1
|
Espinosa L, Marruecos L. NF-κB-Dependent and -Independent (Moonlighting) IκBα Functions in Differentiation and Cancer. Biomedicines 2021; 9:1278. [PMID: 34572464 PMCID: PMC8468488 DOI: 10.3390/biomedicines9091278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
IκBα is considered to play an almost exclusive role as inhibitor of the NF-κB signaling pathway. However, previous results have demonstrated that SUMOylation imposes a distinct subcellular distribution, regulation, NF-κB-binding affinity and function to the IκBα protein. In this review we discuss the main alterations of IκBα found in cancer and whether they are (most likely) associated with NF-κB-dependent or NF-κB-independent (moonlighting) activities of the protein.
Collapse
Affiliation(s)
- Lluís Espinosa
- Cancer Research Program, Institut Mar d’Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain;
| | | |
Collapse
|
2
|
Carrà G, Lingua MF, Maffeo B, Taulli R, Morotti A. P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell Mol Life Sci 2020; 77:4449-4458. [PMID: 32322927 PMCID: PMC11104960 DOI: 10.1007/s00018-020-03524-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
The onco-suppressor p53 is a transcription factor that regulates a wide spectrum of genes involved in various cellular functions including apoptosis, cell cycle arrest, senescence, autophagy, DNA repair and angiogenesis. p53 and NF-κB generally have opposing effects in cancer cells. While p53 activity is associated with apoptosis induction, the stimulation of NF-κB has been demonstrated to promote resistance to programmed cell death. Although the transcription factor NF-κB family is considered as the master regulator of cancer development and maintenance, it has been mainly studied in relation to its ability to regulate p53. This has revealed the importance of the crosstalk between NF-κB, p53 and other crucial cell signaling pathways. This review analyzes the various mechanisms by which NF-κB regulates the activity of p53 and the role of p53 on NF-κB activity.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| | | | - Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| |
Collapse
|
3
|
Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel) 2019; 8:antiox8050111. [PMID: 31035402 PMCID: PMC6562654 DOI: 10.3390/antiox8050111] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), a plant antioxidant naturally found in onion, is a precursor to glutathione. It has been used as a drug since the 1960s and is listed on the World Health Organization (WHO) Model List of Essential Medicines as an antidote in poisonings. There are numerous other uses or proposed uses in medicine that are still in preclinical and clinical investigations. NAC is also used in food supplements and cosmetics. Despite its abundant use, there are projections that the NAC global market will grow in the next five years; therefore, the purpose of this work is to provide a balanced view of further uses of NAC as a dietary supplement. Although NAC is considered a safe substance, the results among clinical trials are sometimes controversial or incomplete, like for many other antioxidants. More clinical trials are underway that will improve our understanding of NAC applicability.
Collapse
Affiliation(s)
- Špela Šalamon
- Center for human molecular genetics and pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia.
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Borut Poljšak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Zhang ZM, Wang YC, Chen L, Li Z. Protective effects of the suppressed NF-κB/TLR4 signaling pathway on oxidative stress of lung tissue in rat with acute lung injury. Kaohsiung J Med Sci 2019; 35:265-276. [PMID: 31001923 DOI: 10.1002/kjm2.12065] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of acute lung injury (ALI) is characterized by lung inflammation and lung oxidative stress. The study was conducted in order to investigate the effect toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) exhibited on oxidative stress in ALI. After the rats had been assigned into different groups, arterial blood, white blood cell (WBC), lung permeability index (LPI), wet/dry (W/D) ratio, TLR4 and NF-κB expression and superoxide dismutase (SOD), myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) were examined. Afterward, the correlation between the levels of TLR4 and NF-κB was determined. Decreased levels of PaO2 , SOD, MPO, and GSH accompanied by increased levels of PaCO2 , WBC number, LPI and W/D ratio, MDA and ROS, as well as TLR4 and NF-κB expressions in the ALI, ALI + NF-κB inhibitor, and ALI + phosphate buffer saline groups were found. Inhibition of NF-κB resulted in increased PaO2 and decreased PaCO2 levels, WBC number, and LPI and W/D ratio. Decreased expression of NF-κB increased SOD, GSH, and MPO, but decreased MDA and ROS. We also found that NF-κB inhibition resulted in the improvement of ALI in rats. TLR4 and NF-κB expressions were negatively correlated with levels of SOD, MPO, and GSH, and positively correlated with MDA and ROS levels. In summary, our findings provided evidence that inhibition of the TLR4/NF-κB signaling pathway decreases oxidative stress, thereby improving ALI. As a result, NF-κB signaling pathway has shown potential as a therapeutic target in ALI therapy.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- Department of Respiratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yan-Cun Wang
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lu Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Hebei University, Baoding, China
| | - Zheng Li
- Department of Respiratory Medicine, The Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
5
|
Tong J, Yu Q, Xu W, Yu W, Wu C, Wu Y, Yan H. Montelukast enhances cytocidal effects of carfilzomib in multiple myeloma by inhibiting mTOR pathway. Cancer Biol Ther 2018; 20:381-390. [PMID: 30359543 DOI: 10.1080/15384047.2018.1529112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Montelukast is an anti-asthmatic medication, and has recently showed its inhibitory effects on the proliferation of cancers. The purpose of this study was to identify the cytotoxic effects of montelukast on multiple myeloma (MM) cells and the combination effects of montelukast and carfilzomib in the treatment of MM. Results revealed that montelukast induced a dose- and time-dependent cytotoxicity in MM cells lines and significantly suppressed the colony formation of myeloma cells. Furthermore, montelukast enhanced the cytotoxicity of carfilzomib in MM cell lines. This anti-tumor effect was associated with decreased c-Myc via the inhibition of mTOR signaling pathway. Moreover, the combination of montelukast and carfilzomib induced apoptosis of myeloma cells effectively, even in the presence of bone marrow stromal cells (BMSCs). It is more important to note that the co-treatment exhibited similar cytocidal effects in carfilzomib-resistant cell lines (U266R and 8226R). In addition, the combined effects were noted in two MM xenograft mice models and 7 cases of human CD138+ myeloma cells (4 newly diagnosed cases and 3 relapsed cases) with no cytotoxicity on peripheral blood mononuclear cells (PBMCs) from 5 healthy donors. Our data suggested that montelukast enhanced the cytotoxicity of carfilzomib in both carfilzomib-sensitive and carfilzomib-resistant MM cell lines. These findings may facilitate the development of therapeutic strategies and provide a promising therapeutic combination regimen for the treatment of refractory myeloma.
Collapse
Affiliation(s)
- Jia Tong
- a Department of Hematology , Affiliated Rui-Jin Hospital of Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Qing Yu
- a Department of Hematology , Affiliated Rui-Jin Hospital of Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Wenbin Xu
- a Department of Hematology , Affiliated Rui-Jin Hospital of Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Wenjun Yu
- a Department of Hematology , Affiliated Rui-Jin Hospital of Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Chao Wu
- a Department of Hematology , Affiliated Rui-Jin Hospital of Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Yingli Wu
- b Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Hua Yan
- a Department of Hematology , Affiliated Rui-Jin Hospital of Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| |
Collapse
|
6
|
Morotti A, Crivellaro S, Panuzzo C, Carrà G, Guerrasio A, Saglio G. IκB-α: At the crossroad between oncogenic and tumor-suppressive signals. Oncol Lett 2016; 13:531-534. [PMID: 28356925 PMCID: PMC5351326 DOI: 10.3892/ol.2016.5465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/19/2016] [Indexed: 01/13/2023] Open
Abstract
Nuclear factor κB (NF-κB) is an essential component of tumorigenesis and resistance to cancer treatments. NFKB inhibitor α (IκB-α) acts as a negative regulator of the classical NF-κB pathway through its ability to maintain the presence of NF-κB in the cytoplasm. However, IκB-α is also able to form a complex with tumor protein p53, promoting its inactivation. Recently, we demonstrated that IκB-α is able to mediate p53 nuclear exclusion and inactivation in chronic myeloid leukemia, indicating that IκB-α can modulate either oncogenic or tumor-suppressive functions, with important implications for cancer treatment. The present review describes the role of IκB-α in cancer pathogenesis, with particular attention to hematological cancers, and highlights the involvement of IκB-α in the regulation of p53 tumor-suppressive functions.
Collapse
Affiliation(s)
- Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
7
|
Carrà G, Crivellaro S, Taulli R, Guerrasio A, Saglio G, Morotti A. Mechanisms of p53 Functional De-Regulation: Role of the IκB-α/p53 Complex. Int J Mol Sci 2016; 17:ijms17121997. [PMID: 27916821 PMCID: PMC5187797 DOI: 10.3390/ijms17121997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 02/06/2023] Open
Abstract
TP53 is one of the most frequently-mutated and deleted tumor suppressors in cancer, with a dramatic correlation with dismal prognoses. In addition to genetic inactivation, the p53 protein can be functionally inactivated in cancer, through post-transductional modifications, changes in cellular compartmentalization, and interactions with other proteins. Here, we review the mechanisms of p53 functional inactivation, with a particular emphasis on the interaction between p53 and IκB-α, the NFKBIA gene product.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Turin, Italy.
| |
Collapse
|
8
|
Wei TYW, Wu PY, Wu TJ, Hou HA, Chou WC, Teng CLJ, Lin CR, Chen JMM, Lin TY, Su HC, Huang CCF, Yu CTR, Hsu SL, Tien HF, Tsai MD. Aurora A and NF-κB Survival Pathway Drive Chemoresistance in Acute Myeloid Leukemia via the TRAF-Interacting Protein TIFA. Cancer Res 2016; 77:494-508. [PMID: 28069801 DOI: 10.1158/0008-5472.can-16-1004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/28/2016] [Accepted: 10/14/2016] [Indexed: 11/16/2022]
Abstract
Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR.
