1
|
Ulloa-Aguirre A, Zariñán T, Dias JA, Kumar TR, Bousfield GR. Biased signaling by human follicle-stimulating hormone variants. Pharmacol Ther 2025; 268:108821. [PMID: 39961417 DOI: 10.1016/j.pharmthera.2025.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Abstract
Follicle-stimulating hormone (FSH) or follitropin plays a fundamental role in several mammalian species, including humans. This gonadotropin is produced by the anterior pituitary gland and has as its main targets the granulosa cells of the ovary and the Sertoli cells of the testis. Structurally, FSH is composed of two non-convalently linked subunits, the α- and β-subunit, as well as highly heterogenous oligosaccharide structures, which play a key role in determining a number of physiological and biological features of the hormone. Glycosylation in FSH and the other members belonging to the glycoprotein hormone family, is essential for many functions of the gonadotropin, including subunit assembly and stability, secretion, circulatory half-life and biological activity. Carbohydrate heterogeneity in FSH comes in two forms, microheterogeneity, which results from variations in the carbohydrate structural complexity in those oligosaccharides attached to the α- or β-subunit of the hormone and macroheterogeneity, which results from the absence of carbohydrate chain at FSHβ Asn-glycosylation sites. A number of in vitro and in vivo studies have conclusively demonstrated differential, unique and even opposing effects provoked by variations in the carbohydrate structures of FSH, including circulatory survival, binding to and activation of its cognate receptor in the gonads, intracellular signaling, and activation/inhibition of a number of FSH-regulated genes essential for follicle development. Herein, we review the effects of the FSH oligosaccharides on several functions of FSH, and how variations in these structures have been shown to lead to functional selectivity of the hormone.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico..
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| |
Collapse
|
2
|
Yu P, Zhao X, Zhou D, Wang S, Hu Z, Lian K, Zhang N, Duan P. The microRNA-mediated apoptotic signaling axis in male reproduction: a possible and targetable culprit in male infertility. Cell Biol Toxicol 2025; 41:54. [PMID: 40038116 DOI: 10.1007/s10565-025-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Recently, infertility has emerged as a significant and prevalent public health concern warranting considerable attention. Apoptosis, recognized as programmed cell death, constitutes a crucial process essential for the maintenance of normal spermatogenesis. Multiple investigations have illustrated that the dysregulated apoptosis of reproductive cells, encompassing spermatogonial stem cells, Sertoli cells, and Leydig cells, serves as a causative factor in male infertility. MicroRNAs represent a class of small RNA molecules that exert negative regulatory control over gene expression using direct interaction with messenger RNA transcripts. Previous studies have established that aberrant expression of miRNAs induces apoptosis in reproductive tissues, correlating with reproductive dysfunctions and infertility. In this review, we offer a comprehensive overview of miRNAs and their respective target genes implicated in the apoptotic process. As well, miRNAs are involved in multiple apoptotic signaling pathways, namely the PI3K/AKT, NOTCH, Wnt/β-catenin, and mTOR signaling cascades, exerting both negative and positive effects. We additionally elucidate the significant functions played by lncRNAs and circular RNAs as competing endogenous RNAs in the process of apoptosis within reproductive cells. We further illustrate that external factors, including silica nanoparticles, Cyclosporine A, and smoking, induce dysregulation of miRNAs, resulting in apoptosis within reproductive cells and subsequent male reproductive toxicity. Further, we discuss the implication of heat stress, hypoxia, and diabetes in reproductive cell apoptosis induced by miRNA dysregulation in male infertility. Finally, we demonstrate that the modulation of miRNAs via traditional and novel medicine could protect reproductive cells from apoptosis and be implemented as a therapeutic approach in male infertility.
Collapse
Affiliation(s)
- Pengxia Yu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Xue Zhao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
- Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Dan Zhou
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Songtao Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Zihuan Hu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Kai Lian
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Nanhui Zhang
- Department of Nephrology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| |
Collapse
|
3
|
Rocca MS, Pannella M, Bayraktar E, Marino S, Bortolozzi M, Di Nisio A, Foresta C, Ferlin A. Extragonadal function of follicle-stimulating hormone: Evidence for a role in endothelial physiology and dysfunction. Mol Cell Endocrinol 2024; 594:112378. [PMID: 39332467 DOI: 10.1016/j.mce.2024.112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
AIMS Follicle-stimulating hormone (FSH) plays a fundamental role in reproduction stimulating ovarian folliculogenesis, Sertoli cells function and spermatogenesis. However, the recent identification of FSH receptor (FSHR) also in extra-gonadal tissues has suggested that FSH activity may not be limited only to fertility regulation, with conflicting results on the possible role of FSH in endothelial cells. The aim of this study was to investigate FSH role on endothelial function in Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS Endothelial Nitric oxide synthase (eNOS) expression, eNOS phosphorylation and Nitric Oxide (NO) production resulted increased after the stimulation of HUVEC with recombinant human FSH (rhFSH) at 3.6x103 ng/ml, with increasing Calcium release from intracellular stores. Furthermore, IP3 production increased after rhFSH stimulation despite PTX treatment and NFAT1 was observed prevalently in nucleus. We observed a statistical difference between untreated cells and cells stimulated with 0.36x103 ng/ml and between cells stimulated with 0.36x103 ng/ml and cells stimulated with 1.8x103 ng/ml at 4 and 8 h by Wound healing assay, respectively. Furthermore, a higher cellular permeability was observed in stimulated cells, with atypical VE-cadherin distribution, as well as filamentous actin. CONCLUSIONS Our findings suggest that FSH at high concentrations elicits a signalling that could compromise the endothelial membrane. Indeed, VE-cadherin anomalies may severely affect the endothelial barrier, resulting in an increased membrane permeability. Although NO is an important vasodilatation factor, probably an excessive production could impact on endothelial functionality, partially explaining the increased risk of cardiovascular diseases in menopausal women and men with hypogonadism.
Collapse
Affiliation(s)
- Maria Santa Rocca
- University Hospital of Padua, Unit of Andrology and Reproductive Medicine, Padua, Italy
| | | | - Erva Bayraktar
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Saralea Marino
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Mario Bortolozzi
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Andrea Di Nisio
- University of Padua, Department of Medicine, Padua, Italy; Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
| | - Carlo Foresta
- University of Padua, Department of Medicine, Padua, Italy
| | - Alberto Ferlin
- University Hospital of Padua, Unit of Andrology and Reproductive Medicine, Padua, Italy; University of Padua, Department of Medicine, Padua, Italy.
| |
Collapse
|
4
|
Kulibin AY, Malolina EA. Thyroid Hormone Regulates Postnatal Development of the Rete Testis in Mice. Endocrinology 2024; 165:bqae125. [PMID: 39279445 DOI: 10.1210/endocr/bqae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Thyroid hormone regulates the rate of testis maturation in mammals. Manipulations of thyroid hormone levels in neonatal animals affect various aspects of testis biology. However, there have been no studies examining the effects of thyroid hormone on the rete testis (RT). Here, we used animal models of neonatal hyperthyroidism (injections of triiodothyronine, or T3) and hypothyroidism (goitrogen 6-propyl-2-thiouracil [PTU] treatment) and found that higher levels of thyroid hormone accelerate RT development, while lower levels of thyroid hormone delay it. T3 and PTU treatments influence RT size, proliferation of RT cells, and expression of DMRT1 and androgen receptor in the RT. T3 supplementation accelerates RT development in an organ testicular culture, which indicates the local action of thyroid hormone. Additionally, it was found that follicle-stimulating hormone could be involved in the regulation both of RT proliferation and RT size. The fact that RT cells in a cell culture do not respond to T3 suggests indirect action of thyroid hormone on the RT in vivo or the loss of the responsiveness to the hormone in vitro.
Collapse
Affiliation(s)
- Andrey Yu Kulibin
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Ekaterina A Malolina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russian Federation
| |
Collapse
|
5
|
Zhang WY, Xue MQ, Tang Y, Wang T, Wang XZ, Zhang JJ. AMPK regulates immature boar Sertoli cell proliferation through affecting CDK4/Cyclin D3 pathway and mitochondrial function. Theriogenology 2024; 224:9-18. [PMID: 38714024 DOI: 10.1016/j.theriogenology.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Sertoli cell (SC) proliferation plays an important role in sperm production and quality; however, the regulatory mechanism of SC proliferation is not well understood. This study investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in the regulation of immature boar SC activity. Cell counting kit-8, Seahorse XFe96, mitochondrial respiratory enzyme-related assay kits, and transmission electron microscopy were used to detect SC proliferative viability, oxygen consumption rate (OCR), mitochondrial respiratory enzyme activity, and the ultrastructure of primary cultured SCs in vitro from the testes of 21-day-old boars. A dual luciferase reporter assay was performed to determine the miRNA-mRNA target interaction. Western blotting was used to analyze cell proliferation-related protein expression of p38, p21, proliferating cell nuclear antigen (PCNA), Cyclin-dependent kinase 4 (CDK4), Cyclin D3, and phosphorylated retinoblastoma protein (Rb). Each experiment had a completely randomized design, with three replicates in each experiment. The results showed that the AMPK inhibitor (Compound C, 20 μM-24 h) increased cell proliferation viability, ATP production, and maximal respiration of SCs by 0.64-, 0.12-, and 0.08-fold (p < 0.05), respectively; increased the SC protein expression of PCNA, CDK4, Cyclin D3, and p-Rb by 0.13-, 0.09-, 0.88-, and 0.12-fold (p < 0.05), respectively; and decreased the SC protein expression of p38 and p21 by 0.36- and 0.27-fold (p < 0.05), respectively. The AMPK agonist AICAR (2 mM-6 h) significantly inhibited SC ultrastructure, OCR, mitochondrial respiratory enzyme activity, and cell proliferation-related protein levels. AMPK was validated to be a target gene of miR-1285 based on the result in which the miR-1285 mimic inhibited the luciferase activity of wild-type AMPK by 0.54-fold (p < 0.001). MiR-1285 mimic promoted the OCR of SCs, with 0.45-, 0.15-, 0.21-, and 0.30-fold (p < 0.01) increases in ATP production, basal and maximal respiration, and spare capacity, respectively. MiR-1285 mimic increased the mitochondrial respiratory enzyme activity of SCs, with 0.63-, 0.70-, and 0.97-fold (p < 0.01) increases in NADH-Q oxidoreductase, cytochrome c oxidase, and ATP synthase, respectively. Moreover, the miR-1285 mimic increased the protein expression of PCNA, CDK4, Cyclin D3, and p-Rb by 0.24-, 0.30-, 0.22-, and 0.13-fold (p < 0.05), respectively, and reduced the protein expression of p38 and p21 by 0.58- and 0.66-fold (p < 0.001). MiR-1285 inhibitor showed opposite effects on the above indicators and induced numerous autophagosomes and large lipid droplets in SCs. A high dose of estradiol (10 μM-6 h, showed a promotion of AMPK activation in a previous study) significantly inhibited SC ultrastructure, mitochondrial function, and proliferation-related pathways, while these adverse effects were weakened by Compound C treatment or miR-1285 mimic transfection. Our findings suggest that the activation and inhibition of AMPK induced by specific drugs or synthesized targeted miRNA fragments could regulate immature boar SC proliferative activity by influencing the CDK4/Cyclin D3 pathway and mitochondrial function; this helps to provide a basis for the prevention and treatment of male sterility in clinical practice.
