1
|
Wang Y, Liu X, Zuo X, Wang C, Zhang Z, Zhang H, Zeng T, Chen S, Liu M, Chen H, Song Q, Li Q, Yang C, Le Y, Xing J, Zhang H, An J, Jia W, Kang L, Zhang H, Xie H, Ye J, Wu T, He F, Zhang X, Li Y, Zhou G. NRDE2 deficiency impairs homologous recombination repair and sensitizes hepatocellular carcinoma to PARP inhibitors. CELL GENOMICS 2024; 4:100550. [PMID: 38697125 PMCID: PMC11099347 DOI: 10.1016/j.xgen.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024]
Abstract
To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.
Collapse
Affiliation(s)
- Yahui Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Xianbo Zuo
- Department of Dermatology, Department of Pharmacy, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Cuiling Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Zheng Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haitao Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Tao Zeng
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Shunqi Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Mengyu Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hongxia Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Qingfeng Song
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City, Guangxi Province, P.R. China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; Department of Neurosciences, School of Medicine, University of South China, Hengyang City, Hunan Province, P.R. China
| | - Chenning Yang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Yi Le
- Department of Hepatobiliary Surgery, the 5th Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology, Experimental Teaching Center of Basic Medicine, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Jiaze An
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an City, Shaanxi Province, P.R. China
| | - Weihua Jia
- State Key Laboratory of Oncology in Southern China, Guangzhou City, Guangdong Province, P.R. China; Department of Experimental Research, Sun Yat-Sen University Cancer Center, Guangzhou City, Guangdong Province, P.R. China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City, Shaanxi Province, P.R. China
| | - Hongxing Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China
| | - Hui Xie
- Department of Interventional Oncology, the Fifth Medical Center of Chinese PLA General of Hospital, Beijing, P.R. China
| | - Jiazhou Ye
- Department of Hepatobiliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning City, Guangxi Province, P.R. China
| | - Tianzhun Wu
- Department of Hepatobiliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning City, Guangxi Province, P.R. China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, P.R. China.
| | - Xuejun Zhang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei City, Anhui Province, P.R. China.
| | - Yuanfeng Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, P.R. China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, P.R. China.
| |
Collapse
|
2
|
Jiang Q, Zhang D, Liu J, Liang C, Yang R, Zhang C, Wu J, Lin J, Ye T, Ding L, Li J, Gao S, Li B, Ye Q. HPIP is an essential scaffolding protein running through the EGFR-RAS-ERK pathway and drives tumorigenesis. SCIENCE ADVANCES 2023; 9:eade1155. [PMID: 37294756 PMCID: PMC10256163 DOI: 10.1126/sciadv.ade1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/04/2023] [Indexed: 06/11/2023]
Abstract
The EGFR-RAS-ERK pathway plays a key role in cancer development and progression. However, the integral assembly of EGFR-RAS-ERK signaling complexes from the upstream component EGFR to the downstream component ERK is largely unknown. Here, we show that hematopoietic PBX-interacting protein (HPIP) interacts with all classical components of the EGFR-RAS-ERK pathway and forms at least two complexes with overlapping components. Experiments of HPIP knockout or knockdown and chemical inhibition of HPIP expression showed that HPIP is required for EGFR-RAS-ERK signaling complex formation, EGFR-RAS-ERK signaling activation, and EGFR-RAS-ERK signaling-mediated promotion of aerobic glycolysis as well as cancer cell growth in vitro and in vivo. HPIP expression is correlated with EGFR-RAS-ERK signaling activation and predicts worse clinical outcomes in patients with lung cancer. These results provide insights into EGFR-RAS-ERK signaling complex formation and EGFR-RAS-ERK signaling regulation and suggest that HPIP may be a promising therapeutic target for cancer with dysregulated EGFR-RAS-ERK signaling.
Collapse
Affiliation(s)
- Qiwei Jiang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Deyu Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Juan Liu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Chaoyang Liang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ronghui Yang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Cheng Zhang
- Outpatient Department, Jingnan Medical Area, Chinese PLA General Hospital, Beijing 100850, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jing Lin
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
- Department of Clinical Laboratory, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Tianxing Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Lihua Ding
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Jianbin Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Binghui Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qinong Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Bejing 100850, China
| |
Collapse
|
3
|
Zhang X, Luo F, Luo S, Li L, Ren X, Lin J, Liang Y, Ma C, Ding L, Zhang D, Ye T, Lin Y, Jin B, Gao S, Ye Q. Transcriptional Repression of Aerobic Glycolysis by OVOL2 in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200705. [PMID: 35896951 PMCID: PMC9507357 DOI: 10.1002/advs.202200705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Aerobic glycolysis (Warburg effect), a hallmark of cancer, plays a critical role in cancer cell growth and metastasis; however, direct inhibition of the Warburg effect remains largely unknown. Herein, the transcription factor OVO-like zinc finger 2 (OVOL2) is demonstrated to directly repress the expression of several glycolytic genes, blocking the Warburg effect and breast tumor growth and metastasis in vitro and in vivo. OVOL2 inhibits glycolysis by recruiting the nuclear receptor co-repressor (NCoR) and histone deacetylase 3 (HDAC3). The tumor suppressor p53, a key regulator of cancer metabolism, activates OVOL2 by binding to the oncoprotein mouse double minute 2 homolog (MDM2) and inhibiting MDM2-mediated ubiquitination and degradation of OVOL2. OVOL2 expression is negatively correlated with glycolytic gene expression and can be a good predictor of prognosis in patients with breast cancer. Therefore, targeting the p53/MDM2/OVOL2 axis provides a potential avenue for cancer treatment, especially breast cancer.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Fei Luo
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Medical School of Guizhou UniversityGuiyang550025China
| | - Shaliu Luo
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Medical School of Guizhou UniversityGuiyang550025China
| | - Ling Li
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Xinxin Ren
- Department of Clinical LaboratoryThe Fourth Medical Center of PLA General HospitalBeijing100037China
- Shanxi Medical UniversityTaiyuan030000China
| | - Jing Lin
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Department of Clinical LaboratoryThe Fourth Medical Center of PLA General HospitalBeijing100037China
| | - Yingchun Liang
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Chao Ma
- Institute of Cancer Stem CellDalian Medical UniversityDalian116000China
| | - Lihua Ding
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Deyu Zhang
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Tianxing Ye
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Yanni Lin
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Shanxi Medical UniversityTaiyuan030000China
| | - Bilian Jin
- Institute of Cancer Stem CellDalian Medical UniversityDalian116000China
| | - Shan Gao
- Zhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthSoutheast UniversityNanjing210096China
| | - Qinong Ye
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| |
Collapse
|
4
|
Wang Z, Chen W, Zuo L, Xu M, Wu Y, Huang J, Zhang X, Li Y, Wang J, Chen J, Wang H, Sun H. The Fibrillin-1/VEGFR2/STAT2 signaling axis promotes chemoresistance via modulating glycolysis and angiogenesis in ovarian cancer organoids and cells. Cancer Commun (Lond) 2022; 42:245-265. [PMID: 35234370 PMCID: PMC8923131 DOI: 10.1002/cac2.12274] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/31/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background Chemotherapy resistance is a primary reason of ovarian cancer therapy failure; hence it is important to investigate the underlying mechanisms of chemotherapy resistance and develop novel potential therapeutic targets. Methods RNA sequencing of cisplatin‐resistant and ‐sensitive (chemoresistant and chemosensitive, respectively) ovarian cancer organoids was performed, followed by detection of the expression level of fibrillin‐1 (FBN1) in organoids and clinical specimens of ovarian cancer. Subsequently, glucose metabolism, angiogenesis, and chemosensitivity were analyzed in structural glycoprotein FBN1‐knockout cisplatin‐resistant ovarian cancer organoids and cell lines. To gain insights into the specific functions and mechanisms of action of FBN1 in ovarian cancer, immunoprecipitation, silver nitrate staining, mass spectrometry, immunofluorescence, Western blotting, and Fӧrster resonance energy transfer‐fluorescence lifetime imaging analyses were performed, followed by in vivo assays using vertebrate model systems of nude mice and zebrafish. Results FBN1 expression was significantly enhanced in cisplatin‐resistant ovarian cancer organoids and tissues, indicating that FBN1 might be a key factor in chemoresistance of ovarian cancer. We also discovered that FBN1 sustained the energy stress and induced angiogenesis in vitro and in vivo, which promoted the cisplatin‐resistance of ovarian cancer. Knockout of FBN1 combined with treatment of the antiangiogenic drug apatinib improved the cisplatin‐sensitivity of ovarian cancer cells. Mechanistically, FBN1 mediated the phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) at the Tyr1054 residue, which activated its downstream focal adhesion kinase (FAK)/protein kinase B (PKB or AKT) pathway, induced the phosphorylation of signal transducer and activator of transcription 2 (STAT2) at the tyrosine residue 690 (Tyr690), promoted the nuclear translocation of STAT2, and ultimately altered the expression of genes associated with STAT2‐mediated angiogenesis and glycolysis. Conclusions The FBN1/VEGFR2/STAT2 signaling axis may induce chemoresistance of ovarian cancer cells by participating in the process of glycolysis and angiogenesis. The present study suggested a novel FBN1‐targeted therapy and/or combination of FBN1 inhibition and antiangiogenic drug for treating ovarian cancer.
