1
|
Chadarevian JP, Lombroso SI, Peet GC, Hasselmann J, Tu C, Marzan DE, Capocchi J, Purnell FS, Nemec KM, Lahian A, Escobar A, England W, Chaluvadi S, O'Brien CA, Yaqoob F, Aisenberg WH, Porras-Paniagua M, Bennett ML, Davtyan H, Spitale RC, Blurton-Jones M, Bennett FC. Engineering an inhibitor-resistant human CSF1R variant for microglia replacement. J Exp Med 2023; 220:e20220857. [PMID: 36584406 DOI: 10.1084/jem.20220857] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) can replace endogenous microglia with circulation-derived macrophages but has high mortality. To mitigate the risks of HSCT and expand the potential for microglia replacement, we engineered an inhibitor-resistant CSF1R that enables robust microglia replacement. A glycine to alanine substitution at position 795 of human CSF1R (G795A) confers resistance to multiple CSF1R inhibitors, including PLX3397 and PLX5622. Biochemical and cell-based assays show no discernable gain or loss of function. G795A- but not wildtype-CSF1R expressing macrophages efficiently engraft the brain of PLX3397-treated mice and persist after cessation of inhibitor treatment. To gauge translational potential, we CRISPR engineered human-induced pluripotent stem cell-derived microglia (iMG) to express G795A. Xenotransplantation studies demonstrate that G795A-iMG exhibit nearly identical gene expression to wildtype iMG, respond to inflammatory stimuli, and progressively expand in the presence of PLX3397, replacing endogenous microglia to fully occupy the brain. In sum, we engineered a human CSF1R variant that enables nontoxic, cell type, and tissue-specific replacement of microglia.
Collapse
Affiliation(s)
- Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Sonia I Lombroso
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Pharmacology Graduate Group, Biomedical Graduate Studies Program, University of Pennsylvania , Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania , Philadelphia, PA, USA
| | - Graham C Peet
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Program and Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus , Aurora, CO, USA
| | - Jonathan Hasselmann
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Christina Tu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Dave E Marzan
- Department of Biology, The College of New Jersey , Ewing, NJ, USA
| | - Joia Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
| | - Freddy S Purnell
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
| | - Alina Lahian
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Adrian Escobar
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Whitney England
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, CA, USA
| | - Sai Chaluvadi
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
| | - Carleigh A O'Brien
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - Fazeela Yaqoob
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | - William H Aisenberg
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mariko L Bennett
- Department of Neuroscience, Perelman School of Medicine , Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine , Irvine, CA, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine , Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine , Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, CA, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine , University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia, PA, USA
| |
Collapse
|
2
|
Al-Subaie AM, Kamaraj B. The Structural Effect of FLT3 Mutations at 835th Position and Their Interaction with Acute Myeloid Leukemia Inhibitors: In Silico Approach. Int J Mol Sci 2021; 22:7602. [PMID: 34299222 PMCID: PMC8303888 DOI: 10.3390/ijms22147602] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) gene mutations have been found in more than one-third of Acute Myeloid Leukemia (AML) cases. The most common point mutation in FLT3 occurs at the 835th residue (D835A/E/F/G/H/I/N/V/Y), in the activation loop region. The D835 residue is critical in maintaining FLT3 inactive conformation; these mutations might influence the interaction with clinically approved AML inhibitors used to treat the AML. The molecular mechanism of each of these mutations and their interactions with AML inhibitors at the atomic level is still unknown. In this manuscript, we have investigated the structural consequence of native and mutant FLT-3 proteins and their molecular mechanisms at the atomic level, using molecular dynamics simulations (MDS). In addition, we use the molecular docking method to investigate the binding pattern between the FLT-3 protein and AML inhibitors upon mutations. This study apparently elucidates that, due to mutations in the D835, the FLT-3 structure loses its conformation and becomes more flexible compared to the native FLT3 protein. These structural changes are suggested to contribute to the relapse and resistance responses to AML inhibitors. Identifying the effects of FLT3 at the molecular level will aid in developing a personalized therapeutic strategy for treating patients with FLT-3-associated AML.