Collapse
Affiliation(s)
- Wen Yu Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Meng Qing Xue
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Yao Tang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Tao Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Xian Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China
| | - Jiao Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
6
|
Grande G, Graziani A, Scafa R, Garolla A, Santi D, Ferlin A. FSH Therapy in Male Factor Infertility: Evidence and Factors Which Might Predict the Response. Life (Basel) 2024; 14:969. [PMID: 39202711 PMCID: PMC11355377 DOI: 10.3390/life14080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Follicle-stimulating hormone (FSH) administration is applied in the management of subjects affected by hypogonadotropic hypogonadism. Whilst this application is widely recognized and established alone or in combination with human chorionic gonadotropin (hCG), a similar strategy is empirically advocated in idiopathic male factor infertility (MFI). In this setting, FSH therapy has been used to increase sperm quantity, quality, and pregnancy rate when FSH plasma concentrations are below 8 IU/L and when the seminal tract is not obstructed. In the literature, several studies suggested that giving FSH to patients with idiopathic MFI increases sperm count and motility, raising the overall pregnancy rate. However, this efficacy seems to be limited, and about 10-18 men should be treated to achieve one pregnancy. Thus, several papers suggest the need to move from a replacement approach to an overstimulating approach in the management of FSH therapy in idiopathic MFI. To this aim, it is imperative to determine some pharmacologic markers of FSH efficacy. Furthermore, it should be useful in clinical practice to distinguish, before starting the treatment, among patients who might respond or not to FSH treatment. Indeed, previous studies suggest that infertile men who have normal levels of gonadotropins in plasma might not respond to FSH treatment and about 50% of patients might be defined as "non-responders". For these reasons, identifying predictive markers of FSH action in spermatogenesis and clinical markers of response to FSH treatment is a fascinating area of study that might lead to new developments with the aim of achieving personalization of the treatment of male infertility. From this perspective, seminal parameters (i.e., spermatid count), testicular cytology, genetic assessment, and miRNA or protein markers in the future might be used to create a tailored FSH therapy plan. The personalization of FSH treatment is mandatory to minimize side effects, to avoid lost time with ineffective treatments, and to improve the efficacy, predicting the most efficient dose and the duration of the treatment. This narrative review's objective is to discuss the role of the different putative factors which have been proposed to predict the response to FSH treatment in idiopathic infertile men.
Collapse
Affiliation(s)
- Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padua, 35128 Padua, Italy; (A.G.); (R.S.); (A.G.); (A.F.)
| | - Andrea Graziani
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padua, 35128 Padua, Italy; (A.G.); (R.S.); (A.G.); (A.F.)
| | - Raffaele Scafa
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padua, 35128 Padua, Italy; (A.G.); (R.S.); (A.G.); (A.F.)
| | - Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padua, 35128 Padua, Italy; (A.G.); (R.S.); (A.G.); (A.F.)
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
- Unit of Andrology and Sexual Medicine of the Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padua, 35128 Padua, Italy; (A.G.); (R.S.); (A.G.); (A.F.)
| |
Collapse
|
7
|
Qi HY, Zhao Z, Wei BH, Li ZF, Tan FQ, Yang WX. ERK/CREB and p38 MAPK/MMP14 Signaling Pathway Influences Spermatogenesis through Regulating the Expression of Junctional Proteins in Eriocheir sinensis Testis. Int J Mol Sci 2024; 25:7361. [PMID: 39000467 PMCID: PMC11242087 DOI: 10.3390/ijms25137361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The hemolymph-testis barrier (HTB) is a reproduction barrier in Crustacea, guaranteeing the safe and smooth process of spermatogenesis, which is similar to the blood-testis barrier (BTB) in mammals. The MAPK signaling pathway plays an essential role in spermatogenesis and maintenance of the BTB. However, only a few studies have focused on the influence of MAPK on crustacean reproduction. In the present study, we knocked down and inhibited MAPK in Eriocheir sinensis. Increased defects in spermatogenesis were observed, concurrently with a damaged HTB. Further research revealed that es-MMP14 functions downstream of ERK and p38 MAPK and degrades junctional proteins (Pinin and ZO-1); es-CREB functions in the ERK cascade as a transcription factor of ZO-1. In addition, when es-MMP14 and es-CREB were deleted, the defects in HTB and spermatogenesis aligned with abnormalities in the MAPK. However, JNK impacts the integrity of the HTB by changing the distribution of intercellular junctions. In summary, the MAPK signaling pathway maintains HTB integrity and spermatogenesis through es-MMP14 and es-CREB, which provides insights into the evolution of gene function during barrier evolution.
Collapse
Affiliation(s)
- Hong-Yu Qi
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.Q.)
| | - Zhan Zhao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.Q.)
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.Q.)
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.Q.)
| | - Fu-Qing Tan
- School of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.Q.)
| |
Collapse
|
8
|
Cannarella R, Curto R, Condorelli RA, Lundy SD, La Vignera S, Calogero AE. Molecular insights into Sertoli cell function: how do metabolic disorders in childhood and adolescence affect spermatogonial fate? Nat Commun 2024; 15:5582. [PMID: 38961093 PMCID: PMC11222552 DOI: 10.1038/s41467-024-49765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Male infertility is a major public health concern globally with unknown etiology in approximately half of cases. The decline in total sperm count over the past four decades and the parallel increase in childhood obesity may suggest an association between these two conditions. Here, we review the molecular mechanisms through which obesity during childhood and adolescence may impair future testicular function. Several mechanisms occurring in obesity can interfere with the delicate metabolic processes taking place at the testicular level during childhood and adolescence, providing the molecular substrate to hypothesize a causal relationship between childhood obesity and the risk of low sperm counts in adulthood.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Scott D Lundy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Zhan T, Zhang J, Zhang Y, Zhao Q, Chemerinski A, Douglas NC, Zhang Q, Xiao S. A Dose-Response Study on Functional and Transcriptomic Effects of FSH on Ex Vivo Mouse Folliculogenesis. Endocrinology 2024; 165:bqae054. [PMID: 38735763 PMCID: PMC11129714 DOI: 10.1210/endocr/bqae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Follicle-stimulating hormone (FSH) binds to its membrane receptor (FSHR) in granulosa cells to activate various signal transduction pathways and drive the gonadotropin-dependent phase of folliculogenesis. Both FSH insufficiency (due to genetic or nongenetic factors) and FSH excess (as encountered with ovarian stimulation in assisted reproductive technology [ART]) can cause poor female reproductive outcomes, but the underlying molecular mechanisms remain elusive. Herein, we conducted single-follicle and single-oocyte RNA sequencing analysis along with other approaches in an ex vivo mouse folliculogenesis and oogenesis system to investigate the effects of different concentrations of FSH on key follicular events. Our study revealed that a minimum FSH threshold is required for follicle maturation into the high estradiol-secreting preovulatory stage, and such threshold is moderately variable among individual follicles between 5 and 10 mIU/mL. FSH at 5, 10, 20, and 30 mIU/mL induced distinct expression patterns of follicle maturation-related genes, follicular transcriptomics, and follicular cAMP levels. RNA sequencing analysis identified FSH-stimulated activation of G proteins and downstream canonical and novel signaling pathways that may critically regulate follicle maturation, including the cAMP/PKA/CREB, PI3K/AKT/FOXO1, and glycolysis pathways. High FSH at 20 and 30 mIU/mL resulted in noncanonical FSH responses, including premature luteinization, high production of androgen and proinflammatory factors, and reduced expression of energy metabolism-related genes in oocytes. Together, this study improves our understanding of gonadotropin-dependent folliculogenesis and provides crucial insights into how high doses of FSH used in ART may impact follicular health, oocyte quality, pregnancy outcome, and systemic health.
Collapse
Affiliation(s)
- Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Ying Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
| | - Anat Chemerinski
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
| | - Nataki C Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, NJ 07103, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ 07103, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Zhu H, Ding G, Huang H. FSH regulates glucose-stimulated insulin secretion: A bell-shaped curve effect. J Diabetes 2024; 16:e13546. [PMID: 38599851 PMCID: PMC11006606 DOI: 10.1111/1753-0407.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Hong Zhu
- Obstetrics and Gynecology HospitalInstitute of Reproduction and Development, Fudan UniversityShanghaiChina
- Research Units of Embryo Original DiseasesChinese Academy of Medical SciencesShanghaiChina
- Shanghai Key Laboratory of Reprodction and DevelopmentFudan UniversityShanghaiChina
| | - Guolian Ding
- Obstetrics and Gynecology HospitalInstitute of Reproduction and Development, Fudan UniversityShanghaiChina
- Research Units of Embryo Original DiseasesChinese Academy of Medical SciencesShanghaiChina
- Shanghai Key Laboratory of Reprodction and DevelopmentFudan UniversityShanghaiChina
| | - Hefeng Huang
- Obstetrics and Gynecology HospitalInstitute of Reproduction and Development, Fudan UniversityShanghaiChina
- Research Units of Embryo Original DiseasesChinese Academy of Medical SciencesShanghaiChina
- Shanghai Key Laboratory of Reprodction and DevelopmentFudan UniversityShanghaiChina
- Key Laboratory of Reproductive Genetics (Ministry of Education)Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
11
|
Bhattacharya I, Sharma SS, Majumdar SS. Etiology of Male Infertility: an Update. Reprod Sci 2024; 31:942-965. [PMID: 38036863 DOI: 10.1007/s43032-023-01401-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Spermatogenesis is a complex process of germ cell division and differentiation that involves extensive cross-talk between the developing germ cells and the somatic testicular cells. Defective endocrine signaling and/or intrinsic defects within the testes can adversely affect spermatogenic progression, leading to subfertility/infertility. In recent years, male infertility has been recognized as a global public health concern, and research over the last few decades has elucidated the complex etiology of male infertility. Congenital reproductive abnormalities, genetic mutations, and endocrine/metabolic dysfunction have been demonstrated to be involved in infertility/subfertility in males. Furthermore, acquired factors like exposure to environmental toxicants and lifestyle-related disorders such as illicit use of psychoactive drugs have been shown to adversely affect spermatogenesis. Despite the large body of available scientific literature on the etiology of male infertility, a substantial proportion of infertility cases are idiopathic in nature, with no known cause. The inability to treat such idiopathic cases stems from poor knowledge about the complex regulation of spermatogenesis. Emerging scientific evidence indicates that defective functioning of testicular Sertoli cells (Sc) may be an underlying cause of infertility/subfertility in males. Sc plays an indispensable role in regulating spermatogenesis, and impaired functional maturation of Sc has been shown to affect fertility in animal models as well as humans, suggesting abnormal Sc as a potential underlying cause of reproductive insufficiency/failure in such cases of unexplained infertility. This review summarizes the major causes of infertility/subfertility in males, with an emphasis on infertility due to dysregulated Sc function.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, Central University of Kerala, Periye Campus, Kasaragod, 671320, Kerala, India.
| | - Souvik Sen Sharma
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India
| | - Subeer S Majumdar
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India.