Collapse
Affiliation(s)
- Ziliang Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China.,Institute of Cancer Research and Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Wei Chen
- Department of Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Ling Zuo
- Institute of Cancer Research and Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Midie Xu
- Department of Pathology and Biobank, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Yong Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Jiami Huang
- Institute of Cancer Research and Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Xu Zhang
- Institute of Cancer Research and Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Yongheng Li
- Institute of Cancer Research and Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Jing Wang
- Department of Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jing Chen
- Institute of Cancer Research and Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Husheng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China
| | - Huizhen Sun
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
5
|
Kato T, Yokomori A, Suzuki R, Azegami J, El Enshasy HA, Park EY. Effects of a proteasome inhibitor on the riboflavin production in Ashbya gossypii. J Appl Microbiol 2021; 132:1176-1184. [PMID: 34496097 DOI: 10.1111/jam.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
AIMS Effects of a proteasome inhibitor, MG-132, on the riboflavin production in Ashbya gossypii were investigated to elucidate the relationship of the riboflavin production with flavoprotein homeostasis. METHODS AND RESULTS The addition of MG-132 to the liquid medium reduced the specific riboflavin production by 79% in A. gossypii at 25 μM after 24 h. The addition of the inhibitor also caused the accumulation of reactive oxygen species and ubiquitinated proteins. These results indicated that MG-132 works in A. gossypii without any genetic engineering and reduces riboflavin production. In the presence of 25 μM MG-132, specific NADH dehydrogenase activity was increased by 1.4-fold compared to DMSO, but specific succinate dehydrogenase (SDH) activity was decreased to 52% compared to DMSO. Additionally, the amount of AgSdh1p (ACR052Wp) was also reduced. Specific riboflavin production was reduced to 22% when 20 mM malonate, a SDH inhibitor, was added to the culture medium. The riboflavin production in heterozygous AgSDH1 gene-disrupted mutant (AgSDH1-/+ ) was reduced to 63% compared to that in wild type. CONCLUSIONS MG-132 suppresses the riboflavin production and SDH activity in A. gossypii. SDH is one of the flavoproteins involved in the riboflavin production in A. gossypii. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that MG-132 has a negative influence on the riboflavin production and SDH activity in A. gossypii and leads to the elucidation of the connection of the riboflavin production with flavoproteins.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Ami Yokomori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Riho Suzuki
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, Egypt
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
6
|
Sun H, Wang H, Wang X, Aoki Y, Wang X, Yang Y, Cheng X, Wang Z, Wang X. Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Am J Cancer Res 2020; 10:6928-6945. [PMID: 32550913 PMCID: PMC7295065 DOI: 10.7150/thno.43811] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Cisplatin derivatives are first-line chemotherapeutic agents for epithelial ovarian cancer. However, chemoresistance remains a major hurdle for successful therapy and the underlying molecular mechanisms are poorly understood at present. Methods: RNA sequencing of organoids (PDO) established from cisplatin-sensitive and -resistant ovarian cancer tissue samples was performed. Glucose metabolism, cell senescence, and chemosensitivity properties were subsequently examined. Immunoprecipitation, mass spectrometry, Fӧrster resonance energy transfer-fluorescence lifetime imaging (FRET-FLIM), luciferase reporter assay, ChIP and animal experiments were conducted to gain insights into the specific functions and mechanisms of action of the serine/threonine kinase, Aurora-A, in ovarian cancer. Results: Aurora-A levels were significantly enhanced in cisplatin-resistant PDO. Furthermore, Aurora-A promoted chemoresistance through suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Mechanistically, Aurora-A bound directly to the transcription factor sex determining region Y-box 8 (SOX8) and phosphorylated the Ser327 site, in turn, regulating genes related to cell senescence and glycolysis, including hTERT, P16, LDHA and HK2, through enhancement of forkhead-box k1 (FOXK1) expression. Conclusions: Aurora-A regulates cell senescence and glucose metabolism to induce cisplatin resistance by participating in the SOX8/FOXK1 signaling axis in ovarian cancer. Our collective findings highlight a novel mechanism of cisplatin resistance and present potential therapeutic targets to overcome chemoresistance in ovarian cancer.
Collapse
|
7
|
Li Z, Cheng Z, Raghothama C, Cui Z, Liu K, Li X, Jiang C, Jiang W, Tan M, Ni X, Pandey A, Liu JO, Dang Y. USP9X controls translation efficiency via deubiquitination of eukaryotic translation initiation factor 4A1. Nucleic Acids Res 2019; 46:823-839. [PMID: 29228324 PMCID: PMC5778534 DOI: 10.1093/nar/gkx1226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Controlling translation initiation is an efficient way to regulate gene expression at the post-transcriptional level. However, current knowledge regarding regulatory proteins and their modes of controlling translation initiation is still limited. In this study, we employed tandem affinity purification and mass spectrometry to screen for unknown proteins associated with the translation initiation machinery. Ubiquitin specific peptidase 9, X-linked (USP9X), was identified as a novel binding partner, that interacts with the eukaryotic translation initiation factor 4B (eIF4B) in a mRNA-independent manner. USP9X-deficient cells presented significantly impaired nascent protein synthesis, cap-dependent translation initiation and cellular proliferation. USP9X can selectively alter the translation of pro-oncogenic mRNAs, such as c-Myc and XIAP. Moreover, we found that eIF4A1, which is primarily ubiquitinated at Lys-369, is the substrate of USP9X. USP9X dysfunction increases the ubiquitination of eIF4A1 and enhances its degradation. Our results provide evidence that USP9X is a novel regulator of the translation initiation process via deubiquitination of eIF4A1, which offers new insight in understanding the pivotal role of USP9X in human malignancies and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zengxia Li
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao Cheng
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Chaerkady Raghothama
- McKusick-Nathans Institute of Genetic Medicine and the Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhaomeng Cui
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Kaiyu Liu
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojing Li
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Chenxiao Jiang
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Ni
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IAD, Fudan University, Shanghai 200032, China
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine and the Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jun O Liu
- Department of Pharmacology & Molecular Sciences and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yongjun Dang
- Key Laboratory of Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, Shanghai Medical College & Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Cheng L, Yuan B, Ying S, Niu C, Mai H, Guan X, Yang X, Teng Y, Lin J, Huang J, Jin R, Wu J, Liu B, Chang S, Wang E, Zhang C, Hou N, Cheng X, Xu D, Yang X, Gao S, Ye Q. PES1 is a critical component of telomerase assembly and regulates cellular senescence. SCIENCE ADVANCES 2019; 5:eaav1090. [PMID: 31106266 PMCID: PMC6520020 DOI: 10.1126/sciadv.aav1090] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
Telomerase defers the onset of telomere shortening and cellular senescence by adding telomeric repeat DNA to chromosome ends, and its activation contributes to carcinogenesis. Telomerase minimally consists of the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR). However, how telomerase assembles is largely unknown. Here, we demonstrate that PES1 (Pescadillo), a protein overexpressed in many cancers, forms a complex with TERT and TR through direct interaction with TERT, regulating telomerase activity, telomere length maintenance, and senescence. PES1 does not interact with the previously reported telomerase components Reptin, Pontin, p23, and Hsp90. PES1 facilitates telomerase assembly by promoting direct interaction between TERT and TR without affecting TERT and TR levels. PES1 expression correlates positively with telomerase activity and negatively with senescence in patients with breast cancer. Thus, we identify a previously unknown telomerase complex, and targeting PES1 may open a new avenue for cancer therapy.
Collapse
Affiliation(s)
- Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Bin Yuan
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sunyang Ying
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Chang Niu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongxu Mai
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Xin Guan
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Xiaohui Yang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100048, China
| | - Junjian Huang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Rui Jin
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shaohong Chang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Enqun Wang
- Department of Stomatology, Anqing Municipal Hospital of Anhui Medical University, Anqing, Anhui 246003, China
| | - Chunxia Zhang
- Department of Stomatology, Anqing Municipal Hospital of Anhui Medical University, Anqing, Anhui 246003, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Danyang Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Corresponding author. (Q.Y.); (S.G.); (X.Y.)
| | - Shan Gao
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Corresponding author. (Q.Y.); (S.G.); (X.Y.)
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Corresponding author. (Q.Y.); (S.G.); (X.Y.)
| |
Collapse
|
9
|
Li L, Liang Y, Kang L, Liu Y, Gao S, Chen S, Li Y, You W, Dong Q, Hong T, Yan Z, Jin S, Wang T, Zhao W, Mai H, Huang J, Han X, Ji Q, Song Q, Yang C, Zhao S, Xu X, Ye Q. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1. Cancer Cell 2018; 33:368-385.e7. [PMID: 29455928 DOI: 10.1016/j.ccell.2018.01.010] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Abstract
Aerobic glycolysis (the Warburg effect) facilitates tumor growth, and drugs targeting aerobic glycolysis are being developed. However, how the Warburg effect is directly regulated is largely unknown. Here we show that transcription factor SIX1 directly increases the expression of many glycolytic genes, promoting the Warburg effect and tumor growth in vitro and in vivo. SIX1 regulates glycolysis through HBO1 and AIB1 histone acetyltransferases. Cancer-related SIX1 mutation increases its ability to promote aerobic glycolysis and tumor growth. SIX1 glycolytic function is directly repressed by microRNA-548a-3p, which is downregulated, inversely correlates with SIX1, and is a good predictor of prognosis in breast cancer patients. Thus, the microRNA-548a-3p/SIX1 axis strongly links aerobic glycolysis to carcinogenesis and may become a promising cancer therapeutic target.
