neurite growth-regulatory protein in the adult and developing nervous system. Mice lacking Nogo-A, or rats with neuronal Nogo-A deficiency, exhibit behavioral abnormalities such as impaired short-term memory, decreased pre-pulse inhibition, and behavioral inflexibility. In the current study, we extended the behavioral profile of the Nogo-A deficient rat line with respect to reward sensitivity and motivation, and determined the concentrations of the monoamines dopamine and serotonin in the prefrontal cortex (PFC), dorsal striatum (dSTR), and nucleus accumbens (NAcc). Using a limited access consumption task, we found similar intake of a sweet condensed milk solution following ad libitum or restricted feeding in wild-type and Nogo-A deficient rats, indicating normal reward sensitivity and translation of hunger into feeding behavior. When tested for motivation in a spontaneous progressive ratio task, Nogo-A deficient rats exhibited lower break points and tended to have lower "highest completed ratios." Further, under extinction conditions responding ceased substantially earlier in these rats. Finally, in the PFC we found increased tissue levels of serotonin, while dopamine was unaltered. Dopamine and serotonin levels were also unaltered in the dSTR and the NAcc. In summary, these results suggest a role for Nogo-A regulated processes in motivated behavior and related neurochemistry. The behavioral pattern observed resembles aspects of the negative symptomatology of schizophrenia.
Collapse
Affiliation(s)
- Thomas Enkel
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan M. Berger
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kai Schönig
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Björn Tews
- Schaller Research Group, Division of Molecular Mechanisms of Tumor Invasion, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
28
|
Lamb RJ, Daws LC. Ethanol self-administration in serotonin transporter knockout mice: unconstrained demand and elasticity. GENES BRAIN AND BEHAVIOR 2013; 12:741-7. [PMID: 23927813 DOI: 10.1111/gbb.12068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/03/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self-administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self-administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self-administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol.
Collapse
Affiliation(s)
- R J Lamb
- Department of Psychiatry; Department of Pharmacology
| | | |
Collapse
|
29
|
Carr KA, Lin H, Fletcher KD, Sucheston L, Singh PK, Salis RJ, Erbe RW, Faith MS, Allison DB, Stice E, Epstein LH. Two functional serotonin polymorphisms moderate the effect of food reinforcement on BMI. Behav Neurosci 2013; 127:387-99. [PMID: 23544600 DOI: 10.1037/a0032026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Food reinforcement, or the motivation to eat, has been associated with increased energy intake, greater body weight, and prospective weight gain. Much of the previous research on the reinforcing value of food has focused on the role of dopamine, but it may be worthwhile to examine genetic polymorphisms in the serotonin and opioid systems as these neurotransmitters have been shown to be related to reinforcement processes and to influence energy intake. We examined the relationship among 44 candidate genetic polymorphisms in the dopamine, serotonin, and opioid systems, as well as food reinforcement and body mass index (BMI) in a sample of 245 individuals. Polymorphisms in the monoamine oxidase A (MAOA-LPR) and serotonin receptor 2A genes (rs6314) moderated the effect of food reinforcement on BMI, accounting for an additional 5-10% variance and revealed a potential role of the single nucleotide polymorphism, rs6314, in the serotonin 2A receptor as a differential susceptibility factor for obesity. Differential susceptibility describes a factor that can confer either risk or protection depending on a second variable, such that rs6314 is predictive of both high and low BMI based on the level of food reinforcement, while the diathesis stress or dual-gain model only influences one end of the outcome measure. The interaction with MAOA-LPR better fits the diathesis stress model, with the 3.5R/4R allele conferring protection for individuals low in food reinforcement. These results provide new insight into genes theoretically involved in obesity, and support the hypothesis that genetics moderate the association between food reinforcement and BMI.