Collapse
Affiliation(s)
- Abeer M. Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia
| |
Collapse
|
3
|
Swetha RG, Ramaiah S, Anbarasu A. Molecular Dynamics Studies on D835N Mutation in FLT3-Its Impact on FLT3 Protein Structure. J Cell Biochem 2015; 117:1439-45. [PMID: 26566084 DOI: 10.1002/jcb.25434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
Abstract
Mutations in Fetal Liver Tyrosine Kinase 3 (FLT3) genes are implicated in the constitutive activation and development of Acute Myeloid Leukaemia (AML). They are involved in signalling pathway of autonomous proliferation and block differentiation in leukaemia cells. FLT3 is considered as a promising target for the therapeutic intervention of AML. There are a few missense mutations associated with FLT3 that are found in AML patients. The D835N mutation is the most frequently observed and the aspartic acid in this position acts as a key residue for the receptor activation. The present study aims to understand the structural effect of D835N mutation in FLT3. We carried out the molecular dynamics (MD) simulation for a period of 120 ns at 300 K. Root-mean square deviation, root-mean square fluctuations, surface accessibility, radius of gyration, hydrogen bond, eigenvector projection analysis, trace of covariance matrix, and density analysis revealed the instability of mutant (D835N) protein. Our study provides new insights on the conformational changes in the mutant (D835N) structure of FLT3 protein. Our observations will be useful for researchers exploring AML and for the development of FLT3 inhibitors.
Collapse
Affiliation(s)
- Rayapadi G Swetha
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, India
| |
Collapse
|
4
|
Da Silva Figueiredo Celestino Gomes P, Panel N, Laine E, Pascutti PG, Solary E, Tchertanov L. Differential effects of CSF-1R D802V and KIT D816V homologous mutations on receptor tertiary structure and allosteric communication. PLoS One 2014; 9:e97519. [PMID: 24828813 PMCID: PMC4020833 DOI: 10.1371/journal.pone.0097519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/22/2014] [Indexed: 02/02/2023] Open
Abstract
The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind.
Collapse
Affiliation(s)
- Priscila Da Silva Figueiredo Celestino Gomes
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nicolas Panel
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
| | - Elodie Laine
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eric Solary
- Institut Gustave Roussy, Villejuif, France
- Faculty of Medicine, Paris- Sud University, Le Kremlin-Bicêtre, France
| | - Luba Tchertanov
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
- Centre de Mathématiques et de Leurs Applications, École Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
5
|
FMS-related tyrosine kinase 3. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Pridans C, Sauter KA, Baer K, Kissel H, Hume DA. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function. Sci Rep 2013; 3:3013. [PMID: 24145216 PMCID: PMC3804858 DOI: 10.1038/srep03013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/04/2013] [Indexed: 02/08/2023] Open
Abstract
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) in humans is a rare autosomal dominant disease characterized by giant neuroaxonal swellings (spheroids) within the CNS white matter. Symptoms are variable and can include personality and behavioural changes. Patients with this disease have mutations in the protein kinase domain of the colony-stimulating factor 1 receptor (CSF1R) which is a tyrosine kinase receptor essential for microglia development. We investigated the effects of these mutations on Csf1r signalling using a factor dependent cell line. Corresponding mutant forms of murine Csf1r were expressed on the cell surface at normal levels, and bound CSF1, but were not able to sustain cell proliferation. Since Csf1r signaling requires receptor dimerization initiated by CSF1 binding, the data suggest a mechanism for phenotypic dominance of the mutant allele in HDLS.
Collapse
Affiliation(s)
- Clare Pridans
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
- These authors contributed equally to this work
| | - Kristin A. Sauter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
- These authors contributed equally to this work
| | | | | | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| |
Collapse
|
7
|
Polyomavirus middle T-antigen is a transmembrane protein that binds signaling proteins in discrete subcellular membrane sites. J Virol 2011; 85:3046-54. [PMID: 21228238 DOI: 10.1128/jvi.02209-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Murine polyomavirus middle T-antigen (MT) induces tumors by mimicking an activated growth factor receptor. An essential component of this action is a 22-amino-acid hydrophobic region close to the C terminus which locates MT to cell membranes. Here, we demonstrate that this sequence is a transmembrane domain (TMD) by showing that a hemagglutinin (HA) tag added to the MT C terminus is exposed on the outside of the cells, with the N terminus inside. To determine whether this MT TMD is inserted into the endoplasmic reticulum (ER) membrane, we added the ER retention signal KDEL to the MT C terminus (MTKDEL). This mutant protein locates only in the ER, demonstrating that MT does insert into membranes solely at this location. In addition, this ER-located MT failed to transform. Examination of the binding proteins associated with the MTKDEL protein demonstrated that it associates with PP2A and c-Src but fails to interact with ShcA, phosphatidylinositol 3-kinase (PI3K), and phospholipase C-γ1 (PLC-γ1), despite being tyrosine phosphorylated. Additional mutant and antibody studies show that MT binding to PP2A is probably required for MT to efficiently exit the ER and migrate to the plasma membrane though the TMD also plays a role in this relocation. Overall, these data, together with previous publications, illustrate that MT associates with signaling proteins at different sites in its maturation pathway. MT binds to PP2A in the cytoplasm, to c-Src at the endoplasmic reticulum, and to ShcA, PI3K, and PLC-γ1 at subsequent locations en route to the plasma membrane.