Collapse
Affiliation(s)
- Ling Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Yingchun Liang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Lei Kang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yang Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Thoracic Surgery, PLA General Hospital, Beijing 100853, China
| | - Shan Gao
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Siyu Chen
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Thoracic Surgery, PLA General Hospital, Beijing 100853, China
| | - Ying Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Oncology, PLA General Hospital, Beijing 100853, China
| | - Wenye You
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Oncology, PLA General Hospital, Beijing 100853, China
| | - Qian Dong
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Tian Hong
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Zhifeng Yan
- Department of Gynecology and Obstetrics, PLA General Hospital, Beijing 100853, China
| | - Shuai Jin
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Thoracic Surgery, PLA General Hospital, Beijing 100853, China
| | - Tao Wang
- Department of Oncology, 307 Hospital of People's Liberation Army, Beijing 100071, China
| | - Wei Zhao
- Department of Oncology, General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Haixing Mai
- Department of Urology, 307 Hospital of People's Liberation Army, Beijing 100071, China
| | - Jun Huang
- Department of Urology, 307 Hospital of People's Liberation Army, Beijing 100071, China
| | - Xiao Han
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Quanbo Ji
- Department of Orthopedics, PLA General Hospital, Beijing 100853, China
| | - Qi Song
- Department of Oncology, PLA General Hospital, Beijing 100853, China
| | - Chao Yang
- Department of Oncology, General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Shixin Zhao
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China.
| |
Collapse
|
10
|
NLRP3 Phosphorylation Is an Essential Priming Event for Inflammasome Activation. Mol Cell 2017; 68:185-197.e6. [PMID: 28943315 DOI: 10.1016/j.molcel.2017.08.017] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/11/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022]
Abstract
Many infections and stress signals can rapidly activate the NLRP3 inflammasome to elicit robust inflammatory responses. This activation requires a priming step, which is thought to be mainly for upregulating NLRP3 transcription. However, recent studies report that the NLRP3 inflammasome can be activated independently of transcription, suggesting that the priming process has unknown essential regulatory steps. Here, we report that JNK1-mediated NLRP3 phosphorylation at S194 is a critical priming event and is essential for NLRP3 inflammasome activation. We show that NLRP3 inflammasome activation is disrupted in NLRP3-S194A knockin mice. JNK1-mediated NLRP3 S194 phosphorylation is critical for NLRP3 deubiquitination and facilitates its self-association and the subsequent inflammasome assembly. Importantly, we demonstrate that blocking S194 phosphorylation prevents NLRP3 inflammasome activation in cryopyrin-associated periodic syndromes (CAPS). Thus, our study reveals a key priming molecular event that is a prerequisite for NLRP3 inflammasome activation. Inhibiting NLRP3 phosphorylation could be an effective treatment for NLRP3-related diseases.
Collapse
|
11
|
Abstract
Low temperature can greatly restrict the growth and development of rice. The rice seedlings show growth retardation, lamina wrap, and part of blade even died under the condition of low temperature. In order to get more information about cold stress responses in rice, two dimensional electrophoresis and bioinformatics analysis of mass spectrometry were used to preliminary survey the cold tolerance of cold sensitive line 9311 and cold resistance variety Fujisaka 5 under cold stress. Two dimensional electrophoresis maps of 9311 and Fujisaka 5 were established under cold treatment. With analysis of bioinformation, the proteins were found involve in many aspects of rice development. The largest category of proteins is functioning on metabolism. By comparing the proteins from the two varieties, it can be found that most proteins from 9311 were down-regulated and were up-regulated in Fujisaka 5. The results showed that the membrane composition and structure were damaged, metabolism changed dramatically and rice defense system was activated under the cold stimulation. Fifty-nine proteins related to the resistance of cold stress were identified in our study, and we have investigated and classified all of their biological functions. The importance of our study are providing some conduct for the research of rice resistant to cold stress, supporting auxiliary technique for rice varieties and widening the search field of cold tolerance in plants.
Collapse
|
12
|
Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:7316725. [PMID: 28053595 PMCID: PMC5178350 DOI: 10.1155/2016/7316725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/27/2016] [Accepted: 11/06/2016] [Indexed: 11/17/2022]
Abstract
Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies.
Collapse
|
13
|
Singh S, Dubey VK. Quantitative Proteome Analysis of Leishmania donovani under Spermidine Starvation. PLoS One 2016; 11:e0154262. [PMID: 27123864 PMCID: PMC4849798 DOI: 10.1371/journal.pone.0154262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
We have earlier reported antileishmanial activity of hypericin by spermidine starvation. In the current report, we have used label free proteome quantitation approach to identify differentially modulated proteins after hypericin treatment. A total of 141 proteins were found to be differentially regulated with ANOVA P value less than 0.05 in hypericin treated Leishmania promastigotes. Differentially modulated proteins have been broadly classified under nine major categories. Increase in ribosomal protein S7 protein suggests the repression of translation. Inhibition of proteins related to ubiquitin proteasome system, RNA binding protein and translation initiation factor also suggests altered translation. We have also observed increased expression of Hsp 90, Hsp 83-1 and stress inducible protein 1. Significant decreased level of cyclophilin was observed. These stress related protein could be cellular response of the parasite towards hypericin induced cellular stress. Also, defective metabolism, biosynthesis and replication of nucleic acids, flagellar movement and signalling of the parasite were observed as indicated by altered expression of proteins involved in these pathways. The data was analyzed rigorously to get further insight into hypericin induced parasitic death.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India- 781039
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India- 781039
| |
Collapse
|
14
|
Lu XJ, Zhang XL, Mei M, Liu GL, Ma BB. Proteomic analysis of Magnolia sieboldii K. Koch seed germination. J Proteomics 2016; 133:76-85. [DOI: 10.1016/j.jprot.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 11/29/2022]
|
15
|
NEDD4 ubiquitinates TRAF3 to promote CD40-mediated AKT activation. Nat Commun 2014; 5:4513. [PMID: 25072696 DOI: 10.1038/ncomms5513] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/25/2014] [Indexed: 01/16/2023] Open
Abstract
CD40, a member of tumour necrosis factor receptor (TNFR) superfamily, has a pivotal role in B-cell-mediated immunity through various effector pathways including AKT kinase, but the signal transduction of CD40-meidated AKT activation is poorly understood. Here we report that the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4), homologous to E6-AP Carboxyl Terminus family E3 ubiquitin ligase, is a novel component of the CD40 signalling complex. It has a key role in CD40-mediated AKT activation and is involved in modulating immunoglobulin class switch through regulating the expression of activation-induced cytidine deaminase. NEDD4 constitutively interacts with CD40 and mediates K63-linked ubiquitination of TNFR-associated factor3 (TRAF3). The ubiquitination of TRAF3 by NEDD4 is critical for CD40-mediated AKT activation. Thus, NEDD4 is a previously unknown component of the CD40 signalling complex necessary for AKT activation.
Collapse
|
16
|
Belda-Palazón B, Nohales MA, Rambla JL, Aceña JL, Delgado O, Fustero S, Martínez MC, Granell A, Carbonell J, Ferrando A. Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation. FRONTIERS IN PLANT SCIENCE 2014; 5:202. [PMID: 24904603 PMCID: PMC4032925 DOI: 10.3389/fpls.2014.00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/24/2014] [Indexed: 05/08/2023]
Abstract
The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by the sequential action of the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The crucial molecular function of eIF5A during translation has been recently elucidated in yeast and it is expected to be fully conserved in every eukaryotic cell, however the functional description of this pathway in plants is still sparse. The genetic approaches with transgenic plants for either eIF5A overexpression or antisense have revealed some activities related to the control of cell death processes but the molecular details remain to be characterized. One important aspect of fully understanding this pathway is the biochemical description of the hypusine modification system. Here we have used recombinant eIF5A proteins either modified by hypusination or non-modified to establish a bi-dimensional electrophoresis (2D-E) profile for the three eIF5A protein isoforms and their hypusinated or unmodified proteoforms present in Arabidopsis thaliana. The combined use of the recombinant 2D-E profile together with 2D-E/western blot analysis from whole plant extracts has provided a quantitative approach to measure the hypusination status of eIF5A. We have used this information to demonstrate that treatment with the hormone abscisic acid produces an alteration of the hypusine modification system in Arabidopsis thaliana. Overall this study presents the first biochemical description of the post-translational modification of eIF5A by hypusination which will be functionally relevant for future studies related to the characterization of this pathway in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
| | - María A. Nohales
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
| | - José L. Rambla
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
| | - José L. Aceña
- Centro de Investigación Príncipe FelipeValencia, Spain
| | - Oscar Delgado
- Centro de Investigación Príncipe FelipeValencia, Spain
| | - Santos Fustero
- Centro de Investigación Príncipe FelipeValencia, Spain
- Departamento de Química Orgánica, Universidad de ValenciaValencia, Spain
| | - M. Carmen Martínez
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
| | - Juan Carbonell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de ValenciaValencia, Spain
- *Correspondence: Alejandro Ferrando, Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, C/Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain e-mail:
| |
Collapse
|
17
|
Hanauske-Abel HM, Saxena D, Palumbo PE, Hanauske AR, Luchessi AD, Cambiaghi TD, Hoque M, Spino M, Gandolfi DD, Heller DS, Singh S, Park MH, Cracchiolo BM, Tricta F, Connelly J, Popowicz AM, Cone RA, Holland B, Pe’ery T, Mathews MB. Drug-induced reactivation of apoptosis abrogates HIV-1 infection. PLoS One 2013; 8:e74414. [PMID: 24086341 PMCID: PMC3781084 DOI: 10.1371/journal.pone.0074414] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal antivirals that eliminate viral infection by destroying infected cells. A drug-based drug discovery program, based on these compounds, is warranted to determine the potential of such agents in clinical trials of HIV-infected patients.
