1
|
Fu Z, Yuan Y. TNFAIP2 as an emerging therapeutic target in cancer therapy and its underlying mechanisms. Pharmacol Res 2024; 204:107199. [PMID: 38688431 DOI: 10.1016/j.phrs.2024.107199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
TNFα-induced protein 2 (TNFAIP2), upregulated under TNFα stimulation, was initially thought to participate in angiogenesis. Still, more and more studies have found that TNFAIP2 plays multiple roles in various physiological and pathological scenarios. The representative functions of TNFAIP2 include motivating the inflammatory response, promoting angiogenesis, facilitating cell proliferation, adhesion, migration, and inducing tunnel nanotube formation. The expression of TNFAIP2 is abnormal in most cancers and can enhance drug resistance in cancer cells. The increasingly recognized significance of TNFAIP2 has been attracting growing attention in recent years. This review focuses on elucidating the relationship between TNFAIP2 and oncogenesis, as well as the latest research advancements in the pharmacological targeting of TNFAIP2, aiming to guide forthcoming endeavors in developing pharmacological agents targeted at modulating TNFAIP2.
Collapse
Affiliation(s)
- Zhanqi Fu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Merino-Vico A, van Hamburg JP, Tuijnenburg P, Frazzei G, Al-Soudi A, Bonasia CG, Helder B, Rutgers A, Abdulahad WH, Stegeman CA, Sanders JS, Bergamaschi L, Lyons PA, Bijma T, van Keep L, Wesenhagen K, Jongejan A, Olsson H, de Vries N, Kuijpers TW, Heeringa P, Tas SW. Targeting NF-κB signaling in B cells as a potential new treatment modality for ANCA-associated vasculitis. J Autoimmun 2024; 142:103133. [PMID: 37931331 DOI: 10.1016/j.jaut.2023.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
B lineage cells are critically involved in ANCA-associated vasculitis (AAV), evidenced by alterations in circulating B cell subsets and beneficial clinical effects of rituximab (anti-CD20) therapy. This treatment renders a long-term, peripheral B cell depletion, but allows for the survival of long-lived plasma cells. Therefore, there is an unmet need for more reversible and full B lineage cell targeting approaches. To find potential novel therapeutic targets, RNA sequencing of CD27+ memory B cells of patients with active AAV was performed, revealing an upregulated NF-κB-associated gene signature. NF-κB signaling pathways act downstream of various B cell surface receptors, including the BCR, CD40, BAFFR and TLRs, and are essential for B cell responses. Here we demonstrate that novel pharmacological inhibitors of NF-κB inducing kinase (NIK, non-canonical NF-κB signaling) and inhibitor-of-κB-kinase-β (IKKβ, canonical NF-κB signaling) can effectively inhibit NF-κB signaling in B cells, whereas T cell responses were largely unaffected. Moreover, both inhibitors significantly reduced B cell proliferation, differentiation and production of antibodies, including proteinase-3 (PR3) autoantibodies, in B lineage cells of AAV patients. These findings indicate that targeting NF-κB, particularly NIK, may be an effective, novel B lineage cell targeted therapy for AAV and other autoimmune diseases with prominent B cell involvement.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Tuijnenburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Giulia Frazzei
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aram Al-Soudi
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlo G Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Boy Helder
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Jan-Stephan Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura Bergamaschi
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Theo Bijma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura van Keep
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Kirsten Wesenhagen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Niek de Vries
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Wang R, Singaraju A, Marks KE, Shakib L, Dunlap G, Adejoorin I, Greisen SR, Chen L, Tirpack AK, Aude C, Fein MR, Todd DJ, MacFarlane L, Goodman SM, DiCarlo EF, Massarotti EM, Sparks JA, Jonsson AH, Brenner MB, Postow MA, Chan KK, Bass AR, Donlin LT, Rao DA. Clonally expanded CD38 hi cytotoxic CD8 T cells define the T cell infiltrate in checkpoint inhibitor-associated arthritis. Sci Immunol 2023; 8:eadd1591. [PMID: 37506196 PMCID: PMC10557056 DOI: 10.1126/sciimmunol.add1591] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapies used to treat cancer, such as anti-PD-1 antibodies, can induce autoimmune conditions in some individuals. The T cell mechanisms mediating such iatrogenic autoimmunity and their overlap with spontaneous autoimmune diseases remain unclear. Here, we compared T cells from the joints of 20 patients with an inflammatory arthritis induced by ICI therapy (ICI-arthritis) with two archetypal autoimmune arthritides, rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Single-cell transcriptomic and antigen receptor repertoire analyses highlighted clonal expansion of an activated effector CD8 T cell population in the joints and blood of patients with ICI-arthritis. These cells were identified as CD38hiCD127- CD8 T cells and were uniquely enriched in ICI-arthritis joints compared with RA and PsA and also displayed an elevated interferon signature. In vitro, type I interferon induced CD8 T cells to acquire the ICI-associated CD38hi phenotype and enhanced cytotoxic function. In a cohort of patients with advanced melanoma, ICI therapy markedly expanded circulating CD38hiCD127- T cells, which were frequently bound by the therapeutic anti-PD-1 drug. In patients with ICI-arthritis, drug-bound CD8 T cells in circulation showed marked clonal overlap with drug-bound CD8 T cells from synovial fluid. These results suggest that ICI therapy directly targets CD8 T cells in patients who develop ICI-arthritis and induces an autoimmune pathology that is distinct from prototypical spontaneous autoimmune arthritides.
Collapse
Affiliation(s)
- Runci Wang
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Shanghai Institute of Rheumatology / Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Anvita Singaraju
- HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Kathryne E. Marks
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lorien Shakib
- HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Garrett Dunlap
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Ifeoluwakiisi Adejoorin
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stinne R. Greisen
- Department of Biomedicine, Aarhus University / Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lin Chen
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Aidan K. Tirpack
- Medical School at Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Carlos Aude
- Division of Rheumatology, Hospital for Special Surgery / Weill Cornell Medicine, New York, NY 10021, USA
| | - Miriam R. Fein
- HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
| | - Derrick J. Todd
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lindsey MacFarlane
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Susan M. Goodman
- Division of Rheumatology, Hospital for Special Surgery / Weill Cornell Medicine, New York, NY 10021, USA
| | - Edward F. DiCarlo
- Division of Pathology, Hospital for Special Surgery / Weill Cornell Medicine, New York, NY 10021, USA
| | - Elena M. Massarotti
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A. Sparks
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - A. Helena Jonsson
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael B. Brenner
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael A. Postow
- Melanoma Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Karmela K. Chan
- Division of Rheumatology, Hospital for Special Surgery / Weill Cornell Medicine, New York, NY 10021, USA
| | - Anne R. Bass
- Division of Rheumatology, Hospital for Special Surgery / Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura T. Donlin
- HSS Research Institute, Hospital for Special Surgery, New York, NY 10021, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Huang H, Drici L, Lassen PS, Palmisano G, Larsen MR. TiCPG - a strategy for the simultaneous enrichment of reversibly modified cysteine peptides, phosphopeptides, and sialylated N-Glycopeptides to study cytokines stimulated beta-cells. J Proteomics 2023; 273:104796. [PMID: 36538968 DOI: 10.1016/j.jprot.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Diverse post-translational modifications (PTMs) regulate protein function and interaction to fine-tune biological processes. Reversible phosphorylation, cysteines (Cys) modifications, and N-linked glycosylation are all essentially involved in cellular signaling pathways, such as those initiated by the action of pro-inflammatory cytokines, which can induce pancreatic β-cell death and diabetes. Here we have developed a novel strategy for the simultaneous and comprehensive characterization of the proteome and three PTMs including reversibly modified Cysteines (rmCys), phosphorylation, and sialylated N-linked glycosylation from low amount of sample material. This strategy, termed TiCPG, is based on a combination of chemical labeling and titanium dioxide (TiO2) chromatography. We applied the TiCPG strategy to study the proteome and the three PTMs changes in β-cells subject to pro-inflammatory cytokines stimulation. It enabled quantitative analysis of 8346 rmCys sites, 10,321 phosphosites and 962 sialylated N-glycosites from 5496 proteins. Significant regulation was found on 100 proteins at the expression level, while 3020 PTM peptide isoforms from 1468 proteins were significantly regulated. The three PTMs were involved in cytokine mediated β-cell apoptosis, such as the NFκB and the inducible NO synthase signaling pathways. Overall, the TiCPG strategy is a cheap, straightforward, and powerful tool for studies targeting the three PTMs described above. SIGNIFICANCE: The present study presents a fast and easy method for quantitative assessment of the proteome and three PTMs from minimal amount of sample material. This simple method provides comprehensive and significant knowledge on biological systems and cellular signaling with relatively low analysis time, suitable for younger researchers and researchers that do not have direct access to LC-MSMS in their laboratories. From sub-milligram amount of material, we were able to map known cellular signaling events of proinflammatory cytokine effect on beta-cells and to discover novel PTMs involved in several known signaling pathways.
