1
|
Oleksak P, Rysanek D, Vancurova M, Vasicova P, Urbancokova A, Novak J, Maurencova D, Kashmel P, Houserova J, Mikyskova R, Novotny O, Reinis M, Juda P, Hons M, Kroupova J, Sedlak D, Sulimenko T, Draber P, Chlubnova M, Nepovimova E, Kuca K, Lisa M, Andrys R, Kobrlova T, Soukup O, Janousek J, Prchal L, Bartek J, Musilek K, Hodny Z. Discovery of a 6-Aminobenzo[ b]thiophene 1,1-Dioxide Derivative (K2071) with a Signal Transducer and Activator of Transcription 3 Inhibitory, Antimitotic, and Senotherapeutic Activities. ACS Pharmacol Transl Sci 2024; 7:2755-2783. [PMID: 39296273 PMCID: PMC11406704 DOI: 10.1021/acsptsci.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.
Collapse
Affiliation(s)
- Patrik Oleksak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - David Rysanek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Vancurova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alexandra Urbancokova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Dominika Maurencova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Kashmel
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Houserova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Romana Mikyskova
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ondrej Novotny
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Milan Reinis
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Juda
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Jirina Kroupova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Draber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Chlubnova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Kamil Kuca
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Miroslav Lisa
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Janousek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Danish Cancer Institute, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
2
|
Syga S, Jain HP, Krellner M, Hatzikirou H, Deutsch A. Evolution of phenotypic plasticity leads to tumor heterogeneity with implications for therapy. PLoS Comput Biol 2024; 20:e1012003. [PMID: 39121170 PMCID: PMC11338451 DOI: 10.1371/journal.pcbi.1012003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/21/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024] Open
Abstract
Cancer is a significant global health issue, with treatment challenges arising from intratumor heterogeneity. This heterogeneity stems mainly from somatic evolution, causing genetic diversity within the tumor, and phenotypic plasticity of tumor cells leading to reversible phenotypic changes. However, the interplay of both factors has not been rigorously investigated. Here, we examine the complex relationship between somatic evolution and phenotypic plasticity, explicitly focusing on the interplay between cell migration and proliferation. This type of phenotypic plasticity is essential in glioblastoma, the most aggressive form of brain tumor. We propose that somatic evolution alters the regulation of phenotypic plasticity in tumor cells, specifically the reaction to changes in the microenvironment. We study this hypothesis using a novel, spatially explicit model that tracks individual cells' phenotypic and genetic states. We assume cells change between migratory and proliferative states controlled by inherited and mutation-driven genotypes and the cells' microenvironment. We observe that cells at the tumor edge evolve to favor migration over proliferation and vice versa in the tumor bulk. Notably, different genetic configurations can result in this pattern of phenotypic heterogeneity. We analytically predict the outcome of the evolutionary process, showing that it depends on the tumor microenvironment. Synthetic tumors display varying levels of genetic and phenotypic heterogeneity, which we show are predictors of tumor recurrence time after treatment. Interestingly, higher phenotypic heterogeneity predicts poor treatment outcomes, unlike genetic heterogeneity. Our research offers a novel explanation for heterogeneous patterns of tumor recurrence in glioblastoma patients.
Collapse
Affiliation(s)
- Simon Syga
- Center for Interdisciplinary Digital Sciences, Department Information Services and High Performance Computing, TUD Dresden University of Technology, Dresden, Germany
| | - Harish P. Jain
- Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Marcus Krellner
- School of Mathematics and Statistics, University of St Andrews, St Andrews, United Kingdom
| | - Haralampos Hatzikirou
- Center for Interdisciplinary Digital Sciences, Department Information Services and High Performance Computing, TUD Dresden University of Technology, Dresden, Germany
- Mathematics Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Andreas Deutsch
- Center for Interdisciplinary Digital Sciences, Department Information Services and High Performance Computing, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
3
|
Jia Y, Wang Q, Liang M, Huang K. KPNA2 promotes angiogenesis by regulating STAT3 phosphorylation. J Transl Med 2022; 20:627. [PMID: 36578083 PMCID: PMC9798605 DOI: 10.1186/s12967-022-03841-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Angiogenesis is involved in many pathological and physiological processes and is mainly driven by hypoxia. Karyopherin subunit alpha 2 (KPNA2), a member of the nuclear transport protein family, was recently shown to be induced by hypoxia in various types of tumours, so we aimed to investigate the role and mechanism of KPNA2 in angiogenesis under hypoxia. MATERIALS AND METHODS After overexpression or knockdown of KPNA2 in human umbilical vein endothelial cells (HUVEC) by adenovirus vector infection, the tube formation, proliferation and migration of HUVEC under hypoxia were detected by tubule formation assay, 5-ethynyl-2'-deoxyuridine (EdU) staining and Transwell assay, respectively. After overexpression or knockdown of KPNA2 in a murine hindlimb ischemia model by local injection of purified adenovirus vector into the gastrocnemius muscle, blood flow changes were examined with a laser Doppler system. Changes in KPNA2-binding proteins under hypoxia were detected by immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP). The effect of KPNA2 on signal transducer and activator of transcription 3 (STAT3) was detected by Western blotting and quantitative RT‒PCR. RESULTS KPNA2 was upregulated in the HUVEC hypoxia model and murine hindlimb ischemia model. Overexpression of KPNA2 increased the proliferation, migration and tube formation of HUVEC under hypoxia, while knockdown of KPNA2 reduced the proliferation, migration and tube formation of HUVEC. Overexpression of KPNA2 promoted the restoration of blood flow in the murine hindlimb ischemia model, while knockout of KPNA2 inhibited the restoration of blood flow in the murine hindlimb ischemia model. Mechanistically, hypoxia promoted the binding of STAT3 to KPNA2. Overexpression of KPNA2 promoted STAT3 phosphorylation and then upregulated vascular endothelial growth factor (VEGF) and angiopoietin 2(ANGPT2), whereas knockdown of KPNA2 inhibited STAT3 phosphorylation and then downregulated VEGF and ANGPT2. CONCLUSION Our study demonstrates that hypoxia promotes the binding of STAT3 to KPNA2 and KPNA2 promotes angiogenesis under hypoxia by promoting the binding of STAT3 and JAK1 and regulating STAT3 phosphorylation.