Collapse
Affiliation(s)
- Hartmut M. Hanauske-Abel
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Deepti Saxena
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Paul E. Palumbo
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Axel-Rainer Hanauske
- Oncology Center and Medical Clinic III, Asklepios Clinic St. George, Hamburg, Germany
| | - Augusto D. Luchessi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tavane D. Cambiaghi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Mainul Hoque
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ApoPharma Inc., Toronto, Ontario, Canada
| | | | - Debra S. Heller
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sukhwinder Singh
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute for Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Bernadette M. Cracchiolo
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | | | | | - Anthony M. Popowicz
- Department of Information Technology, Rockefeller University, New York, New York, United States of America
| | - Richard A. Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bart Holland
- Department of Preventive Medicine & Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tsafi Pe’ery
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael B. Mathews
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
18
|
Abstract
The plant cytotoxin ricin enters mammalian cells by receptor-mediated endocytosis, undergoing retrograde transport to the ER (endoplasmic reticulum) where its catalytic A chain (RTA) is reductively separated from the holotoxin to enter the cytosol and inactivate ribosomes. The currently accepted model is that the bulk of ER-dislocated RTA is degraded by proteasomes. We show in the present study that the proteasome has a more complex role in ricin intoxication than previously recognized, that the previously reported increase in sensitivity of mammalian cells to ricin in the presence of proteasome inhibitors simply reflects toxicity of the inhibitors themselves, and that RTA is a very poor substrate for proteasomal degradation. Denatured RTA and casein compete for a binding site on the regulatory particle of the 26S proteasome, but their fates differ. Casein is degraded, but the mammalian 26S proteasome AAA (ATPase associated with various cellular activities)-ATPase subunit RPT5 acts as a chaperone that prevents aggregation of denatured RTA and stimulates recovery of catalytic RTA activity in vitro. Furthermore, in vivo, the ATPase activity of Rpt5p is required for maximal toxicity of RTA dislocated from the Saccharomyces cerevisiae ER. The results of the present study implicate RPT5/Rpt5p in the triage of substrates in which either activation (folding) or inactivation (degradation) pathways may be initiated.
Collapse
|
19
|
Guo SJ, Qi CH, Zhou WX, Zhang YX, Zhang XM, Wang J, Wang HX. Proteomic data show an increase in autoantibodies and alpha-fetoprotein and a decrease in apolipoprotein A-II with time in sera from senescence-accelerated mice. Braz J Med Biol Res 2013; 46:417-25. [PMID: 23588375 PMCID: PMC3854399 DOI: 10.1590/1414-431x20132663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/04/2013] [Indexed: 11/22/2022] Open
Abstract
We evaluated changes in levels by comparing serum proteins in
senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of
age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched
SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by
2-dimensional electrophoresis combined with mass spectrometry. Five protein
spots were present in all SAMP8 serum samples, but only appeared in SAMR1
samples at 15 months of age except for spot 3, which also showed a slight
expression in SAMR1-12 m sera. Two proteins decreased in the sera from
SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots
each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8
sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413),
chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase
(32C2_A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4
antibody, which inhibits T cell proliferation. We found that M-T413 RNA level
was significantly enhanced in splenocytes from SAMP8-2 m mice. This
agreed with serum M-T413 protein alterations and a strikingly lower blood
CD4+ T cell count in SAMP8 mice when compared to the
age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413
protein volume. Age-related changes in serum proteins favored an increase in
autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II,
which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may
serve as candidate biomarkers for early aging.
Collapse
Affiliation(s)
- S J Guo
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Caraglia M, Park MH, Wolff EC, Marra M, Abbruzzese A. eIF5A isoforms and cancer: two brothers for two functions? Amino Acids 2013; 44:103-9. [PMID: 22139412 PMCID: PMC3536922 DOI: 10.1007/s00726-011-1182-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/22/2011] [Indexed: 12/11/2022]
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unusual amino acid hypusine [N(ε)-(4-amino-2-hydroxybutyl)lysine]. The role of hypusine formation in the eIF5A protein in the regulation of cell proliferation and apoptosis is addressed in the present review. Moreover, vertebrates carry two genes that encode two eIF5A isoforms, eIF5A-1 and eIF5A-2, which, in humans, are 84% identical. However, the biological functions of these two isoforms may be significantly different. In fact, eIF5A-1 is demonstrable in most cells of different histogenesis, whereas eIF5A-2 protein is detectable only in certain human cancer cells or tissues, suggesting its role as a potential oncogene. In this review we focus our attention on the involvement of eIF5A-1 in the triggering of an apoptotic program and in the regulation of cell proliferation. In addition, the potential oncogenic role and prognostic significance of eIF5A-2 in the prediction of the survival of cancer patients is described. eIF5A-1 and/or the eIF5A-2 isoform may serve as a new molecular diagnostic or prognostic marker or as a molecular target for anti-cancer therapy.
Collapse
Affiliation(s)
- M Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Via Costantinopoli, 16, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
21
|
Alpha-Dystrobrevin and its associated proteins in human promyelocytic leukemia cells induced to apoptosis. J Proteomics 2012; 75:3291-303. [PMID: 22507200 DOI: 10.1016/j.jprot.2012.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 12/13/2022]
Abstract
Dystrobrevin is a dystrophin-related component of the dystrophin-associated protein complex (DAPC). Using alpha-dystrobrevin as indicator, we aimed to elucidate the interaction network of the DAPC with other proteins during apoptosis of promyelocytic HL-60 cells. The precise role(s) of DBs are not known, but we and others have shown that they play a role in intracellular signal transduction and cellular organization. Apoptosis was induced with etoposide in the absence or presence of Z-VAD to block caspase activity, and we then followed the cellular distribution of α-DB and its association with other proteins, using confocal imaging and cell fractions analyses after immune-precipitation with anti-α-DB and mass spectrometry. Confocal imaging revealed distinct spatial relocalizations of α-DB between the cell membrane, cytosol and nucleus after induction of apoptosis. The expression levels of the identified proteins were evaluated with computer-assisted image analysis of the gels. We thus identified associations with structural and transport proteins (tropomyosin, myosin), membrane (ADAM21, syntrophin), ER-Golgi (TGN51, eIF38) and nuclear (Lamins, ribonucleoprotein C1/C2) proteins. These results suggest that apoptosis-induction in HL-60 cells involves not only classical markers of apoptosis but also a network α-DB-associated proteins at the cell membrane, the cytoplasm and nucleus, affecting key cellular transport processes and cellular structure.
Collapse
|
22
|
Zhen Y, Zhao ZZ, Zheng RH, Shi J. Proteomic analysis of early seed development in Pinus massoniana L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 54:97-104. [PMID: 22391127 DOI: 10.1016/j.plaphy.2012.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/06/2012] [Indexed: 05/13/2023]
Abstract
Understanding seed development is important for large-scale propagation and germplasm conservation for the Masson pine. We undertook a proteomic analysis of Masson pine seeds during the early stages of embryogenesis. Two-dimensional difference gel electrophoresis (2D DIGE) was used to quantify the differences in protein expression during early seed development. Using electrospray ionization mass spectrometry/mass spectrometry, we identified proteins from 43 gel spots that had been excised from preparative "pick" gels. Proteins involved in carbon metabolism were identified and were predominantly expressed at higher levels during the cleavage polyembryony and columnar embryo stages. Functional annotation of one seed protein revealed it involvement in programmed cell death and translation of selective mRNAs, which may play an important role in subordinate embryo elimination and suspensor degeneration in polyembryonic seed gymnosperms. Other identified proteins were associated with protein folding, nitrogen metabolism, disease/defense response, and protein storage, synthesis and stabilization. The comprehensive protein expression profiles generated by this study will provide new insights into the complex developmental process of seed development in Masson pine.
Collapse
Affiliation(s)
- Yan Zhen
- Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing 210037, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Comparative proteomics in acute myeloid leukemia. Contemp Oncol (Pozn) 2012; 16:95-103. [PMID: 23788862 PMCID: PMC3687393 DOI: 10.5114/wo.2012.28787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/25/2011] [Accepted: 02/13/2012] [Indexed: 01/22/2023] Open
Abstract
The term proteomics was used for the first time in 1995 to describe large-scale protein analyses. At the same time proteomics was distinguished as a new domain of the life sciences. The major object of proteomic studies is the proteome, i.e. the set of all proteins accumulating in a given cell, tissue or organ. During the last years several new methods and techniques have been developed to increase the fidelity and efficacy of proteomic analyses. The most widely used are two-dimensional electrophoresis (2DE) and mass spectrometry (MS). In the past decade proteomic analyses have also been successfully applied in biomedical research. They allow one to determine how various diseases affect the pattern of protein accumulation. In this paper, we attempt to summarize the results of the proteomic analyses of acute myeloid leukemia (AML) cells. They have increased our knowledge on the mechanisms underlying AML development and contributed to progress in AML diagnostics and treatment.