Collapse
Affiliation(s)
- Honggang Huang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Lylia Drici
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Pernille S Lassen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; Departament of Parasitology, Institute of Biomedical Sciences - University of São Paulo, Avenida Prof. Lineu Prestes, 1374 - Edifício Biomédicas II, Cidade Universitária "Armando Salles Oliveira" - CEP, 05508-000 São Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
5
|
Xu W, Zhao D, Huang X, Zhang M, Zhu W, Xu C. Significance of monocyte infiltration in patients with gastric cancer: A combined study based on single cell sequencing and TCGA. Front Oncol 2022; 12:1001307. [PMID: 36479092 PMCID: PMC9720400 DOI: 10.3389/fonc.2022.1001307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/28/2022] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Gastric cancer is still one of the most lethal tumor diseases in the world. Despite some improvements, the prognosis of patients with gastric cancer is still not accurately predicted. METHODS Based on single cell sequencing data, we conducted a detailed analysis of gastric cancer patients and normal tissues to determine the role of monocytes in the progression of gastric cancer. WCGA facilitated our search for Grade-related genes in TCGA. Then, according to the marker genes and cell differentiation genes of monocytes, we determined the cancer-promoting genes of monocytes. Based on LASSO regression, we established a prognostic model using TCGA database. The accuracy of the model was verified by PCA, ROC curve, survival analysis and prognostic analysis. Finally, we evaluated the significance of the model in clinical diagnosis and treatment by observing drug sensitivity, immune microenvironment and immune checkpoint expression in patients with different risk groups. RESULTS Monocytes were poorly differentiated in tumor microenvironment. It mainly played a role in promoting cancer in two ways. One was to promote tumor progression indirectly by interacting with other tumor stromal cells. The other was to directly connect with tumor cells through the MIF and TNF pathway to play a tumor-promoting role. The former was more important in these two ways. A total of 292 monocyte tumor-promoting genes were obtained, and 12 genes were finally included in the construction of the prognosis model. A variety of validation methods showed that our model had an accurate prediction ability. Drug sensitivity analysis could provide guidance for clinical medication of patients. The results of immune microenvironment and immune checkpoint also indicated the reasons for poor prognosis of high-risk patients. CONCLUSION In conclusion, we provided a 12-gene risk score formula and nomogram for gastric cancer patients to assist clinical drug therapy and prognosis prediction. This model had good accuracy and clinical significance.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaowei Huang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Man Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenxin Zhu
- Department of Gastroenterology, Kunshan Third People’s Hospital, Suzhou, Jiangsu, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Semina SE, Pal P, Kansara NS, Huggins RJ, Alarid ET, Greene GL, Frasor J. Selective pressure of endocrine therapy activates the integrated stress response through NFκB signaling in a subpopulation of ER positive breast cancer cells. Breast Cancer Res 2022; 24:19. [PMID: 35264224 PMCID: PMC8908626 DOI: 10.1186/s13058-022-01515-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/25/2022] [Indexed: 12/23/2022] Open
Abstract
Background While estrogen receptor (ER) positive breast tumors generally respond well to endocrine therapy (ET), up to 40% of patients will experience relapse, either while on endocrine therapy or after ET is completed. We previously demonstrated that the selective pressure of tamoxifen activates the NFκB pathway in ER + patient tumors, breast cancer cell lines, and breast cancer xenograft tumors, and that this activation allows for survival of a subpopulation of NFκB + cells that contribute to cell regrowth and tumor relapse after ET withdrawal. However, the mechanisms contributing to the expansion of an NFκB + cell population on ET are unknown. Methods Here, we utilized single-cell RNA sequencing and bioinformatics approaches to characterize the NFκB + cell population and its clinical relevance. Follow-up studies were conducted to validate our findings and assess the function of the integrated stress response pathway in breast cancer cell lines and patient-derived models. Results We found that the NFκB + population that arises in response to ET is a preexisting population is enriched under the selective pressure of ET. Based on the preexisting NFκB + cell population, we developed a gene signature and found that it is predictive of tumor relapse when expressed in primary ER + tumors and is retained in metastatic cell populations. Moreover, we identified that the integrated stress response (ISR), as indicated by increased phosphorylation of eIF2α, occurs in response to ET and contributes to clonogenic growth under the selective pressure of ET. Conclusions Taken together, our findings suggest that a cell population with active NFκB and ISR signaling can survive and expand under the selective pressure of ET and that targeting this population may be a viable therapeutic strategy to improve patient outcome by eliminating cells that survive ET. Understanding the mechanisms by which breast cancer cells survive the selective pressure of ET may improve relapse rates and overall outcome for patients with ER + breast tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01515-1.
Collapse
Affiliation(s)
- Svetlana E Semina
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, E202 MSB, MC901, Chicago, IL, 60612, USA
| | - Purab Pal
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, E202 MSB, MC901, Chicago, IL, 60612, USA
| | - Nidhi S Kansara
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, E202 MSB, MC901, Chicago, IL, 60612, USA
| | - Rosemary J Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, E202 MSB, MC901, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
A proteomic perspective on TNF-mediated signalling and cell death. Biochem Soc Trans 2022; 50:13-20. [PMID: 35166321 PMCID: PMC9022982 DOI: 10.1042/bst20211114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/19/2023]
Abstract
The tumour necrosis factor (TNF) is the most potent inducer of cell death amongst cytokines. It is crucial for processes including homeostasis, the development of the immune system and fighting infections. However, high levels of TNF due to genetic disorders or persistent infections can contribute to autoinflammatory and autoimmune diseases or life-threatening conditions like sepsis. These diseases generally display increased levels of cell death, which, downstream of the TNF receptor, can either be caspase-dependent (apoptosis) or caspase-independent (necroptosis). Significant efforts have been invested in unravelling and manipulating signalling mechanisms regulating these two different types of cell death. Here I discuss how modern proteomic approaches like phosphoproteomics and secretomics provide a novel perspective on this central cytokine and its effect on inflammation and cell survival.
Collapse
|
8
|
p53 Promotes Cytokine Expression in Melanoma to Regulate Drug Resistance and Migration. Cells 2022; 11:cells11030405. [PMID: 35159215 PMCID: PMC8833998 DOI: 10.3390/cells11030405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022] Open
Abstract
The transcription factor p53 is frequently lost during tumor development in solid tumors; however, most melanomas retain a wild type p53 protein. The presence of wild type p53 in melanoma has fueled speculation that p53 may play a neutral or pro-tumorigenic role in this disease. Here we show that p53 is functional in human melanoma cell lines, and that loss of p53 results in a general reduction in basal NF-kB regulated cytokine production. The reduced cytokine expression triggered by p53 loss is broad and includes key inflammatory chemokines, such as CXCL1, CXCL8, and the IL6 class cytokine LIF, resulting in a reduced ability to induce chemotactic-dependent migration of tumor cells and immune cells and increased sensitivity to BRAF inhibition. Taken together, this result indicates that wild type p53 regulates cytokine expression and induces cytokine-dependent phenotype on melanoma.
Collapse
|
9
|
Druszczyńska M, Godkowicz M, Kulesza J, Wawrocki S, Fol M. Cytokine Receptors-Regulators of Antimycobacterial Immune Response. Int J Mol Sci 2022; 23:1112. [PMID: 35163035 PMCID: PMC8835057 DOI: 10.3390/ijms23031112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Cytokine receptors are critical regulators of the antimycobacterial immune response, playing a key role in initiating and coordinating the recruitment and activation of immune cells during infection. They recognize and bind specific cytokines and are involved in inducing intracellular signal transduction pathways that regulate a diverse range of biological functions, including proliferation, differentiation, metabolism and cell growth. Due to mutations in cytokine receptor genes, defective signaling may contribute to increased susceptibility to mycobacteria, allowing the pathogens to avoid killing and immune surveillance. This paper provides an overview of cytokine receptors important for the innate and adaptive immune responses against mycobacteria and discusses the implications of receptor gene defects for the course of mycobacterial infection.
Collapse
Affiliation(s)
- Magdalena Druszczyńska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
| | - Magdalena Godkowicz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
- Lodz Institutes of the Polish Academy of Sciences, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland;
| | - Sebastian Wawrocki
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
| |
Collapse
|
10
|
Barrera G, Cucci MA, Grattarola M, Dianzani C, Muzio G, Pizzimenti S. Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants (Basel) 2021; 10:antiox10040510. [PMID: 33805928 PMCID: PMC8064392 DOI: 10.3390/antiox10040510] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance represents the main obstacle to cancer treatment with both conventional and targeted therapy. Beyond specific molecular alterations, which can lead to targeted therapy, metabolic remodeling, including the control of redox status, plays an important role in cancer cell survival following therapy. Although cancer cells generally have a high basal reactive oxygen species (ROS) level, which makes them more susceptible than normal cells to a further increase of ROS, chemoresistant cancer cells become highly adapted to intrinsic or drug-induced oxidative stress by upregulating their antioxidant systems. The antioxidant response is principally mediated by the transcription factor Nrf2, which has been considered the master regulator of antioxidant and cytoprotective genes. Nrf2 expression is often increased in several types of chemoresistant cancer cells, and its expression is mediated by diverse mechanisms. In addition to Nrf2, other transcription factors and transcriptional coactivators can participate to maintain the high antioxidant levels in chemo and radio-resistant cancer cells. The control of expression and function of these molecules has been recently deepened to identify which of these could be used as a new therapeutic target in the treatment of tumors resistant to conventional therapy. In this review, we report the more recent advances in the study of Nrf2 regulation in chemoresistant cancers and the role played by other transcription factors and transcriptional coactivators in the control of antioxidant responses in chemoresistant cancer cells.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
- Correspondence:
| | - Marie Angele Cucci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Margherita Grattarola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 11, 10125 Turin, Italy;
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| |
Collapse
|
11
|
Taylor SK, Houshdaran S, Robinson JF, Gormley MJ, Kwan EY, Kapidzic M, Schilling B, Giudice LC, Fisher SJ. Cytotrophoblast extracellular vesicles enhance decidual cell secretion of immune modulators via TNFα. Development 2020; 147:dev.187013. [PMID: 32747437 DOI: 10.1242/dev.187013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The placenta releases large quantities of extracellular vesicles (EVs) that likely facilitate communication between the embryo/fetus and the mother. We isolated EVs from second trimester human cytotrophoblasts (CTBs) by differential ultracentrifugation and characterized them using transmission electron microscopy, immunoblotting and mass spectrometry. The 100,000 g pellet was enriched for vesicles with a cup-like morphology typical of exosomes. They expressed markers specific to this vesicle type, CD9 and HRS, and the trophoblast proteins placental alkaline phosphatase and HLA-G. Global profiling by mass spectrometry showed that placental EVs were enriched for proteins that function in transport and viral processes. A cytokine array revealed that the CTB 100,000 g pellet contained a significant amount of tumor necrosis factor α (TNFα). CTB EVs increased decidual stromal cell (dESF) transcription and secretion of NF-κB targets, including IL8, as measured by qRT-PCR and cytokine array. A soluble form of the TNFα receptor inhibited the ability of CTB 100,000 g EVs to increase dESF secretion of IL8. Overall, the data suggest that CTB EVs enhance decidual cell release of inflammatory cytokines, which we theorize is an important component of successful pregnancy.