Collapse
Affiliation(s)
- Yujie Jia
- grid.33199.310000 0004 0368 7223Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Qi Wang
- grid.33199.310000 0004 0368 7223Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Minglu Liang
- grid.33199.310000 0004 0368 7223Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Huang
- grid.33199.310000 0004 0368 7223Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
4
|
Sonawala K, Ramalingam S, Sellamuthu I. Influence of Long Non-Coding RNA in the Regulation of Cancer Stem Cell Signaling Pathways. Cells 2022; 11:3492. [PMID: 36359888 PMCID: PMC9656902 DOI: 10.3390/cells11213492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Over the past two decades, cancer stem cells (CSCs) have emerged as an immensely studied and experimental topic, however a wide range of questions concerning the topic still remain unanswered; in particular, the mechanisms underlying the regulation of tumor stem cells and their characteristics. Understanding the cancer stem-cell signaling pathways may pave the way towards a better comprehension of these mechanisms. Signaling pathways such as WNT, STAT, Hedgehog, NOTCH, PI3K/AKT/mTOR, TGF-β, and NF-κB are responsible not only for modulating various features of CSCs but also their microenvironments. Recently, the prominent roles of various non-coding RNAs such as small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs) in developing and enhancing the tumor phenotypes have been unfolded. This review attempts to shed light on understanding the influence of long non- coding RNAs in the modulation of various CSC-signaling pathways and its impact on the CSCs and tumor properties; highlighting the protagonistic and antagonistic roles of lncRNAs.
Collapse
Affiliation(s)
| | | | - Iyappan Sellamuthu
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603202, India
| |
Collapse
|
5
|
Adan H, Guy S, Arulanandam R, Geletu M, Daniel J, Raptis L. Activated Src requires Cadherin-11, Rac, and gp130 for Stat3 activation and survival of mouse Balb/c3T3 fibroblasts. Cancer Gene Ther 2022; 29:1502-1513. [PMID: 35411090 PMCID: PMC9576600 DOI: 10.1038/s41417-022-00462-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 01/05/2023]
Abstract
We previously demonstrated that engagement of cadherins, cell to cell adhesion molecules, triggers a dramatic increase in levels and activity of the Rac/Cdc42 small GTPases, which is followed by secretion of IL6 family cytokines and activation of their common receptor, gp130, in an autocrine manner. This results in phosphorylation of the Signal Transducer and Activator of Transcription-3 (Stat3) on tyrosine-705, which then dimerizes, migrates to the nucleus, and activates transcription of genes involved in cell division and survival. In the present report we demonstrate that, in mouse Balb/c3T3 fibroblasts, mutationally activated Src527F also increases Rac levels, leading to secretion of IL6 family cytokines and gp130 activation, which triggers the Stat3-ptyr705 increase. Interestingly, our results also demonstrate that cadherin-11 is required to preserve gp130 levels for IL6 family signaling. At the same time, however, activated Src527F downregulates cadherin-11, in a quantitative manner. As a result, Src527F expression to intermediate levels allows sufficient cadherin-11, hence gp130 levels for Stat3 activation, as expected. However, expressed to high levels, Src527F eliminates cadherin-11, hence gp130 signaling, thus abolishing Stat3-ptyr705 stimulation. Taken together, these data establish for the first time a loop between Src, cadherin-11, gp130, and Stat3 activation. This fine balance between Src527F and cadherin-11 levels which is required for Stat3 activation and cellular survival could have significant therapeutic implications.