Collapse
Affiliation(s)
- Katelyn A Carr
- Department of Pediatrics, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214-3000, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nonkes LJP, Homberg JR. Perseverative instrumental and Pavlovian responding to conditioned stimuli in serotonin transporter knockout rats. Neurobiol Learn Mem 2012; 100:48-55. [PMID: 23261854 DOI: 10.1016/j.nlm.2012.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 01/08/2023]
Abstract
Environmental stimuli can influence behavior via the process of Pavlovian conditioning. Recent genetic research suggests that some individuals are more sensitive to environmental stimuli for behavioral guidance than others. One important mediator of this effect is serotonin transporter (5-HTT) genetic variance, which increases sensitivity to Pavlovian conditioned stimuli through changes in the build-up of corticolimbic circuits. As these stimuli can have reinforcing effects on instrumental responding, we here investigated their effects on instrumental behavior in 5-HTT knockout rats and their wild-type counterparts by means of the signal attenuation paradigm. In this paradigm animals acquired a Pavlovian association between a stimulus and food reward, and subsequently they had to lever press in order to gain access to this food reward-associated stimulus. Thereafter, half of the animals underwent extinction training during which extinction of the primary Pavlovian association was induced via non-reinforced stimulus presentations, whereas the other half did not receive this training. During a final test session all animals were tested for instrumental responding for the non-reinforced Pavlovian conditioned stimulus, as well as instrumental and Pavlovian responding to the stimulus after an initial lever-press. No genotype differences were observed during the training and extinction sessions. However, during the test session 5-HTT knockout rats that had not received prior extinction training displayed excessive instrumental responding. This was specifically observed during presentation of the stimulus (induced by the first lever press) and was accompanied by an increased number of feeder visits after termination of the stimulus presentation. An additionally performed c-Fos immunohistochemistry study revealed that the behaviors in these animals were associated with abnormal c-Fos immunoreactivity in the orbitofrontal cortex and basolateral amygdala, regions important for the acquisition and maintenance of Pavlovian conditioned stimuli. These findings complement earlier findings showing that 5-HTT knockout animals' behavior is heavily influenced by environmental stimuli and indicate that this extends to the instrumental domain.
Collapse
Affiliation(s)
- Lourens J P Nonkes
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, The Netherlands
| | | |
Collapse
|
31
|
Prins J, Kenny PJ, Doomernik I, Schreiber R, Olivier B, Mechiel Korte S. The triple reuptake inhibitor DOV 216,303 induces long-lasting enhancement of brain reward activity as measured by intracranial self-stimulation in rats. Eur J Pharmacol 2012; 693:51-6. [DOI: 10.1016/j.ejphar.2012.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/09/2012] [Accepted: 07/27/2012] [Indexed: 01/11/2023]
|
32
|
Altered serotonergic function may partially account for behavioral endophenotypes in steroid sulfatase-deficient mice. Neuropsychopharmacology 2012; 37:1267-74. [PMID: 22189290 PMCID: PMC3306888 DOI: 10.1038/npp.2011.314] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The X-linked gene STS encodes the steroid hormone-modulating enzyme steroid sulfatase. Loss-of-function of STS, and variation within the gene, have been associated with vulnerability to developing attention deficit hyperactivity disorder (ADHD), a neurodevelopmental condition characterized by inattention, severe impulsivity, hyperactivity, and motivational deficits. ADHD is commonly comorbid with a variety of disorders, including obsessive-compulsive disorder. The neurobiological role of steroid sulfatase, and therefore its potential role in ADHD and associated comorbidities, is currently poorly understood. The 39,X(Y)*O mouse, which lacks the Sts gene, exhibits several behavioral abnormalities relevant to ADHD including inattention and hyperactivity. Here, we show that, unexpectedly, 39,X(Y)*O mice achieve higher ratios than wild-type mice on a progressive ratio (PR) task thought to index motivation, but that there is no difference between the two groups on a behavioral task thought to index compulsivity (marble burying). High performance liquid chromatography analysis of monoamine levels in wild type and 39,X(Y)*O brain tissue regions (the frontal cortex, striatum, thalamus, hippocampus, and cerebellum) revealed significantly higher levels of 5-hydroxytryptamine (5-HT) in the striatum and hippocampus of 39,X(Y)*O mice. Significant correlations between hippocampal 5-HT levels and PR performance, and between striatal 5-HT levels and locomotor activity strongly implicate regionally-specific perturbations of the 5-HT system as a neurobiological candidate for behavioral differences between 40,XY and 39,X(Y)*O mice. These data suggest that inactivating mutations and functional variants within STS might exert their influence on ADHD vulnerability, and disorder endophenotypes through modulation of the serotonergic system.