Collapse
|
8
|
Pediatric mastocytosis-associated KIT extracellular domain mutations exhibit different functional and signaling properties compared with KIT-phosphotransferase domain mutations. Blood 2010; 116:1114-23. [PMID: 20484085 DOI: 10.1182/blood-2009-06-226027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Compared with adults, pediatric mastocytosis has a relatively favorable prognosis. Interestingly, a difference was also observed in the status of c-kit mutations according to the age of onset. Although most adult patients have a D(816)V mutation in phosphotransferase domain (PTD), we have described that half of the children carry mutations in extracellular domain (ECD). KIT-ECD versus KIT-PTD mutants were introduced into rodent Ba/F3, EML, Rat2, and human TF1 cells to investigate their biologic effect. Both ECD and PTD mutations induced constitutive receptor autophosphorylation and ligand-independent proliferation of the 3 hematopoietic cells. Unlike ECD mutants, PTD mutants enhanced cluster formation and up-regulated several mast cell-related antigens in Ba/F3 cells. PTD mutants failed to support colony formation and erythropoietin-mediated erythroid differentiation. ECD and PTD mutants also displayed distinct whole-genome transcriptional profiles in EML cells. We observed differences in their signaling properties: they both activated STAT, whereas AKT was only activated by ECD mutants. Consistently, AKT inhibitor suppressed ECD mutant-dependent proliferation, clonogenicity, and erythroid differentiation. Expression of myristoylated AKT restored erythroid differentiation in EML-PTD cells, suggesting the differential role of AKT in those mutants. Overall, our study implied different pathogenesis of pediatric versus adult mastocytosis, which might explain their diverse phenotypes.
Collapse
|
9
|
Brownlow N, Russell AE, Saravanapavan H, Wiesmann M, Murray JM, Manley PW, Dibb NJ. Comparison of nilotinib and imatinib inhibition of FMS receptor signaling, macrophage production and osteoclastogenesis. Leukemia 2007; 22:649-52. [PMID: 17851554 DOI: 10.1038/sj.leu.2404944] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Kiyoi H, Naoe T. Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation. Int J Hematol 2006; 83:301-8. [PMID: 16757428 DOI: 10.1532/ijh97.06071] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Overexpression and activating mutations of receptor tyrosine kinases (RTKs) are known to be involved in the pathophysiology of several kinds of cancer cells. FMS-like receptor tyrosine kinase 3 (FLT3), together with KIT, FMS, and platelet-derived growth factor receptor, is a class III RTK. FLT3 mutations were first reported as internal tandem duplication (FLT3/ITD) of the juxtamembrane domain-coding sequence; subsequently, a missense point mutation at the D835 residue and point mutations, deletions, and insertions in the codons surrounding D835 within a FLT3 tyrosine kinase domain (FLT3/KDMs) have been found. FLT3 mutations are the most frequent genetic alterations so far reported in acute myeloid leukemia and are involved in the signaling pathway of autonomous proliferation and differentiation block in leukemia cells. Several large-scale studies have confirmed that FLT3/ITD is strongly associated with leukocytosis and a poor prognosis. Therefore, routine screening for FLT3 mutations is recommended to stratify patients into distinct risk groups. However, because high-dose chemotherapy and stem cell transplantation cannot overcome the adverse effects of FLT3 mutations, the development of FLT3 kinase inhibitors is expected to produce a more efficacious therapeutic strategy for leukemia therapy.