- Gujarat Biotechnology University, Gandhinagar, GIFT City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
12
|
Kumar L, Solanki S, Jain A, Botts M, Gupta R, Rajput S, Roti Roti E. MAPKs signaling is obligatory for male reproductive function in a development-specific manner. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1330161. [PMID: 38406668 PMCID: PMC10885697 DOI: 10.3389/frph.2024.1330161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Mitogen-activated protein kinases (MAPKs) represent widely expressed and evolutionarily conserved proteins crucial for governing signaling pathways and playing essential roles in mammalian male reproductive processes. These proteins facilitate the transmission of signals through phosphorylation cascades, regulating diverse intracellular functions encompassing germ cell development in testis, physiological maturation of spermatozoa within the epididymis, and motility regulation at ejaculation in the female reproductive tract. The conservation of these mechanisms appears prevalent across species, including humans, mice, and, to a limited extent, livestock species such as bovines. In Sertoli cells (SCs), MAPK signaling not only regulates the proliferation of immature SCs but also determines the appropriate number of SCs in the testes at puberty, thereby maintaining male fertility by ensuring the capacity for sperm cell production. In germ cells, MAPKs play a crucial role in dynamically regulating testicular cell-cell junctions, supporting germ cell proliferation and differentiation. Throughout spermatogenesis, MAPK signaling ensures the appropriate Sertoli-to-germ cell ratio by regulating apoptosis, controlling the metabolism of developing germ cells, and facilitating the maturation of spermatozoa within the cauda epididymis. During ejaculation in the female reproductive tract, MAPKs regulate two pivotal events-capacitation and the acrosome reaction essential for maintaining the fertility potential of sperm cells. Any disruptions in MAPK pathway signaling possibly may disturb the testicular microenvironment homeostasis, sperm physiology in the male body before ejaculation and in the female reproductive tract during fertilization, ultimately compromising male fertility. Despite decades of research, the physiological function of MAPK pathways in male reproductive health remains inadequately understood. The current review attempts to combine recent findings to elucidate the impact of MAPK signaling on male fertility and proposes future directions to enhance our understanding of male reproductive functions.
Collapse
Affiliation(s)
- Lokesh Kumar
- Genus Breeding India Pvt Ltd., Pune, India
- GenusPlc, ABS Global, Windsor, WI, United States
| | - Subhash Solanki
- Genus Breeding India Pvt Ltd., Pune, India
- GenusPlc, ABS Global, Windsor, WI, United States
| | - Ashish Jain
- Department of Microbiology, Smt. CHM College, University of Mumbai, Ulhasnagar, India
| | | | | | | | | |
Collapse
|
13
|
Tao Q, Zhang L, Zhang Y, Liu M, Wang J, Zhang Q, Wu J, Wang A, Jin Y, Tang K. The miR-34b/MEK/ERK pathway is regulated by NR5A1 and promotes differentiation in primary bovine Sertoli cells. Theriogenology 2024; 215:224-233. [PMID: 38100994 DOI: 10.1016/j.theriogenology.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Sertoli cells play a key role in testicular development and spermatogenesis. It has been suggested that Sertoli cells differentiate after their proliferation ceases. Our previous study showed that miR-34b inhibits proliferation by targeting MAP2K1 mediated MEK/ERK signaling pathway in bovine immature Sertoli cells. Subsequent studies have revealed that the differentiation marker androgen receptor is upregulated during this process. However, the effect of the miR-34b/MEK/ERK pathway on immature bovine Sertoli cell differentiation and the underlying molecular mechanisms are yet to be explored. In this study, we determined that the miR-34b/MEK/ERK pathway was involved in the differentiation of primary Sertoli cells (PSCs) in response to retinoic acid. Transfection of an miR-34b mimic into PSCs promoted cell differentiation, whereas transfection of an miR-34b inhibitor into PSCs delayed it. Pharmacological inhibition of MEK/ERK signaling by AZD6244 promoted PSCs differentiation. Mechanistically, miR-34b promoted PSCs differentiation by inhibiting the MEK/ERK signaling pathway. Through a combination of bioinformatics analysis, dual-luciferase reporter assay, quantitative real-time PCR, and western blotting, nuclear receptor subfamily 5 group A member 1 (NR5A1) was identified as an upstream negative transcription factor of miR-34b. Furthermore, NR5A1 knockdown promoted Sertoli cell differentiation, whereas NR5A1 overexpression had the opposite effect. Together, this study revealed a new NR5A1/miR-34b/MEK/ERK axis that plays a significant role in Sertoli cell differentiation and provides a theoretical and experimental framework for further clarifying the regulation of cell differentiation in bovine PSCs.
Collapse
Affiliation(s)
- Qibing Tao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Linlin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yun Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingming Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiancheng Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| | - Keqiong Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
14
|
Centola CL, Dasso ME, Soria JD, Riera MF, Meroni SB, Galardo MN. Glycolysis as key regulatory step in FSH-induced rat Sertoli cell proliferation: Role of the mTORC1 pathway. Biochimie 2023; 214:145-156. [PMID: 37442535 DOI: 10.1016/j.biochi.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
The definitive number of Sertoli cells (SCs), achieved during the proliferative periods, defines the spermatogenic capacity in adulthood. It is recognized that FSH is the main mitogen targeting SC and that it exerts its action, at least partly, through the activation of the PI3K/Akt/mTORC1 pathway. mTORC1 controls a large number of cellular functions, including glycolysis and cell proliferation. Interestingly, recent evidence revealed that the glycolytic flux might modulate mTORC1 activity and, consequently, cell cycle progression. Although mature SC metabolism has been thoroughly studied, several aspects of metabolism regulation in proliferating SC are still to be elucidated. The objective of this study was to explore whether aerobic glycolysis is regulated by FSH through mTORC1 pathway in proliferating SC, and to assess the involvement of glycolysis in the regulation of SC proliferation. The present study was carried out utilizing 8-day-old rat SC cultures. The results obtained show that FSH enhances glycolytic flux through the induction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and lactate dehydrogenase A (LDHA) in an mTORC1 dependent manner. In addition, PFKFB3 and LDH inhibitors prevent FSH from activating mTORC1 and stimulating SC proliferation and glycolysis, presumably through mTORC1 pathway inhibition. In summary, FSH simultaneously regulates SC proliferation and glycolysis in an mTORC1 dependent manner, and glycolysis seems to cooperate with FSH in the stimulation of both cellular functions through the modulation of the same signalling pathway. Therefore, a positive feedback between the mTORC1 pathway and glycolysis triggered by FSH is hypothesized.
Collapse
Affiliation(s)
- Cecilia Lucia Centola
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Ercilia Dasso
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julio Daniel Soria
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Fernanda Riera
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Noel Galardo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
15
|
Dong Z, Ning Q, Liu Y, Wang S, Wang F, Luo X, Chen N, Lei C. Comparative transcriptomics analysis of testicular miRNA from indicine and taurine cattle. Anim Biotechnol 2023; 34:1436-1446. [PMID: 35130471 DOI: 10.1080/10495398.2022.2029466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Numerous studies have shown that several microRNAs (miRNAs) are specifically expressed in testis, play an essential role in regulating testicular spermatogenesis. Hainan and Mongolian cattle are two representative Chinese native cattle breeds representing Bos indicus (indicine cattle) and Bos taurus (taurine cattle), respectively, which are distributed in hot Hainan and cold Inner Mongolia province. To study the functional differences of miRNA in spermatogenesis between indicine and taurine cattle, six mature testes samples from indicine cattle (n = 3) and taurine cattle (n = 3) were collected, respectively. We detected miRNA expression using small RNA sequencing technology following bioinformatic analysis. A total of 578 known miRNAs and 132 novel miRNAs were detected in the six libraries. Among the 710 miRNAs, 564 miRNAs were expressed in both indicine and taurine cattle, 73 miRNAs were found solely in indicine cattle and 73 miRNAs were found solely in taurine cattle. After further analysis, among the miRNAs were identified in both indicine and taurine cattle, 184 miRNAs were differentially expressed (|log2 fold change| ≥ 1 and corrected p-value <0.05). Among the miRNAs that were only expressed in indicine cattle, 10 miRNAs were differentially expressed, whereas, among the miRNAs that were only expressed in taurine cattle, six miRNAs were differentially expressed. The enrichment analysis result showed that predicted target genes of a total of 200 differentially expressed miRNAs were enriched on some testicular spermatogenesis-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially mitogen-activated protein kinase (MAPK) signaling pathway. These findings identify miRNAs as key factors to regulate spermatogenesis in both indicine and taurine cattle, which may also be helpful for improving cattle reproductive performance in future studies.
Collapse
Affiliation(s)
- Zheng Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingqing Ning
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangkai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shikang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fuwen Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoyu Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Nguyen HT, Martin LJ. Classical cadherins in the testis: how are they regulated? Reprod Fertil Dev 2023; 35:641-660. [PMID: 37717581 DOI: 10.1071/rd23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Cadherins (CDH) are crucial intercellular adhesion molecules, contributing to morphogenesis and creating tissue barriers by regulating cells' movement, clustering and differentiation. In the testis, classical cadherins such as CDH1, CDH2 and CDH3 are critical to gonadogenesis by promoting the migration and the subsequent clustering of primordial germ cells with somatic cells. While CDH2 is present in both Sertoli and germ cells in rodents, CDH1 is primarily detected in undifferentiated spermatogonia. As for CDH3, its expression is mainly found in germ and pre-Sertoli cells in developing gonads until the establishment of the blood-testis barrier (BTB). This barrier is made of Sertoli cells forming intercellular junctional complexes. The restructuring of the BTB allows the movement of early spermatocytes toward the apical compartment as they differentiate during a process called spermatogenesis. CDH2 is among many junctional proteins participating in this process and is regulated by several pathways. While cytokines promote the disassembly of the BTB by enhancing junctional protein endocytosis for degradation, testosterone facilitates the assembly of the BTB by increasing the recycling of endocytosed junctional proteins. Mitogen-activated protein kinases (MAPKs) are also mediators of the BTB kinetics in many chemically induced damages in the testis. In addition to regulating Sertoli cell functions, follicle stimulating hormone can also regulate the expression of CDH2. In this review, we discuss the current knowledge on regulatory mechanisms of cadherin localisation and expression in the testis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
17
|
Cheng Y, Zhu H, Ren J, Wu HY, Yu JE, Jin LY, Pang HY, Pan HT, Luo SS, Yan J, Dong KX, Ye LY, Zhou CL, Pan JX, Meng ZX, Yu T, Jin L, Lin XH, Wu YT, Yang HB, Liu XM, Sheng JZ, Ding GL, Huang HF. Follicle-stimulating hormone orchestrates glucose-stimulated insulin secretion of pancreatic islets. Nat Commun 2023; 14:6991. [PMID: 37914684 PMCID: PMC10620214 DOI: 10.1038/s41467-023-42801-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Follicle-stimulating hormone (FSH) is involved in mammalian reproduction via binding to FSH receptor (FSHR). However, several studies have found that FSH and FSHR play important roles in extragonadal tissue. Here, we identified the expression of FSHR in human and mouse pancreatic islet β-cells. Blocking FSH signaling by Fshr knock-out led to impaired glucose tolerance owing to decreased insulin secretion, while high FSH levels caused insufficient insulin secretion as well. In vitro, we found that FSH orchestrated glucose-stimulated insulin secretion (GSIS) in a bell curve manner. Mechanistically, FSH primarily activates Gαs via FSHR, promoting the cAMP/protein kinase A (PKA) and calcium pathways to stimulate GSIS, whereas high FSH levels could activate Gαi to inhibit the cAMP/PKA pathway and the amplified effect on GSIS. Our results reveal the role of FSH in regulating pancreatic islet insulin secretion and provide avenues for future clinical investigation and therapeutic strategies for postmenopausal diabetes.