Collapse
|
24
|
Cdk1-phosphorylated CUEDC2 promotes spindle checkpoint inactivation and chromosomal instability. Nat Cell Biol 2011; 13:924-33. [DOI: 10.1038/ncb2287] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/01/2011] [Indexed: 12/17/2022]
|
25
|
Wierzba K, Muroi M, Osada H. Proteomics accelerating the identification of the target molecule of bioactive small molecules. Curr Opin Chem Biol 2011; 15:57-65. [DOI: 10.1016/j.cbpa.2010.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/08/2010] [Indexed: 12/29/2022]
|
26
|
Henderson MJ, Singh OV, Zeitlin PL. Applications of proteomic technologies for understanding the premature proteolysis of CFTR. Expert Rev Proteomics 2010; 7:473-86. [PMID: 20653504 DOI: 10.1586/epr.10.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ATP-dependent anion channel. Disease-causing mutations can affect channel biogenesis, trafficking or function, and result in reduced ion transport at the apical surface of many tissues. The most common CFTR mutation is a deletion of phenylalanine at position 508 (DeltaF508), which results in a misfolded protein that is prematurely targeted for degradation. This article focuses on how proteomic approaches have been utilized to explore the mechanisms of premature proteolysis in CF. Additionally, we emphasize the potential for proteomic-based technologies in expanding our understanding of CF pathophysiology and therapeutic approaches.
Collapse
Affiliation(s)
- Mark J Henderson
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
27
|
Parreiras-e-Silva LT, Luchessi AD, Reis RI, Oliver C, Jamur MC, Ramos RGP, Oliveira EB, Curi R, Costa-Neto CM. Evidences of a role for eukaryotic translation initiation factor 5A (eIF5A) in mouse embryogenesis and cell differentiation. J Cell Physiol 2010; 225:500-5. [PMID: 20458750 DOI: 10.1002/jcp.22229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) has a unique character: the presence of an unusual amino acid, hypusine, which is formed by post-translational modifications. Even before the identification of hypusination in eIF5A, the correlation between hypusine formation and protein synthesis, shifting cell proliferation rates, had already been observed. Embryogenesis is a complex process in which cellular proliferation and differentiation are intense. In spite of the fact that many studies have described possible functions for eIF5A, its precise role is under investigation, and to date nothing has been reported about its participation in embryonic development. In this study we show that eIF5A is expressed at all mouse embryonic post-implantation stages with increase in eIF5A mRNA and protein expression levels between embryonic days E10.5 and E13.5. Immunohistochemistry revealed the ubiquitous presence of eIF5A in embryonic tissues and organs at E13.5 day. Interestingly, stronger immunoreactivity to eIF5A was observed in the stomodeum, liver, ectoderm, heart, and eye, and the central nervous system; regions which are known to undergo active differentiation at this stage, suggesting a role of eIF5A in differentiation events. Expression analyses of MyoD, a myogenic transcription factor, revealed a significantly higher expression from day E12.5 on, both at the mRNA and the protein levels suggesting a possible correlation to eIF5A. Accordingly, we next evidenced that inhibiting eIF5A hypusination in mouse myoblast C2C12 cells impairs their differentiation into myotubes and decreases MyoD transcript levels. Those results point to a new functional role for eIF5A, relating it to embryogenesis, development, and cell differentiation.
Collapse
Affiliation(s)
- Lucas T Parreiras-e-Silva
- Faculty of Medicine at Ribeirão Preto, Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dynamic expression of proteins associated with adventitial remodeling in adventitial fibroblasts from spontaneously hypertensive rats. Acta Pharmacol Sin 2010; 31:1312-8. [PMID: 20802504 DOI: 10.1038/aps.2010.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AIM To identify proteins that could potentially be involved in adventitial remodeling in vascular adventitial fibroblasts (AFs) from spontaneously hypertensive rats (SHR). METHODS AFs were isolated from thoracic aortas of 4-, 8-, 16-, and 24-week-old male SHR and Wistar-Kyoto (WKY) rats and cultured to passage 4. Proteomic differential expression profiles between SHR-AFs and WKY-AFs were investigated using 2-D electrophoresis (2-DE), whereas gel image analysis was processed using Image Master 2D Platinum. Protein spots were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Expression levels of annexin A1 in AFs and aortas from SHR and WKY rats were detected with Western blotting and immunofluorescence techniques. RESULTS In 4-, 8-, 16-, and 24-week-old SHR-AFs, 49, 59, 54, and 69 protein spots were found to have significant differences from the age-matched WKY-AFs. Fourteen spots with the same changes in patterns were analyzed in 4-, 8-, 16-, and 24-week-old SHR-AFs with mass spectrometry. Except for cytoskeleton proteins such as tubulin beta 5, it was found that annexin A1, translation elongation factor Tu, endoplasmic reticulum protein 29 and calcium-binding protein 1 were expressed in vascular AFs and their levels changed significantly in SHR-AFs compared with those in WKY-AFs. A decrease in annexin A1 in SHR-AFs was confirmed with Western blotting and immunofluorescence staining at the cell and tissue levels. CONCLUSION The application of proteomic techniques revealed a number of novel proteins involved in adventitial remodeling of AFs from SHR, which provide new mechanisms responsible for the occurrence and development of hypertension and potential targets for influencing vascular remodeling in hypertension.
Collapse
|
29
|
Cheng Q, Cao Y, Jiang C, Xu L, Wang M, Zhang S, Huang M. Identifying secreted proteins of Marssonina brunnea by degenerate PCR. Proteomics 2010; 10:2406-17. [PMID: 20391531 DOI: 10.1002/pmic.200900844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marssonina brunnea is an important fungal pathogen of the Populus genus. To further our understanding of the pathogenesis of M. brunnea, we initiated a proteome-level study of the fungal secretome. Using de novo peptide sequencing by MS/MS, we obtained peptide sequences for 32 protein spots. Four proteins were identified by sequence homology to conserved proteins in public databases using MS-driven BLAST. To identify additional protein spots, we combined a degenerate PCR method, based on the Consensus-DEgenerate Hybrid Oligonucleotide Primer (CODEHOP) method, and a rapid amplification of cDNA ends method to clone the full-length cDNA fragments encoding the proteins identified in the gel. Using this method, we cloned the full-length cDNA fragments encoding 11 M. brunnea-specific proteins. This method provides an efficient approach to identification of species-specific proteins of non-sequenced organisms. Furthermore, we analyzed the expression patterns of these genes during infection. We found that most of the identified secreted proteins could be induced in artificial medium after hyphae entered poplar apoplast spaces. We propose that for the host-specialized M. brunnea, the elongation of hyphae has evolved closely with the secretion of apoplastic proteins.
Collapse
Affiliation(s)
- Qiang Cheng
- Nanjing Forestry University, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Li X, Zhang Y, Xie P, Piao J, Hu Y, Chang M, Liu T, Hu L. Proteomic characterization of an isolated fraction of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells might offer clues to aggresomes as a cellular defensive response against proteasome inhibition by PSI. BMC Neurosci 2010; 11:95. [PMID: 20704702 PMCID: PMC2928238 DOI: 10.1186/1471-2202-11-95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 08/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cooperation of constituents of the ubiquitin proteasome system (UPS) with chaperone proteins in degrading proteins mediate a wide range of cellular processes, such as synaptic function and neurotransmission, gene transcription, protein trafficking, mitochondrial function and metabolism, antioxidant defence mechanisms, and apoptotic signal transduction. It is supposed that constituents of the UPS and chaperone proteins are recruited into aggresomes where aberrant and potentially cytotoxic proteins may be sequestered in an inactive form. RESULTS To determinate the proteomic pattern of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells after proteasome inhibition by PSI, we analyzed a fraction of PSI-induced inclusions. A proteomic feature of the isolated fraction was characterized by identification of fifty six proteins including twenty previously reported protein components of Lewy bodies, twenty eight newly identified proteins and eight unknown proteins. These proteins, most of which were recognized as a profile of proteins within cellular processes mediated by the UPS, a profile of constituents of the UPS and a profile of chaperone proteins, are classed into at least nine accepted categories. In addition, prolyl-4-hydroxylase beta polypeptide, an endoplasmic reticulum member of the protein disulfide isomerase family, was validated in the developmental process of PSI-induced inclusions in the cells. CONCLUSIONS It is speculated that proteomic characterization of an isolated fraction of PSI-induced inclusions in PC12 cells might offer clues to appearance of aggresomes serving as a cellular defensive response against proteasome inhibition.
Collapse
Affiliation(s)
- Xing'an Li
- Department of Neurology, The First Affiliated Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sun Z, Cheng Z, Taylor CA, McConkey BJ, Thompson JE. Apoptosis induction by eIF5A1 involves activation of the intrinsic mitochondrial pathway. J Cell Physiol 2010; 223:798-809. [PMID: 20232312 DOI: 10.1002/jcp.22100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The regulatory role of eukaryotic translation initiation factor 5A1 (eIF5A1) in apoptosis was examined using HT-29 and HeLa S3 cells. eIF5A is the only known protein to contain the unusual amino acid, hypusine, and eIF5A1 is one of two human eIF5A family members. Two observations indicated that eIF5A1 is involved in apoptosis. First, siRNA-mediated suppression of eIF5A1 resulted in inhibition of apoptosis induced by various apoptotic stimuli, and second, adenovirus-mediated over-expression of eIF5A1 strongly induced apoptotic cell death. A mutant of eIF5A1 incapable of being hypusinated also induced apoptosis when over-expressed indicating that unhypusinated eIF5A1 is the pro-apoptotic form of the protein. Over-expression of eIF5A1 or of the mutant resulted in loss of mitochondrial transmembrane potential, translocation of Bax to the mitochondria, release of cytochrome c, caspase activation, up-regulation of p53, and up-regulation of Bim, a pro-apoptotic BH3-only Bcl-2 family protein. In addition, Bim(L) and Bim(S), the pro-apoptotic alternative spliced forms of Bim, were induced in response to over-expression of eIF5A1. Thus eIF5A1 appears to induce apoptosis by activating the mitochondrial apoptotic pathway. Proteomic analyses indicated that, of 1,899 proteins detected, 131 showed significant changes in expression (P or=1.5) within 72 h of eIF5A1 up-regulation. Among these are proteins involved in translation and protein folding, transcription factors, proteins mediating proteolysis, and a variety of proteins known to be directly involved in apoptosis. These observations collectively indicate that unhypusinated eIF5A1 plays a central role in the regulation of apoptosis.