Collapse
|
33
|
Nikolova Y, Bogdan R, Pizzagalli DA. Perception of a naturalistic stressor interacts with 5-HTTLPR/rs25531 genotype and gender to impact reward responsiveness. Neuropsychobiology 2011; 65:45-54. [PMID: 22094432 PMCID: PMC3238029 DOI: 10.1159/000329105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Stressful life experiences frequently precede the onset of major depression; however, the mechanisms that underlie this link are poorly understood. Importantly, some individuals are more susceptible to the depressogenic effects of stress than others. Carriers of the S or LG allele of the 5-HTTLPR/rs25531 polymorphisms (S' participants) have been found to be more prone to developing depression under stress relative to L or LA homozygotes (L' participants). Moreover, emerging evidence indicates that stress-induced anhedonia may be a mechanism underlying links between stress and depression. Given these findings, we hypothesized that exposure to a naturalistic stressor (school final examinations) would disrupt reward responsiveness (a key behavioral component of anhedonia), and that this effect would be strongest in S' participants. METHODS To objectively assess reward responsiveness, we administered a probabilistic reward task to 70 Bulgarian high school students over two sessions in the 6-month period preceding school finals. For each participant, the two sessions were designated as the 'stress' and 'control' conditions based on self-reported perceived stress. RESULTS A genotype×condition interaction emerged in males, with S' participants showing larger stress-related reduction in reward responsiveness relative to L' participants. CONCLUSION While in need of replication in a larger sample, our results indicate that stress associated with a real-life event is linked to reduced reward responsiveness, the susceptibility to which is modulated by 5-HTTLPR/rs25531 genotype. Although preliminary, these findings identify anhedonia as a promising mechanism linking 5-HTTLPR/rs25531 genotype and stress to depression.
Collapse
Affiliation(s)
- Yuliya Nikolova
- Affective Neuroscience Laboratory, Department of Psychology, Harvard University, Cambridge, Mass., USA
| | - Ryan Bogdan
- Affective Neuroscience Laboratory, Department of Psychology, Harvard University, Cambridge, Mass., USA
| | - Diego A. Pizzagalli
- Affective Neuroscience Laboratory, Department of Psychology, Harvard University, Cambridge, Mass., USA,Center for Depression, Anxiety and Stress Research and Neuroimaging Center, McLean Hospital and Harvard Medical School, Belmont, Mass., USA,*Diego A. Pizzagalli, Center for Depression, Anxiety and Stress Research, Room 233C, McLean Hospital, 115 Mill Street, Belmont, MA 02478 (USA), Tel. +1 617 855 4230, E-Mail
| |
Collapse
|
34
|
Haenisch B, Bönisch H. Depression and antidepressants: Insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol Ther 2011; 129:352-68. [DOI: 10.1016/j.pharmthera.2010.12.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 12/15/2022]
|
35
|
Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains. PLoS One 2011; 6:e15536. [PMID: 21249214 PMCID: PMC3018410 DOI: 10.1371/journal.pone.0015536] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/12/2010] [Indexed: 11/26/2022] Open
Abstract
The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touchscreen-based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food magazine head entries). Overall, these assays provide robust paradigms for future studies using the mouse to elucidate the neural, molecular and genetic factors underpinning reward-related behaviors relevant to addiction research.
Collapse
|
36
|
|
37
|
Holmes NM, Marchand AR, Coutureau E. Pavlovian to instrumental transfer: a neurobehavioural perspective. Neurosci Biobehav Rev 2010; 34:1277-95. [PMID: 20385164 DOI: 10.1016/j.neubiorev.2010.03.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/16/2010] [Accepted: 03/31/2010] [Indexed: 11/27/2022]
Abstract
Pavlovian-to-instrumental transfer (PIT) is a key concept in developing our understanding of cue-controlled behaviours. Here we have reviewed the literature on behavioural and neurobiological factors that influence PIT. Meta-analyses of the data for individual groups in PIT studies revealed that PIT is related to both the order and amounts of instrumental and Pavlovian training, and that it is critically determined by competition between instrumental and Pavlovian responses. We directly addressed the role of response competition in PIT in two experiments which showed that extensive Pavlovian conditioning produced more Pavlovian magazine visits and weaker PIT than moderate Pavlovian conditioning (Experiment 1); and that PIT lost after extensive Pavlovian conditioning was restored by Pavlovian extinction training (Experiment 2). These findings confirm that response competition is indeed an important determinant of PIT. This has significant implications for lesion and inactivation studies that assess the neurobiological substrates of PIT, as well as attempts to demonstrate PIT in the drug self-administration paradigm where the effect is yet to be reliably shown.