Collapse
Affiliation(s)
- Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jun Ren
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Yan Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-En Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu-Yang Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Yan Pang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Tao Pan
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Si-Si Luo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jing Yan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kai-Xuan Dong
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
| | - Cheng-Liang Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jie-Xue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhuo-Xian Meng
- Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Yu
- Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xian-Hua Lin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hong-Bo Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xin-Mei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jian-Zhong Sheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Obstetrics and Gynecology, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
- Department of Obstetrics and Gynecology, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.
| |
Collapse
|
18
|
Qi HY, Li ZF, Wang LM, Zhao Z, Wang JM, Tan FQ, Yang WX. Myosin VI stabilizes intercellular junctions in the testis through the LHR and MAPK signalling pathway during spermatogenesis in Eriocheir sinensis. Int J Biol Macromol 2023; 248:125842. [PMID: 37454996 DOI: 10.1016/j.ijbiomac.2023.125842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The myosin motor protein myosin VI plays an essential role in mammalian spermatogenesis, however, the effects of myosin VI on male reproduction in Crustacea remain obscure. We identified the macromolecule es-Myosin VI in Eriocheir sinensis, and studied it by multiple methods. It co-localized with F-actin and was highly expressed in the testis. We interfered es-Myosin VI using dsRNA in vivo, an apparent decrease in spermatozoa count was detected. We also found that the MAPK signalling pathway was changed, subsequently causing disruption of intercellular junctions and damage to the functional hemolymph-testis barrier. We observed that luteinizing hormone receptor es-LHR was located within seminiferous tubules, which was different from the expression in mammals. Es-LHR could bind with es-Myosin VI in testis of E. sinensis, its localization was significantly altered when es-Myosin VI was deleted. Moreover, we obtained consistent results for the MAPK signalling pathway and spermatogenesis defects between the es-LHR and es-Myosin VI knockdown groups. In summary, our research demonstrated that knockdown of es-Myosin VI disturbed the intercellular junction and HTB function via the MAPK signalling pathway by changing the localization of es-LHR in the testis of E. sinensis, which was the potential reason for its negative impact on spermatogenesis.
Collapse
Affiliation(s)
- Hong-Yu Qi
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan-Min Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhan Zhao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Ming Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Su J, Song Y, Yang Y, Li Z, Zhao F, Mao F, Wang D, Cao G. Study on the changes of LHR, FSHR and AR with the development of testis cells in Hu sheep. Anim Reprod Sci 2023; 256:107306. [PMID: 37541020 DOI: 10.1016/j.anireprosci.2023.107306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
The process of testis development in mammals is accompanied by the proliferation and maturation of Sertoli, Leydig and germ cells. Spermatogenesis depends on hormone regulation, which must bind to a receptor to exert its biological effects. The changes in Hu sheep testis cell composition and FSHR, LHR and AR expression during different developmental stages are unclear (newborn, puberty and adulthood). To address this, using single-cell RNA sequencing, we analyzed testis cell composition and hormone receptor expression changes during three important developmental stages of Hu sheep. We observed significant changes in the composition of somatic and germ cells in different Hu sheep testis developmental stages. Furthermore, we analyzed the FSHR, LHR and AR distribution and expression changes at three important periods and verified them by qRT-PCR and immunofluorescence. Our results suggest that after birth, the proportion of germ cells increased gradually, peaking in adulthood; the proportion of Sertoli cells decreased gradually, reaching the lowest in adulthood; and the proportion of Leydig cells increased and then decreased, reaching the lowest in adulthood. In addition, FSHR, LHR and AR are mainly located in Sertoli, Leydig and germ cells. LHR and FSHR expression decreased with increasing age, while AR expression increased and then decreased with increasing age.
Collapse
Affiliation(s)
- Jie Su
- Department of Medical Neurobiology, Inner Mongolia Medical University, Huhhot 010030, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Huhhot 010021, China
| | - Yanyan Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010000, China
| | - Zhijun Li
- Department of Medical Neurobiology, Inner Mongolia Medical University, Huhhot 010030, China
| | - Feifei Zhao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Fei Mao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Daqing Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China; Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010000, China
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China.
| |
Collapse
|
20
|
Kang W, Choi D, Roh J, Jung Y, Ha Y, Yang S, Park T. The Role of Cyclic Adenosine Monophosphate (cAMP) in Modulating Glucocorticoid Receptor Signaling and Its Implications on Glucocorticoid-Related Collagen Loss. Int J Mol Sci 2023; 24:10180. [PMID: 37373328 DOI: 10.3390/ijms241210180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glucocorticoid receptors (GRs) play a pivotal role in the stress response of the body, but overactivation can disrupt normal physiological functions. This study explores the role of cyclic adenosine monophosphate (cAMP) in GR activation and the associated mechanisms. We initially used the human embryonic kidney 293 cell line (HEK293) and found that cAMP enhancement, using forskolin and 3-isobutyl-1-methylxanthine (IBMX), did not alter glucocorticoid signaling under normal conditions, as evidenced by glucocorticoid response element (GRE) activity and the translocation of GR. However, in stressful conditions induced by dexamethasone, a synthetic glucocorticoid, cAMP was found to lessen glucocorticoid signaling within a short time frame but amplify it over an extended period in HEK293 cells. Bioinformatic analysis revealed that cAMP upregulation triggers the extracellular signal-regulated kinase (ERK) pathway, which influences GR translocation and ultimately regulates its activity. This stress-modulating function of cAMP was also investigated in the Hs68 dermal fibroblast line, known for its susceptibility to glucocorticoids. We found that cAMP enhancement via forskolin reduces GRE activity and reverses collagen loss in Hs68 cells exposed to dexamethasone. These findings underline the context-specific role of cAMP signaling in managing glucocorticoid signaling and its potential therapeutic application in treating stress-related pathological conditions like skin aging characterized by collagen reduction.
Collapse
Affiliation(s)
- Wesuk Kang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Dabin Choi
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jiyun Roh
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Yearim Jung
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Yoojeong Ha
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Suhjin Yang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
21
|
Jang S, Yun C, Kim B, Kang S, Lee J, Jeong S, Cho Y, Kim SH, Lee CM, Moon C, Kim JS. Immunohistochemical analysis of extracellular signal-regulated kinase expression in mature and immature bulls' testes and epididymides. VET MED-CZECH 2023; 68:231-237. [PMID: 37982001 PMCID: PMC10581511 DOI: 10.17221/34/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/13/2023] [Indexed: 11/21/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) has been implicated in mammalian testicular and epididymal development. This study aimed to investigate ERK expression in the immature and mature testes and epididymides of bulls. We evaluated ERK expression using immunoblot analysis and immunohistochemistry. Immunoblot analysis revealed that immature bull testes and epididymides had higher phosphorylated ERK (pERK) expression than mature bull testes and epididymides. pERK immunoreactivity was higher in immature epididymides than in immature testes. pERK was localised mostly in spermatogonia, undifferentiated sustentacular (Sertoli) cells, and interstitial (Leydig) cells in immature testes, as well as in some spermatocytes and spermatids in mature testes. In immature epididymides, the body and tail had higher pERK expression than the head, whereas pERK was broadly distributed throughout the stereocilia, basal cells, and connective tissues. pERK distribution in the head of mature epididymides was similar to that in immature epididymides, whereas few connective tissue cells were expressed in the body and tail of mature epididymides. Collectively, these results suggest that ERK is expressed in the testis and epididymis of immature and mature bulls with varying intensities, and the role of ERK in male reproductive organs may include the specific function of its development.
Collapse
Affiliation(s)
- Sungwoong Jang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
- Sungwoong Jang and Changjin Yun contributed equally to this work
| | - Changjin Yun
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
- Sungwoong Jang and Changjin Yun contributed equally to this work
| | - Bohye Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Sohi Kang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Jeongmin Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Sohee Jeong
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Yongho Cho
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Sung-Ho Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Wu W, Hu Y, Zhang Q, Xu Y, Su W. TNFα stimulates the proliferation of immature Sertoli cells by attenuating UPS-degradation of cyclin D1 and leads to the delay of BTB maturation in pubertal rats. Andrology 2023; 11:575-590. [PMID: 36354278 DOI: 10.1111/andr.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/18/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUNDS The Sertoli cell that plays a vital role during spermatogenesis is a known target of physiological and pathological factors affecting testicular development. Tumor necrosis factor alpha (TNFα) participates in the blood-testis barrier reconstruction, cell apoptosis, and inflammatory response by recognizing receptors on Sertoli cell. TNFα has also been shown to induce the proliferation of immature Sertoli cell in vitro, yet the mechanism still remains unclarified. OBJECTIVES This study was designed to investigate the effect of TNFα on blood-testis barrier development during puberty and the underlying mechanisms of TNFα-induced immature Sertoli cell proliferation. MATERIALS AND METHODS Immature male Sprague-Dawley rats of postnatal day 12 were intraperitoneally injected with TNFα. Biotin-labeled method was used to detect permeability of the developing blood-testis barrier after TNFα treatment, and the distribution of occludin and junctional adhesion molecule-A (JAM-A) were detected by immunofluorescence. Sertoli cells isolated from Sprague-Dawley rats of postnatal day 10 were cultured in vitro and treated with TNFα. Cell proliferation rate was reflected by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assay. Immunoblot and quantitative polymerase chain reaction were used to detect the expression of proliferating cell nuclear antigen, Fbxo4, and cyclin D1. Immunoprecipitation was used to detect the ubiquitination of cyclin D1 and the interaction between Fbxo4 and cyclin D1. Ammonium pyrrolidinedithiocarbamate (PDTC) was applied to detect the effect of nuclear factor kappaB (NFκB) activity inhibition on TNFα-induced Sertoli cell proliferation. The adenoviral recombinant plasmid containing rat Fbxo4 gene was constructed to investigate the effect of Fbxo4 overexpression on Sertoli cell proliferation promoted by TNFα. RESULTS The in vivo experiment revealed a significant delay of blood-testis barrier maturation in pubertal rats caused by exogenous TNFα. TNFα (10 ng/ml) treatment in vitro was found to promote the proliferation of immature Sertoli cells, accompanied with increased NFκB activity and cyclin D1 protein level. The level of Fbxo4 and ubiquitination of cyclin D1 were decreased after TNFα treatment. Inhibitor of NFκB or overexpression of Fbxo4 could both reverse the TNFα-induced proliferation of immature Sertoli cells, meanwhile restore the ubiquitin-proteasome system-dependent degradation of cyclin D1. Overexpression of Fbxo4 could not affect the activation of NFκB caused by TNFα. CONCLUSION These results indicate that TNFα inhibits the ubiquitination and degradation of cyclin D1 through the NFκB pathway, thereby promoting the proliferation of immature Sertoli cell in vitro and inducing the delay of blood-testis barrier maturation in pubertal rats.
Collapse
Affiliation(s)
- Weixing Wu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, Liaoning, China.,National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Ying Hu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, Liaoning, China
| | - Qiang Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, Liaoning, China
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, Liaoning, China
| | - Wenhui Su
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Male infertility and gonadotropin treatment: What can we learn from real-world data? Best Pract Res Clin Obstet Gynaecol 2023; 86:102310. [PMID: 36682942 DOI: 10.1016/j.bpobgyn.2022.102310] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
Gonadotropin therapy to treat specific male infertility disorders associated with hypogonadotropic hypogonadism is evidence-based and effective in restoring spermatogenesis and fertility. In contrast, its use to improve fertility in men with idiopathic oligozoospermia or nonobstructive azoospermia remains controversial, despite being widely practiced. The existence of two major inter-related pathways for spermatogenesis, including FSH and intratesticular testosterone, provides a rationale for empiric hormone stimulation therapy in both eugonadal and hypogonadal males with idiopathic oligozoospermia or nonobstructive azoospermia. Real-world data (RWD) on gonadotropin stimulating for these patient subsets, mainly using human chorionic gonadotropin and follicle-stimulating hormone, accumulated gradually, showing a positive therapeutic effect in some patients, translated by increased sperm production, sperm quality, and sperm retrieval rates. Although more evidence is needed, current insights from RWD research indicate that selected male infertility patients might be managed more effectively using gonadotropin therapy, with potential gains for all parties involved.