Collapse
Affiliation(s)
- Sara K Taylor
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Matthew J Gormley
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Elaine Y Kwan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Birgit Schilling
- Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA .,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Division of Maternal Fetal Medicine, University of California, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, CA 94143, USA.,Human Embryonic Stem Cell Program, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Peng K, Li Y, Lu C, Hu S. ABIN-1 protects chondrocytes from lipopolysaccharide-induced inflammatory injury through the inactivation of NF-κB signalling. Clin Exp Pharmacol Physiol 2020; 47:1212-1220. [PMID: 32100889 DOI: 10.1111/1440-1681.13291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 01/03/2023]
Abstract
The A20-binding inhibitor of nuclear factor (NF)-κB-1 (ABIN-1) protein has recently been implicated as a key regulator of inflammation with involvement in multiple inflammatory diseases. However, the function of ABIN-1 in osteoarthritis (OA) remains unclear. In the current study, we explored the role of ABIN-1 in the regulation of lipopolysaccharide (LPS)-induced inflammatory injury of chondrocytes, which served as an in vitro model of OA. Results revealed that ABIN-1 expression was induced by chondrocyte exposure to LPS. ABN-1 silencing exacerbated LPS-induced apoptosis and the inflammatory response, while ABIN-1 overexpression alleviated the inflammatory response and LPS-induced apoptosis in chondrocytes. Moreover, ABIN-1 overexpression resulted in significantly decreased LPS-induced NF-κB activation. Notably, activation of NF-κB signalling significantly reversed ABIN-1-mediated inhibitory effects on LPS-induced inflammatory injury in chondrocytes. Taken together, these results demonstrate that ABIN-1 protects chondrocytes against LPS-induced inflammatory injury through the suppression of NF-κB signalling. Our study suggests a potential role for ABIN-1 in OA. Further, we show that ABIN-1 may serve as a potential target for controlling joint inflammation.
Collapse
Affiliation(s)
- Kan Peng
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanqi Li
- Department of Respiratory, Xi'an Children's Hospital, Xi'an, China
| | - Chao Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shouye Hu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
13
|
The Role of NFκB in Healthy and Preeclamptic Placenta: Trophoblasts in the Spotlight. Int J Mol Sci 2020; 21:ijms21051775. [PMID: 32150832 PMCID: PMC7084575 DOI: 10.3390/ijms21051775] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/01/2023] Open
Abstract
The NFκB protein family regulates numerous pathways within the cell-including inflammation, hypoxia, angiogenesis and oxidative stress-all of which are implicated in placental development. The placenta is a critical organ that develops during pregnancy that primarily functions to supply and transport the nutrients required for fetal growth and development. Abnormal placental development can be observed in numerous disorders during pregnancy, including fetal growth restriction, miscarriage, and preeclampsia (PE). NFκB is highly expressed in the placentas of women with PE, however its contributions to the syndrome are not fully understood. In this review we discuss the molecular actions and related pathways of NFκB in the placenta and highlight areas of research that need attention.
Collapse
|
14
|
Zhang L, Yan X, Yu S, Zhong X, Tian R, Xu L, Bian X, Su J. LINC00365-SCGB2A1 axis inhibits the viability of breast cancer through targeting NF-κB signaling. Oncol Lett 2020; 19:753-762. [PMID: 31897191 PMCID: PMC6924187 DOI: 10.3892/ol.2019.11166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common high-grade malignancy in women. The lack of therapeutic targets has limited the treatment of breast cancer. Recently, long noncoding RNAs (lncRNAs) have been demonstrated to be dysregulated in various types of cancer. However, the specific mechanisms by which lncRNAs influence breast cancer have remained largely unclear. To bridge this research gap, the present study focused on the lncRNA LINC00365, which is expressed at a low level in breast cancer. Secretoglobin family 2A member 1 (SCGB2A1) was identified as a potential target protein regulated by LINC00365. The results of the present study demonstrated that the overexpression of LINC00365 and SCGB2A1 inhibited cell viability and induced cell apoptosis through the inhibition of the NF-κB signaling pathway in breast cancer cells. These findings indicated that LINC00365 may serve a crucial role in breast cancer and may be considered as a novel target for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Lichao Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xiaoyu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Sihang Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xinru Zhong
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Rui Tian
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Long Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xuehai Bian
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
15
|
Lei Q, Gu H, Li L, Wu T, Xie W, Li M, Zhao N. TNIP1-mediated TNF-α/NF-κB signalling cascade sustains glioma cell proliferation. J Cell Mol Med 2019; 24:530-538. [PMID: 31691497 PMCID: PMC6933386 DOI: 10.1111/jcmm.14760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
As a malignant tumour of the central nervous system, glioma exhibits high incidence and poor prognosis. Although TNIP1 and the TNF‐α/NF‐κB axis play key roles in immune diseases and inflammatory responses, their relationship and role in glioma remain unknown. Here, we revealed high levels of TNIP1 and TNF‐α/NF‐κB in glioma tissue. Glioma cell proliferation was activated with TNF‐α treatment and showed extreme sensitivity to the TNF receptor antagonist. Furthermore, loss of TNIP1 disbanded the A20 complex responsible for IκB degradation and NF‐κB nucleus translocation, and consequently erased TNFα‐induced glioma cell proliferation. Thus, our investigation uncovered a vital function of the TNIP1‐mediated TNF‐α/NF‐κB axis in glioma cell proliferation and provides novel insight into glioma pathology and diagnosis.
Collapse
Affiliation(s)
- Qingchun Lei
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Pu'er City People's Hospital, Pu'er, China
| | - Huan Gu
- Biochemistry and Molecular Biology Laboratory, School of Life Sciences, Yunnan University, Kunming, China
| | - Lei Li
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tingting Wu
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wentao Xie
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meizhang Li
- Biochemistry and Molecular Biology Laboratory, School of Life Sciences, Yunnan University, Kunming, China
| | - Ninghui Zhao
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
16
|
Hassanshahi M, Anderson PH, Sylvester CL, Stringer AM. Current evidence for vitamin D in intestinal function and disease. Exp Biol Med (Maywood) 2019; 244:1040-1052. [PMID: 31366237 DOI: 10.1177/1535370219867262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vitamin D activity is associated with the modulation of a wide variety of biological systems, in addition to its roles in calcium homeostatic mechanisms. While vitamin D is well known to promote gastrointestinal calcium absorption, vitamin D also plays a role in attenuating and/or preventing the progression of several gastrointestinal diseases including Crohn’s disease, ulcerative colitis, and colorectal cancer, and may also play a role in chemotherapy-induced intestinal mucositis. The pro-differentiation, immunomodulatory, and anti-inflammatory effects of vitamin D, which has been reported in numerous circumstances, are key potential mechanisms of action in the prevention of gastrointestinal disorders. While the debate of the effectiveness of vitamin D to treat bone pathologies continues, the clinical importance of vitamin D therapy to prevent gastrointestinal disorders should be investigated given current evidence, using both nutritional and pharmaceutical intervention approaches.Impact statementThe non-skeletal functions of vitamin D play an important role in health and disease. The anti-inflammatory properties and maintenance of intestinal function fulfilled by vitamin D impact other systems in the body though downstream processing. This review provides insight into the mechanisms underpinning the potential benefits of vitamin D in both maintaining intestinal homeostasis and associated diseased states.
Collapse
Affiliation(s)
| | - Paul H Anderson
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia
| | - Cyan L Sylvester
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia
| | - Andrea M Stringer
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia.,2 Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
17
|
Riedlinger T, Bartkuhn M, Zimmermann T, Hake SB, Nist A, Stiewe T, Kracht M, Schmitz ML. Chemotherapeutic Drugs Inhibiting Topoisomerase 1 Activity Impede Cytokine-Induced and NF-κB p65-Regulated Gene Expression. Cancers (Basel) 2019; 11:cancers11060883. [PMID: 31242600 PMCID: PMC6627772 DOI: 10.3390/cancers11060883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/03/2023] Open
Abstract
Inhibitors of DNA topoisomerase I (TOP1), an enzyme relieving torsional stress of DNA by generating transient single-strand breaks, are clinically used to treat ovarian, small cell lung and cervical cancer. As torsional stress is generated during transcription by progression of RNA polymerase II through the transcribed gene, we tested the effects of camptothecin and of the approved TOP1 inhibitors Topotecan and SN-38 on TNFα-induced gene expression. RNA-seq experiments showed that inhibition of TOP1 but not of TOP2 activity suppressed the vast majority of TNFα-triggered genes. The TOP1 effects were fully reversible and preferentially affected long genes. TNFα stimulation led to inducible recruitment of TOP1 to the gene body of IL8, where its inhibition by camptothecin reduced transcription elongation and also led to altered histone H3 acetylation. Together, these data show that TOP1 inhibitors potently suppress expression of proinflammatory cytokines, a feature that may contribute to the increased infection risk occurring in tumor patients treated with these agents. On the other hand, TOP1 inhibitors could also be considered as a therapeutic option in order to interfere with exaggerated cytokine expression seen in several inflammatory diseases.
Collapse
Affiliation(s)
- Tabea Riedlinger
- Institute of Biochemistry, Justus Liebig University, D-35392 Giessen, Germany.
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Tobias Zimmermann
- Bioinformatics and Systems Biology, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany.
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig University Giessen, 35392 Giessen, Germany.
| | - Andrea Nist
- Genomics Core Facility and Institute of Molecular Oncology, Philipps University Marburg, D-35043 Marburg, Germany.
| | - Thorsten Stiewe
- Genomics Core Facility and Institute of Molecular Oncology, Philipps University Marburg, D-35043 Marburg, Germany.
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University, D-35392 Giessen, Germany.
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University, D-35392 Giessen, Germany.
| |
Collapse
|
18
|
Stetka J, Vyhlidalova P, Lanikova L, Koralkova P, Gursky J, Hlusi A, Flodr P, Hubackova S, Bartek J, Hodny Z, Divoky V. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene 2019; 38:5627-5642. [PMID: 30967632 PMCID: PMC6756199 DOI: 10.1038/s41388-019-0813-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory and oncogenic signaling converge in disease evolution of BCR–ABL-negative myeloproliferative neoplasms, clonal hematopoietic stem cell disorders characterized by gain-of-function mutation in JAK2 kinase (JAK2V617F), with highest prevalence in patients with polycythemia vera (PV). Despite the high risk, DNA-damaging inflammatory microenvironment, PV progenitors tend to preserve their genomic stability over decades until their progression to post-PV myelofibrosis/acute myeloid leukemia. Using induced pluripotent stem cells-derived CD34+ progenitor-enriched cultures from JAK2V617F+ PV patient and from JAK2 wild-type healthy control, CRISPR-modified HEL cells and patients’ bone marrow sections from different disease stages, we demonstrate that JAK2V617F induces an intrinsic IFNγ- and NF-κB-associated inflammatory program, while suppressing inflammation-evoked DNA damage both in vitro and in vivo. We show that cells with JAK2V617F tightly regulate levels of inflammatory cytokines-induced reactive oxygen species, do not fully activate the ATM/p53/p21waf1 checkpoint and p38/JNK MAPK stress pathway signaling when exposed to inflammatory cytokines, suppress DNA single-strand break repair genes’ expression yet overexpress the dual-specificity phosphatase (DUSP) 1. RNAi-mediated knock-down and pharmacological inhibition of DUSP1, involved in p38/JNK deactivation, in HEL cells reveals growth addiction to DUSP1, consistent with enhanced DNA damage response and apoptosis in DUSP1-inhibited parental JAK2V617F+ cells, but not in CRISPR-modified JAK2 wild-type cells. Our results indicate that the JAK2V617F+ PV progenitors utilize DUSP1 activity as a protection mechanism against DNA damage accumulation, promoting their proliferation and survival in the inflammatory microenvironment, identifying DUSP1 as a potential therapeutic target in PV.