Collapse
Affiliation(s)
- Hanad Adan
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
- Department of Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Stephanie Guy
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Rozanne Arulanandam
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Mulu Geletu
- Department of Chemistry, University of Toronto, Mississauga, ON, L5L 1C6, Canada
| | - Juliet Daniel
- Department of Biology, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
6
|
Roads to Stat3 Paved with Cadherins. Cells 2022; 11:cells11162537. [PMID: 36010614 PMCID: PMC9406956 DOI: 10.3390/cells11162537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The engagement of cadherins, cell-to-cell adhesion proteins, triggers a dramatic increase in the levels and activity of the Rac/Cdc42 GTPases, through the inhibition of proteasomal degradation. This leads to an increase in transcription and secretion of IL6 family cytokines, activation of their common receptor, gp130, in an autocrine manner and phosphorylation of the signal transducer and activator of transcription-3 (Stat3) on tyrosine-705 by the Jak kinases. Stat3 subsequently dimerizes, migrates to the nucleus and activates the transcription of genes involved in cell division and survival. The Src oncogene also increases Rac levels, leading to secretion of IL6 family cytokines and gp130 activation, which triggers a Stat3-ptyr705 increase. Interestingly, at the same time, Src downregulates cadherins in a quantitative manner, while cadherins are required to preserve gp130 levels for IL6 family signalling. Therefore, a fine balance between Src527F/Rac/IL6 and Src527F/cadherin/gp130 levels is in existence, which is required for Stat3 activation. This further demonstrates the important role of cadherins in the activation of Stat3, through preservation of gp130 function. Conversely, the absence of cadherin engagement correlates with low Stat3 activity: In sparsely growing cells, both gp130 and Stat3-ptyr705 levels are very low, despite the fact that cSrc is active in the FAK (focal adhesion kinase)/cSrc complex, which further indicates that the engagement of cadherins is important for Stat3 activation, not just their presence. Furthermore, the caveolin-1 protein downregulates Stat3 through binding and sequestration of cadherins to the scaffolding domain of caveolin-1. We hypothesize that the cadherins/Rac/gp130 axis may be a conserved pathway to Stat3 activation in a number of systems. This fact could have significant implications in Stat3 biology, as well as in drug testing and development.
Collapse
|
7
|
Kynaston JC, Guiver C, Yates CA. Equivalence framework for an age-structured multistage representation of the cell cycle. Phys Rev E 2022; 105:064411. [PMID: 35854597 DOI: 10.1103/physreve.105.064411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
We develop theoretical equivalences between stochastic and deterministic models for populations of individual cells stratified by age. Specifically, we develop a hierarchical system of equations describing the full dynamics of an age-structured multistage Markov process for approximating cell cycle time distributions. We further demonstrate that the resulting mean behavior is equivalent, over large timescales, to the classical McKendrick-von Foerster integropartial differential equation. We conclude by extending this framework to a spatial context, facilitating the modeling of traveling wave phenomena and cell-mediated pattern formation. More generally, this methodology may be extended to myriad reaction-diffusion processes for which the age of individuals is relevant to the dynamics.
Collapse
Affiliation(s)
- Joshua C Kynaston
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Chris Guiver
- School of Engineering and The Built Environment, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT, United Kingdom
| | - Christian A Yates
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
8
|
Yue P, Zhu Y, Brotherton-Pleiss C, Fu W, Verma N, Chen J, Nakamura K, Chen W, Chen Y, Alonso-Valenteen F, Mikhael S, Medina-Kauwe L, Kershaw KM, Celeridad M, Pan S, Limpert AS, Sheffler DJ, Cosford NDP, Shiao SL, Tius MA, Lopez-Tapia F, Turkson J. Novel potent azetidine-based compounds irreversibly inhibit Stat3 activation and induce antitumor response against human breast tumor growth in vivo. Cancer Lett 2022; 534:215613. [PMID: 35276290 PMCID: PMC9867837 DOI: 10.1016/j.canlet.2022.215613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/27/2022] [Indexed: 01/26/2023]
Abstract
Signal transducer and activator of transcription (Stat)3 is a valid anticancer therapeutic target. We have discovered a highly potent chemotype that amplifies the Stat3-inhibitory activity of lead compounds to levels previously unseen. The azetidine-based compounds, including H172 (9f) and H182, irreversibly bind to Stat3 and selectively inhibit Stat3 activity (IC50 0.38-0.98 μM) over Stat1 or Stat5 (IC50 > 15.8 μM) in vitro. Mass spectrometry detected the Stat3 cysteine peptides covalently bound to the azetidine compounds, and the key residues, Cys426 and Cys468, essential for the high potency inhibition, were confirmed by site-directed mutagenesis. In triple-negative breast cancer (TNBC) models, treatment with the azetidine compounds inhibited constitutive and ligand-induced Stat3 signaling, and induced loss of viable cells and tumor cell death, compared to no effect on the induction of Janus kinase (JAK)2, Src, epidermal growth factor receptor (EGFR), and other proteins, or weak effects on cells that do not harbor aberrantly-active Stat3. H120 (8e) and H182 as a single agent inhibited growth of TNBC xenografts, and H278 (hydrochloric acid salt of H182) in combination with radiation completely blocked mouse TNBC growth and improved survival in syngeneic models. We identify potent azetidine-based, selective, irreversible Stat3 inhibitors that inhibit TNBC growth in vivo.