Collapse
Affiliation(s)
- Tong-You Wade Wei
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ting-Jung Wu
- Division of Liver and Transplantation Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Wen-Chien Chou
- Departments of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Ru Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Ting-Yang Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Chun Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Shih-Lan Hsu
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan. .,Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Shin JM, Jeong YJ, Cho HJ, Magae J, Bae YS, Chang YC. Suppression of c-Myc induces apoptosis via an AMPK/mTOR-dependent pathway by 4-O-methyl-ascochlorin in leukemia cells. Apoptosis 2016; 21:657-68. [DOI: 10.1007/s10495-016-1228-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Guo M, Wei J, Zhou Y, Qin Q. Molecular clone and characterization of c-Jun N-terminal kinases 2 from orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2016; 49:355-363. [PMID: 26691306 DOI: 10.1016/j.fsi.2015.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
c-Jun N-terminal kinase 2 (JNK2) is a multifunctional mitogen-activated protein kinases involving in cell differentiation and proliferation, apoptosis, immune response and inflammatory conditions. In this study, we reported a new JNK2 (Ec-JNK2) derived from orange-spotted grouper, Epinephelus coioides. The full-length cDNA of Ec-JNK2 was 1920 bp in size, containing a 174 bp 5'-untranslated region (UTR), 483 bp 3'-UTR, and a 1263 bp open reading frame (ORF), which encoded a putative protein of 420 amino acids. The deduced protein sequence of Ec-JNK2 contained a conserved Thr-Pro-Tyr (TPY) motif in the domain of serine/threonine protein kinase (S-TKc). Ec-JNK2 has been found to involve in the immune response to pathogen challenges in vivo, and the infection of Singapore grouper iridovirus (SGIV) in vitro. Immunofluorescence staining showed that Ec-JNK2 was localized in the cytoplasm of grouper spleen (GS) cells, and moved to the nucleus after infecting with SGIV. Ec-JNK2 distributed in all immune-related tissues examined. After challenging with lipopolysaccharide (LPS), SGIV and polyriboinosinic polyribocytidylic acid (poly I:C), the mRNA expression of Ec-JNK2 was significantly (P < 0.01) up-regulated in juvenile orange-spotted grouper. Over-expressing Ec-JNK2 in fathead minnow (FHM) cells increased the SGIV infection and replication, while over-expressing the dominant-negative Ec-JNK2Δ181-183 mutant decreased it. These results indicated that Ec-JNK2 could be an important molecule in the successful infection and evasion of SGIV.
Collapse
Affiliation(s)
- Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Yongcan Zhou
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.
| |
Collapse
|
11
|
Interaction of infectious spleen and kidney necrosis virus ORF119L with PINCH leads to dominant-negative inhibition of integrin-linked kinase and cardiovascular defects in zebrafish. J Virol 2014; 89:763-75. [PMID: 25355883 DOI: 10.1128/jvi.01955-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus, Iridoviridae family, causing a severe systemic disease with high mortality in mandarin fish (Siniperca chuatsi) in China and Southeast Asia. At present, the pathogenesis of ISKNV infection is still not fully understood. Based on a genome-wide bioinformatics analysis of ISKNV-encoded proteins, we found that ISKNV open reading frame 119L (ORF119L) is predicted to encode a three-ankyrin-repeat (3ANK)-domain-containing protein, which shows high similarity to the dominant negative form of integrin-linked kinase (ILK); i.e., viral ORF119L lacks the ILK kinase domain. Thus, we speculated that viral ORF119L might affect the host ILK complex. Here, we demonstrated that viral ORF119L directly interacts with particularly interesting Cys-His-rich protein (PINCH) and affects the host ILK-PINCH interaction in vitro in fathead minnow (FHM) cells. In vivo ORF119L overexpression in zebrafish (Danio rerio) embryos resulted in myocardial dysfunctions with disintegration of the sarcomeric Z disk. Importantly, ORF119L overexpression in zebrafish highly resembles the phenotype of endogenous ILK inhibition, either by overexpressing a dominant negative form of ILK or by injecting an ILK antisense morpholino oligonucleotide. Intriguingly, ISKNV-infected mandarin fish develop disorganized sarcomeric Z disks in cardiomyocytes. Furthermore, phosphorylation of AKT, a downstream effector of ILK, was remarkably decreased in ORF119L-overexpressing zebrafish embryos. With these results, we show that ISKNV ORF119L acts as a domain-negative inhibitor of the host ILK, providing a novel mechanism for the megalocytivirus pathogenesis. IMPORTANCE Our work is the first to show the role of a dominant negative inhibitor of the host ILK from ISKNV (an iridovirus). Mechanistically, the viral ORF119L directly binds to the host PINCH, attenuates the host PINCH-ILK interaction, and thus impairs ILK signaling. Intriguingly, ORF119L-overexpressing zebrafish embryos and ISKNV-infected mandarin fish develop similar disordered sarcomeric Z disks in cardiomyocytes. These findings provide a novel mechanism for megalocytivirus pathogenesis.
Collapse
|
12
|
de Pinho RT, da Silva WS, de Castro Côrtes LM, da Silva Vasconcelos Sousa P, de Araujo Soares RO, Alves CR. Production of MMP-9 and inflammatory cytokines by Trypanosoma cruzi-infected macrophages. Exp Parasitol 2014; 147:72-80. [PMID: 25448360 DOI: 10.1016/j.exppara.2014.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 08/28/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022]
Abstract
Matrix metalloproteinases (MMPs) constitute a large family of Zn(2+) and Ca(2+) dependent endopeptidases implicated in tissue remodeling and chronic inflammation. MMPs also play key roles in the activation of growth factors, chemokines and cytokines produced by many cell types, including lymphocytes, granulocytes, and, in particular, activated macrophages. Their synthesis and secretion appear to be important in a number of physiological processes, including the inflammatory process. Here, we investigated the interaction between human and mouse macrophages with T. cruzi Colombian and Y strains to characterize MMP-9 and cytokine production in this system. Supernatants and total extract of T. cruzi infected human and mouse macrophages were obtained and used to assess MMP-9 profile and inflammatory cytokines. The presence of metalloproteinase activity was determined by zymography, enzyme-linked immunosorbent assay and immunoblotting assays. The effect of cytokines on MMP-9 production in human macrophages was verified by previous incubation of cytokines on these cells in culture, and analyzed by zymography. We detected an increase in MMP-9 production in the culture supernatants of T. cruzi infected human and mouse macrophages. The addition of IL-1β or TNF-α to human macrophage cultures increased MMP-9 production. In contrast, MMP-9 production was down-modulated when human macrophage cultures were treated with IFN-γ or IL-4 before infection. Human macrophages infected with T. cruzi Y or Colombian strains produced increased levels of MMP-9, which was related to the production of cytokines such as IL-1β, TNF-α and IL-6.
Collapse
Affiliation(s)
- Rosa Teixeira de Pinho
- Laboratório de Imunologia Clínica, Av. Brasil 4365 - Manguinhos, Rio de Janeiro, CEP 21040-360, Brasil.
| | - Wellington Seguins da Silva
- Laboratório de Imunologia Clínica, Av. Brasil 4365 - Manguinhos, Rio de Janeiro, CEP 21040-360, Brasil; Fundação Ataulpho de Paiva, Av. Pedro II 260 - São Cristóvão, Rio de Janeiro, CEP 2094 1000, Brasil
| | - Luzia Monteiro de Castro Côrtes
- Laboratório de Biologia Molecular e Doenças Endêmicas- IOC - FIOCRUZ, Av. Brasil 4365 - Manguinhos, Rio de Janeiro, CEP 21040-360, Brasil
| | | | - Renata Oliveira de Araujo Soares
- Laboratório de Biologia Molecular e Doenças Endêmicas- IOC - FIOCRUZ, Av. Brasil 4365 - Manguinhos, Rio de Janeiro, CEP 21040-360, Brasil; Laboratório de Bioquímica de Tripanosomatídeos - IOC - FIOCRUZ, Av. Brasil 4365 - Manguinhos, Rio de Janeiro, CEP 21040-360, Brasil
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas- IOC - FIOCRUZ, Av. Brasil 4365 - Manguinhos, Rio de Janeiro, CEP 21040-360, Brasil
| |
Collapse
|
13
|
Sui H, Pan SF, Feng Y, Jin BH, Liu X, Zhou LH, Hou FG, Wang WH, Fu XL, Han ZF, Ren JL, Shi XL, Zhu HR, Li Q. Zuo Jin Wan reverses P-gp-mediated drug-resistance by inhibiting activation of the PI3K/Akt/NF-κB pathway. Altern Ther Health Med 2014; 14:279. [PMID: 25085593 PMCID: PMC4288643 DOI: 10.1186/1472-6882-14-279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 07/14/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Zuo-Jin-Wan (ZJW), a traditional Chinese medicine formula, has been identified to be effective against drug resistance in cancer. In the present study, we investigated the effect of ZJW on acquired oxaliplatin-resistant and the PI3K/Akt/NF-κB pathway in vitro. METHODS We tested the dose-response relationship of ZJW on reversing drug-resistance by CCK-8 assay and flow cytometry analysis in vitro. The protein expression of P-gp, MRP-2, LRP, and ABCB1 mRNA expression level were evaluated by Western blot and quantitative RT-PCR. The activities of PI3K/Akt/NF-κB pathway were also examined with or without ZJW, including Akt, IκB, p65 and their phosphorylation expression. RESULTS We found that ZJW significantly enhanced the sensitivity of chemotherapeutic drugs and increased oxaliplatin (L-OHP)-induced cell apoptosis in a time- and dose-dependent manner. Moreover, both ZJW and a PI3K specific inhibitor (LY294002) suppressed phosphorylation of Akt (Ser473) and NF-κB, which is necessary in the activation of the PI3K/Akt/NF-κB pathway. The effect of ZJW in reversing drug-resistance and suppressing phosphorylation of Akt (Ser473) and NF-κB were weakened after treatment with a PI3K/Akt activator in HCT116/L-OHP cells. CONCLUSIONS Our study has provided the first direct evidence that ZJW reverses drug-resistance in human colorectal cancer by blocking the PI3K/Akt/NF-κB signaling pathway, and could be considered as a useful drug for cancer therapy.