Collapse
Affiliation(s)
- J Stetka
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Vyhlidalova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - L Lanikova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.,Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - P Koralkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - J Gursky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - A Hlusi
- Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Flodr
- Department of Clinical and Molecular Pathology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - S Hubackova
- Laboratory of Molecular Therapy, Institute of Biotechnology, BIOCEV, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - J Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Danish Cancer Society Research Center, DK-2100, Copenhagen, Denmark. .,Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic. .,Division of Genome Biology, Department of Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| | - Z Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.
| | - V Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Department of Hemato-Oncology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
19
|
Jia L, Shi Y, Wen Y, Li W, Feng J, Chen C. The roles of TNFAIP2 in cancers and infectious diseases. J Cell Mol Med 2018; 22:5188-5195. [PMID: 30145807 PMCID: PMC6201362 DOI: 10.1111/jcmm.13822] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/21/2018] [Accepted: 07/05/2018] [Indexed: 12/30/2022] Open
Abstract
TNFα‐induced protein 2 (TNFAIP2) is a primary response gene of TNFα. TNFAIP2 is highly expressed in immune cells and the urinary bladder. The expression of TNFAIP2 is regulated by multiple transcription factors and signalling pathways, including NF‐κB, KLF5 and retinoic acid. Physiologically, TNFAIP2 appears to be a multiple functional mediator not only for inflammation, angiogenesis and tunneling nanotube (TNT) formation but also as a regulator of cell proliferation and migration. The expression of TNFAIP2 is frequently abnormal in human cancers and in infectious diseases. Due to its significant functions in cell proliferation, angiogenesis, migration and invasion, TNFAIP2 could be a potential diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Lin Jia
- Department of Biology, Yuxi Normal University, Yuxi, China
| | - Yundong Shi
- Department of Biology, Yuxi Normal University, Yuxi, China
| | - Yi Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Li
- Department of Urology of the First People's Hospital of Yunnan Province, Kunming, China.,Medical College of Kunming University of Science and Technology, Kunming, China
| | - Jing Feng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
20
|
Peterson JM, Wang DJ, Shettigar V, Roof SR, Canan BD, Bakkar N, Shintaku J, Gu JM, Little SC, Ratnam NM, Londhe P, Lu L, Gaw CE, Petrosino JM, Liyanarachchi S, Wang H, Janssen PML, Davis JP, Ziolo MT, Sharma SM, Guttridge DC. NF-κB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model. Nat Commun 2018; 9:3431. [PMID: 30143619 PMCID: PMC6109146 DOI: 10.1038/s41467-018-05910-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder causing progressive muscle degeneration. Although cardiomyopathy is a leading mortality cause in DMD patients, the mechanisms underlying heart failure are not well understood. Previously, we showed that NF-κB exacerbates DMD skeletal muscle pathology by promoting inflammation and impairing new muscle growth. Here, we show that NF-κB is activated in murine dystrophic (mdx) hearts, and that cardiomyocyte ablation of NF-κB rescues cardiac function. This physiological improvement is associated with a signature of upregulated calcium genes, coinciding with global enrichment of permissive H3K27 acetylation chromatin marks and depletion of the transcriptional repressors CCCTC-binding factor, SIN3 transcription regulator family member A, and histone deacetylase 1. In this respect, in DMD hearts, NF-κB acts differently from its established role as a transcriptional activator, instead promoting global changes in the chromatin landscape to regulate calcium genes and cardiac function.
Collapse
Affiliation(s)
- Jennifer M Peterson
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, NY, 13902, USA
| | - David J Wang
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Vikram Shettigar
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Steve R Roof
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA.,Q Test Labs, Columbus, OH, 43235, USA
| | - Benjamin D Canan
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Nadine Bakkar
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Neurobiology, St Joseph's Hospital and Medical Center-Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jonathan Shintaku
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jin-Mo Gu
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Biomedical Engineering and Pediatrics, Emory University, Decatur, GA, 30322, USA
| | - Sean C Little
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA.,Bristol-Myers Squibb, Wallingford, CT, 06492, USA
| | - Nivedita M Ratnam
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Priya Londhe
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Leina Lu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher E Gaw
- The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Petrosino
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Sandya Liyanarachchi
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Jonathan P Davis
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Mark T Ziolo
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Sudarshana M Sharma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Denis C Guttridge
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA. .,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA. .,The Ohio State University Medical Center, Columbus, OH, 43210, USA. .,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA.
| |
Collapse
|
21
|
Yoshino Y, Yuan B, Okusumi S, Aoyama R, Murota R, Kikuchi H, Takagi N, Toyoda H. Enhanced cytotoxic effects of arsenite in combination with anthocyanidin compound, delphinidin, against a human leukemia cell line, HL-60. Chem Biol Interact 2018; 294:9-17. [PMID: 30125548 DOI: 10.1016/j.cbi.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 01/23/2023]
Abstract
Among five major anthocyanin compounds, delphinidin exhibited the most potent and selective cytocidal effect against HL-60, a trivalent arsenic (As(III))-resistant cell line. Co-treatment with delphinidin and As(III) resulted in the reduction of IC50 value for As(III) from 11.2 to 1.5 μM, which was considered as clinically achieved concentrations of As(III). The combination treatment strongly preferred to selectively enhance the cytotoxicity of As(III) against HL-60 cells rather than human peripheral blood mononuclear cells. The induction of apoptosis as evidenced by the increase of sub-G1 cells, DNA fragmentation, annexin V-positive cells and the activation of caspase-8, -9 and -3 was observed in HL-60 cells co-treated with As(III) and delphinidin. Similar to the activation pattern of caspases, a substantial decrease in the expression level of Bid along with the loss of mitochondrial membrane potential was also observed. These results suggested that the combination treatment triggered a convergence of the intrinsic and extrinsic pathways of apoptosis via the activation of caspase-8 and cleaved Bid. Delphinidin itself significantly decreased the intracellular GSH ([i]GSH) and nuclear factor-κB (NF-κB) binding activity, and further returned As(III)-triggered increment of [i]GSH and enhancement of NF-κB binding activity to control level. Additionally, buthionine sulfoximine, a GSH depletor; JSH-23, a NF-κB inhibitor, also mimicked the capacity of delphinidin to significantly induce the reduction of [i]GSH along with the potentiation of As(III) cytotoxicity in HL-60 cells. These observations suggested that delphinidin-induced sensitization of HL-60 cells to As(III) was caused by the reduction of [i]GSH, which was probably associated with the inhibitory effect of delphinidin on NF-κB binding activity. These findings further suggest that delphinidin-induced sensitization of HL-60 cells to As(III) may lead to dose reduction of As(III) in clinical application, and ultimately contribute to minimizing its side effects.
Collapse
Affiliation(s)
- Yuta Yoshino
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Bo Yuan
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan; Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Saki Okusumi
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Reiji Aoyama
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Ryo Murota
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hidetomo Kikuchi
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroo Toyoda
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
22
|
Choi J, Lee K, Ingvarsdottir K, Bonasio R, Saraf A, Florens L, Washburn MP, Tadros S, Green MR, Busino L. Loss of KLHL6 promotes diffuse large B-cell lymphoma growth and survival by stabilizing the mRNA decay factor roquin2. Nat Cell Biol 2018; 20:586-596. [PMID: 29695787 PMCID: PMC5926793 DOI: 10.1038/s41556-018-0084-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
Kelch-like protein 6 (KLHL6) is an uncharacterized gene mutated in diffuse large B-cell lymphoma (DLBCL). We report that KLHL6 assembles with CULLIN3 to form a functional CULLIN-Ring ubiquitin ligase. Mutations of KLHL6 inhibit its ligase activity by disrupting the interaction with CULLIN3. Loss of KLHL6 favors DLBCL growth and survival both in vitro and in xenograft models. We further established the mRNA decay factor Roquin2 as a substrate of KLHL6. Degradation of Roquin2 is dependent on B-cell receptor activation, and requires the integrity of the tyrosine 691 in Roquin2 that is essential for its interaction with KLHL6. A non-degradable Roquin2 (Y691F) mutant requires its RNA binding ability to phenocopy the effect of KLHL6 loss. Stabilization of Roquin2 promotes mRNA decay of the tumor suppressor and NF-κB pathway inhibitor, tumor necrosis factor-α-inducible gene 3 (TNFAIP3). Collectively, our findings uncover the tumor suppressing mechanism of KLHL6.