Collapse
MESH Headings
- Acute Disease
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Proliferation/drug effects
- Drug Design
- Enzyme Activation/drug effects
- Enzyme Activation/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukocytosis/enzymology
- Leukocytosis/genetics
- Leukocytosis/therapy
- Mutation
- Prognosis
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/therapeutic use
- Protein Structure, Tertiary/drug effects
- Protein Structure, Tertiary/genetics
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Risk Factors
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Stem Cell Transplantation
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
Collapse
Affiliation(s)
- Hitoshi Kiyoi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | |
Collapse
|
11
|
Taylor JR, Brownlow N, Domin J, Dibb NJ. FMS receptor for M-CSF (CSF-1) is sensitive to the kinase inhibitor imatinib and mutation of Asp-802 to Val confers resistance. Oncogene 2005; 25:147-51. [PMID: 16170366 DOI: 10.1038/sj.onc.1209007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The kinase inhibitor imatinib is used in the treatment of chronic myeloid leukaemia, where it targets the intracellular Bcr-Abl tyrosine kinase, and gastrointestinal stromal tumours, where it targets either the KIT or PDGF tyrosine kinase receptors. Here, we report that imatinib is also an effective inhibitor of the closely related FMS receptor for macrophage colony stimulating factor and that mutation of Asp 802 of FMS to Val confers imatinib resistance. Imatinib readily reverted the transformed phenotype of haemopoietic and fibroblast cell lines that express the oncogene v-fms and also inhibited the growth of the Bacl.2F5 macrophage cell line. The cellular IC50 value of imatinib for FMS was similar to those for Bcr-Abl and KIT. Consequently, imatinib may also prove effective for the treatment of diseases whose progression is dependent upon macrophage-colony stimulating factor, this includes certain aspects of cancer and inflammation.
Collapse
Affiliation(s)
- J R Taylor
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | |
Collapse
|
12
|
Chung KY, Morrone G, Schuringa JJ, Wong B, Dorn DC, Moore MAS. Enforced expression of an Flt3 internal tandem duplication in human CD34+ cells confers properties of self-renewal and enhanced erythropoiesis. Blood 2005; 105:77-84. [PMID: 15242879 DOI: 10.1182/blood-2003-12-4445] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
To investigate the role of constitutively active internal tandem duplication (ITD) mutants of the Fms-like tyrosine kinase 3 (Flt3) receptor in leukemogenesis, we introduced the Flt3-ITD, W51, into human cord blood CD34+ cells and evaluated their phenotype in diverse hematopoietic assays. W51 expression resulted in a strong proliferative advantage and enhanced erythropoiesis as determined by immunophenotyping, colony assays, and molecular analyses. In MS-5 stromal cocultures, numerous early cobblestone areas (CAs) were generated within 10 to 14 days. Such W51-associated early CAs disappeared by 4 weeks, yet retained self-renewal properties as demonstrated by generation of secondary and tertiary CAs upon replating. This phenotype appears related to the expression of W51 since it was abolished by exposure to the FLT3 inhibitor, AG1295, but not to the c-kit inhibitor PD16. Wild-type Flt3–overexpressing CD34+ cells exposed to high levels of its physiologic ligand did not produce early CAs, highlighting differences in intracellular signaling between wild-type Flt3 and W51. W51-associated signal transducer and activator of transcription 5 (Stat5) activation plays a major role in this phenotype, although additional downstream targets of W51 may be relevant. Flt3-ITD+ acute myeloid leukemia (AML) blasts from patients invariably generated early AG1295-sensitive CAs in MS-5 cocultures, further validating the phenotype observed in transduced CD34+ cells.