Collapse
|
14
|
Huang JD, Amaral J, Lee JW, Rodriguez IR. 7-Ketocholesterol-induced inflammation signals mostly through the TLR4 receptor both in vitro and in vivo. PLoS One 2014; 9:e100985. [PMID: 25036103 PMCID: PMC4103802 DOI: 10.1371/journal.pone.0100985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/01/2014] [Indexed: 12/23/2022] Open
Abstract
The cholesterol oxide 7-ketocholesterol (7KCh) has been implicated in numerous age-related diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer and age-related macular degeneration. It is formed by the autooxidation of cholesterol and especially cholesterol-fatty acid esters found in lipoprotein deposits. This molecule causes complex and potent inflammatory responses in vitro and in vivo. It is suspected of causing chronic inflammation in tissues exposed to oxidized lipoprotein deposits. In this study we have examined the inflammatory pathways activated by 7KCh both in cultured ARPE19 cells and in vivo using 7KCh-containing implants inserted into the anterior chamber of the rat eye. Our results indicate that 7KCh-induced inflammation is mediated mostly though the TLR4 receptor with some cross-activation of EGFR-related pathways. The majority of the cytokine inductions seem to signal via the TRIF/TRAM side of the TLR4 receptor. The MyD88/TIRAP side only significantly effects IL-1β inductions. The 7KCh-induced inflammation also seems to involve a robust ER stress response. However, this response does not seem to involve a calcium efflux-mediated UPR. Instead the ER stress response seems to be mediated by yet identified kinases activated through the TLR4 receptor. Some of the kinases identified are the RSKs which seem to mediate the cytokine inductions and the cell death pathway but do not seem to be involved in the ER stress response.
Collapse
Affiliation(s)
- Jiahn-Dar Huang
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juan Amaral
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jung Wha Lee
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ignacio R. Rodriguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Xiong Y, Li W, Shang C, Chen RM, Han P, Yang J, Stankunas K, Wu B, Pan M, Zhou B, Longaker MT, Chang CP. Brg1 governs a positive feedback circuit in the hair follicle for tissue regeneration and repair. Dev Cell 2013; 25:169-81. [PMID: 23602386 DOI: 10.1016/j.devcel.2013.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 01/29/2013] [Accepted: 03/25/2013] [Indexed: 11/24/2022]
Abstract
Hair follicle stem cells (bulge cells) are essential for hair regeneration and early epidermal repair after wounding. Here we show that Brg1, a key enzyme in the chromatin-remodeling machinery, is dynamically expressed in bulge cells to control tissue regeneration and repair. In mice, sonic hedgehog (Shh) signals Gli to activate Brg1 in bulge cells to begin hair regeneration, whereas Brg1 recruits NF-κB to activate Shh in matrix cells to sustain hair growth. Such reciprocal Brg1-Shh interaction is essential for hair regeneration. Moreover, Brg1 is indispensable for maintaining the bulge cell reservoir. Without Brg1, bulge cells are depleted over time, partly through the ectopic expression of the cell-cycle inhibitor p27(Kip1). Also, bulge Brg1 is activated by skin injury to facilitate early epidermal repair. Our studies demonstrate a molecular circuit that integrates chromatin remodeling (Brg1), transcriptional regulation (NF-κB, Gli), and intercellular signaling (Shh) to control bulge stem cells during tissue regeneration.
Collapse
Affiliation(s)
- Yiqin Xiong
- Department of Medicine, Division of Cardiovascular Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Son DS, Kabir SM, Dong YL, Lee E, Adunyah SE. Inhibitory effect of tumor suppressor p53 on proinflammatory chemokine expression in ovarian cancer cells by reducing proteasomal degradation of IκB. PLoS One 2012; 7:e51116. [PMID: 23300534 PMCID: PMC3534106 DOI: 10.1371/journal.pone.0051116] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/29/2012] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer, one of inflammation-associated cancers, is the fifth leading cause of cancer deaths among women. Inflammation in the tumor microenvironment is associated with peritoneal tumor dissemination and massive ascites, which contribute to high mortality in ovarian cancer. Tumor suppressor p53 is frequently deleted or mutated in aggressive and high-grade ovarian cancer, probably aggravating cancer progression and increasing mortality. We therefore investigated the influence of p53 on proinflammatory chemokines in ovarian cancer cells. A PCR array of the chemokine network revealed that ovarian cancer cells with low or mutated p53 expression expressed high levels of proinflammatory chemokines such as CXCL1, 2, 3 and 8. Transient transfection of p53 into p53-null ovarian cancer cells downregulated proinflammatory chemokines induced by tumor necrosis factor-α (TNF), a proinflammatory cytokine abundantly expressed in ovarian cancer. Furthermore, p53 restoration or stabilization blocked TNF-induced NF-κB promoter activity and reduced TNF-activated IκB. Restoration of p53 increased ubiquitination of IκB, resulting from concurrently reduced proteasome activity followed by stability of IκB. A ubiquitination PCR array on restoration of p53 did not reveal any significant change in expression except for Mdm2, indicating that the balance between p53 and Mdm2 is more important in regulating NF-κB signaling rather than the direct effect of p53 on ubiquitin-related genes or IκB kinases. In addition, nutlin-3, a specific inducer of p53 stabilization, inhibited proinflammatory chemokines by reducing TNF-activated IκB through p53 stabilization. Taken together, these results suggest that p53 inhibits proinflammatory chemokines in ovarian cancer cells by reducing proteasomal degradation of IκB. Thus, frequent loss or mutation of p53 may promote tumor progression by enhancing inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
17
|
Kretzmann NA, Chiela E, Matte U, Marroni N, Marroni CA. N-acetylcysteine improves antitumoural response of Interferon alpha by NF-kB downregulation in liver cancer cells. COMPARATIVE HEPATOLOGY 2012. [PMID: 23206959 PMCID: PMC3539937 DOI: 10.1186/1476-5926-11-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Liver cancer is one of the most common malignancies in the world and at the moment, there is no drug intervention effective for the treatment of liver tumours. Investigate the effect of N-acetylcysteine (NAC), which has been studied for its antitumoural properties, on the toxicity of hepatocarcinoma (HCC) cells in vitro when used with the drug interferon alpha-2A (IFN), which is used clinically to treat HCC. Results NAC, IFN and NAC plus IFN reduced cell viability, as determined by MTT assay. More importantly, NAC potentiates the cytotoxic effect of IFN, with the best response achieved with 10 mM of NAC and 2.5 x 104 of IFN. These results were confirmed by Annexin/PI staining through flow cytometry and morphologic analyses. Co-treatment reduced the expression of the nuclear transcription factor kappa-B (NF-kB). In a similar way to NAC, RNAi against p65 potentiated the toxic effect of IFN, suggesting that, indeed, NAC may be enhancing the effect of IFN through inhibition of NF-kB. Conclusions Our results support the notion that NAC may be an important drug for the treatment of liver tumours as primary or adjuvant therapy. IFN has a limited clinical response, and therefore, the anti-proliferative properties of NAC in the liver should be explored further as an alternative for non-responders to IFN treatment.
Collapse
Affiliation(s)
- Nelson Alexandre Kretzmann
- Post-Graduation Program in Medicine: Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, CEP: 90050-170, Brazil.
| | | | | | | | | |
Collapse
|
18
|
Lei JC, Yu JQ, Yin Y, Liu YW, Zou GL. Alantolactone induces activation of apoptosis in human hepatoma cells. Food Chem Toxicol 2012; 50:3313-9. [DOI: 10.1016/j.fct.2012.06.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 12/15/2022]
|
19
|
Finn NA, Kemp ML. Pro-oxidant and antioxidant effects of N-acetylcysteine regulate doxorubicin-induced NF-kappa B activity in leukemic cells. MOLECULAR BIOSYSTEMS 2012; 8:650-62. [PMID: 22134636 PMCID: PMC3337722 DOI: 10.1039/c1mb05315a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical debate has arisen over the consequences of antioxidant supplementation during cancer chemotherapy. While antioxidants may impede the efficacy of chemotherapy by scavenging reactive oxygen species and free radicals, it is also possible that antioxidants alleviate unwanted chemotherapy-induced toxicity, thus allowing for increased chemotherapy doses. These contradictory assertions suggest that antioxidant supplementation during chemotherapy treatment can have varied outcomes depending on the cellular context. To gain a more robust understanding of the role that antioxidants play in chemotherapy, we investigated the dose-dependent effects of the antioxidant, N-acetylcysteine (NAC), on the redox-mediated regulation of intracellular signaling. In this study, we systematically evaluated the effect of Dox-induced ROS on the NF-κB pathway in a pediatric acute lymphoblastic leukemia (ALL) cell line by measuring the thiol-based oxidative modifications of redox-sensitive proteins within the pathway. We report a functional consequence of NAC supplementation during doxorubicin (Dox) chemotherapy administration via the NF-kappa B (NF-κB) signal transduction pathway. The ability of NAC to alter Dox-induced NF-κB activity is contingent on the ROS-mediated S-glutathionylation of IKK-β. Moreover, the NAC-dependent alteration of intracellular glutathione redox balance, through pro-oxidant and antioxidant mechanisms, can be exploited to either promote or inhibit Dox-induced NF-κB activity in an NAC-concentration-dependent manner. We developed an electron-transfer-based computational model that predicts the effect of NAC pretreatment on Dox-induced NF-κB signaling for a range of NAC and Dox treatment combinations.