Collapse
|
24
|
Corpuz-Hilsabeck M, Culty M. Impact of endocrine disrupting chemicals and pharmaceuticals on Sertoli cell development and functions. Front Endocrinol (Lausanne) 2023; 14:1095894. [PMID: 36793282 PMCID: PMC9922725 DOI: 10.3389/fendo.2023.1095894] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Sertoli cells play essential roles in male reproduction, from supporting fetal testis development to nurturing male germ cells from fetal life to adulthood. Dysregulating Sertoli cell functions can have lifelong adverse effects by jeopardizing early processes such as testis organogenesis, and long-lasting processes such as spermatogenesis. Exposure to endocrine disrupting chemicals (EDCs) is recognized as contributing to the rising incidence of male reproductive disorders and decreasing sperm counts and quality in humans. Some drugs also act as endocrine disruptors by exerting off-target effects on endocrine tissues. However, the mechanisms of toxicity of these compounds on male reproduction at doses compatible with human exposure are still not fully resolved, especially in the case of mixtures, which remain understudied. This review presents first an overview of the mechanisms regulating Sertoli cell development, maintenance, and functions, and then surveys what is known on the impact of EDCs and drugs on immature Sertoli cells, including individual compounds and mixtures, and pinpointing at knowledge gaps. Performing more studies on the impact of mixtures of EDCs and drugs at all ages is crucial to fully understand the adverse outcomes these chemicals may induce on the reproductive system.
Collapse
|
25
|
Kim D, Lee S, Cho YH, Kang MJ, Ku CR, Chi H, Ahn J, Lee K, Han J, Chi S, Song MY, Cha SH, Lee EJ. Long-acting recombinant human follicle-stimulating hormone (SAFA-FSH) enhances spermatogenesis. Front Endocrinol (Lausanne) 2023; 14:1132172. [PMID: 36909328 PMCID: PMC9996080 DOI: 10.3389/fendo.2023.1132172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION Administration of follicle-stimulating hormone (FSH) has been recommended to stimulate spermatogenesis in infertile men with hypogonadotropic hypogonadism, whose sperm counts do not respond to human chorionic gonadotropin alone. However, FSH has a short serum half-life requiring frequent administration to maintain its therapeutic efficacy. To improve its pharmacokinetic properties, we developed a unique albumin-binder technology, termed "anti-serum albumin Fab-associated" (SAFA) technology. We tested the feasibility of applying SAFA technology to create long-acting FSH as a therapeutic candidate for patients with hypogonadotropic hypogonadism. METHODS SAFA-FSH was produced using a Chinese hamster ovary expression system. To confirm the biological function, the production of cyclic AMP and phosphorylation of ERK and CREB were measured in TM4-FSHR cells. The effect of gonadotropin-releasing hormone agonists on spermatogenesis in a hypogonadal rat model was investigated. RESULTS In in vitro experiments, SAFA-FSH treatment increased the production of cyclic AMP and increased the phosphorylation of ERK and CREB in a dose-dependent manner. In animal experiments, sperm production was not restored by human chorionic gonadotropin treatment alone, but was restored after additional recombinant FSH treatment thrice per week or once every 5 days. Sperm production was restored even after additional SAFA-FSH treatment at intervals of once every 5 or 10 days. DISCUSSION Long-acting FSH with bioactivity was successfully created using SAFA technology. These data support further development of SAFA-FSH in a clinical setting, potentially representing an important advancement in the treatment of patients with hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Daham Kim
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soohyun Lee
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Hee Cho
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jeong Kang
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cheol Ryong Ku
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunjin Chi
- AprilBio Co., Ltd., Rm 602, Biomedical Science Building, Kangwon National University, Chuncheon, Republic of Korea
| | - Jungsuk Ahn
- AprilBio Co., Ltd., Rm 602, Biomedical Science Building, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyungsun Lee
- AprilBio Co., Ltd., Rm 602, Biomedical Science Building, Kangwon National University, Chuncheon, Republic of Korea
| | - Jaekyu Han
- AprilBio Co., Ltd., Rm 602, Biomedical Science Building, Kangwon National University, Chuncheon, Republic of Korea
| | - Susan Chi
- AprilBio Co., Ltd., Rm 602, Biomedical Science Building, Kangwon National University, Chuncheon, Republic of Korea
| | - Moo Young Song
- AprilBio Co., Ltd., Rm 602, Biomedical Science Building, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Hoon Cha
- AprilBio Co., Ltd., Rm 602, Biomedical Science Building, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Eun Jig Lee,
| |
Collapse
|
26
|
Role of p38 MAPK Signalling in Testis Development and Male Fertility. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6891897. [PMID: 36092154 PMCID: PMC9453003 DOI: 10.1155/2022/6891897] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022]
Abstract
The testis is an important male reproductive organ, which ensures reproductive function via the secretion of testosterone and the generation of spermatozoa. Testis development begins in the embryonic period, continues after birth, and generally reaches functional maturation at puberty. The stress-activated kinase, p38 mitogen-activated protein kinase (MAPK), regulates multiple cell processes including proliferation, differentiation, apoptosis, and cellular stress responses. p38 MAPK signalling plays a crucial role in testis development by regulating spermatogenesis, the fate determination of pre-Sertoli, and primordial germ cells during embryogenesis, the proliferation of testicular cells in the postnatal period, and the functions of mature Sertoli and Leydig cells. In addition, p38 MAPK signalling is involved in decreased male fertility when exposed to various harmful stimuli. This review will describe in detail the biological functions of p38 MAPK signalling in testis development and male reproduction, together with its pathological role in male infertility.
Collapse
|
27
|
Wang JM, Li ZF, Yang WX, Tan FQ. Follicle-stimulating hormone signaling in Sertoli cells: a licence to the early stages of spermatogenesis. Reprod Biol Endocrinol 2022; 20:97. [PMID: 35780146 PMCID: PMC9250200 DOI: 10.1186/s12958-022-00971-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Follicle-stimulating hormone signaling is essential for the initiation and early stages of spermatogenesis. Follicle-stimulating hormone receptor is exclusively expressed in Sertoli cells. As the only type of somatic cell in the seminiferous tubule, Sertoli cells regulate spermatogenesis not only by controlling their own number and function but also through paracrine actions to nourish germ cells surrounded by Sertoli cells. After follicle-stimulating hormone binds to its receptor and activates the follicle-stimulating hormone signaling pathway, follicle-stimulating hormone signaling will establish a normal Sertoli cell number and promote their differentiation. Spermatogonia pool maintenance, spermatogonia differentiation and their entry into meiosis are also positively regulated by follicle-stimulating hormone signaling. In addition, follicle-stimulating hormone signaling regulates germ cell survival and limits their apoptosis. Our review summarizes the aforementioned functions of follicle-stimulating hormone signaling in Sertoli cells. We also describe the clinical potential of follicle-stimulating hormone treatment in male patients with infertility. Furthermore, our review may be helpful for developing better therapies for treating patients with dysfunctional follicle-stimulating hormone signaling in Sertoli cells.
Collapse
Affiliation(s)
- Jia-Ming Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
28
|
Real FM, Lao-Pérez M, Burgos M, Mundlos S, Lupiáñez DG, Jiménez R, Barrionuevo FJ. Cell adhesion and immune response, two main functions altered in the transcriptome of seasonally regressed testes of two mammalian species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 340:231-244. [PMID: 35535962 DOI: 10.1002/jez.b.23142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
Abstract
In species with seasonal breeding, male specimens undergo substantial testicular regression during the nonbreeding period of the year. However, the molecular mechanisms that control this biological process are largely unknown. Here, we report a transcriptomic analysis on the Iberian mole, Talpa occidentalis, in which the desquamation of live, nonapoptotic germ cells is the major cellular event responsible for testis regression. By comparing testes at different reproductive states (active, regressing, and inactive), we demonstrate that the molecular pathways controlling the cell adhesion function in the seminiferous epithelium, such as the MAPK, ERK, and TGF-β signaling, are altered during the regression process. In addition, inactive testes display a global upregulation of genes associated with immune response, indicating a selective loss of the "immune privilege" that normally operates in sexually active testes. Interspecies comparative analyses using analogous data from the Mediterranean pine vole, a rodent species where testis regression is controlled by halting meiosis entry, revealed a common gene expression signature in the regressed testes of these two evolutionary distant species. Our study advances in the knowledge of the molecular mechanisms associated to gonadal seasonal breeding, highlighting the existence of a conserved transcriptional program of testis involution across mammalian clades.
Collapse
Affiliation(s)
- Francisca M Real
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Miguel Lao-Pérez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco J Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| |
Collapse
|
29
|
Gupta A, Vats A, Ghosal A, Mandal K, Sarkar R, Bhattacharya I, Das S, Pal R, Majumdar SS. Follicle-stimulating hormone-mediated decline in miR-92a-3p expression in pubertal mice Sertoli cells is crucial for germ cell differentiation and fertility. Cell Mol Life Sci 2022; 79:136. [PMID: 35181820 PMCID: PMC11072849 DOI: 10.1007/s00018-022-04174-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023]
Abstract
Sertoli cells (Sc) are the sole target of follicle-stimulating hormone (FSH) in the testis and attain functional maturation post-birth to significantly augment germ cell (Gc) division and differentiation at puberty. Despite having an operational microRNA (miRNA) machinery, limited information is available on miRNA-mediated regulation of Sc maturation and male fertility. We have shown before that miR-92a-3p levels decline in pubertal rat Sc. In response to FSH treatment, the expressions of FSH Receptor, Claudin11 and Klf4 were found to be elevated in pubertal rat Sc coinciding with our finding of FSH-induced decline in miR-92a-3p levels. To investigate the association of miR-92a-3p and spermatogenesis, we generated transgenic mice where such pubertal decline of miR-92a-3p was prevented by its overexpression in pubertal Sc under proximal Rhox5 promoter, which is known to be activated specifically at puberty, in Sc. Our in vivo observations provided substantial evidence that FSH-induced decline in miR-92a-3p expression during Sc maturation acts as an essential prerequisite for the pubertal onset of spermatogenesis. Elevated expression of miR-92a-3p in post-pubertal testes results into functionally compromised Sc, leading to impairment of the blood-testis barrier formation and apoptosis of pre-meiotic Gc, ultimately culminating into infertility. Collectively, our data suggest that regulation of miR-92a-3p expression is crucial for Sc-mediated induction of active spermatogenesis at puberty and regulation of male fertility.
Collapse
Affiliation(s)
- Alka Gupta
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, USA
| | - Amandeep Vats
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Anindita Ghosal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Kamal Mandal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Rajesh Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Department of Medicine, University of Chicago, Chicago, USA
| | - Indrashis Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Dept. of Zoology, H. N. B. Garhwal University, Srinagar, Uttarakhand, India
| | - Sanjeev Das
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Rahul Pal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Subeer S Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India.