Collapse
Affiliation(s)
- Ki Young Chung
- Laboratory of Developmental Hematopoiesis, Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
13
|
Torrent M, Rickert K, Pan BS, Sepp-Lorenzino L. Analysis of the activating mutations within the activation loop of leukemia targets Flt-3 and c-Kit based on protein homology modeling. J Mol Graph Model 2004; 23:153-65. [PMID: 15363457 DOI: 10.1016/j.jmgm.2004.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 05/06/2004] [Accepted: 05/06/2004] [Indexed: 11/24/2022]
Abstract
Molecular modeling provides a mechanistic hypothesis at the molecular level for the constitutive activation recently observed and reported for tyrosine protein kinases Flt-3 and c-Kit. Three-dimensional homology models for the active and inactive forms of these two kinases were made. Comparison of these models at the molecular level reveals that mutations of specific residues located in the activation loop (D835X and 836-deletion in Flt-3; D816V in c-Kit) as well as a 6-base pair (6-bp) insertion at residue 840 in Flt-3 operate in a similar way. Each mutation tends to weaken the forces that maintain the activation-loop folded inwards. None of the mutations are found to particularly stabilize the active state directly. The reason why the equilibrium is shifted towards the gate-open conformation of the protein is because, at least in these models, the mutations are found to critically destabilize the inactive conformational state of the kinase.
Collapse
Affiliation(s)
- Maricel Torrent
- Departments of Molecular Systems, Merck Research Laboratories, Merck Co., Sumneytown Pike,West Point, PA 19486, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
The cytoplasmic serine/threonine kinase BRAF and receptor tyrosine kinases of the platelet-derived growth factor receptor (PDGFR) family are frequently activated in cancer by mutations of an equivalent amino acid. Structural studies have provided important insights into why these very different kinases share similar oncogenic hot spots and why the PDGFR juxtamembrane region is also a frequent oncogenic target. This research has implications for other kinases that are mutated in human tumours and for the treatment of cancer using kinase inhibitors.
Collapse
Affiliation(s)
- Nick J Dibb
- Institute of Reproductive and Developmental Biology, Imperial College, Hammersmith Campus, London W12 ONN, UK.
| | | | | |
Collapse
|
15
|
Abstract
Normal haematopoietic cells use complex systems to control proliferation, differentiation and cell death. The control of proliferation is, in part, accomplished through the ligand-induced stimulation of receptor tyrosine kinases, which signal to downstream effectors through the RAS pathway. Recently, mutations in the FMS-like tyrosine kinase 3 (FLT3) gene, which encodes a receptor tyrosine kinase, have been found to be the most common genetic lesion in acute myeloid leukaemia (AML), occurring in approximately 25% of cases. Exploring the mechanism by which these FLT3 mutations cause uncontrolled proliferation might lead to a better understanding of how cells become cancerous and provide insights for the development of new drugs.
Collapse
Affiliation(s)
- Derek L Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA 98109, USA.
| | | |
Collapse
|
16
|
Abstract
FLT3, a member of the receptor tyrosine kinase (RTK) class III, is preferentially expressed on the surface of a high proportion of acute myeloid leukemia (AML) and B-lineage acute lymphocytic leukemia (ALL) cells in addition to hematopoietic stem cells, brain, placenta and liver. An interaction of FLT3 and its ligand has been shown to play an important role in the survival, proliferation and differentiation of not only normal hematopoetic cells but also leukemia cells. Mutations of the FLT3 gene was first reported as an internal tandem duplication (ITD) of the juxtamembrane (JM) domain-coding sequence, subsequently as a missense mutation of D835 within a kinase domain. ITD- and D835-mutations are essentially found in AML and their frequencies are approximately 20 and 6% of adults with AML, respectively. Thus, mutation of the FLT3 gene is so far the most frequent genetic alteration reported to be involved in AML. Several large-scale studies in well-documented patients published to date have demonstrated that ITD-mutation is strongly associated with leukocytosis and a poor prognosis. In this review, we summarize the clinical and biological significance of FLT3-mutations and discuss the possibility of targeting FLT3 kinase for the treatment of leukemia.
Collapse
Affiliation(s)
- Hitoshi Kiyoi
- Department of Infectious Diseases, Nagoya University School of Medicine, Japan.