Collapse
Affiliation(s)
- Nnenna Adimora Finn
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 315 Ferst Drive, Atlanta, GA 30032-0363, USA; Fax: +1 404-894-4243; Tel: +1 404-385-6341
| | - Melissa Lambeth Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 315 Ferst Drive, Atlanta, GA 30032-0363, USA; Fax: +1 404-894-4243; Tel: +1 404-385-6341
| |
Collapse
|
20
|
Wang H, Geng QR, Wang L, Lu Y. Curcumin potentiates antitumor activity of L-asparaginase via inhibition of the AKT signaling pathway in acute lymphoblastic leukemia. Leuk Lymphoma 2012; 53:1376-82. [PMID: 22185211 DOI: 10.3109/10428194.2011.649478] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
L-asparaginase (L-ASP) is a universal component of therapy for acute lymphoblastic leukemia (ALL). Curcumin is a naturally occurring yellow pigment that is derived from the rhizome of Curcuma longa. In this study, we evaluated the cytotoxicity of the combined treatment of L-ASP and curcumin in three ALL cell lines. Synergistic cytotoxicity was observed in all three cell lines following the combined treatment of curcumin and L-ASP. Our results revealed that curcumin significantly enhanced the antitumor effect of L-ASP in the three ALL cell lines compared to that for L-ASP alone ( p < 0.05). Curcumin and L-ASP co-treatments induced apoptosis, via activation and cleavage of caspase-8 and BID cleavage accompanied by release of cytochrome c and activation of caspase-9/3, compared to the group treated with only L-ASP and the control group. Furthermore, the combination of curcumin and L-ASP led to significant reductions in phosphorylated AKT and expression of AKT-regulated gene products (FoxO1, GSK3β, IKKα, NF-κB, XIAP) compared with the group treated with only L-ASP and the control group. Overall, our findings suggest that curcumin potentiates the antitumor effects of L-ASP in acute lymphoblastic leukemia by constitutively inhibiting AKT and AKT-regulated gene products.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Oncology in South China, Guangzhou, P R China
| | | | | | | |
Collapse
|
21
|
Tian F, Fan T, Jiang Y, Zhang X, Wang X. A small interfering RNA targeting NF-κB p65 alone or combined with 5-FU inhibits growth of esophageal squamous cell carcinoma in nude mice. Pathol Res Pract 2011; 208:32-8. [PMID: 22186294 DOI: 10.1016/j.prp.2011.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 10/26/2011] [Accepted: 10/30/2011] [Indexed: 01/30/2023]
Abstract
NF-κB signaling pathway plays an important role in carcinogenesis. Although constitutive NF-κB activation has been reported in many human tumors, the effect of NF-κB signaling pathway in esophageal squamous cell carcinoma (ESCC) is still poorly understood. To explore the role of NF-κB signaling pathway in ESCC, RNA interference (RNAi) was used to knockdown the NF-κB p65 protein level in the ESCC cells and nude mice. 5-FU was used to investigate whether knockdown NF-κB p65 can potentiate 5-FU's antitumor effect. Animal results indicated that tumor growth was inhibited in p65 siRNA and p65 siRNA+5-FU groups as compared with the control group. Immunohistochemistry, RT-PCR and TUNEL assay showed that p65 siRNA downregulated the expression of p65 and enhanced the sensitivity of EC9706 cells to 5-FU treatment in vivo. Overall, our work indicates that downregulation of p65 can increase tumor apoptosis and potentiates the effects of 5-FU by suppressing NF-κB signaling pathway. Thus, p65 is an interesting target for ESCC treatment.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathophysiology, School of Basic Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | | | | | | | | |
Collapse
|
22
|
Yu JQ, Yin Y, Lei JC, Zhang XQ, Chen W, Ding CL, Wu S, He XY, Liu YW, Zou GL. Activation of apoptosis by ethyl acetate fraction of ethanol extract of Dianthus superbus in HepG2 cell line. Cancer Epidemiol 2011; 36:e40-5. [PMID: 21959229 DOI: 10.1016/j.canep.2011.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 11/25/2022]
Abstract
Dianthus superbus L. is commonly used as a traditional Chinese medicine. We recently showed that ethyl acetate fraction (EE-DS) from ethanol extract of D. superbus exhibited the strongest antioxidant and cytotoxic activities. In this study, we examined apoptosis of HepG2 cells induced by EE-DS, and the mechanism underlying apoptosis was also investigated. Treatment of HepG2 cells with EE-DS (20-80 μg/ml) for 48 h led to a significant dose-dependent increase in the percentage of cells in sub-G1 phase by analysis of the content of DNA in cells, and a large number of apoptotic bodies containing nuclear fragments were observed in cells treated with 80 μg/ml of EE-DS for 24 h by using Hoechst 33258 staining. These data show that EE-DS can induce apoptosis of HepG2 cells. Immunoblot analysis showed that EE-DS significantly suppressed the expressions of Bcl-2 and NF-κB. Treatment of cells with EE-DS (80 μg/ml) for 48 h resulted in significant increase of cytochrome c in the cytosol, which indicated cytochrome c release from mitochondria. Activation of caspase-9 and -3 were also determined when the cells treated with EE-DS. The results suggest that apoptosis of HepG2 cells induced by EE-DS could be through the mitochondrial intrinsic pathway. High performance liquid chromatography (HPLC) data showed that the composition of EE-DS is complicated. Further studies are needed to find the effective constituents of EE-DS.
Collapse
Affiliation(s)
- Jian-Qing Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Institute of TCM & Natural Products, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ghorbani A, Nazari M, Jeddi-Tehrani M, Zand H. The citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order to trigger apoptosis in NALM-6 cells: involvement of PPARγ-dependent mechanism. Eur J Nutr 2011; 51:39-46. [PMID: 21445621 DOI: 10.1007/s00394-011-0187-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 02/15/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hesperidin, a flavanone present in citrus fruits, has been identified as a potent anticancer agent because of its proapoptotic and antiproliferative characteristics in some tumor cells. However, the precise mechanisms of action are not entirely understood. AIM The main purpose of this study is to investigate the involvement of peroxisome proliferator-activated receptor-gamma (PPARγ) in hesperidin's anticancer actions in human pre-B NALM-6 cells, which expresses wild-type p53. METHODS The effects of hesperidin on cell-cycle distribution, proliferation, and caspase-mediated apoptosis were examined in NALM-6 cells in the presence or absence of GW9662. The expression of peroxisome proliferator-activated receptor-gamma (PPARγ), p53, phospho-IκB, Bcl-2, Bax, and XIAP proteins were focused on using the immunoblotting assay. The transcriptional activities of PPARγ and nuclear factor-kappaB (NF-κB) were analyzed by the transcription factor assay kits. The expression of PPARγ and p53 was analyzed using the RT-PCR method. RESULTS Hesperidin induced the expression and transcriptional activity of PPARγ and promoted p53 accumulation and downregulated constitutive NF-κB activity in a PPARγ-dependent and PPARγ-independent manner. The growth-inhibitory effect of hesperidin was partially reduced when the cells preincubated with PPARγ antagonist prior to the exposure to hesperidin. CONCLUSIONS The findings of this study clearly demonstrate that hesperidin-mediated proapoptotic and antiproliferative actions are regulated via both PPARγ-dependent and PPARγ-independent pathways in NALM-6 cells. These data provide the first evidence that hesperidin could be developed as an agent against hematopoietic malignancies.
Collapse
Affiliation(s)
- Asghar Ghorbani
- National Institute and Faculty of Nutrition and Food Technology, Department of Basic Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box 19395-4741, Tehran, Iran
| | | | | | | |
Collapse
|
24
|
Abstract
In developing and validating the concept of frailty as a geriatric syndrome, it has been necessary to distinguish the clinical expression of frailty from normal age-related changes and other age-related disease pathologies. A framework for excluding potentially confounding disease and a working clinical tool to diagnose frailty have been provided. The associations between frailty and other pathophysiologies has also been shown. However, investigating the underlying biologic basis for the geriatric syndrome of frailty by studying basic homeostatic pathways and mechanisms has not proceeded at the same rate. The following article provides an overview of the homeostatic pathways emphasized in research on aging and explains how this science may help to stimulate frailty research.