Collapse
Affiliation(s)
- Jaewoo Choi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyutae Lee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Ingvarsdottir
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Roberto Bonasio
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita Saraf
- The Stowers Institute of Medical Research, Kansas City, MO, USA
| | | | - Michael P Washburn
- The Stowers Institute of Medical Research, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Saber Tadros
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luca Busino
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Kumar V, Kumar A, Das S, Kumar A, Abhishek K, Verma S, Mandal A, Singh RK, Das P. Leishmania donovani Activates Hypoxia Inducible Factor-1α and miR-210 for Survival in Macrophages by Downregulation of NF-κB Mediated Pro-inflammatory Immune Response. Front Microbiol 2018; 9:385. [PMID: 29568285 PMCID: PMC5852103 DOI: 10.3389/fmicb.2018.00385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Micro RNAs (miRNAs) have emerged as a critical regulator of several biological processes in both animals and plants. They have also been associated with regulation of immune responses in many human diseases during recent years. Visceral leishmaniasis (VL) is the most severe form of leishmaniasis, which is characterized by impairment of both innate and adaptive immune responses. In the present study, we observed that Leishmania establishes hypoxic environment in host macrophages that induces the expression of hypoxia inducible factor-1α (HIF-1α) and miRNA-210. Further, the expression of miRNA-210 was found to be dependent on activation of HIF-1α expression. The HIF-1α silencing by siRNA resulted in significantly (p < 0.001) decreased expression of miR-210 in parasites infected macrophages. We also observed that in siHIF-1α or antagomir-210 treated L. donovani infected macrophages, the parasitic load and percentage infectivity were significantly (p < 0.001) decreased. Furthermore, we found that inhibition of miR-210 leads to activation of NF-κB subunit p50, and it forms heterodimer with p65 and translocates into the nucleus from the cytoplasm. This significantly (p < 0.05) induced the transcription of pro-inflammatory cytokines genes such as TNF-α and IL-12 in miRNA-210 inhibited macrophages compared to uninhibited macrophages whereas the level of IL-10, an anti-inflammatory cytokine, was found to be significantly decreased (p < 0.001). These findings suggested that L. donovani infection induces hypoxic environment inside the macrophages that activates HIF-1α. Further, HIF-1α upregulates miR-210, which eventually establishes a suitable environment for the survival of parasite inside the host macrophages by downregulating NF-κB mediated pro-inflammatory immune responses.
Collapse
Affiliation(s)
- Vinod Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ajay Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| | - Ashish Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Kumar Abhishek
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Sudha Verma
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Abhishek Mandal
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| |
Collapse
|
24
|
Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent. Life Sci 2018; 196:28-37. [DOI: 10.1016/j.lfs.2018.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
|
25
|
Oliva J. Proteasome and Organs Ischemia-Reperfusion Injury. Int J Mol Sci 2017; 19:ijms19010106. [PMID: 29301204 PMCID: PMC5796056 DOI: 10.3390/ijms19010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
The treatment of organ failure on patients requires the transplantation of functional organs, from donors. Over time, the methodology of transplantation was improved by the development of organ preservation solutions. The storage of organs in preservation solutions is followed by the ischemia of the organ, resulting in a shortage of oxygen and nutrients, which damage the tissues. When the organ is ready for the transplantation, the reperfusion of the organ induces an increase of the oxidative stress, endoplasmic reticulum stress, and inflammation which causes tissue damage, resulting in a decrease of the transplantation success. However, the addition of proteasome inhibitor in the preservation solution alleviated the injuries due to the ischemia-reperfusion process. The proteasome is a protein structure involved in the regulation the inflammation and the clearance of damaged proteins. The goal of this review is to summarize the role of the proteasome and pharmacological compounds that regulate the proteasome in protecting the organs from the ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA.
| |
Collapse
|
26
|
MicroRNA-105 is involved in TNF-α-related tumor microenvironment enhanced colorectal cancer progression. Cell Death Dis 2017; 8:3213. [PMID: 29238068 PMCID: PMC5870598 DOI: 10.1038/s41419-017-0048-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022]
Abstract
TNF-α is a central proinflammatory cytokine contributing to malignant tumor progression in tumor microenvironment. In this study, we found the upregulation of miR-105 in colorectal cancer was associated with aggressive phenotype, and the enhanced expression of miR-105 was required for TNF-α-induced epithelial–mesenchymal transition (EMT). The expression of miR-105 was remarkably stimulated by TNF-α in a time-dependent manner using real-time qPCR analysis. Inhibition of miR-105 remarkably weakened the aggressive effects of TNF-α through preventing the activation of NF-κB signaling and the initiation of EMT. Furthermore, miR-105 was demonstrated directly targeted on the 3′-UTRs of RAP2C, a Rap2 subfamily of small GTP-binding protein. Consistently, suppression of RAP2C stimulated the role of miR-105, which dramatically promoted the invasion and metastasis of CRC cells. Thalidomide, a TNF-α and NF-κB inhibitor, significantly weakened the metastasis and homing capacity of miR-105-overexpressed CRC cells in nude mice. Our investigation initiatively illustrated the modulatory role of miR-105 in TNF-α-induced EMT and further CRC metastasis. We also offer a better understanding of TNFα-induced metastasis and suggest an effective therapeutic strategy against CRC metastasis.
Collapse
|
27
|
Cisplatin triggers cancer stem cell enrichment in platinum-resistant cells through NF-κB-TNFα-PIK3CA loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:164. [PMID: 29169370 PMCID: PMC5701448 DOI: 10.1186/s13046-017-0636-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022]
Abstract
Background Parallel to complex alteration in molecular and cellular events, enrichment of cancer stem cells (CSC) contributes significantly in deliberation and maintenance of cisplatin resistance. Cisplatin mediated CSC enrichment is well established in various cancers, yet the underlying mechanism is largely unknown. Cisplatin also promotes transcriptional upregulation of PIK3CA, hence activating PI3K/AKT signaling in resistant cells. However, such cisplatin-induced transcriptional regulators of PIK3CA and their impact on cancer stem cell population in resistant cells are largely unknown. Methods DNA-binding protein pulldown using PIK3CA promoter as bait followed by nLCMS was used to identify, cisplatin-induced potential transcriptional regulators of PIK3CA promoter. PIK3CA promoter activity was estimated by luciferase based reporter assay. ChIP was used to assess interaction of NF-κB with PIK3CA promoter. CSC-enriched side-population was sorted using DCV-dye exclusion methods. All the gene expression levels were assessed using qPCR. Results Using a transcription factor pull-down assay with PIK3CA promoter, we identified NF-κB as a prime regulator, which escalates both TNFα and PIK3CA expression only in CSC enriched side-population (SP) but not in non side-population (NSP) in platinum resistant ovarian cancer cells upon cisplatin treatment. This SP-specific NF-κB-TNFα-PIK3CA bi-modal loop, on one hand, maintains persistent activation of NF-κB through TNFα- NF-κB autocrine loop, while NF-κB-PIK3CA loop nurture CSC population under cisplatin treatment. Activation of PI3K/AKT signalling drives SP’s into an undifferentiated, anti-apoptotic stage through upregulating P21, P27,cFLIP expression. Contrarily, lack of active NF-κB-TNFα-PIK3CA loop makes NSPs vulnerable towards cisplatin and undergoes apoptosis. Altogether, cisplatin enriches cancer stem cells properties in SP fraction, which is evident from increased levels of pluripotency gene OCT4/SOX2/NANOG expression. Disruption of PIK3CA-NF-κB loop by Wortamannin reduces SP fraction by 1.4–1.6 fold in control and treated cells. Conclusion Together, our study signifies an active role of NF-κB-TNFα-PIK3CA bi-modal loop in cisplatin-mediated promotion and maintenance of CSC-like population in platinum-resistant cells. Electronic supplementary material The online version of this article (10.1186/s13046-017-0636-8) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Lee KS, Chun SY, Lee MG, Kim S, Jang TJ, Nam KS. The prevention of TNF-α/IFN-γ mixture-induced inflammation in human keratinocyte and atopic dermatitis-like skin lesions in Nc/Nga mice by mineral-balanced deep sea water. Biomed Pharmacother 2017; 97:1331-1340. [PMID: 29156522 DOI: 10.1016/j.biopha.2017.11.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/30/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by environmental and chemical allergens. Despite the complexity of its pathogenesis, many investigations have shown that substances having anti-inflammatory activities alleviated the pathology of AD. Here, we evaluated the effects of mineral-balanced deep sea water (DSW) on AD-like skin damage in both in vitro and in vivo. The results showed that mineral-balanced DSW regressed inflammatory chemokines, such as macrophage-derived chemokine (MDC), thymus- and activation-regulated chemokine (TARC) and regulated on activation, normal T-cell expressed and secreted (RANTES), and cytokines, interleukin (IL)-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA expression in HaCaT immortal human keratinocyte treated with tumor necrosis factor (TNF)-α/ interferon (IFN)-γ mixture. Furthermore, increased cyclooxygenase (COX)-2 protein expressions were also reversed, filaggrin gene expression was enhanced and decreased involucrin transcriptions was recovered by mineral-balanced DSW in TNF-α/IFN-γ mixture-treated HaCaT human keratinocyte. Moreover, we revealed that the inhibitory effects of mineral-balanced DSW were mediated with the suppression of signal transducer and activator of transcription (STAT) 1 phosphorylation. In animal experiments, we showed that hardness 2000 of mineral-balanced DSW decreased the serum levels of IgE, IL-4, and histamine, and alleviated the severity score and numbers of scratching in dinitrochlorobezene (DNCB)-treated Nc/Nga mice. Furthermore, increased epidermal thickness and mast cell infiltration by DNCB treatment were reversed by the application of hardness 2000 mineral-balanced DSW. Taken together, the present investigation indicates that mineral-balanced DSW is a potent substance with anti-atopic dermatitis activity.
Collapse
Affiliation(s)
- Kyu-Shik Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - So-Young Chun
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Min-Gu Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Tae-Jung Jang
- Department of Pathology, School of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
29
|
Valproic acid increases NF-κB transcriptional activation despite decreasing DNA binding ability in P19 cells, which may play a role in VPA-initiated teratogenesis. Reprod Toxicol 2017; 74:32-39. [PMID: 28865949 DOI: 10.1016/j.reprotox.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
The nuclear factor-kappa B (NF-κB) family of transcription factors regulate gene expression in response to diverse stimuli. We previously demonstrated that valproic acid (VPA) exposure in utero decreases total cellular protein expression of the NF-κB subunit p65 in CD-1 mouse embryos with a neural tube defect but not in phenotypically normal littermates. This study evaluated p65 mRNA and protein expression in P19 cells and determined the impact on DNA binding ability and activity. Exposure to 5mM VPA decreased p65 mRNA and total cellular protein expression however, nuclear p65 protein expression was unchanged. VPA reduced NF-κB DNA binding and nuclear protein of the p65 DNA-binding partner, p50. NF-κB transcriptional activity was increased with VPA alone, despite decreased phosphorylation of p65 at Ser276, and when combined with tissue necrosis factor α. These results demonstrate that VPA increases NF-κB transcriptional activity despite decreasing DNA binding, which may play a role in VPA-initiated teratogenesis.