Collapse
Affiliation(s)
- Zhong Sun
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Maier B, Ogihara T, Trace AP, Tersey SA, Robbins RD, Chakrabarti SK, Nunemaker CS, Stull ND, Taylor CA, Thompson JE, Dondero RS, Lewis EC, Dinarello CA, Nadler JL, Mirmira RG. The unique hypusine modification of eIF5A promotes islet beta cell inflammation and dysfunction in mice. J Clin Invest 2010; 120:2156-70. [PMID: 20501948 PMCID: PMC2877928 DOI: 10.1172/jci38924] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/10/2010] [Indexed: 12/15/2022] Open
Abstract
In both type 1 and type 2 diabetes, pancreatic islet dysfunction results in part from cytokine-mediated inflammation. The ubiquitous eukaryotic translation initiation factor 5A (eIF5A), which is the only protein to contain the amino acid hypusine, contributes to the production of proinflammatory cytokines. We therefore investigated whether eIF5A participates in the inflammatory cascade leading to islet dysfunction during the development of diabetes. As described herein, we found that eIF5A regulates iNOS levels and that eIF5A depletion as well as the inhibition of hypusination protects against glucose intolerance in inflammatory mouse models of diabetes. We observed that following knockdown of eIF5A expression, mice were resistant to beta cell loss and the development of hyperglycemia in the low-dose streptozotocin model of diabetes. The depletion of eIF5A led to impaired translation of iNOS-encoding mRNA within the islet. A role for the hypusine residue of eIF5A in islet inflammatory responses was suggested by the observation that inhibition of hypusine synthesis reduced translation of iNOS-encoding mRNA in rodent beta cells and human islets and protected mice against the development of glucose intolerance the low-dose streptozotocin model of diabetes. Further analysis revealed that hypusine is required in part for nuclear export of iNOS-encoding mRNA, a process that involved the export protein exportin1. These observations identify the hypusine modification of eIF5A as a potential therapeutic target for preserving islet function under inflammatory conditions.
Collapse
Affiliation(s)
- Bernhard Maier
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Takeshi Ogihara
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anthony P. Trace
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sarah A. Tersey
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Reiesha D. Robbins
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Swarup K. Chakrabarti
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Craig S. Nunemaker
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Natalie D. Stull
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Catherine A. Taylor
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - John E. Thompson
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard S. Dondero
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eli C. Lewis
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Charles A. Dinarello
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jerry L. Nadler
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghavendra G. Mirmira
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Department of Biochemistry and Molecular Genetics and
Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.
Department of Medicine and Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia, USA.
Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.
Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
Senesco Technologies Inc., New Brunswick, New Jersey, USA.
Department of Medicine, University of Colorado, Aurora, Colorado, USA.
Department of Medicine and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
33
|
Chen S, Blank JL, Peters T, Liu XJ, Rappoli DM, Pickard MD, Menon S, Yu J, Driscoll DL, Lingaraj T, Burkhardt AL, Chen W, Garcia K, Sappal DS, Gray J, Hales P, Leroy PJ, Ringeling J, Rabino C, Spelman JJ, Morgenstern JP, Lightcap ES. Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Res 2010; 70:4318-26. [PMID: 20460535 DOI: 10.1158/0008-5472.can-09-4428] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multiple pathways have been proposed to explain how proteasome inhibition induces cell death, but mechanisms remain unclear. To approach this issue, we performed a genome-wide siRNA screen to evaluate the genetic determinants that confer sensitivity to bortezomib (Velcade (R); PS-341). This screen identified 100 genes whose knockdown affected lethality to bortezomib and to a structurally diverse set of other proteasome inhibitors. A comparison of three cell lines revealed that 39 of 100 genes were commonly linked to cell death. We causally linked bortezomib-induced cell death to the accumulation of ASF1B, Myc, ODC1, Noxa, BNIP3, Gadd45alpha, p-SMC1A, SREBF1, and p53. Our results suggest that proteasome inhibition promotes cell death primarily by dysregulating Myc and polyamines, interfering with protein translation, and disrupting essential DNA damage repair pathways, leading to programmed cell death.
Collapse
Affiliation(s)
- Siquan Chen
- Discovery Technologies, Discovery Oncology Biology, and Medical Biostatistics, Millennium Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu Q, Liang X, Hu D, Chen P, Tian J, Zhang H. Purification and characterization of two major selenium-containing proteins in selenium-rich silkworm pupas. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11458-009-0109-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Santamaría E, Mora MI, Muñoz J, Sánchez-Quiles V, Fernández-Irigoyen J, Prieto J, Corrales FJ. Regulation of stathmin phosphorylation in mouse liver progenitor-29 cells during proteasome inhibition. Proteomics 2009; 9:4495-506. [DOI: 10.1002/pmic.200900110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Jeon S, Kim YJ, Kim ST, Moon W, Chae Y, Kang M, Chung MY, Lee H, Hong MS, Chung JH, Joh TH, Lee H, Park HJ. Proteomic analysis of the neuroprotective mechanisms of acupuncture treatment in a Parkinson's disease mouse model. Proteomics 2008; 8:4822-32. [DOI: 10.1002/pmic.200700955] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Luchessi AD, Cambiaghi TD, Alves AS, Parreiras-E-Silva LT, Britto LRG, Costa-Neto CM, Curi R. Insights on eukaryotic translation initiation factor 5A (eIF5A) in the brain and aging. Brain Res 2008; 1228:6-13. [PMID: 18606156 DOI: 10.1016/j.brainres.2008.06.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/28/2008] [Accepted: 06/13/2008] [Indexed: 12/24/2022]
Abstract
Long-term memory, a persistent form of synaptic plasticity, requires translation of a subset of mRNA present in neuronal dendrites during a short and critical period through a mechanism not yet fully elucidated. Western blotting analysis revealed a high content of eukaryotic translation initiation factor 5A (eIF5A) in the brain of neonatal rats, a period of intense neurogenesis rate, differentiation and synaptic establishment, when compared to adult rats. Immunohistochemistry analysis revealed that eIF5A is present in the whole brain of adult rats showing a variable content among the cells from different areas (e.g. cortex, hippocampus and cerebellum). A high content of eIF5A in the soma and dendrites of Purkinje cells, key neurons in the control of motor long-term memory in the cerebellum, was observed. Detection of high eIF5A content was revealed in dendritic varicosities of Purkinje cells. Evidence is presented herein that a reduction of eIF5A content is associated to brain aging.
Collapse
Affiliation(s)
- Augusto D Luchessi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av Prof Lineu Prestes, São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
38
|
Frigieri MC, João Luiz MVS, Apponi LH, Zanelli CF, Valentini SR. Synthetic lethality between eIF5A and Ypt1 reveals a connection between translation and the secretory pathway in yeast. Mol Genet Genomics 2008; 280:211-21. [PMID: 18568365 DOI: 10.1007/s00438-008-0357-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 06/03/2008] [Indexed: 12/27/2022]
Abstract
The putative translation initiation factor 5A (eIF5A) is a small protein, highly conserved and essential in all organisms from archaea to mammals. Although the involvement of eIF5A in translation initiation has been questioned, new evidence reestablished the connection between eIF5A and this cellular process. In order to better understand the function of elF5A, a screen for synthetic lethal gene using the tif51A-3 mutant was carried out and a new mutation (G80D) was found in the essential gene YPT1, encoding a protein involved in vesicular trafficking. The precursor form of the vacuolar protein CPY is accumulated in the ypt1-G80D mutant at the nonpermissive temperature, but this defect in vesicular trafficking did not occur in the tif51A mutants tested. Overexpression of eIF5A suppresses the growth defect of a series of ypt1 mutants, but this suppression does not restore correct CPY sorting. On the other hand, overexpression of YPT1 does not suppress the growth defect of tif51A mutants. Further, it was revealed that eIF-5A is present in both soluble and membrane fractions, and its membrane association is ribosome-dependent. Finally, we demonstrated that the ypt1 and other secretion pathway mutants are sensitive to paromomycin. These results confirm the link between translation and vesicular trafficking and reinforce the implication of eIF5A in protein synthesis.