Collapse
Affiliation(s)
- Neal S Fedarko
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins University, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| |
Collapse
|
25
|
Lee IS, Lim J, Gal J, Kang JC, Kim HJ, Kang BY, Choi HJ. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem Int 2011; 58:153-60. [DOI: 10.1016/j.neuint.2010.11.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 10/25/2010] [Accepted: 11/10/2010] [Indexed: 01/07/2023]
|
26
|
Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets 2010; 14:45-55. [PMID: 20001209 DOI: 10.1517/14728220903431069] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE OF THE FIELD Nuclear factor kappa B (NF-kappaB) is activated by a variety of cancer-promoting agents. The reciprocal activation between NF-kappaB and inflammatory cytokines makes NF-kappaB important for inflammation-associated cancer development. Both the constitutive and anticancer therapeutic-induced NF-kappaB activation blunts the anticancer activities of the therapy. Elucidating the roles of NF-kappaB in cancer facilitates developing approaches for cancer prevention and therapy. AREAS COVERED IN THIS REVIEW By searching PubMed, we summarize the progress of studies on NF-kappaB in carcinogenesis and cancer cells' drug resistance in recent 10 years. WHAT THE READER WILL GAIN The mechanisms by which NF-kappaB activation pathways are activated; the roles and mechanisms of NF-kappaB in cell survival and proliferation, and in carcinogenesis and cancer cells' response to therapy; recent development of NF-kappaB-modulating means and their application in cancer prevention and therapy. TAKE HOME MESSAGE NF-kappaB is involved in cancer development, modulating NF-kappaB activation pathways has important implications in cancer prevention and therapy. Due to the complexity of NF-kappaB roles in different cancers, careful evaluation of NF-kappaB's in each cancer type is crucial in this regard. More cancer cell-specific NF-kappaB inhibiting means are desired for improving anticancer efficacy and reducing systemic toxicity.
Collapse
Affiliation(s)
- Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA.
| | | | | | | |
Collapse
|
27
|
Chen W, Wang X, Bai L, Liang X, Zhuang J, Lin Y. Blockage of NF-kappaB by IKKbeta- or RelA-siRNA rather than the NF-kappaB super-suppressor IkappaBalpha mutant potentiates adriamycin-induced cytotoxicity in lung cancer cells. J Cell Biochem 2009; 105:554-61. [PMID: 18636537 DOI: 10.1002/jcb.21856] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ambiguous roles of genotoxic anticancer therapeutic-induced NF-kappaB activation in regulating gene expression (activation or suppression) and apoptosis (anti- or pro-apoptosis) have recently been suggested. In order to clarify this controversy and determine the usefulness of NF-kappaB blockage for sensitizing anticancer therapy, we have systematically investigated the effect of distinct NF-kappaB-blocking approaches on lung cancer cells' responses to Adriamycin-induced cytotoxicity. The results show that Adriamycin-induced NF-kappaB activation functions as a transcriptional activator triggering the expression of anti-apoptotic genes. Blocking NF-kappaB with IKKbeta- or RelA siRNA substantially sensitized Adriamycin-induced cytotoxicity, suggesting that the NF-kappaB pathway could be a target for sensitizing lung cancer cells to Adriamycin's anticancer effect. Surprisingly, although it effectively blocks NF-kappaB activation, the IkappaBalpha super-suppressor (IkappaBalphaAA) antagonized Adriamycin-induced cell death. Additionally, the induction of death receptor 5 (DR5), which contributes to Adriamycin-induced cytotoxicity, was not affected by NF-kappaB blockage. Thus, our results suggest that Adriamycin-induced NF-kappaB is a transcriptional activator that protects lung cancer cells against apoptosis, and IKKbeta- or RelA siRNA rather than IkappaBalphaAA is an appropriate NF-kappaB blocking approach for sensitizing lung cancer cells to Adriamycin-induced cytotoxicity.
Collapse
Affiliation(s)
- Wenshu Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | | | | | | | |
Collapse
|
28
|
Bin Hafeez B, Asim M, Siddiqui IA, Adhami VM, Murtaza I, Mukhtar H. Delphinidin, a dietary anthocyanidin in pigmented fruits and vegetables: a new weapon to blunt prostate cancer growth. Cell Cycle 2008; 7:3320-6. [PMID: 18948740 DOI: 10.4161/cc.7.21.6969] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In a recent publication, we have shown that delphinidin, an anthocyanidin induces apoptosis and cell cycle arrest in highly metastatic human prostate cancer (PCa) PC3 cells. Extending these studies, we provide additional evidence that delphinidin induces apoptosis and cell cycle arrest in androgen refractory human PCa 22Rnu1 cells and that these effects are concomitant with inhibition of NFkappaB. We observed that delphinidin treatment to 22Rnu1 cells resulted in a dose-dependent (i) G(2)/M phase cell cycle arrest, (ii) induction of apoptosis (iii) and inhibition of NFkappaB signaling. The induction of apoptosis by delphinidin was mediated via activation of caspases since a general caspase inhibitor Z-VAD-FMK significantly reversed this effect. Delphinidin treatment to cells resulted in a dose-dependent decrease in (i) phosphorylation of IKKgamma (NEMO), (ii) phosphorylation of NFkappaB inhibitory protein IkappaBalpha, (iii) phosphorylation of NFkappaB/p65 at Ser(536) and NFkappaB/p50 at Ser529, (iv) NFkappaB/p65 nuclear translocation, and (v) NFkappaB DNA binding activity. Taken together, our data show that delphinidin induces apoptosis of both androgen independent and androgen refractory human PCa cells via activation of caspases and in addition, this effect might be due to inhibition of NFkappaB signaling. We suggest that delphinidin could be developed as a novel agent against PCa.
Collapse
Affiliation(s)
- Bilal Bin Hafeez
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
29
|
Hafeez BB, Siddiqui IA, Asim M, Malik A, Afaq F, Adhami VM, Saleem M, Din M, Mukhtar H. A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor-kappaB signaling. Cancer Res 2008; 68:8564-72. [PMID: 18922932 DOI: 10.1158/0008-5472.can-08-2232] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Delphinidin, a major anthocyanidin present in many pigmented fruits and vegetables, possesses antioxidant, anti-inflammatory, and antiangiogenic properties. In this study, we provide evidence that it could be developed as a novel agent against human prostate cancer (PCa). We observed that delphinidin treatment to human PCa LNCaP, C4-2, 22Rnu1, and PC3 cells resulted in a dose-dependent inhibition of cell growth without having any substantial effect on normal human prostate epithelial cells. We selected PC3 cells as a test model system because of their highly aggressive proliferative nature. Delphinidin treatment of cells resulted in a dose-dependent induction of apoptosis and arrest of cells in G(2)-M phase. This induction of apoptosis seems to be mediated via activation of caspases because N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluromethylketone significantly reduced apoptosis induced by delphinidin. We also observed that delphinidin treatment of cells resulted in a dose-dependent decrease in (a) phosphorylation of IkappaB kinase gamma (NEMO), (b) phosphorylation of nuclear factor-kappaB (NF-kappaB) inhibitory protein IkappaBalpha, (c) phosphorylation of NF-kappaB/p65 at Ser(536) and NF-kappaB/p50 at Ser(529), (d) NF-kappaB/p65 nuclear translocation, and (e) NF-kappaB DNA binding activity. Delphinidin administration (2 mg, i.p. thrice weekly) to athymic nude mice implanted with PC3 cells resulted in a significant inhibition of tumor growth. Analysis of tumors from delphinidin-treated mice showed significant decrease in the expression of NF-kappaB/p65, Bcl2, Ki67, and PCNA. Taken together, our data suggest that delphinidin could be developed as an agent against human PCa.
Collapse
Affiliation(s)
- Bilal Bin Hafeez
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tao H, Hu Q, Fang J, Liu A, Liu S, Zhang L, Hu Y. Expression of SODD and P65 in ALL of children and its relationship with chemotherapeutic drugs. ACTA ACUST UNITED AC 2008; 27:326-9. [PMID: 17641854 DOI: 10.1007/s11596-007-0328-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Indexed: 11/26/2022]
Abstract
The expression of silence of death domains (SODD) and its clinical significance and relationship with phospho-NF-kappaB-p65 proteins in bone marrow cells of childhood acute lymphoblastic leukaemia (ALL) were explored, and the expression of SODD and phospho-NF-kappaB-p65 in Jurkat cells treated with chemotherapeutic drugs was detected in order to find a new chemotherapeutic target. The expression of SODD and phospho-NF-kappaB-p65 proteins in bone marrow cells was detected by immunohistochemistry in 25 children with ALL. The apoptosis rate was measured by Annexin-V-Fluorescence/PI double-labeling flow cytometry and the expression of SODD and phospho-NF-kappaB-p65 proteins determined by Western blotting in the Jurkat cells. It was found that the expression of SODD and active P65 in ALL was significantly higher than that in normal control group (P<0.05). The expression of the SODD and phospho-NF-kappaB-p65 proteins in the high-risk (HR) group was significantly higher than that in the standard-risk (SR) group (P<0.05). The Pearson rank correlation analysis revealed that there was a positive correlation between SODD and phospho-NF-kappaB-p65 expression (P<0.01, r=0.69). VCR could effectively induce the apoptosis of Jurkat cells, and down-regulate the expression of SODD and phospho-NF-kappaB-p65 proteins in a time-dependent manner, but DNR could not down-regulate the expression of SODD effectively. It was concluded that SODD may be closely related to the clinical classification and prognosis of ALL in children. The expression of SODD and phospho-NF-kappaB-p65 had a definite synergistic relationship with the onset and development of ALL. VCR could down-regulate the expression of SODD and inhibit the NF-kappaB activation, which could recover the sensibility of apoptosis in leukemic cells.