Collapse
|
30
|
Pandey MK, Gupta SC, Nabavizadeh A, Aggarwal BB. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin Cancer Biol 2017; 46:158-181. [PMID: 28823533 DOI: 10.1016/j.semcancer.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), β-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.
Collapse
Affiliation(s)
- Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | | |
Collapse
|
31
|
Badran YR, Dedeoglu F, Leyva Castillo JM, Bainter W, Ohsumi TK, Bousvaros A, Goldsmith JD, Geha RS, Chou J. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J Exp Med 2017; 214:1937-1947. [PMID: 28600438 PMCID: PMC5502421 DOI: 10.1084/jem.20160724] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 02/25/2017] [Accepted: 05/09/2017] [Indexed: 11/09/2022] Open
Abstract
Badran et al. demonstrate an essential contribution of biallelic RELA expression in protecting stromal and epithelial cells from TNF-mediated cell death in patients with chronic mucocutaneous ulceration. The treatment of chronic mucocutaneous ulceration is challenging, and only some patients respond selectively to inhibitors of tumor necrosis factor-α (TNF). TNF activates opposing pathways leading to caspase-8–mediated apoptosis as well as nuclear factor κB (NF-κB)–dependent cell survival. We investigated the etiology of autosomal-dominant, mucocutaneous ulceration in a family whose proband was dependent on anti-TNF therapy for sustained remission. A heterozygous mutation in RELA, encoding the NF-κB subunit RelA, segregated with the disease phenotype and resulted in RelA haploinsufficiency. The patients’ fibroblasts exhibited increased apoptosis in response to TNF, impaired NF-κB activation, and defective expression of NF-κB–dependent antiapoptotic genes. Rela+/− mice have similarly impaired NF-κB activation, develop cutaneous ulceration from TNF exposure, and exhibit severe dextran sodium sulfate–induced colitis, ameliorated by TNF inhibition. These findings demonstrate an essential contribution of biallelic RELA expression in protecting stromal cells from TNF-mediated cell death, thus delineating the mechanisms driving the effectiveness of TNF inhibition in this disease.
Collapse
Affiliation(s)
- Yousef R Badran
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | | | - Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Toshiro K Ohsumi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Jeffrey D Goldsmith
- Department of Pathology, Boston Children's Hospital, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
32
|
Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways. Chin J Nat Med 2017; 15:15-40. [PMID: 28259249 DOI: 10.1016/s1875-5364(17)30005-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2016] [Indexed: 12/14/2022]
Abstract
Wogonin is a plant flavonoid compound extracted from Scutellaria baicalensis (Huang-Qin or Chinese skullcap) and has been studied thoroughly by many researchers till date for its anti-viral, anti-oxidant, anti-cancerous and neuro-protective properties. Numerous experiments conducted in vitro and in vivo have demonstrated wogonin's excellent tumor inhibitory properties. The anti-cancer mechanism of wogonin has been ascribed to modulation of various cell signaling pathways, including serine-threonine kinase Akt (also known as protein kinase B) and AMP-activated protein kinase (AMPK) pathways, p53-dependent/independent apoptosis, and inhibition of telomerase activity. Furthermore, wogonin also decreases DNA adduct formation with a carcinogenic compound 2-Aminofluorene and inhibits growth of drug resistant malignant cells and their migration and metastasis, without any side effects. Recently, newly synthesized wogonin derivatives have been developed with impressive anti-tumor activity. This review is the succinct appraisal of the pertinent articles on the mechanisms of anti-tumor properties of wogonin. We also summarize the potential of wogonin and its derivatives used alone or as an adjunct therapy for cancer treatment. Furthermore, pharmacokinetics and side effects of wogonin and its analogues have also been discussed.
Collapse
|
33
|
Ma Y, Zhang B, Wang D, Qian L, Song X, Wang X, Yang C, Zhao G. HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB. Int J Mol Med 2017; 39:764-770. [PMID: 28204810 DOI: 10.3892/ijmm.2017.2868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.
Collapse
Affiliation(s)
- Yunyun Ma
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Bo Zhang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Dong Wang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Lili Qian
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Xianmei Song
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Xueyin Wang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Chaokuan Yang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
34
|
Rivera-Serrano EE, Sherry B. NF-κB activation is cell type-specific in the heart. Virology 2016; 502:133-143. [PMID: 28043025 DOI: 10.1016/j.virol.2016.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/31/2023]
Abstract
Viral myocarditis is common and can progress to cardiac failure. Cardiac cell pro-inflammatory responses are critical for viral clearance, however sustained inflammatory responses contribute to cardiac damage. The transcription factor NF-κB regulates expression of many pro-inflammatory cytokines, but basal and induced activation of NF-κB in different cardiac cell types have not been compared. Here, we used primary cultures of cardiac myocytes and cardiac fibroblasts to identify cardiac cell type-specific events. We show that while viral infection readily stimulates activation of NF-κB in cardiac fibroblasts, cardiac myocytes are largely recalcitrant to activation of NF-κB. Moreover, we show that cardiac myocyte subpopulations differ in their NF-κB subcellular localization and identify the cis-Golgi as a cardiac myocyte-specific host compartment. Together, results indicate that NF-κB-dependent signaling in the heart is cardiac cell type-specific, likely reflecting mechanisms that have evolved to balance responses that can be either protective or damaging to the heart.
Collapse
Affiliation(s)
- Efraín E Rivera-Serrano
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Barbara Sherry
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
35
|
Langkilde A, Olsen LC, Sætrom P, Drabløs F, Besenbacher S, Raaby L, Johansen C, Iversen L. Pathway Analysis of Skin from Psoriasis Patients after Adalimumab Treatment Reveals New Early Events in the Anti-Inflammatory Mechanism of Anti-TNF-α. PLoS One 2016; 11:e0167437. [PMID: 28005985 PMCID: PMC5179238 DOI: 10.1371/journal.pone.0167437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/14/2016] [Indexed: 01/09/2023] Open
Abstract
Psoriasis is a chronic cutaneous inflammatory disease. The immunopathogenesis is a complex interplay between T cells, dendritic cells and the epidermis in which T cells and dendritic cells maintain skin inflammation. Anti-tumour necrosis factor (anti-TNF)-α agents have been approved for therapeutic use across a range of inflammatory disorders including psoriasis, but the anti-inflammatory mechanisms of anti-TNF-α in lesional psoriatic skin are not fully understood. We investigated early events in skin from psoriasis patients after treatment with anti-TNF-α antibodies by use of bioinformatics tools. We used the Human Gene 1.0 ST Array to analyse gene expression in punch biopsies taken from psoriatic patients before and also 4 and 14 days after initiation of treatment with the anti-TNF-α agent adalimumab. The gene expression was analysed by gene set enrichment analysis using the Functional Annotation Tool from DAVID Bioinformatics Resources. The most enriched pathway was visualised by the Pathview Package on Kyoto Encyclopedia of Genes and Genomes (KEGG) graphs. The analysis revealed new very early events in psoriasis after adalimumab treatment. Some of these events have been described after longer periods of anti-TNF-α treatment when clinical and histological changes appear, suggesting that effects of anti-TNF-α treatment on gene expression appear very early before clinical and histological changes. Combining microarray data on biopsies from psoriasis patients with pathway analysis allowed us to integrate in vitro findings into the identification of mechanisms that may be important in vivo. Furthermore, these results may reflect primary effect of anti-TNF-α treatment in contrast to studies of gene expression changes following clinical and histological changes, which may reflect secondary changes correlated to the healing of the skin.
Collapse
Affiliation(s)
- Ane Langkilde
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark
| | - Lene C. Olsen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
- Department of Computer and Information Science, Faculty of Information Technology, Mathematics and Electrical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, NORWAY
| | | | - Line Raaby
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
36
|
Pollard HB, Shivakumar C, Starr J, Eidelman O, Jacobowitz DM, Dalgard CL, Srivastava M, Wilkerson MD, Stein MB, Ursano RJ. "Soldier's Heart": A Genetic Basis for Elevated Cardiovascular Disease Risk Associated with Post-traumatic Stress Disorder. Front Mol Neurosci 2016; 9:87. [PMID: 27721742 PMCID: PMC5033971 DOI: 10.3389/fnmol.2016.00087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/05/2016] [Indexed: 11/13/2022] Open
Abstract
"Soldier's Heart," is an American Civil War term linking post-traumatic stress disorder (PTSD) with increased propensity for cardiovascular disease (CVD). We have hypothesized that there might be a quantifiable genetic basis for this linkage. To test this hypothesis we identified a comprehensive set of candidate risk genes for PTSD, and tested whether any were also independent risk genes for CVD. A functional analysis algorithm was used to identify associated signaling networks. We identified 106 PTSD studies that report one or more polymorphic variants in 87 candidate genes in 83,463 subjects and controls. The top upstream drivers for these PTSD risk genes are predicted to be the glucocorticoid receptor (NR3C1) and Tumor Necrosis Factor alpha (TNFA). We find that 37 of the PTSD candidate risk genes are also candidate independent risk genes for CVD. The association between PTSD and CVD is significant by Fisher's Exact Test (P = 3 × 10-54). We also find 15 PTSD risk genes that are independently associated with Type 2 Diabetes Mellitus (T2DM; also significant by Fisher's Exact Test (P = 1.8 × 10-16). Our findings offer quantitative evidence for a genetic link between post-traumatic stress and cardiovascular disease, Computationally, the common mechanism for this linkage between PTSD and CVD is innate immunity and NFκB-mediated inflammation.