Collapse
Affiliation(s)
- Peibin Yue
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA,Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Yinsong Zhu
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA,Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Christine Brotherton-Pleiss
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA,Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, HI, 96825, USA
| | - Wenzhen Fu
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA,Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, HI, 96825, USA
| | - Nagendra Verma
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA,Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Jasmine Chen
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA
| | - Kayo Nakamura
- Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, HI, 96825, USA
| | - Weiliang Chen
- Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, HI, 96825, USA
| | - Yue Chen
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA,Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Felix Alonso-Valenteen
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Simoun Mikhael
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Lali Medina-Kauwe
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Kathleen M. Kershaw
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Maria Celeridad
- Cell and Molecular Biology of Cancer Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Songqin Pan
- W. M. Keck Proteomics Laboratory, University of California, Riverside, CA, 92521, USA
| | - Allison S. Limpert
- Cell and Molecular Biology of Cancer Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Douglas J. Sheffler
- Cell and Molecular Biology of Cancer Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Nicholas D. P. Cosford
- Cell and Molecular Biology of Cancer Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Stephen L. Shiao
- Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Marcus A. Tius
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI, 96813, USA,Department of Chemistry, University of Hawaii, Manoa, 2545 McCarthy Mall, Honolulu, HI, 96825, USA
| | - Francisco Lopez-Tapia
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA,Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA,Corresponding author. Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. (J. Turkson)
| | - James Turkson
- Department of Medicine, Division of Medical Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angenes, CA, 90048, USA; Cancer Biology Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
9
|
Geletu M, Adan H, Niit M, Arulanandam R, Carefoot E, Hoskin V, Sina D, Elliott B, Gunning P, Raptis L. Modulation of Akt vs Stat3 activity by the focal adhesion kinase in non-neoplastic mouse fibroblasts. Exp Cell Res 2021; 411:112731. [PMID: 34270980 DOI: 10.1016/j.yexcr.2021.112731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins, and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Hanad Adan
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Maximillian Niit
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Rozanne Arulanandam
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Esther Carefoot
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Victoria Hoskin
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Diana Sina
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Bruce Elliott
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Patrick Gunning
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Mdicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
10
|
Yu S, Wang Y, Lv K, Hou J, Li W, Wang X, Guo H, Wang W. NT157 Inhibits HCC Migration via Downregulating the STAT3/Jab1 Signaling Pathway. Technol Cancer Res Treat 2021; 20:15330338211027916. [PMID: 34238066 PMCID: PMC8274079 DOI: 10.1177/15330338211027916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose: The high fatality-to-case ratio of hepatocellular carcinoma is directly related to metastasis. The signal transducer and activator of transcription-3 is a key mediator of the cytokine and growth factor signaling pathways and drives the transcription of genes responsible for cancer-associated phenotypes. However, so far, no specific inhibitor for signal transducer and activator of transcription-3 has been used in clinical practice. Therefore, targeting the signal transducer and activator of transcription-3 for cancer therapy is highly desired to improve outcomes in patients with hepatocellular carcinoma. Experimental Design: Using the small-molecule inhibitor NT157, the effect of signal transducer and activator of transcription-3 inhibition on cell migration was tested in hepatocellular carcinoma cell lines and a lung metastasis model of the disease. Results: NT157 significantly inhibited the migration of hepatocellular carcinoma cell lines in vitro and lung metastasis of hepatocellular carcinoma in vivo. Mechanistically, it inhibited the phospho-signal transducer and activator of transcription-3 in a dose- and time-dependent manner. Furthermore, NT157 treatment suppressed the c-Jun activation domain-binding protein-1 levels in the nucleus but no significant decrease was observed in its expression in the cytoplasm. Finally, high mRNA expression levels of signal transducer and activator of transcription-3 and c-Jun activation domain-binding protein-1 in hepatocellular carcinoma were associated with significantly low survival rates. Conclusion: NT157 inhibits hepatocellular carcinoma migration and metastasis by downregulating the signal transducer and activator of transcription-3/c-Jun activation domain-binding protein-1 signaling pathway and targeting it may serve as a novel therapeutic strategy for the clinical management of hepatocellular carcinoma in the future.