Collapse
Affiliation(s)
- Hongfang Tao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen GQ, Wang LS, Wu YL, Yu Y. Leukemia, an effective model for chemical biology and target therapy. Acta Pharmacol Sin 2007; 28:1316-24. [PMID: 17723165 DOI: 10.1111/j.1745-7254.2007.00680.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The rapid rise of chemical biology aimed at studying signaling networks for basic cellular activities using specific, active small molecules as probes has greatly accelerated research on pathological mechanisms and target therapy of diseases. This research is especially important for malignant tumors such as leukemia, a heterogeneous group of hematopoietic malignancies that occurs worldwide. With the use of a chemical approach combined with genetic manipulation, great progress has been achieved over the past few decades on the biological, molecular and cytogenetic aspects of leukemia, and in its diagnosis and therapy. In particular, discoveries of the clinical effectiveness of all-trans retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia and the kinase inhibitors Imatinib and Dasatinib in the treatment of chronic myelogenous leukemia not only make target therapy of leukemia a reality, but also push mechanisms of leukemogenesis and leukemic cell activities forward. This review will outline advances in chemical biology that help our understanding of the molecular mechanisms of cell differentiation and apoptosis induction and target therapy of leukemia.
Collapse
Affiliation(s)
- Guo-qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (formerly Shanghai Second Medical University), Shanghai, China.
| | | | | | | |
Collapse
|
32
|
Krug LT, Moser JM, Dickerson SM, Speck SH. Inhibition of NF-kappaB activation in vivo impairs establishment of gammaherpesvirus latency. PLoS Pathog 2007; 3:e11. [PMID: 17257062 PMCID: PMC1781481 DOI: 10.1371/journal.ppat.0030011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 12/13/2006] [Indexed: 12/20/2022] Open
Abstract
A critical determinant in chronic gammaherpesvirus infections is the ability of these viruses to establish latency in a lymphocyte reservoir. The nuclear factor (NF)-κB family of transcription factors represent key players in B-cell biology and are targeted by gammaherpesviruses to promote host cell survival, proliferation, and transformation. However, the role of NF-κB signaling in the establishment of latency in vivo has not been addressed. Here we report the generation and in vivo characterization of a recombinant murine gammaherpesvirus 68 (γHV68) that expresses a constitutively active form of the NF-κB inhibitor, IκBαM. Inhibition of NF-κB signaling upon infection with γHV68-IκBαM did not affect lytic replication in cell culture or in the lung following intranasal inoculation. However, there was a substantial decrease in the frequency of latently infected lymphocytes in the lung (90% reduction) and spleens (97% reduction) 16 d post intranasal inoculation. Importantly, the defect in establishment of latency in lung B cells could not be overcome by increasing the dose of virus 100-fold. The observed decrease in establishment of viral latency correlated with a loss of activated, CD69hi B cells in both the lungs and spleen at day 16 postinfection, which was not apparent by 6 wk postinfection. Constitutive expression of Bcl-2 in B cells did not rescue the defect in the establishment of latency observed with γHV68-IκBαM, indicating that NF-κB–mediated functions apart from Bcl-2–mediated B-cell survival are critical for the efficient establishment of gammaherpesvirus latency in vivo. In contrast to the results obtained following intranasal inoculation, infection of mice with γHV68-IκBαM by the intraperitoneal route had only a modest impact on splenic latency, suggesting that route of inoculation may alter requirements for establishment of virus latency in B cells. Finally, analyses of the pathogenesis of γHV68-IκBαM provides evidence that NF-κB signaling plays an important role during multiple stages of γHV68 infection in vivo and, as such, represents a key host regulatory pathway that is likely manipulated by the virus to establish latency in B cells. A central aspect of chronic infection of a host by herpesviruses is the ability of these viruses to establish a quiescent infection (latent infection) in some cell type(s) in which there is only intermittent production of progeny virus (virus reactivation). The establishment of a latent infection in the antibody producing cells of the host immune system (B lymphocytes) is critical for life-long persistence of gammaherpesviruses, as well as the development of virus-associated lymphoproliferative diseases (e.g., B-cell lymphomas). Nuclear factor (NF)-κB transcription factors are a family of cellular proteins that play an important role regulating gene expression in B cells, and it has been shown that gammaherpesviruses have evolved multiple strategies for manipulating NF-κB activity. However, to date there has been no reported examination of the role of NF-κB in the establishment of chronic gammaherpesvirus infection in vivo. Murine gammaherpesvirus 68 (γHV68) infects rodents and shares genetic and biologic properties with the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma–associated herpesvirus. To selectively block the function of NF-κB in infected cells, we engineered a transgenic virus that expresses a repressor of NF-κB activation (IκBαM). Notably, this recombinant virus was defective in the establishment of latency in B cells in the lungs and spleen following intranasal inoculation. We also observed that the decrease in B-cell infection could not be rescued by forced expression of the cellular Bcl-2 protein, which is normally upregulated by NF-κB and serves to protect B cells from some forms of cell death. Thus, we conclude that NF-κB is an important host factor for the successful establishment of a chronic infection by gammaherpesviruses, and likely requires functions of NF-κB apart from its role in B-cell survival.
Collapse
Affiliation(s)
- Laurie T Krug
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Janice M Moser
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shelley M Dickerson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H Speck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- The Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Abstract
Nuclear factor (NF)-kappaB and inhibitor of NF-kappaB kinase (IKK) proteins regulate many physiological processes, including the innate- and adaptive-immune responses, cell death and inflammation. Disruption of NF-kappaB or IKK function contributes to many human diseases, including cancer. However, the NF-kappaB and IKK pathways do not exist in isolation and there are many mechanisms that integrate their activity with other cell-signalling networks. This crosstalk constitutes a decision-making process that determines the consequences of NF-kappaB and IKK activation and, ultimately, cell fate.
Collapse
Affiliation(s)
- Neil D Perkins
- College of Life Sciences, Division of Gene Regulation and Expression, James Black Centre, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
34
|
Chovolou Y, Wätjen W, Kampkötter A, Kahl R. Downregulation of NF-kappaB activation in a H4IIE transfectant insensitive to doxorubicin-induced apoptosis. Toxicology 2006; 232:89-98. [PMID: 17223244 DOI: 10.1016/j.tox.2006.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 12/11/2006] [Accepted: 12/13/2006] [Indexed: 11/13/2022]
Abstract
Cytostatic drugs are administered to cancer patients in order to drive the tumor cells into apoptosis by DNA damage signalling pathway(s). DNA damage also leads to NF-kappaB activation, and it is controversial whether this is exclusively part of a survival process, thus enabling drug resistance, or whether it can also lead to a pro-apoptotic response, thus supporting the therapeutic purpose of drug administration. In the present work, the pathway and outcome of NF-kappaB activation was compared in the doxorubicin sensitive H4IIE rat hepatoma cell and the H4IIE-derived transfectant Yv2-12 which is insensitive to doxorubicin induced apoptosis. In the wild type H4IIE cell, doxorubicin induces serine 536 phosphorylation and nuclear translocation of p65 which however results in reduced rather than increased expression of the anti-apoptotic protein XIAP. Apoptosis in H4IIE cells is accompanied by rapid production of intracellular reactive oxygen species, caspase activation and increased expression of the pro-apoptotic protein Bax. The doxorubicin-insensitive Yv2-12 transfectant differs from its wild type counterpart by the complete failure to activate NF-kappaB in response to doxorubicin. In contrast, serine 536 phosphorylation and nuclear translocation of p65 are even reduced by doxorubicin treatment while the expression of XIAP and Bax remain virtually unchanged. These results show that NF-kappaB activation by doxorubicin in our experimental system proceeds by an atypical pathway resulting in a pro-apoptotic effect and that insensitivity to doxorubicin-induced apoptosis was accompanied by a loss of NF-kappaB activation.