- Genes and Protein Engineering Laboratory, National Institute of Animal Biotechnology, Hyderabad, India.
| |
Collapse
|
30
|
Haldar S, Agrawal H, Saha S, Straughn AR, Roy P, Kakar SS. Overview of follicle stimulating hormone and its receptors in reproduction and in stem cells and cancer stem cells. Int J Biol Sci 2022; 18:675-692. [PMID: 35002517 PMCID: PMC8741861 DOI: 10.7150/ijbs.63721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
Follicle stimulating hormone (FSH) and its receptor (FSHR) have been reported to be responsible for several physiological functions and cancers. The responsiveness of stem cells and cancer stem cells towards the FSH-FSHR system make the function of FSH and its receptors more interesting in the context of cancer biology. This review is comprised of comprehensive information on FSH-FSHR signaling in normal physiology, gonadal stem cells, cancer cells, and potential options of utilizing FSH-FSHR system as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Swati Haldar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.,Current address: Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand 249405
| | - Himanshu Agrawal
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences Rishikesh, Uttarakhand 249203, India
| | - Alex R Straughn
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sham S Kakar
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
31
|
Er H, Tas GG, Soygur B, Ozen S, Sati L. Acute and Chronic Exposure to 900 MHz Radio Frequency Radiation Activates p38/JNK-mediated MAPK Pathway in Rat Testis. Reprod Sci 2022; 29:1471-1485. [PMID: 35015292 DOI: 10.1007/s43032-022-00844-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
Abstract
The use of electronic devices such as mobile phones has had a long stretch of rapid growth all over the world. Therefore, exposure to radio frequency radiation (RFR) has increased enormously. Here, we aimed to assess the balance between cell death and proliferation and also investigate the involvement of the JNK/p38 MAPK signaling pathway in the testis of rats exposed to 900 MHz RFR in acute and chronic periods (2 h/day, 5 days/week) for 1 or 10 weeks, respectively. The expression of proliferating cell nuclear antigen (PCNA), Bcl-xL, cleaved caspase-3, phosphorylated-JNK (p-JNK), and phosphorylated-p38 (p-p38) was analyzed in line with histopathology and TUNEL analysis in rat testis. There were no histopathological differences between sham and RFR groups in the acute and chronic groups. PCNA expression was not altered between groups in both periods. However, alterations for cleaved caspase-3 and Bcl-xL were observed depending on the exposure period. TUNEL analysis showed a significant increase in the RFR group in the acute period, whereas no difference in the chronic groups for the apoptotic index was reported. In addition, both p-p38 and p-JNK protein expressions increased significantly in RFR groups in both periods. Our study indicated that 900 MHz RFR might result in alterations during acute period exposure for several parameters, but this can be ameliorated in the chronic period in rat testis. Here, we also report the involvement of the p38/JNK-mediated MAPK pathway after exposure to 900 MHz RFR. Hence, this information might shed light in future studies toward detailed molecular mechanisms in male reproduction and infertility.
Collapse
Affiliation(s)
- Hakan Er
- Department of Biophysics, Akdeniz University School of Medicine, Akdeniz University, Antalya, Turkey.,Department of Medical Imaging Techniques, Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Gizem Gamze Tas
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Bikem Soygur
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.,Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
32
|
Lundin K, Sepponen K, Väyrynen P, Liu X, Yohannes DA, Survila M, Ghimire B, Känsäkoski J, Katayama S, Partanen J, Vuoristo S, Paloviita P, Rahman N, Raivio T, Luiro K, Huhtaniemi I, Varjosalo M, Tuuri T, Tapanainen JS. OUP accepted manuscript. Mol Hum Reprod 2022; 28:6574364. [PMID: 35471239 PMCID: PMC9308958 DOI: 10.1093/molehr/gaac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/11/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- K Lundin
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - K Sepponen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - P Väyrynen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - X Liu
- Molecular Systems Biology Research Group, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
- Proteomics Unit, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
| | - D A Yohannes
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Immunology & Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - M Survila
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - B Ghimire
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - J Känsäkoski
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - S Katayama
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Partanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - S Vuoristo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - P Paloviita
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - N Rahman
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - T Raivio
- Department of Physiology, University of Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, HUH, Helsinki, Finland
| | - K Luiro
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - I Huhtaniemi
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Metabolism, Endocrinology and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - M Varjosalo
- Molecular Systems Biology Research Group, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
- Proteomics Unit, Institute of Biotechnology & HiLIFE, University of Helsinki, Helsinki, Finland
| | - T Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Center Oulu and PEDEGO Research Unit, Oulu, Finland
- Corresponding author. Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, PO Box 140, 00029 Helsinki, Finland. Tel: +358-94711; E-mail:
| |
Collapse
|
33
|
Pharmacological Characterization of Low Molecular Weight Biased Agonists at the Follicle Stimulating Hormone Receptor. Int J Mol Sci 2021; 22:ijms22189850. [PMID: 34576014 PMCID: PMC8469697 DOI: 10.3390/ijms22189850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) plays a key role in reproduction through the activation of multiple signaling pathways. Low molecular weight (LMW) ligands composed of biased agonist properties are highly valuable tools to decipher complex signaling mechanisms as they allow selective activation of discrete signaling cascades. However, available LMW FSHR ligands have not been fully characterized yet. In this context, we explored the pharmacological diversity of three benzamide and two thiazolidinone derivatives compared to FSH. Concentration/activity curves were generated for Gαs, Gαq, Gαi, β-arrestin 2 recruitment, and cAMP production, using BRET assays in living cells. ERK phosphorylation was analyzed by Western blotting, and CRE-dependent transcription was assessed using a luciferase reporter assay. All assays were done in either wild-type, Gαs or β-arrestin 1/2 CRISPR knockout HEK293 cells. Bias factors were calculated for each pair of read-outs by using the operational model. Our results show that each ligand presented a discrete pharmacological efficacy compared to FSH, ranging from super-agonist for β-arrestin 2 recruitment to pure Gαs bias. Interestingly, LMW ligands generated kinetic profiles distinct from FSH (i.e., faster, slower or transient, depending on the ligand) and correlated with CRE-dependent transcription. In addition, clear system biases were observed in cells depleted of either Gαs or β-arrestin genes. Such LMW properties are useful pharmacological tools to better dissect the multiple signaling pathways activated by FSHR and assess their relative contributions at the cellular and physio-pathological levels.
Collapse
|
34
|
Bhattacharya I, Sharma SS, Sarkar H, Gupta A, Pradhan BS, Majumdar SS. FSH mediated cAMP signalling upregulates the expression of Gα subunits in pubertal rat Sertoli cells. Biochem Biophys Res Commun 2021; 569:100-105. [PMID: 34237428 DOI: 10.1016/j.bbrc.2021.06.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Follicle Stimulating Hormone (FSH) acts via FSH-Receptor (FSH-R) by employing cAMP as the dominant secondary messenger in testicular Sertoli cells (Sc) to support spermatogenesis. Binding of FSH to FSH-R, results the recruitment of the intracellular GTP binding proteins, either stimulatory Gαs or inhibitory Gαi that in turn regulate cAMP production in Sc. The cytosolic concentration of cAMP being generated by FSH-R thereafter critically determines the downstream fate of the FSH signalling. The pleiotropic action of FSH due to differential cAMP output during functional maturation of Sc has been well studied. However, the developmental and cellular regulation of the Gα proteins associated with FSH-R is poorly understood in Sc. In the present study, we report the differential transcriptional modulation of the Gα subunit genes by FSH mediated cAMP signalling in neonatal and pubertal rat Sc. Our data suggested that unlike in neonatal Sc, both the basal and FSH/forskolin induced expression of Gαs, Gαi-1, Gαi-2 and Gαi-3 transcripts was significantly (p < 0.05) up-regulated in pubertal Sc. Further investigations involving treatment of Sc with selective Gαi inhibitor pertussis toxin, confirmed the elevated expression of Gi subunits in pubertal Sc. Collectively our results indicated that the high level of Gαi subunits serves as a negative regulator to optimize cAMP production in pubertal Sc.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Dept. of Zoology, HNB Garhwal University, Srinagar, 246174, Uttarakhand, India.
| | - Souvik Sen Sharma
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India
| | - Hironmoy Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Microbiology, Raiganj University, West Bengal, 733134, India
| | - Alka Gupta
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bhola Shankar Pradhan
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subeer S Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India.
| |
Collapse
|
35
|
Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling†. Biol Reprod 2021; 102:773-783. [PMID: 31882999 DOI: 10.1093/biolre/ioz228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Gonadotropin hormones and their receptors play a central role in the control of male and female reproduction. In recent years, there has been growing evidence surrounding the complexity of gonadotropin hormone/receptor signaling, with it increasingly apparent that the Gαs/cAMP/PKA pathway is not the sole signaling pathway that confers their biological actions. Here we review recent literature on the different receptor-receptor, receptor-scaffold, and receptor-signaling molecule complexes formed and how these modulate and direct gonadotropin hormone-dependent intracellular signal activation. We will touch upon the more controversial issue of extragonadal expression of FSHR and the differential signal pathways activated in these tissues, and lastly, highlight the open questions surrounding the role these gonadotropin hormone receptor complexes and how this will shape future research directions.
Collapse
Affiliation(s)
| | - Kim Carol Jonas
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
36
|
Rindone GM, Gorga A, Pellizzari EH, Camberos MDC, Galardo MN, Da Ros VG, Buffone MG, Meroni SB, Riera MF. Postnatal metformin treatment alters rat Sertoli cell proliferation and daily sperm production. Andrology 2021; 9:965-976. [PMID: 33305512 DOI: 10.1111/andr.12957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The direct correlation between Sertoli cell number and sperm production capacity highlights the importance of deciphering external factors that modify Sertoli cell proliferation. A growing body of evidence in vitro suggests that metformin, the main pharmacological agent for type 2 diabetes treatment in children, exerts anti-proliferative effects on Sertoli cells. OBJECTIVE The aims of this study were to investigate the effect of metformin administration during postnatal period on Sertoli cell proliferation and on cell cycle regulators expression and to analyze the impact of this treatment on the sperm production capacity in adulthood. MATERIALS AND METHODS Sprague Dawley rat pups were randomly divided into two groups: MET (receiving daily 200 mg/kg metformin, from Pnd3 to Pnd7 inclusive) and control (receiving vehicle). BrdU incorporation was measured to assess proliferation. Gene expression analyses were performed in Sertoli cells isolated from animals of both groups. Daily sperm production and sperm parameters were measured in adult male rats (Pnd90) that received neonatal treatment. RESULTS MET group exhibited a significant decrease in BrdU incorporation in Sertoli cells. Concordantly, MET group showed a reduction in cyclin D1 and E2 expression and an increase in p21 expression in Sertoli cells. In addition, metformin-treated animals displayed lower values of daily sperm production on Pnd90. DISCUSSION AND CONCLUSION These results suggest that metformin treatment may lead to a decrease in Sertoli cell proliferation, a concomitant altered expression of cell cycle regulators and ultimately, a reduction in daily sperm production in adult animals.
Collapse
Affiliation(s)
- Gustavo Marcelo Rindone
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Agostina Gorga
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Eliana Herminia Pellizzari
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Del Carmen Camberos
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Noel Galardo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | | | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Fernanda Riera
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
37
|
Androgen Receptor Stimulates Hexokinase 2 and Induces Glycolysis by PKA/CREB Signaling in Hepatocellular Carcinoma. Dig Dis Sci 2021; 66:802-813. [PMID: 32274668 DOI: 10.1007/s10620-020-06229-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/20/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) escapes growth inhibition by upregulating hexokinase 2 (HK2); however, the mechanism by which tumor cells upregulate HK2 remains unclear. AIM We aimed to investigate the role of androgen receptor (AR) signalling in promoting HK2 expression in HCC. METHODS The expressions of AR and HK2 in HCC tissues were analyzed by immunohistochemistry. Cell proliferation was determined using the CCK-8 assay, and the molecular mechanism of AR in the regulation of HK2 was evaluated by immunoblotting and luciferase assays. RESULTS AR expression is positively correlated with HK2 staining by an immunohistochemical analysis. The manipulation of AR expression changed HK2 expression and glycolysis. AR signaling promoted the growth of HCC by enhancing HK2-mediated glycolysis. Moreover, AR stimulated HK2 levels and glycolysis by potentiating protein kinase A/cyclic adenosine monophosphate response element-binding (CREB) protein signaling. CREB silencing decreased HK2 expression and inhibited AR-mediated HCC glycolysis. AR affected the sensitivity of HCC cells to glycolysis inhibitors by regulating downstream phosphorylated (p)-CREB. CONCLUSIONS These results indicate that AR at least partially induced glycolysis via p-CREB regulation of HK2 in HCC cells. Thus, this pathway should be considered for the design of novel therapeutic methods to target AR-overexpressing HCC.