Collapse
Affiliation(s)
- Harvey B. Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Chittari Shivakumar
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Joshua Starr
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - David M. Jacobowitz
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Matthew D. Wilkerson
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health SciencesBethesda, MD, USA
| | - Murray B. Stein
- Department of Psychiatry, University of California, San DiegoSan Diego, CA, USA
| | - Robert J. Ursano
- Department of Psychiatry Uniformed Services University School of Medicine, Uniformed Services University of the Health SciencesBethesda, MD, USA
- Center for the Study of Traumatic stress, Uniformed Services University of the Health SciencesBethesda, MD, USA
| |
Collapse
|
37
|
Wang HY, Yu HZ, Huang SM, Zheng YL. p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells. Mol Med Rep 2016; 14:3855-61. [PMID: 27601129 DOI: 10.3892/mmr.2016.5696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 07/21/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of berberine hydrochloride on the proliferation and apoptosis of HeLa229 human cervical cancer cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine the cytotoxicity of berberine hydrochloride against HeLa229 cells. The effects of berberine hydrochloride on the apoptosis of HeLa229 cells was detected by immunofluorescence and flow cytometry, and the mRNA expression levels of p53, B‑cell lymphoma 2 (Bcl‑2) and cyclooxygenase‑2 (cox‑2) were analyzed by reverse transcription-quantitative polymerase chain reaction. Berberine hydrochloride inhibited the proliferation of HeLa229 cells in a dose‑dependent manner; minimum cell viability (3.61%) was detected following treatment with 215.164 µmol/l berberine hydrochloride and the half maximal inhibitory concentration value was 42.93 µmol/l following treatment for 72 h. In addition, berberine hydrochloride induced apoptosis in HeLa229 cells in a dose‑ and time‑dependent manner. Berberine hydrochloride upregulated the mRNA expression levels of p53, and downregulated mRNA expression levels of Bcl‑2 and cox‑2, in a dose‑dependent manner. In conclusion, berberine hydrochloride inhibited the proliferation and induced apoptosis of HeLa229 cells, potentially via the upregulation of p53 and the downregulation of Bcl‑2 and cox‑2 mRNA expression levels.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Hai-Zhong Yu
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Sheng-Mou Huang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Yu-Lan Zheng
- Department of Respiratory Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
38
|
RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord. PLoS One 2016; 11:e0160520. [PMID: 27487029 PMCID: PMC4972368 DOI: 10.1371/journal.pone.0160520] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned >50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG's). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network "hub" gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF's involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients.
Collapse
|
39
|
Liu Q, Zhang Z, Zheng Z, Zheng C, Liu Y, Hu Q, Ke X, Wang H. Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-α-Mediated Activation of NF-κB by targeting p65. Sci Rep 2016; 6:28481. [PMID: 27329558 PMCID: PMC4916443 DOI: 10.1038/srep28481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022] Open
Abstract
Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-κB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-α which is a strong NF-κB stimulator. Here we investigated whether HBoV proteins modulate TNF-α–mediated activation of the NF-κB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-κB activation in response to TNF-α. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase alpha (IKKα)-, IκB kinase beta (IKKβ)-, constitutively active mutant of IKKβ (IKKβ SS/EE)-, or p65-induced NF-κB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn’t interfere with TNF-α-mediated IκBα phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-α-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-κB activation. This is the first time that HBoV has been shown to inhibit NF-κB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis.
Collapse
Affiliation(s)
- Qingshi Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfeng Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Caishang Zheng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yan Liu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xianliang Ke
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
40
|
Chatterjee A, Roy D, Patnaik E, Nongthomba U. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish. Dis Model Mech 2016; 9:697-705. [PMID: 27101844 PMCID: PMC4920145 DOI: 10.1242/dmm.022665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 04/18/2016] [Indexed: 01/10/2023] Open
Abstract
Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs) as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs) through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual. Summary: Using fruit fly and zebrafish models, we show that skeletal muscles are immune responsive tissues; they mount innate immune responses during bacterial infection – an evolutionarily conserved defense mechanism.
Collapse
Affiliation(s)
- Arunita Chatterjee
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Debasish Roy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Esha Patnaik
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
41
|
Han SS, Yang SH, Choi M, Kim HR, Kim K, Lee S, Moon KC, Kim JY, Lee H, Lee JP, Jung JY, Kim S, Joo KW, Lim CS, Kang SW, Kim YS, Kim DK. The Role of TNF Superfamily Member 13 in the Progression of IgA Nephropathy. J Am Soc Nephrol 2016; 27:3430-3439. [PMID: 27068226 DOI: 10.1681/asn.2015060677] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 03/08/2016] [Indexed: 12/28/2022] Open
Abstract
TNF superfamily member 13 (TNFSF13) has been identified as a susceptibility gene for IgA nephropathy in recent genetic studies. However, the role of TNFSF13 in the progression of IgA nephropathy remains unresolved. We evaluated two genetic polymorphisms (rs11552708 and rs3803800) and plasma levels of TNFSF13 in 637 patients with IgA nephropathy, and determined the risk of ESRD according to theses variable. Neither of the examined genetic polymorphisms associated with a clinical outcome of IgA nephropathy. However, high plasma levels of TNFSF13 increased the risk of ESRD. To explore the causal relationship and underlying mechanism, we treated B cells from patients (n=21) with or without recombinant human TNFSF13 (rhTNFSF13) and measured the expression of IgA and galactose-deficient IgA (GdIgA) using ELISA and flow cytometry. Treatment with rhTNFSF13 significantly increased the total IgA level among B cells, and TNFSF13 receptor blockade abrogated this increase. Furthermore, the absolute levels of GdIgA increased with rhTNFSF13 treatment, but the total IgA-normalized levels did not change. Both RNA sequencing and quantitative PCR results showed that rhTNFSF13 did not alter the expression of glycosyltransferase enzymes. These results suggest that high plasma TNFSF13 levels associate with a worse prognosis of IgA nephropathy through the relative increase in GdIgA levels.
Collapse
Affiliation(s)
- Seung Seok Han
- Departments of *Internal Medicine.,Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Korea
| | | | | | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | - Kyung Chul Moon
- Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Young Kim
- Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Hajeong Lee
- Departments of *Internal Medicine.,Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Jung Pyo Lee
- Departments of *Internal Medicine.,Kidney Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ji Yong Jung
- Department of Internal Medicine, Gachon University of Medicine and Science, Incheon, Korea; and
| | | | - Kwon Wook Joo
- Departments of *Internal Medicine.,Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Chun Soo Lim
- Departments of *Internal Medicine.,Kidney Research Institute, Seoul National University, Seoul, Korea.,Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Korea
| | - Yon Su Kim
- Departments of *Internal Medicine.,Kidney Research Institute, Seoul National University, Seoul, Korea
| | - Dong Ki Kim
- Departments of *Internal Medicine, .,Kidney Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
42
|
Abstract
DNA is vulnerable to damage resulting from endogenous metabolites, environmental and dietary carcinogens, some anti-inflammatory drugs, and genotoxic cancer therapeutics. Cells respond to DNA damage by activating complex signalling networks that decide cell fate, promoting not only DNA repair and survival but also cell death. The decision between cell survival and death following DNA damage rests on factors that are involved in DNA damage recognition, and DNA repair and damage tolerance, as well as on factors involved in the activation of apoptosis, necrosis, autophagy and senescence. The pathways that dictate cell fate are entwined and have key roles in cancer initiation and progression. Furthermore, they determine the outcome of cancer therapy with genotoxic drugs. Understanding the molecular basis of these pathways is important not only for gaining insight into carcinogenesis, but also in promoting successful cancer therapy. In this Review, we describe key decision-making nodes in the complex interplay between cell survival and death following DNA damage.
Collapse
Affiliation(s)
- Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Adam D Thomas
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| |
Collapse
|
43
|
O’Brown ZK, Van Nostrand EL, Higgins JP, Kim SK. The Inflammatory Transcription Factors NFκB, STAT1 and STAT3 Drive Age-Associated Transcriptional Changes in the Human Kidney. PLoS Genet 2015; 11:e1005734. [PMID: 26678048 PMCID: PMC4682820 DOI: 10.1371/journal.pgen.1005734] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023] Open
Abstract
Human kidney function declines with age, accompanied by stereotyped changes in gene expression and histopathology, but the mechanisms underlying these changes are largely unknown. To identify potential regulators of kidney aging, we compared age-associated transcriptional changes in the human kidney with genome-wide maps of transcription factor occupancy from ChIP-seq datasets in human cells. The strongest candidates were the inflammation-associated transcription factors NFκB, STAT1 and STAT3, the activities of which increase with age in epithelial compartments of the renal cortex. Stimulation of renal tubular epithelial cells with the inflammatory cytokines IL-6 (a STAT3 activator), IFNγ (a STAT1 activator), or TNFα (an NFκB activator) recapitulated age-associated gene expression changes. We show that common DNA variants in RELA and NFKB1, the two genes encoding subunits of the NFκB transcription factor, associate with kidney function and chronic kidney disease in gene association studies, providing the first evidence that genetic variation in NFκB contributes to renal aging phenotypes. Our results suggest that NFκB, STAT1 and STAT3 underlie transcriptional changes and chronic inflammation in the aging human kidney. The structure and function of human kidneys deteriorate steadily with age, yet little is known about the underlying causes of kidney aging. In this work, we first used a genomics approach to identify candidate regulators of gene expression changes in the aging human kidney and identified inflammation-related transcription factors NFκB, STAT1 and STAT3 as the top candidate regulators. We found that kidney aging is associated with activation of NFκB, STAT1 and STAT3 in the renal parenchyma, and that the gene expression signatures evoked by activation of these transcription factors in human renal epithelial cells mimics age-associated gene expression changes in the kidney. Furthermore, we identified specific genetic variants in the NFκB transcription factor genes RELA and NFKB1 that associate with renal function and chronic kidney disease in humans, implicating NFκB as a potential contributor to the pathogenesis of chronic kidney disease and renal dysfunction in old age. Our findings suggest that activation of the inflammatory transcription factors STAT1, STAT3 and NFκB underlie transcriptional changes and reduced renal function in the elderly.
Collapse
Affiliation(s)
- Zach K. O’Brown
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Cancer Biology Program, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Eric L. Van Nostrand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - John P. Higgins
- Department of Pathology, Stanford University Medical Center, Stanford, California, United States of America
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
44
|
G'Sell RT, Gaffney PM, Powell DW. A20-Binding Inhibitor of NF-κB Activation 1 is a Physiologic Inhibitor of NF-κB: A Molecular Switch for Inflammation and Autoimmunity. Arthritis Rheumatol 2015; 67:2292-302. [PMID: 26097105 DOI: 10.1002/art.39245] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/09/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Rachel T G'Sell
- University of Louisville School of Medicine, Louisville, Kentucky
| | | | - David W Powell
- University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
45
|
van Harten-Gerritsen AS, Balvers MGJ, Witkamp RF, Kampman E, van Duijnhoven FJB. Vitamin D, Inflammation, and Colorectal Cancer Progression: A Review of Mechanistic Studies and Future Directions for Epidemiological Studies. Cancer Epidemiol Biomarkers Prev 2015; 24:1820-8. [PMID: 26396142 DOI: 10.1158/1055-9965.epi-15-0601] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Survival from colorectal cancer is positively associated with vitamin D status. However, whether this association is causal remains unclear. Inflammatory processes may link vitamin D to colorectal cancer survival, and therefore investigating inflammatory markers as potential mediators may be a valuable next step. This review starts with an overview of inflammatory processes suggested to be involved in colorectal cancer progression and regulated by vitamin D. Next, we provide recommendations on how to study inflammatory markers in future epidemiologic studies on vitamin D and colorectal cancer survival. Mechanistic studies have shown that calcitriol-active form of vitamin D-influences inflammatory processes involved in cancer progression, including the enzyme cyclooxygenase 2, the NF-κB pathway, and the expression of the cytokines TNFα, IL1β, IL6, IL8, IL17, and TGFβ1. Based on this and taking into account methodologic issues, we recommend to include analysis of specific soluble peptides and proteins, such as cytokines, in future epidemiologic studies on this issue. Vitamin D and the markers should preferably be measured at multiple time points during disease progression or recovery and analyzed using mediation analysis. Including these markers in epidemiologic studies may help answer whether inflammation mediates a causal relationship between vitamin D and colorectal cancer survival.