Collapse
Affiliation(s)
- Yvonni Chovolou
- Institute of Toxicology, Heinrich Heine University of Duesseldorf, P.O. Box 10 10 07, D-40001 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
35
|
Li X, Xing D, Wang J, Zhu DB, Zhang L, Chen XJ, Sun FY, Hong A. Effects of IkappaBalpha and its mutants on NF-kappaB and p53 signaling pathways. World J Gastroenterol 2006; 12:6658-64. [PMID: 17075980 PMCID: PMC4125672 DOI: 10.3748/wjg.v12.i41.6658] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/12/2006] [Accepted: 08/19/2006] [Indexed: 02/07/2023] Open
Abstract
AIM To study the effects of IkappaBalpha and its mutants (IkappaBalphaM, IkappaBalpha243N, IkappaBalphaM244C) on NF-kappaB, p53 and their downstream target genes. The relationship of NF-kappaB, p53, and IkappaBalpha was further discussed. METHODS pECFP-IkappaBalpha, pECFP-IkappaBalphaM (amino acides 1-317, Ser32, 36A), pECFP-IkappaBalpha243N (amino acides 1-243), pECFP-IkappaBalpha244C (amino acides 244-317), pEYFP-p65 and pp53-DsRed were constructed and transfected to ASTC-alpha-1 cells. Cells were transfected with pECFP-C1 as a control. 30 h after the transfection, location patterns of NF-kappaB, p53 and IkappaBalpha (IkappaBalphaM, IkappaBalpha243N, IkappaBalpha244C) were observed by a laser scanning microscope (LSM510/ConfoCor2, Zeiss). RNA extraction and reverse transcription were performed in cells transfected or co-transfected with different plasmids. Effects of IkappaBalpha and its mutants on the transprition level of NF-kappaB, NF-kappaB downstream target gene TNF-alpha, p53 and p53 downstream target gene Bax were observed by real time QT-PCR. In all experiments beta-actin was reference. Results are expressed as the target/reference ratio of the sample divided by the target/reference ratio of the control. Different transfected cells were incubated with CCK-8 for 2 h in the incubator. Then the absorbance at 450 nm was measured by using a microplate reader. RESULTS Cells that were transfected with p53-DsRed revealed a predominant nuclear localization. YFP-p65 mainly existed in the cytoplasm. Cells were transfected with CFP-IkappaBalpha, CFP-IkappaBalphaM, and CFP-IkappaBalpha243N respectively and revealed a predominant cytosolic localization. However, cells transfected of CFP-IkappaBalpha244C revealed a predominant nuclear localization. The mRNA levels of p65, TNF-alpha, p53 and Bax in CFP-IkappaBalpha transfected cells did not change significantly, while in YFP-p65/CFP-IkappaBalpha co-transfected cells, IkappaBalpha decreased the transcription of p65 downstream gene TNF-alpha (2.24+/-0.503) compared with the YFP-p65/CFP-C1 co-transfected cells (5.08+/-0.891) (P<0.05). Phosphorylation defective IkappaBalpha (IkappaBalphaM) decreased the transcription levels of all the four genes compared with the control (P<0.05). The N terminus of IkappaBalpha (IkappaBalpha243N) increased the transcription of NF-kappaB (1.84+/-0.176) and TNF-alpha (1.51+/-0.203) a little bit. However, the C terminus of IkappaBalpha (IkappaBalpha244C) increased the transcription of NF-kappaB, TNF-alpha, p53 and Bax significantly (8.29+/-1.662, 14.16+/-2.121, 10.2+/-0.621, 3.72+/-0.346) (P<0.05). The CCK-8 experiment also showed that IkappaBalpha244C and p53 synergistically mediate apoptosis. CONCLUSIONS IkappaBalpha and its mutants (IkappaBalphaM, IkappaBalpha243N, IkappaBalphaM244C) have different effects on NF-kappaB and p53 signaling pathways, according to their different structures. IkappaBalphaM bounds with NF-kappaB and p53 in cytoplasm steadily, and inhibits both of the two signaling pathways. p53 and IkappaBalpha244C may be co-factor in inducing apoptosis. The C terminal of IkappaBalpha enhanced cell death, which suggests that it may be a pro-apoptotic protein existed in cells.
Collapse
Affiliation(s)
- Xian Li
- Institute of Laser Life Science, South China Normal University, Guangzhou 510631, Guangdong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tian F, Zang WD, Hou WH, Liu HT, Xue LX. Nuclear factor-kB signaling pathway constitutively activated in esophageal squamous cell carcinoma cell lines and inhibition of growth of cells by small interfering RNA. Acta Biochim Biophys Sin (Shanghai) 2006; 38:318-26. [PMID: 16680372 DOI: 10.1111/j.1745-7270.2006.00166.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although constitutive nuclear factor (NF)-kappaB activation has been reported in many human tumors, the role of the NF-kappaB pathway in esophageal squamous cell carcinoma (ESCC) has not been known. In this study, NF-kappaB pathway in two ESCC cell lines was investigated using immunocytochemistry, Western blot and reverse transcription-polymerase chain reaction. The activation of NF-kappaB DNA binding was determined by electrophoretic mobility-shift assay. RNA interference was used to specifically inhibit the expression of p65. Growth of cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The results showed that p50, p65, IkappaBalpha p-IkappaBalpha and IkappaB kinase beta were expressed and mainly localized in the cytoplasm. Reverse transcription-polymerase chain reaction results showed the constitutive expressions of p50, p65 and IkappaBalpha mRNA in the two ESCC cell lines. Furthermore, the nuclear extracts revealed that p50 and p65 translocated to the nucleus had DNA-binding activity. Finally, small interfering RNA of p65 decreased the expression of p65, and the viability of cells transfected with p65 small interfering RNA was significantly suppressed at the same concentration of 5-fluorouracil (P < 0.05) compared to untransfected cells. The results of this study showed that there was the constitutively activated NF-kB signaling pathway in the ESCC cell lines. RNA interference targeting at p65 increased the sensitivity of the ESCC cell lines to 5-fluorouracil, suggesting that NF-kappaB might be a good target for cancer treatment.
Collapse
Affiliation(s)
- Fang Tian
- Laboratory for Cell Biology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | | | | | | | | |
Collapse
|
37
|
Chang NS, Doherty J, Ensign A, Schultz L, Hsu LJ, Hong Q. WOX1 Is Essential for Tumor Necrosis Factor-, UV Light-, Staurosporine-, and p53-mediated Cell Death, and Its Tyrosine 33-phosphorylated Form Binds and Stabilizes Serine 46-phosphorylated p53. J Biol Chem 2005; 280:43100-8. [PMID: 16219768 DOI: 10.1074/jbc.m505590200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
WW domain-containing oxidoreductase WOX1, also named WWOX or FOR, undergoes Tyr33 phosphorylation at its first N-terminal WW domain and subsequent nuclear translocation in response to sex steroid hormones and stress stimuli. The activated WOX1 binds tumor suppressor p53, and both proteins may induce apoptosis synergistically. Functional suppression of WOX1 by antisense mRNA or a dominant negative abolishes p53-mediated apoptosis. Here, we determined that UV light, anisomycin, etoposide, and hypoxic stress rapidly induced phosphorylation of p53 at Ser46 and WOX1 at Tyr33 (phospho-WOX1) and their binding interactions in several tested cancer cells. Mapping by yeast two-hybrid analysis and co-immunoprecipitation showed that phospho-WOX1 physically interacted with Ser46-phosphorylated p53. Knockdown of WOX1 protein expression by small interfering RNA resulted in L929 fibroblast resistance to apoptosis by tumor necrosis factor, staurosporine, UV light, and ectopic p53, indicating an essential role of WOX1 in stress stimuli-induced apoptosis. Notably, UV light could not induce p53 protein expression in these WOX1 knockdown cells, although p53 mRNA levels were not reduced. Suppression of WOX1 by dominant negative WOX1 (to block Tyr33 phosphorylation) also abolished UV light-induced p53 protein expression. Time course analysis showed that the stability of ectopic wild type p53, tagged with DsRed, was decreased in WOX1 knockdown cells. Inhibition of MDM2 by nutlin-3 increased the binding of p53 and WOX1 and stability of p53. Together, our data show that WOX1 plays a critical role in conferring cellular sensitivity to apoptotic stress and that Tyr33 phosphorylation in WOX1 is essential for binding and stabilizing Ser46-phosphorylated p53.
Collapse
Affiliation(s)
- Nan-Shan Chang
- Guthrie Research Institute, Laboratory of Molecular Immunology, Sayre, Pennsylvania 18840, USA. chang@
| | | | | | | | | | | |
Collapse
|
38
|
Gapuzan MER, Schmah O, Pollock AD, Hoffmann A, Gilmore TD. Immortalized fibroblasts from NF-kappaB RelA knockout mice show phenotypic heterogeneity and maintain increased sensitivity to tumor necrosis factor alpha after transformation by v-Ras. Oncogene 2005; 24:6574-83. [PMID: 16027734 DOI: 10.1038/sj.onc.1208809] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activation of the NF-kappaB pathway can either promote or block apoptosis and oncogenesis in different cell types and circumstances. In this report, we show that independently derived immortalized mouse embryonic fibroblast cell lines prepared from RelA knockout mice have different phenotypes, based on their sensitivity to tumor necrosis factor alpha (TNFalpha)-induced apoptosis, morphology, ability to form colonies in soft agar, and the presence of distinct kappaB site-binding complexes. In addition, these RelA-deficient cell lines appear to have distinct alterations in the p53 pathway, which correlate with the normal vs transformed status of individual cell lines. We have also infected mouse embryonic fibroblasts lacking RelA, c-Rel or p50 with a retrovirus for the expression of v-Ha-Ras to determine whether individual NF-kappaB family members are required for Ras-mediated transformation. All three NF-kappaB-deficient cell types could be transformed by v-Ha-Ras. However, v-Ras-infected RelA-deficient cells formed colonies in soft agar at an approximately fourfold reduced efficiency compared to v-Ras-transformed control mouse 3T3 and p50-deficient cells. Ras transformation did not alter the sensitivity of RelA-deficient cells to TNFalpha-induced apoptosis, and Ras transformation did not affect the general resistance of 3T3, c-Rel-deficient, and p50-deficient cells to TNFalpha-induced apoptosis. However, TNFalpha specifically and dose-dependently decreased the ability of v-Ras-transformed RelA-deficient cells to form colonies in soft agar. These results suggest that RelA is a potential protein target for human tumors driven by oncogenic Ras mutations, but caution that inhibition of RelA may promote tumorigenesis in some circumstances.
Collapse
Affiliation(s)
- Maria-Emily R Gapuzan
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
39
|
Liu MT, Chang YT, Chen SC, Chuang YC, Chen YR, Lin CS, Chen JY. Epstein-Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity. Oncogene 2005; 24:2635-46. [PMID: 15829976 DOI: 10.1038/sj.onc.1208319] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV), a viral oncogene, is essential for transformation of resting B cells by the virus. We previously demonstrated that LMP1 could repress DNA repair in p53-wild-type and p53-deficient human epithelial cells. In this study, using a host cell reactivation (HCR) assay, we demonstrated that p53-enhanced DNA repair was repressed by LMP1 in p53-deficient cells. Moreover, we found that LMP1 was able to repress p53-dependent transcriptional activity. Regarding the mechanisms of p53 repression by LMP1, we found that LMP1 did not inhibit p53 function through direct interaction, by promoting protein degradation or reducing its DNA-binding ability. Using chimeric proteins in the reporter assay, we demonstrated that LMP1 inhibited p53 transactivation by influencing the N-terminal transactivation domain of p53. Subsequent experiments using various LMP1 deletion mutants indicated that a C-terminus-activating region of LMP1, CTAR1 or CTAR2, is responsible for the repression of p53-mediated DNA repair and p53-dependent transcription, which is correlated with the region responsible for NF-kappaB activation. Furthermore, blockage of NF-kappaB signalling by IkappaB-DeltaN was shown to abolish the repression of p53 by LMP1, suggesting that LMP1 likely repressed p53 function through the NF-kappaB pathway. Based on these results, we propose that inhibition of p53-dependent transcriptional activity and DNA repair by LMP1 results in the loss of p53 activity for maintaining genomic stability, which may contribute to the oncogenesis of LMP1 in human epithelial cells.