Collapse
|
38
|
Zhang L, Ma T, Tao Q, Tan W, Chen H, Liu W, Lin P, Zhou D, Wang A, Jin Y, Tang K. Bta-miR-34b inhibits proliferation and promotes apoptosis via the MEK/ERK pathway by targeting MAP2K1 in bovine primary Sertoli cells. J Anim Sci 2021; 98:5909278. [PMID: 32954430 DOI: 10.1093/jas/skaa313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Immature Sertoli cell (SC) proliferation determines the final number of mature SCs and further regulates spermatogenesis. Accumulating evidence demonstrated that microRNAs (miRNAs) play an important role in SC proliferation, differentiation, and apoptosis. However, the effect and molecular mechanism of miRNA on bovine immature SC remain to be poorly understood. In this study, miRNA sequencing of testes collected in mature (24-mo old) and immature (neonatal) bulls was conducted to determine the miRNA expression profiles. MicroRNA-34b was one of the differentially expressed miRNAs and was selected for in-depth functional studies pertaining to SC growth. The results showed that miR-34b mimic transfection in primary Sertoli cells (PSC) inhibited cell proliferation and induced cell cycle arrested at G2 phase and decreased the expression of cell cycle-related genes such as CCNB1, CDK1, CDC25C, and C-MYC. MicroRNA-34b overexpression also leads to increased cell apoptosis, with proapoptotic genes P53 and BAX upregulated, while antiapoptotic gene BCL2 decreased. However, miR-34b knockdown had the opposite effects. Through a combination of transcriptome sequencing, bioinformatics analysis, dual-luciferase reporter assay, and Western blotting, mitogen-activated protein kinase kinase1 (MAP2K1), also known as MEK1, was identified as a target of miR-34b. In addition, PSC proliferation inhibition was mediated by cell cycle arrest and apoptosis with MAP2K1 interference. Overexpression of MAP2K1 effectively reversed the miR-34b-repressed PSC cell growth. Moreover, both miR-34b overexpression and MAP2K1 knockdown decreased the protein levels of P-ERK1/2, while MAP2K1 overexpression showed opposite effects. In summary, data suggest that miR-34b regulates PSC proliferation and apoptosis through the MEK/ERK signaling pathway. These data provide a theoretical and experimental framework for further clarifying the regulation of cell growth in PSC of bovine.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qibing Tao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wushuang Tan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Keqiong Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
39
|
Agwuegbo UT, Colley E, Albert AP, Butnev VY, Bousfield GR, Jonas KC. Differential FSH Glycosylation Modulates FSHR Oligomerization and Subsequent cAMP Signaling. Front Endocrinol (Lausanne) 2021; 12:765727. [PMID: 34925235 PMCID: PMC8678890 DOI: 10.3389/fendo.2021.765727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
Follicle-stimulating hormone (FSH) and its target G protein-coupled receptor (FSHR) are essential for reproduction. Recent studies have established that the hypo-glycosylated pituitary FSH glycoform (FSH21/18), is more bioactive in vitro and in vivo than the fully-glycosylated variant (FSH24). FSH21/18 predominates in women of reproductive prime and FSH24 in peri-post-menopausal women, suggesting distinct functional roles of these FSH glycoforms. The aim of this study was to determine if differential FSH glycosylation modulated FSHR oligomerization and resulting impact on cAMP signaling. Using a modified super-resolution imaging technique (PD-PALM) to assess FSHR complexes in HEK293 cells expressing FSHR, we observed time and concentration-dependent modulation of FSHR oligomerization by FSH glycoforms. High eFSH and FSH21/18 concentrations rapidly dissociated FSHR oligomers into monomers, whereas FSH24 displayed slower kinetics. The FSHR β-arrestin biased agonist, truncated eLHβ (Δ121-149) combined with asparagine56-deglycosylated eLHα (dg-eLHt), increased FSHR homomerization. In contrast, low FSH21/18 and FSH24 concentrations promoted FSHR association into oligomers. Dissociation of FSHR oligomers correlated with time points where higher cAMP production was observed. Taken together, these data suggest that FSH glycosylation may modulate the kinetics and amplitude of cAMP production, in part, by forming distinct FSHR complexes, highlighting potential avenues for novel therapeutic targeting of the FSHR to improve IVF outcomes.
Collapse
Affiliation(s)
- Uchechukwu T. Agwuegbo
- School of Life Course and Population Sciences, Department of Women and Children’s Health, Guy’s Campus, King’s College London, London, United Kingdom
| | - Emily Colley
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Anthony P. Albert
- Vascular Biology Research Centre, Molecular & Clinical Science Research Centre, St George’s University of London, London, United Kingdom
| | - Viktor Y. Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Kim C. Jonas
- School of Life Course and Population Sciences, Department of Women and Children’s Health, Guy’s Campus, King’s College London, London, United Kingdom
- *Correspondence: Kim C. Jonas,
| |
Collapse
|
40
|
Sayers NS, Anujan P, Yu HN, Palmer SS, Nautiyal J, Franks S, Hanyaloglu AC. Follicle-Stimulating Hormone Induces Lipid Droplets via Gαi/o and β-Arrestin in an Endometrial Cancer Cell Line. Front Endocrinol (Lausanne) 2021; 12:798866. [PMID: 35185785 PMCID: PMC8850301 DOI: 10.3389/fendo.2021.798866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
Follicle-stimulating hormone (FSH) and its G protein-coupled receptor, FSHR, represents a paradigm for receptor signaling systems that activate multiple and complex pathways. Classically, FSHR activates Gαs to increase intracellular levels of cAMP, but its ability to activate other G proteins, and β-arrestin-mediated signaling is well documented in many different cell systems. The pleiotropic signal capacity of FSHR offers a mechanism for how FSH drives multiple and dynamic downstream functions in both gonadal and non-gonadal cell types, including distinct diseases, and how signal bias may be achieved at a pharmacological and cell system-specific manner. In this study, we identify an additional mechanism of FSH-mediated signaling and downstream function in the endometrial adenocarcinoma Ishikawa cell line. While FSH did not induce increases in cAMP levels, this hormone potently activated pertussis toxin sensitive Gαi/o signaling. A selective allosteric FSHR ligand, B3, also activated Gαi/o signaling in these cells, supporting a role for receptor-mediated activation despite the low levels of FSHR mRNA. The low expression levels may attribute to the lack of Gαs/cAMP signaling as increasing FSHR expression resulted in FSH-mediated activation of the Gαs pathway. Unlike prior reports for FSH-mediated Gαs/cAMP signaling, FSH-mediated Gαi/o signaling was not affected by inhibition of dynamin-dependent receptor internalization. While chronic FSH did not alter cell viability, FSH was able to increase lipid droplet size. The β-arrestins are key adaptor proteins known to regulate FSHR signaling. Indeed, a rapid, FSH-dependent increase in interactions between β-arrestin1 and Gαi1 was observed via NanoBiT complementation in Ishikawa cells. Furthermore, both inhibition of Gαi/o signaling and siRNA knockdown of β-arrestin 1/2 significantly reduced FSH-induced lipid droplet accumulation, implying a role for a Gαi/o/β-arrestin complex in FSH functions in this cell type. As FSH/FSHR has been implicated in distinct hormone-dependent cancers, including endometrial cancer, analysis of the cancer genome database from 575 human endometrial adenocarcinoma tumors revealed that a subpopulation of samples expressed FSHR. Overall, this study highlights a novel mechanism for FSHR signal pleiotropy that may be exploited for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Niamh S. Sayers
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Priyanka Anujan
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Henry N. Yu
- CanWell Pharma Inc., Wellesley, MA, United States
| | - Stephen S. Palmer
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Stephen Franks
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Aylin C. Hanyaloglu
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- *Correspondence: Aylin C. Hanyaloglu,
| |
Collapse
|
41
|
Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS J 2020; 288:2673-2696. [DOI: 10.1111/febs.15649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Shaini Joseph
- Genetic Research Center National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Smita D. Mahale
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
- ICMR Biomedical Informatics Centre National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| |
Collapse
|
42
|
Clément F, Crépieux P, Yvinec R, Monniaux D. Mathematical modeling approaches of cellular endocrinology within the hypothalamo-pituitary-gonadal axis. Mol Cell Endocrinol 2020; 518:110877. [PMID: 32569857 DOI: 10.1016/j.mce.2020.110877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/26/2023]
Abstract
The reproductive neuroendocrine axis, or hypothalamo-pituitary-gonadal (HPG) axis, is a paragon of complex biological system involving numerous cell types, spread over several anatomical levels communicating through entangled endocrine feedback loops. The HPG axis exhibits remarkable dynamic behaviors on multiple time and space scales, which are an inexhaustible source of studies for mathematical and computational biology. In this review, we will describe a variety of modeling approaches of the HPG axis from a cellular endocrinology viewpoint. We will in particular investigate the questions raised by some of the most striking features of the HPG axis: (i) the pulsatile secretion of hypothalamic and pituitary hormones, and its counterpart, the cell signaling induced by frequency-encoded hormonal signals, and (ii) the dual, gametogenic and glandular function of the gonads, which relies on the tight control of the somatic cell populations ensuring the proper maturation and timely release of the germ cells.
Collapse
Affiliation(s)
- Frédérique Clément
- Inria, Centre de Recherche Inria Saclay-Île-de-France, Palaiseau, France.
| | - Pascale Crépieux
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| | - Romain Yvinec
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| | - Danielle Monniaux
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| |
Collapse
|
43
|
Sarkar RK, Sen Sharma S, Mandal K, Wadhwa N, Kunj N, Gupta A, Pal R, Rai U, Majumdar SS. Homeobox transcription factor Meis1 is crucial to Sertoli cell mediated regulation of male fertility. Andrology 2020; 9:689-699. [PMID: 33145986 DOI: 10.1111/andr.12941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Infertility has become a global phenomenon and constantly declining sperm count in males in modern world pose a major threat to procreation of humans. Male fertility is critically dependent on proper functioning of testicular Sertoli cells. Defective Sertoli cell proliferation and/or impaired functional maturation may be one of the underlying causes of idiopathic male infertility. Using high-throughput "omics" approach, we found binding sites for homeobox transcription factor MEIS1 on the promoters of several genes up-regulated in pubertal (mature) Sertoli cells, indicating that MEIS1 may be crucial for Sertoli cell-mediated regulation of spermatogenesis at and after puberty. OBJECTIVE To decipher the role of transcription factor MEIS1 in Sertoli cell maturation and spermatogenesis. MATERIALS AND METHODS Sc-specific Meis1 knockdown (KD) transgenic mice were generated using pronuclear microinjection. Morphometric and histological analysis of the testes from transgenic mice was performed to identify defects in spermatogenesis. Epididymal sperm count and litter size were analyzed to determine the effect of Meis1 knockdown on fertility. RESULTS Sertoli cell (Sc)-specific Meis1 KD led to massive germ cell loss due to apoptosis and impaired spermatogenesis. Unlike normal pubertal Sc, the levels of SOX9 in pubertal Sc of Meis1 KD were significantly high, like immature Sc. A significant reduction in epididymal sperm count was observed in these mice. The mice were found to be infertile or sub-fertile (with reduced litter size), depending on the extent of Meis1 inhibition. DISCUSSION The results of this study demonstrated for the first time, a role of Meis1 in Sc maturation and normal spermatogenic progression. Inhibition of Meis1 in Sc was associated with deregulated spermatogenesis and a consequent decline in fertility of the transgenic mice. CONCLUSIONS Our results provided substantial evidence that suboptimal Meis1 expression in Sc may be one of the underlying causes of idiopathic infertility.