Collapse
Affiliation(s)
- SiZhe Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - KeJia Lv
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jia Hou
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - WenYuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiao Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi, People's Republic of China
| | - WenJuan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
11
|
Lee B, Lee S, Lee Y, Park Y, Shim J. Emerin Represses STAT3 Signaling through Nuclear Membrane-Based Spatial Control. Int J Mol Sci 2021; 22:ijms22136669. [PMID: 34206382 PMCID: PMC8269395 DOI: 10.3390/ijms22136669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Emerin is the inner nuclear membrane protein involved in maintaining the mechanical integrity of the nuclear membrane. Mutations in EMD encoding emerin cause Emery–Dreifuss muscular dystrophy (EDMD). Evidence is accumulating that emerin regulation of specific gene expression is associated with this disease, but the exact function of emerin has not been fully elucidated. Here, we show that emerin downregulates Signal transducer and activators of transcription 3 (STAT3) signaling, activated exclusively by Janus kinase (JAK). Deletion mutation experiments show that the lamin-binding domain of emerin is essential for the inhibition of STAT3 signaling. Emerin interacts directly and co-localizes with STAT3 in the nuclear membrane. Emerin knockdown induces STAT3 target genes Bcl2 and Survivin to increase cell survival signals and suppress hydrogen peroxide-induced cell death in HeLa cells. Specifically, downregulation of BAF or lamin A/C increases STAT3 signaling, suggesting that correct-localized emerin, by assembling with BAF and lamin A/C, acts as an intrinsic inhibitor against STAT3 signaling. In C2C12 cells, emerin knockdown induces STAT3 target gene, Pax7, and activated abnormal myoblast proliferation associated with muscle wasting in skeletal muscle homeostasis. Our results indicate that emerin downregulates STAT3 signaling by inducing retention of STAT3 and delaying STAT3 signaling in the nuclear membrane. This mechanism provides clues to the etiology of emerin-related muscular dystrophy and may be a new therapeutic target for treatment.
Collapse
|
12
|
Shen Z, Liu B, Wu B, Zhou H, Wang X, Cao J, Jiang M, Zhou Y, Guo F, Xue C, Wu ZS. FMRP regulates STAT3 mRNA localization to cellular protrusions and local translation to promote hepatocellular carcinoma metastasis. Commun Biol 2021; 4:540. [PMID: 33972660 PMCID: PMC8110961 DOI: 10.1038/s42003-021-02071-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Most hepatocellular carcinoma (HCC)-associated mortalities are related to the metastasis of cancer cells. The localization of mRNAs and their products to cell protrusions has been reported to play a crucial role in the metastasis. Our previous findings demonstrated that STAT3 mRNA accumulated in the protrusions of metastatic HCC cells. However, the underlying mechanism and functional significance of this localization of STAT3 mRNA has remained unexplored. Here we show that fragile X mental retardation protein (FMRP) modulates the localization and translation of STAT3 mRNA, accelerating HCC metastasis. The results of molecular analyses reveal that the 3′UTR of STAT3 mRNA is responsible for the localization of STAT3 mRNA to cell protrusions. FMRP is able to interact with the 3′UTR of STAT3 mRNA and facilitates its localization to protrusions. Importantly, FMRP could promote the IL-6-mediated translation of STAT3, and serine 114 of FMRP is identified as a potential phosphorylation site required for IL-6-mediated STAT3 translation. Furthermore, FMRP is highly expressed in HCC tissues and FMRP knockdown efficiently suppresses HCC metastasis in vitro and in vivo. Collectively, our findings provide further insights into the mechanism of HCC metastasis associated with the regulation of STAT3 mRNA localization and translation. Shen et al. propose a mechanism for the metastasis of hepatocellular carcinoma (HCC) cells through the localization and translation modulation of the STAT3 oncogene by fragile X mental retardation protein (FMRP). To this end, the authors also find that FMRP knockdown efficiently suppresses HCC metastasis in vitro and in vivo.
Collapse
Affiliation(s)
- Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China. .,Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China.
| | - Bowen Liu
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Biting Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyun Wang
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinling Cao
- Research Center for Molecular Oncology and Functional Nucleic Acids, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Min Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingying Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Feixia Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
13
|
Geletu M, Adan H, Niit M, Arulanandam R, Carefoot E, Hoskin V, Sina D, Elliott B, Gunning P, Raptis L. Modulation of Akt vs Stat3 activity by the focal adhesion kinase in non-neoplastic mouse fibroblasts. Exp Cell Res 2021; 404:112601. [PMID: 33957118 DOI: 10.1016/j.yexcr.2021.112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada.
| | - Hanad Adan
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Maximillian Niit
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Rozanne Arulanandam
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Pathology and Molecular Medicine, Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
| | - Esther Carefoot
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Victoria Hoskin
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Diana Sina
- Department of Chemical and Physical Sciences (CPS), University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| | - Bruce Elliott
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Patrick Gunning
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
14
|
Luo H, Yang Z, Zhang Q, Shao L, Wei S, Liu R, Li Z, Geng Y, Li C, Wang X. Carbon Ion Therapy Inhibits Esophageal Squamous Cell Carcinoma Metastasis by Upregulating STAT3 Through the JAK2/STAT3 Signaling Pathway. Front Public Health 2020; 8:579705. [PMID: 33330321 PMCID: PMC7714757 DOI: 10.3389/fpubh.2020.579705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy is an important component of the comprehensive treatment of esophageal cancer. However, conventional radiation resistance is one of the main reasons for treatment failure. The superiority of heavy ion radiation in physics and biology has been increasingly highlighted in radiation therapy research. The Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway plays an important role in the occurrence, development and metastasis of esophageal squamous cell carcinoma (ESCC) and is related to the development of resistance to ionizing radiation in ESCC. Therefore, the aim of the present study was to investigate the relationship between carbon ion inhibition of the proliferation and metastasis of esophageal carcinoma cells and the JAK2/STAT3 signaling pathway. The results demonstrated that carbon ion beams significantly reduced cell viability and stimulated apoptosis in human ESCC cells in a dose-dependent manner. In addition, carbon ion beams induced G2/M phase cell cycle arrest in ESCC cells and inhibited tumor metastasis in a dose-dependent manner. Additionally, poorly differentiated KYSE150 cells were more sensitive to the same carbon ion beam dose than moderately differentiated ECA109 cells. Carbon ion beam exposure regulated the relative expression of metastasis-related molecules at the transcriptional and translational levels in ESCC cells. Carbon ion beams also regulated CDH1 and MMP2 downstream of the STAT3 pathway and inhibited ESCC cell metastasis, which activated the STAT3 signaling pathway. This study confirmed the inhibition of cell proliferation and the metastatic effect of carbon ion beam therapy in ESCC cells.