Collapse
Affiliation(s)
| | - Michiel G J Balvers
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands. Clinical Chemistry and Haematology Laboratory, Gelderse Vallei Hospital, Ede, the Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands. Department for Health Evidence, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands. Department for Health Science, VU University Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
46
|
Thair SA, Topchiy E, Boyd JH, Cirstea M, Wang C, Nakada TA, Fjell CD, Wurfel M, Russell JA, Walley KR. TNFAIP2 Inhibits Early TNFα-Induced NF-x03BA;B Signaling and Decreases Survival in Septic Shock Patients. J Innate Immun 2015; 8:57-66. [PMID: 26347487 DOI: 10.1159/000437330] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 07/01/2015] [Indexed: 12/24/2022] Open
Abstract
During septic shock, tumor necrosis factor alpha (TNFα) is an early response gene and induces a plethora of genes and signaling pathways. To identify robust signals in genes reliably upregulated by TNFα, we first measured microarray gene expression in vitro and searched methodologically comparable, publicly available data sets to identify concordant signals. Using tag single-nucleotide polymorphisms in the genes common to all data sets, we identified a genetic variant of the TNFAIP2 gene, rs8126, associated with decreased 28-day survival and increased organ dysfunction in an adult cohort in the Vasopressin and Septic Shock Trial. Similar to this cohort, we found that an association with rs8126 and increased organ dysfunction is replicated in a second cohort of septic shock patients in the St. Paul's Hospital Intensive Care Unit. We found that TNFAIP2 inhibits NF-x03BA;B activity, impacting the downstream cytokine interleukin (IL)-8. The minor G allele of TNFAIP2 rs8126 resulted in greater TNFAIP2 expression, decreased IL-8 production and was associated with decreased survival in patients experiencing septic shock. These data suggest that TNFAIP2 is a novel inhibitor of NF-x03BA;B that acts as an autoinhibitor of the TNFα response during septic shock.
Collapse
Affiliation(s)
- Simone A Thair
- Department of Emergency and Surgery, Stanford University School of Medicine, Stanford, Calif., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
de la Fuente V, Federman N, Zalcman G, Salles A, Freudenthal R, Romano A. NF-κB transcription factor role in consolidation and reconsolidation of persistent memories. Front Mol Neurosci 2015; 8:50. [PMID: 26441513 PMCID: PMC4563083 DOI: 10.3389/fnmol.2015.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022] Open
Abstract
Transcriptional regulation is an important molecular process required for long-term neural plasticity and long-term memory (LTM) formation. Thus, one main interest in molecular neuroscience in the last decades has been the identification of transcription factors that are involved in memory processes. Among them, the nuclear factor κB (NF-κB) family of transcription factors has gained interest due to a significant body of evidence that supports a key role of these proteins in synaptic plasticity and memory. In recent years, the interest was particularly reinforced because NF-κB was characterized as an important regulator of synaptogenesis. This function may be explained by its participation in synapse to nucleus communication, as well as a possible local role at the synapse. This review provides an overview of experimental work obtained in the last years, showing the essential role of this transcription factor in memory processes in different learning tasks in mammals. We focus the review on the consolidation and reconsolidation memory phases as well as on the regulation of immediate-early and late genes by epigenetic mechanisms that determine enduring forms of memories.
Collapse
Affiliation(s)
- Verónica de la Fuente
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| | - Noel Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| | - Gisela Zalcman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| | - Angeles Salles
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Buenos Aires, Argentina
| |
Collapse
|
48
|
O'Neill S, Humphries D, Tse G, Marson LP, Dhaliwal K, Hughes J, Ross JA, Wigmore SJ, Harrison EM. Heat shock protein 90 inhibition abrogates TLR4-mediated NF-κB activity and reduces renal ischemia-reperfusion injury. Sci Rep 2015; 5:12958. [PMID: 26248657 PMCID: PMC4528191 DOI: 10.1038/srep12958] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/06/2015] [Indexed: 12/17/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury. Toll-like receptor 4 (TLR4) mediates sterile inflammation following renal IRI. Heat shock protein 90 (Hsp90) inhibition is a potential strategy to reduce IRI, and AT13387 is a novel Hsp90 inhibitor with low toxicity. This study assessed if pre-treatment with AT13387 could reduce renal IRI and established if the mechanism of protection involved a reduction in inflammatory signalling. Mice were pre-treated with AT13387 prior to renal IRI. 24 h later, renal function was determined by serum creatinine, kidney damage by tubular necrosis score, renal TLR4 expression by PCR and inflammation by cytokine array. In vitro, human embryonic kidney cells were co-transfected to express TLR4 and a secreted alkaline phosphatase NF-κB reporter. Cells were pre-treated with AT13387 and exposed to endotoxin-free hyaluronan to stimulate sterile TLR4-specific NF-κB inflammatory activation. Following renal IRI, AT13387 significantly reduced serum creatinine, tubular necrosis, TLR4 expression and NF-κB-dependent chemokines. In vitro, AT13387-treatment resulted in breakdown of IκB kinase, which abolished TLR4-mediated NF-κB activation by hyaluronan. AT13387 is a new agent with translational potential that reduces renal IRI. The mechanism of protection may involve breakdown of IκB kinase and repression of TLR4-mediated NF-κB inflammatory activity.
Collapse
Affiliation(s)
- Stephen O'Neill
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Duncan Humphries
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - George Tse
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Lorna P Marson
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Kevin Dhaliwal
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Jeremy Hughes
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - James A Ross
- MRC Centre for Regenerative Medicine, University of Edinburgh, Royal Infirmary of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SA
| | - Stephen J Wigmore
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Ewen M Harrison
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| |
Collapse
|
49
|
Yang H, Li S, Li F, Wen R, Xiang J. Analysis on the expression and function of syndecan in the Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:278-286. [PMID: 25847874 DOI: 10.1016/j.dci.2015.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Syndecan is considered to be a multifunctional protein which functions as a cell surface receptor involved in cell adhesion, migration, cytoskeleton organization and differentiation. Previous bioinformatic analysis has revealed that syndecan in shrimp might interact with white spot syndrome virus (WSSV). In the present study, we experimentally studied the function of syndecan in shrimp immunity. The syndecan from Litopenaeus vannamei (LvSDC) was cloned and analyzed. The full-length cDNA of LvSDC was 1005 bp, consisting of 59 bp 5'-UTR, 253 bp 3'-UTR, and 693 bp open reading frame encoding 230 amino acids. LvSDC consisted of an extracellular domain (ED), a transmembrane domain (TM) and a cytoplasmic domain (CD). TM and CD shared high similarities with those of syndecan proteins from other species. LvSDC was ubiquitously expressed in all tested tissues, with the highest level in Oka. After WSSV challenge, the transcription level of LvSDC in Oka was apparently up-regulated. Recombinant LvSDC protein and its rabbit polyclonal antibody were prepared for detecting the location of LvSDC in hemocytes using immunocytochemistry approach. Data showed that LvSDC mainly located at the cell membrane and the cytoplasm of hemocytes. After silencing of LvSDC with siRNA, the WSSV copy numbers and mortality of shrimp after WSSV infection were both significantly decreased. These data provide useful information for understanding the immune mechanism of shrimp to WSSV infection.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, 7 Nanhai Road, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, 7 Nanhai Road, Qingdao 266071, China.
| | - Rong Wen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
50
|
Regulation of NF-κB Oscillation by Nuclear Transport: Mechanisms Determining the Persistency and Frequency of Oscillation. PLoS One 2015; 10:e0127633. [PMID: 26042739 PMCID: PMC4456371 DOI: 10.1371/journal.pone.0127633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
The activated transcription factor NF-κB shuttles between the cytoplasm and the nucleus resulting in the oscillation of nuclear NF-κB (NF-κBn). The oscillation pattern of NF-κBn is implicated in the regulation of gene expression profiles. Using computational models, we previously reported that spatial parameters, such as the diffusion coefficient, nuclear to cytoplasmic volume ratio, transport through the nuclear envelope, and the loci of translation of IκB protein, modified the oscillation pattern of NF-κBn. In a subsequent report, we elucidated the importance of the “reset” of NF-κBn (returning of NF-κB to the original level) and of a “reservoir” of IκB in the cytoplasm. When the diffusion coefficient of IκB was large, IκB stored at a distant location from the nucleus diffused back to the nucleus and “reset” NF-κBn. Herein, we report mechanisms that regulate the persistency and frequency of NF-κBn oscillation by nuclear transport. Among the four parameters of nuclear transport tested in our spatio-temporal computational model, the export of IκB mRNA from the nucleus regulated the persistency of oscillation. The import of IκB to the nucleus regulated the frequency of oscillation. The remaining two parameters, import and export of NF-κB to and from the nucleus, had virtually no effect on the persistency or frequency. Our analyses revealed that lesser export of IκB mRNA allowed NF-κBn to transcript greater amounts of IκB mRNA, which was retained in the nucleus, and was subsequently exported to the cytoplasm, where large amounts of IκB were synthesized to “reset” NF-κBn and drove the persistent oscillation. On the other hand, import of greater amounts of IκB led to an increase in the influx and the efflux of NF-κB to and from the nucleus, resulting in an increase in the oscillation frequency. Our study revealed the importance of nuclear transport in regulating the oscillation pattern of NF-κBn.
Collapse
|