Collapse
Affiliation(s)
- Ming-Tsan Liu
- National Health Research Institutes, 3F No. 109, Section 6, Min-Chuan East Road, Taipei 114, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Dreyfus DH, Nagasawa M, Gelfand EW, Ghoda LY. Modulation of p53 activity by IkappaBalpha: evidence suggesting a common phylogeny between NF-kappaB and p53 transcription factors. BMC Immunol 2005; 6:12. [PMID: 15969767 PMCID: PMC1184076 DOI: 10.1186/1471-2172-6-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 06/21/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this work we present evidence that the p53 tumor suppressor protein and NF-kappaB transcription factors could be related through common descent from a family of ancestral transcription factors regulating cellular proliferation and apoptosis. P53 is a homotetrameric transcription factor known to interact with the ankyrin protein 53BP2 (a fragment of the ASPP2 protein). NF-kappaB is also regulated by ankyrin proteins, the prototype of which is the IkappaB family. The DNA binding sequences of the two transcription factors are similar, sharing 8 out of 10 nucleotides. Interactions between the two proteins, both direct and indirect, have been noted previously and the two proteins play central roles in the control of proliferation and apoptosis. RESULTS Using previously published structure data, we noted a significant degree of structural alignment between p53 and NF-kappaB p65. We also determined that IkappaBalpha and p53 bind in vitro through a specific interaction in part involving the DNA binding region of p53, or a region proximal to it, and the amino terminus of IkappaBalpha independently or cooperatively with the ankyrin 3 domain of IkappaBalpha In cotransfection experiments, kappaBalpha could significantly inhibit the transcriptional activity of p53. Inhibition of p53-mediated transcription was increased by deletion of the ankyrin 2, 4, or 5 domains of IkappaBalpha Co-precipitation experiments using the stably transfected ankyrin 5 deletion mutant of kappaBalpha and endogenous wild-type p53 further support the hypothesis that p53 and IkappaBalpha can physically interact in vivo. CONCLUSION The aggregate results obtained using bacterially produced IkappaBalpha and p53 as well as reticulocyte lysate produced proteins suggest a correlation between in vitro co-precipitation in at least one of the systems and in vivo p53 inhibitory activity. These observations argue for a mechanism involving direct binding of IkappaBalpha to p53 in the inhibition of p53 transcriptional activity, analogous to the inhibition of NF-kappaB by kappaBalpha and p53 by 53BP2/ASPP2. These data furthermore suggest a role for ankyrin proteins in the regulation of p53 activity. Taken together, the NFkappaB and p53 proteins share similarities in structure, DNA binding sites and binding and regulation by ankyrin proteins in support of our hypothesis that the two proteins share common descent from an ancestral transcriptional factor.
Collapse
Affiliation(s)
- David H Dreyfus
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical Research Center, Denver, CO 80262 USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Masayuki Nagasawa
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical Research Center, Denver, CO 80262 USA
- Departments of Pediatrics and Developmental Biology, Postgraduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Erwin W Gelfand
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical Research Center, Denver, CO 80262 USA
| | - Lucy Y Ghoda
- The Webb-Waring Institute for Cancer, Aging, and Antioxidant Research and the Department of Medicine, the University of Colorado at Denver and Health Sciences Center, Denver CO 80262 USA; To whom correspondence should be addressed at The Webb-Waring Institute, UCDHSC, Box C321, 4200 East Ninth Ave., Denver, CO 80262 USA
| |
Collapse
|
41
|
Hanson JL, Hawke NA, Kashatus D, Baldwin AS. The nuclear factor kappaB subunits RelA/p65 and c-Rel potentiate but are not required for Ras-induced cellular transformation. Cancer Res 2004; 64:7248-55. [PMID: 15492243 DOI: 10.1158/0008-5472.can-03-3898] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extensive data indicate that oncoproteins, such as oncogenic H-Ras, initiate signal transduction cascades that ultimately lead to the activation of specific transcription factors. We and others have previously demonstrated that Ras activates the inherent transcriptional activation function of the transcription factor nuclear factor kappaB (NF-kappaB). Supportive of the importance of NF-kappaB in transformation, Ras-induced cellular transformation can be suppressed by expression of IkappaBalpha, an inhibitor of NF-kappaB, or by dominant-negative forms of the upstream activator IkappaB kinase (IKK). However, conclusive evidence for a requirement for NF-kappaB subunits in oncogenic transformation has not been reported. Furthermore, there is little understanding of the gene targets controlled by NF-kappaB that might support oncogenic conversion. The data presented here demonstrate that, although both p65 and c-Rel enhance the frequency of Ras-induced cellular transformation, these NF-kappaB subunits are not essential for Ras to transform spontaneously immortalized murine fibroblasts. Microarray analysis identified a set of genes induced by Ras that is dependent on NF-kappaB for their expression and that likely play contributory roles in promoting Ras-induced oncogenic transformation.
Collapse
Affiliation(s)
- Julie L Hanson
- Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, and Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
42
|
Abstract
A role for the NF-kappaB family of transcription factors as tumor promoters is firmly established. However, other data suggest that NF-kappaB can also inhibit tumor growth. Moreover, NF-kappaB activity is modulated by tumor suppressors, such as p53 and ARF, whereby NF-kappaB subunits repress, rather than activate, the expression of tumor-promoting genes. This suggests a dual function of NF-kappaB during tumor progression - in the early stages, NF-kappaB inhibits tumor growth but, as further mutations lead to a loss of tumor suppressor expression, the oncogenic functions of NF-kappaB become unleashed, allowing it to actively contribute to tumorigenesis. Here, I discuss this hypothesis, its implications for NF-kappaB function, and how this might influence the use of NF-kappaB-based anticancer therapies.
Collapse
Affiliation(s)
- Neil D Perkins
- Division of Gene Regulation and Expression, School of Life Sciences, MSI/WTB Complex, Dow Street, University of Dundee, Dundee, UK DD1 5EH.
| |
Collapse
|
43
|
Inami M, Yamashita M, Tenda Y, Hasegawa A, Kimura M, Hashimoto K, Seki N, Taniguchi M, Nakayama T. CD28 Costimulation Controls Histone Hyperacetylation of the Interleukin 5 Gene Locus in Developing Th2 Cells. J Biol Chem 2004; 279:23123-33. [PMID: 15039422 DOI: 10.1074/jbc.m401248200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin 5 (IL-5) plays a unique role in allergic inflammatory responses, and the understanding of molecular mechanisms underlying the generation of IL-5-producing cells is crucial for the regulation of allergic disorders. Differentiation of naive CD4 T cells into type-2 helper (Th2) cells is accompanied by chromatin remodeling including hyperacetylation of histones H3 and H4 in the nucleosomes associated with the IL-4, IL-13, and IL-5 genes. Histone hyperacetylation of the IL-5 gene displayed a delayed kinetics compared with that of the IL-4 and IL-13 genes, suggesting a distinct remodeling mechanism for the IL-5-gene locus. Here we studied the role of CD28 costimulation in the generation of IL-5-producing cells and the histone hyperacetylation of the IL-5 gene locus. CD28-costimulation selectively enhanced histone hyperacetylation of the IL-5 gene locus that appeared to be mediated through NF-kappaB activation and subsequent up-regulation of GATA3. The CD28 costimulation-sensitive histone hyperacetylation spanned almost the entire intergenic region between the IL-5 and RAD50 accompanied with intergenic transcript. Thus, this is the first demonstration that CD28 costimulation controls a chromatin-remodeling process during Th2 cell differentiation.
Collapse
Affiliation(s)
- Masamichi Inami
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gilmore TD, Kalaitzidis D, Liang MC, Starczynowski DT. The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene 2004; 23:2275-86. [PMID: 14755244 DOI: 10.1038/sj.onc.1207410] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of the Rel/NF-kappaB signal transduction pathway has been associated with a variety of animal and human malignancies. However, among the Rel/NF-kappaB family members, only c-Rel has been consistently shown to be able to malignantly transform cells in culture. In addition, c-rel has been activated by a retroviral promoter insertion in an avian B-cell lymphoma, and amplifications of REL (human c-rel) are frequently seen in Hodgkin's lymphomas and diffuse large B-cell lymphomas, and in some follicular and mediastinal B-cell lymphomas. Phenotypic analysis of c-rel knockout mice demonstrates that c-Rel has a normal role in B-cell proliferation and survival; moreover, c-Rel nuclear activity is required for B-cell development. Few mammalian model systems are available to study the role of c-Rel in oncogenesis, and it is still not clear what features of c-Rel endow it with its unique oncogenic activity among the Rel/NF-kappaB family. In any event, REL may provide an appropriate therapeutic target for certain human lymphoid cell malignancies.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|