Collapse
Affiliation(s)
- Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Zhen Yang
- The Basic Medical College of Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Lihua Shao
- Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Shihong Wei
- Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Zheng Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yichao Geng
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Chengcheng Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China.,The Basic Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Geletu M, Taha Z, Arulanandam R, Mohan R, Assi HH, Castro MG, Nabi IR, Gunning PT, Raptis L. Effect of caveolin-1 on Stat3-ptyr705 levels in breast and lung carcinoma cells. Biochem Cell Biol 2019; 97:638-646. [PMID: 30986357 DOI: 10.1139/bcb-2018-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently demonstrated that Cav1 (caveolin-1) is a negative regulator of Stat3 (signal transducer and activator of transcription-3) activity in mouse fibroblasts and human lung carcinoma SHP77 cells. We now examined whether the cellular context may affect their levels as well as the relationship between them, by assessing Cav1 and Stat3-ptyr705 amounts in different cell lines. In MDA-MB-231, A549, and HaCat cells, Cav1 levels were high and Stat3-ptyr705 levels were low, consistent with the notion of a negative effect of endogenous Cav1 on Stat3-ptyr705 levels in these lines. In addition, manipulation of Cav1 levels revealed a negative effect in MCF7 and mouse fibroblast cells, while Cav1 upregulation induced apoptosis in MCF7 cells. In contrast, however, line MRC9 had high Cav1 and high Stat3-ptyr705 levels, indicating that high Cav1 is insufficient to reduce Stat3-ptyr705 levels in this line. MCF7 and LuCi6 cells had very low Cav1 and Stat3-ptyr705 levels, indicating that the low Stat3-ptyr705 can be independent from Cav1 levels altogether. Our results reveal a further level of complexity in the relationship between Cav1 and Stat3-ptyr705 than previously thought. In addition, we demonstrate that in a feedback loop, Stat3 inhibition upregulates Cav1 in HeLa cells but not in other lines tested.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, and Queen's University Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute - Cancer Therapeutics, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Rozanne Arulanandam
- Ottawa Hospital Research Institute - Cancer Therapeutics, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Reva Mohan
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, and Queen's University Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Hikmat H Assi
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48019, USA
| | - Maria G Castro
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48019, USA
| | - Ivan Robert Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, and Queen's University Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
16
|
PI3k and Stat3: Oncogenes that are Required for Gap Junctional, Intercellular Communication. Cancers (Basel) 2019; 11:cancers11020167. [PMID: 30717267 PMCID: PMC6406562 DOI: 10.3390/cancers11020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022] Open
Abstract
Gap junctional, intercellular communication (GJIC) is interrupted in cells transformed by oncogenes such as activated Src. The Src effector, Ras, is required for this effect, so that Ras inhibition restores GJIC in Src-transformed cells. Interestingly, the inhibition of the Src effector phosphatidyl-inositol-3 kinase (PI3k) or Signal Transducer and Activator of Transcription-3 (Stat3) pathways does not restore GJIC. In the contrary, inhibition of PI3k or Stat3 in non-transformed rodent fibroblasts or epithelial cells or certain human lung carcinoma lines with extensive GJIC inhibits communication, while mutational activation of PI3k or Stat3 increases GJIC. Therefore, it appears that oncogenes such as activated Src have a dual role upon GJIC; acting as inhibitors of communication through the Ras pathway, and as activators through activation of PI3k or Stat3. In the presence of high Src activity the inhibitory functions prevail so that the net effect is gap junction closure. PI3k and Stat3 constitute potent survival signals, so that their inhibition in non-transformed cells triggers apoptosis which, in turn, has been independently demonstrated to suppress GJIC. The interruption of gap junctional communication would confine the apoptotic event to single cells and this might be essential for the maintenance of tissue integrity. We hypothesize that the GJIC activation by PI3k or Stat3 may be linked to their survival function.