| | | |
Collapse
|
17
|
Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, Wermke M, Bornhäuser M, Ritter M, Neubauer A, Ehninger G, Illmer T. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99:4326-35. [PMID: 12036858 DOI: 10.1182/blood.v99.12.4326] [Citation(s) in RCA: 1314] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Constitutive activation of the FLT3 receptor tyrosine kinase, either by internal tandem duplication (ITD) of the juxtamembrane region or by point mutations in the second tyrosine kinase domain (TKD), has been described in patients with acute myelogenous leukemia (AML). We analyzed the prevalence and the potential prognostic impact of FLT3 mutations in 979 AML patients. Results were correlated with cytogenetic data and the clinical response. FLT3-ITD mutations were found in 20.4% and FLT3-TKD mutations in 7.7% of the patients. Each mutation was associated with similar clinical characteristics and was more prevalent in patients with normal karyotype. Significantly more FLT3 aberrations were found in patients with FAB M5, and fewer were found in patients with FAB M2 and M6. Although less frequent in patients with cytogenetic aberrations, FLT3-ITDs were found in 13 of 42 patients with t(15;17) and in 9 of 10 patients with t(6;9). The prevalence of the ITD allele on the DNA level was heterogeneous, ranging from faint mutant bands in some patients to predominant mutant bands in others. Based on quantitative analysis, the mutant-wild-type (wt) ratio ranged from 0.03 to 32.56 (median, 0.78). Patients with a high mutant/wt ratio (ie, greater than 0.78) had significantly shorter overall and disease-free survival, whereas survival in patients with ratios below 0.78 did not differ from those without FLT3 aberrations. Multivariate analysis confirmed a high mutant/wt ratio to be a strong independent prognostic factor. Taken together, these data confirm that FLT mutations represent a common alteration in adult AML. Constitutive activation may be associated with monocytoid differentiation. A high mutant/wt ratio in ITD-positive patients appears to have a major impact on the prognostic relevance.
Collapse
Affiliation(s)
- Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der Technischen Universität, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- John T Reilly
- Molecular Haematology Unit, Division of Molecular and Genetic Medicine, Royal Hallamshire Hospital, Sheffield, UK.
| |
Collapse
|
19
|
Abu-Duhier FM, Goodeve AC, Wilson GA, Care RS, Peake IR, Reilly JT. Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 2001; 113:983-8. [PMID: 11442493 DOI: 10.1046/j.1365-2141.2001.02850.x] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genomic DNA from 97 cases of adult de novo acute myeloid leukaemia (AML) was screened using polymerase chain reaction (PCR) and conformation-sensitive gel electrophoresis (CSGE) for FLT3 exon 20 mutations. Initial sequencing of four cases, representing the spectrum of CSGE abnormalities, revealed changes affecting codon Asp835 in three cases and also an intron 20 A to G change. In order to identify all possible Asp835 alterations, as well as the frequency of the intronic change nucleotide 2541 + 57 A-->G, the patient PCR products were digested with EcoRV and NlaIII respectively. Seven cases (7.2%) possessed a mutation affecting Asp835; these were identified, following DNA sequencing, as Asp835Tyr (n = 5), Asp835His (n = 1) and Asp835del (n = 1). Alterations affecting Asp835 were not found in 80 normal control DNA samples. In contrast, the nucleotide 2541 + 57 A-->G change was shown to be a polymorphism, with an allelic frequency of 0.24 for the G and 0.76 for the A allele. This study reports, for the first time, point mutations in the human FLT3 gene that, because of their homology with other class III receptor tyrosine kinase mutations, probably result in constitutive activation of the receptor.
Collapse
Affiliation(s)
- F M Abu-Duhier
- Molecular Haematology Unit, Division of Molecular and Genetic Medicine, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | | | | | |
Collapse
|
20
|
Koch A, Mancini A, Stefan M, Niedenthal R, Niemann H, Tamura T. Direct interaction of nerve growth factor receptor, TrkA, with non-receptor tyrosine kinase, c-Abl, through the activation loop. FEBS Lett 2000; 469:72-6. [PMID: 10708759 DOI: 10.1016/s0014-5793(00)01242-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The nerve growth factor receptor, TrkA, is essential for the survival and differentiation of neurons in the central and peripheral nervous systems. To understand the molecular principles underlying this differentiation step, we employed a yeast two-hybrid screening protocol using human TrkA as bait. We isolated c-Abl as a TrkA-interacting protein, in addition to known proteins such as phospholipase Cgamma and SH2-B. This interaction was confirmed by an in vitro binding assay using glutathione S-tranferase-Abl fusion protein. Furthermore, we show here that c-Abl binds to phosphotyrosine residue(s) in the kinase activation loop of TrkA.
Collapse
Affiliation(s)
- A Koch
- Institut für Biochemie, OE 4310, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30623, Hannover, Germany
| | | | | | | | | | | |
Collapse
|