Collapse
Affiliation(s)
- Mariana C Frigieri
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Rod Araraquara-Jaú, km 1, Araraquara, SP, Brazil
| | | | | | | | | |
Collapse
|
39
|
Li H, Miao J, Cui F, Li G. Characterization of cupric glutamate extinguishing mechanism of Alexandrium sp. LC3 with two-dimensional electrophoresis and MALDI-TOF MS. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:527-537. [PMID: 18449603 DOI: 10.1007/s10126-008-9091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 02/04/2008] [Accepted: 02/26/2008] [Indexed: 05/26/2023]
Abstract
Mechanisms by which cupric glutamate, a novel algicide, extinguishes Alexandrium sp. LC3 are shown in this study. We show that cupric glutamate not only stimulated the production of malonaldehyde (MDA) and dramatically promoted cell plasma membrane permeability (p < 0.01) but also remarkably reduced sulfhydryl (SH) group content (p < 0.01). Analysis of protein expression profiles by two-dimensional electrophoresis (2-DE) indicated that only 47 protein spots were detected in both control and cupric glutamate treated cells. Three reliable spots were identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) as ribulose-bisphosphate carboxylase large subunit precursor, RNA polymerase beta chain, and hypothetical protein, which can be well correlated with cupric glutamate stress. Based on above results, we hypothesize that the extinguishing mechanisms include (1) the cell membrane being damaged by cupric glutamate; (2) cupric glutamate probably induced denaturation and disintegration of intracellular protein, which led to inhibition of cell growth.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Marine Biological Active Substances, SOA., 6 Xian Xia-ling Road, Hi-Tech Park, Qingdao 266061, China.
| | | | | | | |
Collapse
|
40
|
Fischer DF, van Dijk R, van Tijn P, Hobo B, Verhage MC, van der Schors RC, Li KW, van Minnen J, Hol EM, van Leeuwen FW. Long-term proteasome dysfunction in the mouse brain by expression of aberrant ubiquitin. Neurobiol Aging 2008; 30:847-63. [PMID: 18760506 DOI: 10.1016/j.neurobiolaging.2008.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/28/2008] [Accepted: 06/18/2008] [Indexed: 02/06/2023]
Abstract
Many neurodegenerative diseases are characterized by deposits of ubiquitinated and aberrant proteins, suggesting a failure of the ubiquitin-proteasome system (UPS). The aberrant ubiquitin UBB(+1) is one of the ubiquitinated proteins accumulating in tauopathies such as Alzheimer's disease (AD) and polyglutamine diseases such as Huntington's disease. We have generated UBB(+1) transgenic mouse lines with post-natal neuronal expression of UBB(+1), resulting in increased levels of ubiquitinated proteins in the cortex. Moreover, by proteomic analysis, we identified expression changes in proteins involved in energy metabolism or organization of the cytoskeleton. These changes show a striking resemblance to the proteomic profiles of both AD brain and several AD mouse models. Moreover, UBB(+1) transgenic mice show a deficit in contextual memory in both water maze and fear conditioning paradigms. Although UBB(+1) partially inhibits the UPS in the cortex, these mice do not have an overt neurological phenotype. These mouse models do not replicate the full spectrum of AD-related changes, yet provide a tool to understand how the UPS is involved in AD pathological changes and in memory formation.
Collapse
Affiliation(s)
- David F Fischer
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Z, Yang X, Fu Y, Zhang Y, Yan J, Song T, Rocheford T, Li J. Proteomic analysis of early germs with high-oil and normal inbred lines in maize. Mol Biol Rep 2008; 36:813-21. [PMID: 18523866 DOI: 10.1007/s11033-008-9250-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 04/01/2008] [Indexed: 12/21/2022]
Abstract
High-oil maize as a product of long-term selection provides a unique resource for functional genomics. In this study, the abundant soluble proteins of early developing germs from high-oil and normal lines of maize were compared using two-dimensional gel electrophoresis (2-DGE) in combination with mass spectrometry (MS). More than 1100 protein spots were detected on electrophoresis maps of both high-oil and normal lines by using silver staining method. A total of 83 protein spots showed significant differential expression (>two-fold change; t-test: P < 0.05) between high-oil and normal inbred lines. Twenty-seven protein spots including 25 non-redundant proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Functional categorization of these proteins was carbohydrate metabolism, cytoskeleton, protein metabolism, stress response, and lipid metabolism. Three such proteins involved in lipid metabolism, namely putative enoyl-ACP reductase (ENR), putative stearoyl-ACP desaturase (SAD) and putative acetyl-CoA C-acyltransferase (ACA), had more abundant expressions in high-oil lines than in normal. At the mRNA expression level, SAD, ENR and ACA were expressed at significantly higher levels in high-oil lines than in normal. The results demonstrated that high expressions of SAD, ENR and ACA might be associated to increasing oil concentration in high-oil maize. This study represents the first proteomic analysis of high-oil maize and contributes to a better understanding of the molecular basis of oil accumulation in high-oil maize.
Collapse
Affiliation(s)
- Zhanji Liu
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Choi MR, Najafi F, Safa AR, Drexler HCA. Analysis of changes in the proteome of HL-60 promyeloid leukemia cells induced by the proteasome inhibitor PSI. Biochem Pharmacol 2008; 75:2276-88. [PMID: 18468579 DOI: 10.1016/j.bcp.2008.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 02/07/2023]
Abstract
Proteasome inhibitors display potent anti-neoplastic and anti-angiogenic properties both in vitro and in vivo. The mechanisms, however, by which proteasome inhibitors kill tumor cells are still fairly elusive as is the molecular basis of resistance to treatment. To address these questions, we employed a high-throughput Western blotting procedure to analyze changes in a subproteome of approximately 800 proteins in the promyelocytic leukemia cell line HL-60 upon treatment with the proteasome inhibitor PSI (Z-Ile-Glu(OtBu)-Ala-Leu-aldehyde) and correlated the changes of selected target proteins with the changes in two multidrug-resistant HL-60 variants. In total, 105 proteins were upregulated more than 1.5-fold after PSI treatment, while 79 proteins were downregulated. Activation of caspases-3 and -8, modulation of members of the Bcl-2 family as well as stimulation of stress signaling pathways was prominent during HL-60 apoptosis. We also identified changes in the abundance of proteins previously not known to be affected by proteasome inhibitors. In contrast, two multidrug-resistant HL-60 cell lines, overexpressing either MRP1 or P-glycoprotein were largely resistant to PSI-induced apoptosis and could not be resensitized by the pharmacological inhibitors of the drug efflux pumps MK571 or PSC833. Drug resistance was also independent of the upregulation of Bad. Overexpression of multidrug resistance proteins, P-glycoprotein and MRP-1 is thus not sufficient to explain resistance of HL-60 cells to treatment with proteasome inhibitor PSI, which remains more closely related to a low level of Bax expression and to the inability to activate JNK. Alternative routes to the acquisition of resistance to PSI have therefore to be considered.
Collapse
Affiliation(s)
- Mi-Ran Choi
- Max Planck Institute for Molecular Biomedicine, Department for Vascular Cell Biology, Roentgenstr. 20, 48149 Muenster, Germany.
| | | | | | | |
Collapse
|
43
|
Gruber-Olipitz M, Ströbel T, Chen WQ, Grotzer MA, Quehenberger F, Slavc I, Lubec G. Synthesis, chaperoning, and metabolism of proteins are regulated by NT-3/TrkC signaling in the medulloblastoma cell line DAOY. J Proteome Res 2008; 7:1932-44. [PMID: 18336001 DOI: 10.1021/pr700724a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The human medulloblastoma cell line DAOY was transfected with Tropomyosin receptor kinase (TrkC), a marker for good prognostic outcome. Following TrkC-activation by its ligand neurotrophin-3, protein extracts from DAOY cells were run on 2DE with subsequent MALDI-TOF-TOF analysis and quantification in order to detect downstream effectors. Protein levels of translational, splicing, processing, chaperone, protein handling, and metabolism machineries were shown to depend on neurotrophin-3-induced TrkC activation probably representing pharmacological targets.
Collapse
|
44
|
Wen J, Xia Q, Lu C, Yin L, Hu J, Gong Y, Yin B, Monzen K, Yuan J, Qiang B, Zhang X, Peng X. Proteomic analysis of cardiomyocytes differentiation in mouse embryonic carcinoma P19CL6 cells. J Cell Biochem 2007; 102:149-60. [PMID: 17520663 DOI: 10.1002/jcb.21285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A clonal derivative named P19CL6 has been isolated from pluripotent P19 mouse embryonic carcinoma cells, and this subline efficiently differentiates into beating cardiomyocytes when treated with 1% dimethyl sulfoxide (DMSO). It offers a valuable model to study cardiomyocytes differentiation in vitro. In this study, comparative proteomic analysis was used to characterize the protein profiles associated with the DMSO-induced cardiomyocytes differentiation of P19CL6 cells. We demonstrated that P19CL6 cells indeed differentiated into cardiomyocytes after DMSO inducement as they expressed sarcomeric myosin heavy chain (MHC) as well as three cardiac-specific transcription factors (Csx/Nkx-2.5, GATA-4, and MEF2C). Image analysis of silver-stained two-dimensional gels was used to find protein spots that exhibited an at least 1.5-fold change in abundance after successful differentiation. Seventeen protein spots were selected for further analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS) and/or nano-electrospray ionization MS/MS (ESI-MS/MS), and 16 protein spots were identified. The identified proteins are involved in different cellular functions such as metabolism, signal transduction, and cellular organization. To confirm the expression changes of the identified proteins during differentiation, the mRNA levels of six identified proteins (including seven protein spots) were assessed by the real-time polymerase chain reaction and three showed a correlation between mRNA level and protein abundance. As an initial step toward identifying proteins involved in maintaining the differentiated state of cardiomyocytes derived from P19CL6 cells, our data provide some helpful information that may lead to a better understanding of the molecular mechanisms by which P19CL6 cells differentiate into cardiomyocytes after treatment with DMSO.