Collapse
|
17
|
STAT3 is activated in multicellular spheroids of colon carcinoma cells and mediates expression of IRF9 and interferon stimulated genes. Sci Rep 2019; 9:536. [PMID: 30679726 PMCID: PMC6345781 DOI: 10.1038/s41598-018-37294-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/30/2018] [Indexed: 01/27/2023] Open
Abstract
Three-dimensional cell cultures, such as multicellular spheroids (MCS), reflect the in vivo architecture of solid tumours and multicellular drug resistance. We previously identified interferon regulatory factor 9 (IRF9) to be responsible for the up-regulation of a subset of interferon (IFN)-stimulated genes (ISGs) in MCS of colon carcinoma cells. This set of ISGs closely resembled a previously identified IFN-related DNA-damage resistance signature (IRDS) that was correlated to resistance to chemo- and radiotherapy. In this study we found that transcription factor STAT3 is activated upstream of IRF9 and binds to the IRF9 promoter in MCS of HCT116 colorectal carcinoma cells. Transferring conditioned media (CM) from high cell density conditions to non-confluent cells resulted in STAT3 activation and increased expression of IRF9 and a panel of IRDS genes, also observed in MCS, suggesting the involvement of a soluble factor. Furthermore, we identified gp130/JAK signalling to be responsible for STAT3 activation, IRF9, and IRDS gene expression in MCS and by CM. Our data suggests a novel mechanism where STAT3 is activated in high cell density conditions resulting in increased expression of IRF9 and, in turn, IRDS genes, underlining a mechanism by which drug resistance is regulated.
Collapse
|
18
|
Matsuno Y, Kiwamoto T, Morishima Y, Ishii Y, Hizawa N, Hogaboam CM. Notch signaling regulates cell density-dependent apoptosis of NIH 3T3 through an IL-6/STAT3 dependent mechanism. Eur J Cell Biol 2018; 97:512-522. [PMID: 30249464 DOI: 10.1016/j.ejcb.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
Apoptosis is a physiological process that plays a critical maintenance role in cellular homeostasis. Previous reports have demonstrated that cells undergo apoptosis in a cell density-dependent manner, which is regulated, in part, by signal transducers and activators of transcription (STAT) 3. The molecular mechanisms regulating cell density-dependent apoptosis, however, has not been thoroughly investigated to date. Since Notch signaling is activated via direct cell-to-cell contact and plays a pivotal role in cell fate decisions, we examined the role of Notch signaling in cell density-dependent apoptosis of mouse embryonic fibroblasts NIH 3T3 cells. With the increase in cell density, IL-6 expression was induced, which was necessary for STAT3 activation as well as apoptosis regulation. Notch signaling was also activated in a cell-density dependent manner. Blocking Notch signaling either through siRNA-mediated targeting of Jagged1 expression or γ-secretase inhibitor treatment demonstrated that Notch signaling activation was necessary for IL-6 induction. Constitutive activation of Notch signaling via the overexpression of Notch1 intracellular domain was sufficient for the induction of IL-6, which was mediated via direct transcriptional activation. Taken together, our study indicates that Notch signaling regulates cell density-dependent apoptosis through IL-6/STAT3-dependent mechanism. Consequently, Notch signaling might represent a novel therapeutic target in diseases characterized by dysregulated apoptosis.
Collapse
Affiliation(s)
- Yosuke Matsuno
- Department of Respiratory Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takumi Kiwamoto
- Department of Respiratory Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuko Morishima
- Department of Respiratory Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukio Ishii
- Department of Respiratory Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nobuyuki Hizawa
- Department of Respiratory Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
19
|
A novel small molecular STAT3 inhibitor, 5Br-6b, induces apoptosis and inhibits migration in colorectal cancer cells. Anticancer Drugs 2018; 29:402-410. [DOI: 10.1097/cad.0000000000000605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Amoozadeh Y, Anwer S, Dan Q, Venugopal S, Shi Y, Branchard E, Liedtke E, Ailenberg M, Rotstein OD, Kapus A, Szászi K. Cell confluence regulates claudin-2 expression: possible role for ZO-1 and Rac. Am J Physiol Cell Physiol 2018; 314:C366-C378. [DOI: 10.1152/ajpcell.00234.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Claudin-2 (Cldn-2) is a channel-forming tight junction (TJ) protein in the proximal tubules that mediates paracellular Na+ transport and has also emerged as a regulator of proliferation and migration. Expression of Cldn-2 is altered by numerous stimuli, but the underlying mechanisms remain incompletely understood. Here we show that Cldn-2 protein and mRNA expression were low in subconfluent tubular cells and increased during junction maturation. Cldn-1 or occludin did not exhibit similar confluence-dependence. Conversely, disruption of TJs by Ca2+ removal or silencing of zonula occludens-1 (ZO-1) or ZO-2 induced a large drop in Cldn-2 abundance. Immunofluorescent staining revealed a more uneven Cldn-2 staining in nascent, Cldn-1-positive TJs. Subconfluence and ZO-1 silencing augmented Cldn-2 degradation and reduced Cldn-2 promoter activity, suggesting that insertion into the TJs slows Cldn-2 turnover. Indeed, blocking endocytosis or lysosomal degradation increased Cldn-2 abundance. Cell confluence increased expression of the junctional adapters ZO-1 and -2, and the small GTPase Rac, and elevated Rac activity and p21-activated kinase (Pak) phosphorylation, suggesting that they might mediate confluence-dependent Cldn-2 regulation. Indeed, Rac silencing or Pak inhibition strongly reduced Cldn-2 protein abundance, which was likely the combined effect on turnover, as these interventions reduced Cldn-2 promoter activity and augmented Cldn-2 degradation. Taken together, our data suggest that TJ integrity and maturity, ZO-1 expression/TJ localization, and Rac/Pak control Cldn-2 degradation and synthesis. A feedback mechanism connecting Cldn-2 expression with junction remodeling, e.g., during wound healing, epithelial-mesenchymal transition, or tumor metastasis formation, may have important downstream effects on permeability, proliferation, and migration.