Collapse
Affiliation(s)
- Rajesh K Sarkar
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India.,Reproductive Physiology Lab, Department of Zoology, University of Delhi, New Delhi, India
| | - Souvik Sen Sharma
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Kamal Mandal
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Neerja Wadhwa
- Embryo Biotechnology Lab, National Institute of Immunology, New Delhi, India
| | - Neetu Kunj
- Embryo Biotechnology Lab, National Institute of Immunology, New Delhi, India
| | - Alka Gupta
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Rahul Pal
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Umesh Rai
- Reproductive Physiology Lab, Department of Zoology, University of Delhi, New Delhi, India
| | - Subeer S Majumdar
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India.,National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
44
|
The role of estrogen receptors in rat Sertoli cells at different stages of development. Heliyon 2020; 6:e05363. [PMID: 33163677 PMCID: PMC7609458 DOI: 10.1016/j.heliyon.2020.e05363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to investigate the effects of estrogen receptors (ESR1 and ESR2) on the expression of the proteins involved with proliferation (CCND1) and differentiation (CDKN1B and CTNNB) of Sertoli cells from rat in different stages of development. ESR1-selective agonist PPT, but not ESR2-selective agonist DPN, increased CCND1 expression in Sertoli cells from 5- and 15-day old rats. PPT did not have any effect on CCND1 expression in Sertoli cells from 20- and 30-day-old rats. DPN, but not PPT, increased CDKN1B expression in Sertoli cells from 15-, 20-, 30-day-old rats. DPN did not have any effect on Sertoli cells from 5-day-old rats. 17β-estradiol (E2) and PPT enhanced the [Methyl-3H] thymidine incorporation in Sertoli cells from 15-day-old rats, whereas the treatment did not have any effect in 20-day-old rats. E2 and DPN, but not PPT, increased non-phosphorylated CTNNB expression in Sertoli cells from 20-day-old rats. This upregulation was blocked by ESR2-selective antagonist PHTPP. The activation of ESR1 and ESR2, respectively, plays a role in the proliferation and differentiation of Sertoli cells in a critical period of testicular development. Furthermore, in Sertoli cells from 20-day-old rats, upregulation of non-phosphorylated CTNNB by E2/ESR2, via c-SRC/ERK1/2 and PI3K/AKT, may play a role in the interaction between Sertoli cells and/or in cell-germ cell adhesion and/or in the stabilization and accumulation of CTNNB in the cytosol. CTNNB could be translocated to the nucleus and modulate the transcriptional activity of specific target genes. The present study reinforces the important role of estrogen in normal testis development.
Collapse
|
45
|
Panax ginseng metabolite (GIM-1) modulates the effects of monobutyl phthalate (MBP) on the GPR30/GPER1 canonical pathway in human Sertoli cells. Reprod Toxicol 2020; 96:209-215. [DOI: 10.1016/j.reprotox.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
|
46
|
Molecular insights into hormone regulation via signaling pathways in Sertoli cells: With discussion on infertility and testicular tumor. Gene 2020; 753:144812. [DOI: 10.1016/j.gene.2020.144812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
|
47
|
Simoni M, Brigante G, Rochira V, Santi D, Casarini L. Prospects for FSH Treatment of Male Infertility. J Clin Endocrinol Metab 2020; 105:5831300. [PMID: 32374828 DOI: 10.1210/clinem/dgaa243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Despite the new opportunities provided by assisted reproductive technology (ART), male infertility treatment is far from being optimized. One possibility, based on pathophysiological evidence, is to stimulate spermatogenesis with gonadotropins. EVIDENCE ACQUISITION We conducted a comprehensive systematic PubMed literature review, up to January 2020, of studies evaluating the genetic basis of follicle-stimulating hormone (FSH) action, the role of FSH in spermatogenesis, and the effects of its administration in male infertility. Manuscripts evaluating the role of genetic polymorphisms and FSH administration in women undergoing ART were considered whenever relevant. EVIDENCE SYNTHESIS FSH treatment has been successfully used in hypogonadotropic hypogonadism, but with questionable results in idiopathic male infertility. A limitation of this approach is that treatment plans for male infertility have been borrowed from hypogonadism, without daring to overstimulate, as is done in women undergoing ART. FSH effectiveness depends not only on its serum levels, but also on individual genetic variants able to determine hormonal levels, activity, and receptor response. Single-nucleotide polymorphisms in the follicle-stimulating hormone subunit beta (FSHB) and follicle-stimulating hormone receptor (FSHR) genes have been described, with some of them affecting testicular volume and sperm output. The FSHR p.N680S and the FSHB -211G>T variants could be genetic markers to predict FSH response. CONCLUSIONS FSH may be helpful to increase sperm production in infertile men, even if the evidence to recommend the use of FSH in this setting is weak. Placebo-controlled clinical trials, considering the FSHB-FSHR haplotype, are needed to define the most effective dosage, the best treatment length, and the criteria to select candidate responder patients.
Collapse
Affiliation(s)
- Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Giulia Brigante
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Vincenzo Rochira
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| |
Collapse
|
48
|
Zariñán T, Butnev VY, Gutiérrez-Sagal R, Maravillas-Montero JL, Martínez-Luis I, Mejía-Domínguez NR, Juárez-Vega G, Bousfield GR, Ulloa-Aguirre A. In Vitro Impact of FSH Glycosylation Variants on FSH Receptor-stimulated Signal Transduction and Functional Selectivity. J Endocr Soc 2020; 4:bvaa019. [PMID: 32342021 PMCID: PMC7175721 DOI: 10.1210/jendso/bvaa019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
FSH exists as different glycoforms that differ in glycosylation of the hormone-specific β-subunit. Tetra-glycosylated FSH (FSH24) and hypo-glycosylated FSH (FSH18/21) are the most abundant glycoforms found in humans. Employing distinct readouts in HEK293 cells expressing the FSH receptor, we compared signaling triggered by human pituitary FSH preparations (FSH18/21 and FSH24) as well as by equine FSH (eFSH), and human recombinant FSH (recFSH), each exhibiting distinct glycosylation patterns. The potency in eliciting cAMP production was greater for eFSH than for FSH18/21, FSH24, and recFSH, whereas in the ERK1/2 activation readout, potency was highest for FSH18/21 followed by eFSH, recFSH, and FSH24. In β-arrestin1/2 CRISPR/Cas9 HEK293-KO cells, FSH18/21 exhibited a preference toward β-arrestin-mediated ERK1/2 activation as revealed by a drastic decrease in pERK during the first 15-minute exposure to this glycoform. Exposure of β-arrestin1/2 KO cells to H89 additionally decreased pERK1/2, albeit to a significantly lower extent in response to FSH18/21. Concurrent silencing of β-arrestin and PKA signaling, incompletely suppressed pERK response to FSH glycoforms, suggesting that pathways other than those dependent on Gs-protein and β-arrestins also contribute to FSH-stimulated pERK1/2. All FSH glycoforms stimulated intracellular Ca2+ (iCa2+) accumulation through both influx from Ca2+ channels and release from intracellular stores; however, iCa2+ in response to FSH18/21 depended more on the latter, suggesting differences in mechanisms through which glycoforms promote iCa2+ accumulation. These data indicate that FSH glycosylation plays an important role in defining not only the intensity but also the functional selectivity for the mechanisms leading to activation of distinct signaling cascades.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Viktor Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Iván Martínez-Luis
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
49
|
Zheng X, Zhao P, Yang K, Ning C, Wang H, Zhou L, Liu J. CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits. J Anim Sci Biotechnol 2020; 11:42. [PMID: 32337028 PMCID: PMC7171861 DOI: 10.1186/s40104-020-00442-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Reproductive performance of livestock is an economically important aspect of global food production. The Chinese Meishan pig is a prolific breed, with an average of three to five more piglets per litter than European breeds; however, the genetic basis for this difference is not well understood. Results In this study, we investigated copy number variations (CNVs) of 32 Meishan pigs and 29 Duroc pigs by next-generation sequencing. A genome-wide analysis of 61 pigs revealed 12,668 copy number variable regions (CNVRs) that were further divided into three categories based on copy number (CN) of the whole population, i.e., gain (n = 7,638), and loss (n = 5,030) CNVRs. We then compared Meishan and Duroc pigs and identified 17.17 Mb of 6,387 CNVRs that only existing in Meishan pigs CNVRs that overlapped the reproduction-related gene encoding the aryl hydrocarbon receptor (AHR) gene. We found that normal AHR CN was more frequent than CN loss in four different pig breeds. An association analysis showed that AHR CN had a positive effect on litter size (P < 0.05) and that a higher CN was associated with higher total number born (P < 0.05), number born alive (P < 0.05), number of weaned piglets, and birth weight. Conclusions The present study provides comprehensive CNVRs for Meishan and Duroc pigs through large-scale population resequencing. Our results provide a supplement for the high-resolution map of copy number variation in the porcine genome and valuable information for the investigation of genomic structural variation underlying traits of interest in pig. In addition, the association results provide evidence for AHR as a candidate gene associated with reproductive traits that can be used as a genetic marker in pig breeding programs.
Collapse
Affiliation(s)
- Xianrui Zheng
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Pengju Zhao
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Kaijie Yang
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Chao Ning
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haifei Wang
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Department of Animal Genetics, Breeding and Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Lei Zhou
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianfeng Liu
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
50
|
Follicle-stimulating Hormone (FSH) Action on Spermatogenesis: A Focus on Physiological and Therapeutic Roles. J Clin Med 2020; 9:jcm9041014. [PMID: 32260182 PMCID: PMC7230878 DOI: 10.3390/jcm9041014] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human reproduction is regulated by the combined action of the follicle-stimulating hormone (FSH) and the luteinizing hormone (LH) on the gonads. Although FSH is largely used in female reproduction, in particular in women attending assisted reproductive techniques to stimulate multi-follicular growth, its efficacy in men with idiopathic infertility is not clearly demonstrated. Indeed, whether FSH administration improves fertility in patients with hypogonadotropic hypogonadism, the therapeutic benefit in men presenting alterations in sperm production despite normal FSH serum levels is still unclear. In the present review, we evaluate the potential pharmacological benefits of FSH administration in clinical practice. METHODS This is a narrative review, describing the FSH physiological role in spermatogenesis and its potential therapeutic action in men. RESULTS The FSH role on male fertility is reviewed starting from the physiological control of spermatogenesis, throughout its mechanism of action in Sertoli cells, the genetic regulation of its action on spermatogenesis, until the therapeutic options available to improve sperm production. CONCLUSION FSH administration in infertile men has potential benefits, although its action should be considered by evaluating its synergic action with testosterone, and well-controlled, powerful trials are required. Prospective studies and new compounds could be developed in the near future.
Collapse
|