Collapse
|
38
|
Chase HW, Michael A, Bullmore ET, Sahakian BJ, Robbins TW. Paradoxical enhancement of choice reaction time performance in patients with major depression. J Psychopharmacol 2010; 24:471-9. [PMID: 19406853 DOI: 10.1177/0269881109104883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Cued Reinforcement Reaction Time (CRRT) task is a choice reaction time task in which rewards (points) are available if the subject responds quickly enough and are signalled with a certain probability by stimuli. Reaction times (RTs) are faster following stimuli predicting reward with a high probability than with a low probability. This RT difference is sensitive to manipulations and individual differences in the serotonin (5-HT) system, but the CRRT task performance has not yet been examined in patients with depression. We observed that patients performed better on the task than controls, as evidenced by a greater points score, a greater likelihood of reaching their reinforcement threshold and fewer errors. RT variability was reduced in the patients. No group differences in the effect of the conditioned stimuli on RTs were observed. Accounts of these surprising data are discussed, considering possible effects of antidepressant medication or task-dependent differences in selective attention. Regardless of precise mechanism, the results do indicate that depressed patients are not invariably impaired in motivational paradigms and that their RT performance in certain situations can be superior to that of controls.
Collapse
Affiliation(s)
- H W Chase
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
39
|
Autoradiographic study of serotonin transporter during memory formation. Behav Brain Res 2010; 212:12-26. [PMID: 20226815 DOI: 10.1016/j.bbr.2010.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/05/2010] [Indexed: 12/15/2022]
Abstract
Serotonin transporter (SERT) has been associated with drugs of abuse like d-methamphetamine (METH). METH is well known to produce effects on the monoamine systems but it is unclear how METH affects SERT and memory. Here the effects of METH and the serotonin reuptake inhibitor fluoxetine (FLX) on autoshaping and novel object recognition (NOR) were investigated. Notably, both memory tasks recruit different behavioral, neural and cognitive demand. In autoshaping task a dose-response curve for METH was determined. METH (1.0mg/kg) impaired short-term memory (STM; lasting less of 90min) in NOR and impaired both STM and long-term memory (LTM; lasting 24 and 48h) in autoshaping, indicating that METH had long-lasting effects in the latter task. A comparative autoradiography study of the relationship between the binding pattern of SERT in autoshaping new untrained vs. trained treated (METH, FLX, or both) animals was made. Considering that hemispheric dominance is important for LTM, hence right vs. left hemisphere of the brain was compared. Results showed that trained animals decreased cortical SERT binding relative to untrained ones. In untrained and trained treated animals with the amnesic dose (1.0mg/kg) of METH SERT binding in several areas including hippocampus and cortex decreased, more remarkably in the trained animals. In contrast, FLX improved memory, increased SERT binding, prevented the METH amnesic effect and re-established the SERT binding. In general, memory and amnesia seemed to make SERT more vulnerable to drugs effects.
Collapse
|
40
|
Kheirbek MA, Beeler JA, Chi W, Ishikawa Y, Zhuang X. A molecular dissociation between cued and contextual appetitive learning. Learn Mem 2010; 17:148-54. [PMID: 20189959 DOI: 10.1101/lm.1687310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In appetitive Pavlovian learning, animals learn to associate discrete cues or environmental contexts with rewarding outcomes, and these cues and/or contexts can potentiate an ongoing instrumental response for reward. Although anatomical substrates underlying cued and contextual learning have been proposed, it remains unknown whether specific molecular signaling pathways within the striatum underlie one form of learning or the other. Here, we show that while the striatum-enriched isoform of adenylyl cyclase (AC5) is required for cued appetitive Pavlovian learning, it is not required for contextual appetitive learning. Mice lacking AC5 (AC5KO) could not learn an appetitive Pavlovian learning task in which a discrete signal light predicted reward delivery, yet they could form associations between context and either natural or drug reward, which could in turn elicit Pavlovian approach behavior. However, unlike wild-type (WT) mice, AC5KO mice could not use these Pavlovian conditioned stimuli to potentiate ongoing instrumental behavior in a Pavlovian-to-instrumental transfer paradigm. These data suggest that AC5 is specifically required for learning associations between discrete cues and outcomes in which the temporal relationship between conditioned stimulus (CS) and unconditioned stimulus (US) is essential, while alternative signaling mechanisms may underlie the formation of associations between context and reward. In addition, loss of AC5 compromises the ability of both contextual and discrete cues to modulate instrumental behavior.