Collapse
Affiliation(s)
- Jianyan Wen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, National Human Genome Center, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Elnakady YA, Rohde M, Sasse F, Backes C, Keller A, Lenhof HP, Weissman KJ, Müller R. Evidence for the mode of action of the highly cytotoxic Streptomyces polyketide kendomycin. Chembiochem 2007; 8:1261-72. [PMID: 17592829 DOI: 10.1002/cbic.200700050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The macrocyclic polyketide kendomycin exhibits antiosteoporotic and antibacterial activity, as well as strong cytotoxicity against multiple human tumor cell lines. Despite the promise of this compound in several therapeutic areas, the cellular target(s) of kendomycin have not been identified to date. We have used a number of approaches, including microscopy, proteomics, and bioinformatics, to investigate the mode of action of kendomycin in mammalian cell cultures. In response to kendomycin treatment, human U-937 tumor cells exhibit depolarization of the mitochondrial membrane, caspase 3 activation, and DNA laddering, consistent with induction of the intrinsic apoptotic pathway. To elucidate possible apoptotic triggers, DIGE and MALDI-TOF were used to identify proteins that are differently regulated in U-937 cells relative to controls. Statistical analysis of the proteomics data by the new web-based application GeneTrail highlighted several significant changes in protein expression, most notably among proteasomal regulatory subunits. Overall, the profile of altered expression closely matches that observed with other tumor cell lines in response to proteasome inhibition. Direct assay in vitro further shows that kendomycin inhibits the chymotrypsin-like activity of the rabbit reticulocyte proteasome, with comparable efficacy to the established inhibitor MG-132. We have also demonstrated that ubiquitinylated proteins accumulate in kendomycin-treated U-937 cells, while vacuolization of the endoplasmic reticulum and mitochondrial swelling are induced in a second cell line derived from kangaroo rat epithelial (PtK(2)) cells, phenotypes classically associated with inhibition of the proteasome. This study therefore provides evidence that kendomycin mediates its cytotoxic effects, at least in part, through proteasome inhibition.
Collapse
Affiliation(s)
- Yasser A Elnakady
- Department of Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Duguay J, Jamal S, Liu Z, Wang TW, Thompson JE. Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:408-20. [PMID: 16600425 DOI: 10.1016/j.jplph.2006.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 02/10/2006] [Indexed: 05/08/2023]
Abstract
Deoxyhypusine synthase (DHS) mediates the first of two enzymatic reactions required for the post-translational activation of eukaryotic translation initiation factor 5A (eIF5A), which in turn is thought to facilitate translation of specific mRNAs. Analyses of GUS activity in transgenic Arabidopsis plants expressing the GUS reporter gene under regulation of the promoter for AtDHS revealed that the expression of DHS changes both spatially and temporally as development progresses. In particular, DHS is expressed not only in rosette leaves, but also in the anthers of developing flowers. To determine the role of DHS in leaves, transgenic plants in which DHS was selectively suppressed in rosettes of Arabidopsis plants were prepared. This was achieved by expressing AtDHS 3'-UTR cDNA as a transgene under regulation of the promoter for AtRbcS2, a gene encoding the small subunit of Rubisco. The dominant phenotypic traits of the DHS-suppressed plants proved to be a dramatic enhancement of both vegetative and reproductive growth. As well, the onset of leaf senescence in the DHS-suppressed plants was delayed by approximately 1 week, but there was no change in the timing of bolting. In addition, there was no evidence for the negative pleiotropic effects, including stunted reproductive growth and reduced seed yield, noted previously for transgenic plants in which DHS was constitutively suppressed. The results indicate that DHS plays a pivotal role in both growth and senescence.
Collapse
Affiliation(s)
- Jeremy Duguay
- Department of Biology, University of Waterloo, Waterloo, Ont, Canada
| | | | | | | | | |
Collapse
|
47
|
Taylor CA, Sun Z, Cliche DO, Ming H, Eshaque B, Jin S, Hopkins MT, Thai B, Thompson JE. Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor alpha signalling. Exp Cell Res 2007; 313:437-49. [PMID: 17187778 DOI: 10.1016/j.yexcr.2006.09.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/30/2006] [Accepted: 09/14/2006] [Indexed: 12/19/2022]
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is thought to function as a nucleocytoplasmic shuttle protein. There are reports of its involvement in cell proliferation, and more recently it has also been implicated in the regulation of apoptosis. In the present study, we examined the effects of eIF5A over-expression on apoptosis and of siRNA-mediated suppression of eIF5A on expression of the tumour suppressor protein, p53. Over-expression of either eIF5A or a mutant of eIF5A incapable of being hypusinated was found to induce apoptosis in colon carcinoma cells. Our results also indicate that eIF5A is required for expression of p53 following the induction of apoptosis by treatment with Actinomycin D. Depiction of eIF5A localization by indirect immunofluorescence has indicated, for the first time, that the protein is rapidly translocated from the cytoplasm to the nucleus by death receptor activation or following treatment with Actinomycin D. These findings collectively indicate that unhypusinated eIF5A may have pro-apoptotic functions and that eIF5A is rapidly translocated to the nucleus following the induction of apoptotic cell death.
Collapse
Affiliation(s)
- Catherine A Taylor
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Xie W, Shao N, Ma X, Ling B, Wei Y, Ding Q, Yang G, Liu N, Wang H, Chen K. Bacterial endotoxin lipopolysaccharide induces up-regulation of glyceraldehyde-3-phosphate dehydrogenase in rat liver and lungs. Life Sci 2006; 79:1820-7. [PMID: 16843500 DOI: 10.1016/j.lfs.2006.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/16/2006] [Accepted: 06/10/2006] [Indexed: 11/29/2022]
Abstract
Bacterial endotoxin or lipopolysaccharide (LPS) can trigger inflammatory responses and cause damage in organs such as liver and lungs when it is introduced into mammals, but the exact molecular events that mediate these responses have remained obscure. In this study, by using 2D gel electrophoresis and cDNA microarray analysis, we found that both protein and mRNA levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were significantly increased in rat liver and lungs after treatment with LPS. The results were further confirmed by Western blot and Northern blot. Given the known role of GAPDH in inducing apoptosis, our results suggest that LPS-induced GAPDH up-regulation may be an important mechanism responsible for the damage induced by Gram negative bacteria in mammalian tissue and GAPDH may be involved in the signaling pathway of LPS induced apoptosis. Our results also demonstrate that GAPDH is not a suitable internal control in gene expression studies, especially when bacterial infection is involved.
Collapse
Affiliation(s)
- Wenguang Xie
- Affiliated Hospital, North Sichuan Medical College, Nanchong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cui JW, Li WH, Wang J, Li AL, Li HY, Wang HX, He K, Li W, Kang LH, Yu M, Shen BF, Wang GJ, Zhang XM. Proteomics-based identification of human acute leukemia antigens that induce humoral immune response. Mol Cell Proteomics 2005; 4:1718-24. [PMID: 16081408 DOI: 10.1074/mcp.m400165-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identification of panels of tumor antigens that elicit an antibody response may have utility in cancer screening, diagnosis, and establishing prognosis. Until now, autoimmunity in cancer has been mainly revealed in solid tumors. The aim of this study was to apply the proteomic approach to the identification of proteins that commonly elicit a humoral response in acute leukemia (AL). Sera from 21 newly diagnosed patients with AL, 20 patients with solid tumors, and 22 noncancer controls were analyzed for antibody-based reactivity against AL proteins resolved by two-dimensional electrophoresis. As a result, autoantibody against a protein identified by mass spectrometry as Rho GDP dissociation inhibitor 2 was detected in sera from 15 of 21 patients with AL (71%). By contrast, such antibody was detected in sera from one of 20 patients with solid tumors (5%) and one of 22 noncancer controls (4.5%). Five other protein autoantibodies were also found in AL patients with a high frequency and constituted the major target antigens of the AL autoimmune response. The findings of autoantibodies against Rho GDP dissociation inhibitor 2 and other proteins in sera of patients with AL suggest that the proteomic approach we have implemented may have utility for the development of a serum-based assay for AL screening and diagnosis.
Collapse
Affiliation(s)
- Jiu-wei Cui
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing and the Department of Hematology and Oncology, the First Clinical Hospital of Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics 2005; 5:3162-72. [PMID: 16078185 DOI: 10.1002/pmic.200401148] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using proteomic analysis, an investigation aimed at a better understanding of the molecular adaptation mechanisms of cold stress was carried out in rice (Oryza sativa). The seedlings were exposed to a progressively low temperature stress treatment from normal temperature to 15, 10, and 5 degrees C. Proteins were extracted from the leaves collected from both control and stressed seedlings. By fractionation, approximately 1700 protein spots were separated and visualized on CBB-stained 2-D gels. Sixty protein spots were found to be up-regulated in responding to the progressively low temperature stress and displayed different dynamic patterns. As an initial work, 41 of these proteins were identified using MALDI-TOF MS or ESI/MS/MS. These cold responsive proteins, besides two proteins of unknown function, include four factors of protein biosynthesis, four molecular chaperones, two proteases, and eight enzymes involved in biosynthesis of cell wall components, seven antioxidative/detoxifying enzymes, and proteins linked to energy pathway, as well as a protein involved in signal transduction. The functional proteomes illuminate the facts, at least in plant cell, that protein quality control mediated by chaperones and proteases and enhancement of cell wall components play important roles in tolerance to cold stress. Using TargetP program, the subcellular localization of the identified proteins was analyzed. Proteins (43.9%) were predicted to be located in the chloroplasts, implying that chloroplast proteome is virtually subjective to cold stress. The physiological implications, revealed from the experimental data, are discussed in context of a complex metabolic network in plant cells responsive to cold stress.
Collapse
Affiliation(s)
- Suxia Cui
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100-084, P. R. China
| | | | | | | | | | | |
Collapse
|