Collapse
Affiliation(s)
- Mazen A Kheirbek
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
41
|
Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system. Neuroscience 2010; 166:1023-35. [PMID: 20109531 DOI: 10.1016/j.neuroscience.2010.01.036] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Anhedonia, as a failure to experience rewarding stimuli, is a key characteristic of many psychiatric disorders including depression and schizophrenia. Investigations on the neurobiological correlates of reward and hedonia/anhedonia have been a growing subject of research demonstrating several neuromodulators to mediate different aspects of reward processing. Whereas the majority of research on reward mainly focused on the dopamine and opioid systems, a serotonergic mechanism has been neglected. However, recent promising results strengthen the pivotal role of serotonin in reward processing. Evidence includes electrophysical and pharmacological as well as genetic and imaging studies. Primate research using single-unit recording of neurons within the dorsal raphe nucleus argues for a serotonergic mediation of reward value, whereas studies using intracranial self-stimulation point to an important contribution of serotonin in modulating motivational aspects of rewarding brain stimulation. Pharmacological studies using agonists and antagonists of serotonergic receptor subtypes and approaches investigating an increase or decrease of the extracellular level of serotonin offer strong evidence for a serotonergic mediation, ranging from aversion to pleasure. This review provides an argument for serotonin as a fundamental mediator of emotional, motivational and cognitive aspects of reward representation, which makes it possibly as important as dopamine for reward processing.
Collapse
Affiliation(s)
- G S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
42
|
Fulton S. Appetite and reward. Front Neuroendocrinol 2010; 31:85-103. [PMID: 19822167 DOI: 10.1016/j.yfrne.2009.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 12/14/2022]
Abstract
The tendency to engage in or maintain feeding behaviour is potently influenced by the rewarding properties of food. Affective and goal-directed behavioural responses for food have been assessed in response to various physiological, pharmacological and genetic manipulations to provide much insight into the neural mechanisms regulating motivation for food. In addition, several lines of evidence tie the actions of metabolic signals, neuropeptides and neurotransmitters to the modulation of the reward-relevant circuitry including midbrain dopamine neurons and corticolimbic nuclei that encode emotional and cognitive aspects of feeding. Along these lines, this review pulls together research describing the peripheral and central signalling molecules that modulate the rewarding effects of food and the underlying neural pathways.
Collapse
Affiliation(s)
- Stephanie Fulton
- CRCHUM and Montreal Diabetes Research Center, Department of Nutrition, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
43
|
Kalueff AV, Olivier JDA, Nonkes LJP, Homberg JR. Conserved role for the serotonin transporter gene in rat and mouse neurobehavioral endophenotypes. Neurosci Biobehav Rev 2009; 34:373-86. [PMID: 19698744 DOI: 10.1016/j.neubiorev.2009.08.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
The serotonin transporter knockout (SERT(-/-)) mouse, generated in 1998, was followed by the SERT(-/-) rat, developed in 2006. The availability of SERT(-/-) rodents creates the unique possibility to study the conservation of gene function across species. Here we summarize SERT(-/-) mouse and rat data, and discuss species (dis)similarities in neurobehavioral endophenotypes. Both SERT(-/-) rodent models show a disturbed serotonergic system, altered nociception, higher anxiety, decreased social behavior, as well as increased negative emotionality, behavioral inhibition and decision making. Used to model a wide range of psychiatric disorders, SERT(-/-) rodents may be particularly valuable in research on neurodevelopmental disorders such as depression, anxiety, and possibly autism. We conclude that SERT function is conserved across mice and rats and that their behavioral profile arises from common neurodevelopmental alterations. Because mice and rats have species-specific characteristics that confer differential research advantages, a comparison of the two models has heuristic value in understanding the mechanisms and behavioral outcome of SERT genetic variation in humans.
Collapse
Affiliation(s)
- A V Kalueff
- Department of Pharmacology, Tulane University Medical School, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
44
|
|