Collapse
Affiliation(s)
- Yasaman Amoozadeh
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Shaista Anwer
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Yixuan Shi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Emily Branchard
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Elisabeth Liedtke
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Menachem Ailenberg
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ori D. Rotstein
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Geletu M, Mohan R, Arulanandam R, Berger-Becvar A, Nabi IR, Gunning PT, Raptis L. Reciprocal regulation of the Cadherin-11/Stat3 axis by caveolin-1 in mouse fibroblasts and lung carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:794-802. [PMID: 29458077 DOI: 10.1016/j.bbamcr.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023]
Abstract
Caveolin-1 (Cav1) is an integral plasma membrane protein and a complex regulator of signal transduction. The Signal Transducer and Activator of Transcription-3 (Stat3) is activated by a number of receptor and non-receptor tyrosine kinases and is positively implicated in cancer. Despite extensive efforts, the relationship between Cav1 and Stat3 has been a matter of controversy. We previously demonstrated that engagement of E- or N-cadherin or cadherin-11 cell to cell adhesion molecules, as occurs with confluence of cultured cells, triggers a dramatic increase in the levels of tyr705 phosphorylated i.e. activated Stat3, by a mechanism requiring the cRac1 small GTPase. Since confluence was not taken into account in previous studies, we revisited the question of the relationship between Cav1 and Stat3-ptyr705 in non-transformed mouse fibroblasts and in human lung carcinoma cells, by examining their effect at different cell densities. Our results unequivocally demonstrate that Cav1 downregulates cadherin-11, by a mechanism which requires the Cav1 scaffolding domain. This cadherin-11 downregulation, in turn, leads to a reduction in cRac1 and Stat3 activity levels. Furthermore, in a feedback loop possibly through p53 upregulation, Stat3 downregulation increases Cav1 levels. Our data reveal the presence of a potent, negative regulatory loop between Cav1 and cadherin-11/Stat3, leading to Stat3 inhibition and apoptosis.
Collapse
Affiliation(s)
- M Geletu
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada.
| | - R Mohan
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R Arulanandam
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - A Berger-Becvar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada
| | - I R Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - P T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada
| | - L Raptis
- Department of Biomedical and Molecular Sciences, Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
22
|
Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, Somlo G, Jandial R, Ann D, Hanash S, Jove R, Yu H. JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metab 2018; 27:136-150.e5. [PMID: 29249690 PMCID: PMC5777338 DOI: 10.1016/j.cmet.2017.11.001] [Citation(s) in RCA: 481] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/24/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are critical for cancer progression and chemoresistance. How lipid metabolism regulates CSCs and chemoresistance remains elusive. Here, we demonstrate that JAK/STAT3 regulates lipid metabolism, which promotes breast CSCs (BCSCs) and cancer chemoresistance. Inhibiting JAK/STAT3 blocks BCSC self-renewal and expression of diverse lipid metabolic genes, including carnitine palmitoyltransferase 1B (CPT1B), which encodes the critical enzyme for fatty acid β-oxidation (FAO). Moreover, mammary-adipocyte-derived leptin upregulates STAT3-induced CPT1B expression and FAO activity in BCSCs. Human breast-cancer-derived data suggest that the STAT3-CPT1B-FAO pathway promotes cancer cell stemness and chemoresistance. Blocking FAO and/or leptin re-sensitizes them to chemotherapy and inhibits BCSCs in mouse breast tumors in vivo. We identify a critical pathway for BCSC maintenance and breast cancer chemoresistance.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; LA Cell and Sorrento Therapeutics Inc., 4955 Director's Place, San Diego, CA 92121, USA
| | - Johannes Francois Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Heehyoung Lee
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; LA Cell and Sorrento Therapeutics Inc., 4955 Director's Place, San Diego, CA 92121, USA
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chanyu Yue
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; LA Cell and Sorrento Therapeutics Inc., 4955 Director's Place, San Diego, CA 92121, USA
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Veronica Lifshitz
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jieun Song
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - George Somlo
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Rahul Jandial
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - David Ann
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Richard Jove
- Therapy Institute, Department of Biomedical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
23
|
Chang N, Ahn SH, Kong DS, Lee HW, Nam DH. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Mol Cell Endocrinol 2017; 451:53-65. [PMID: 28089821 DOI: 10.1016/j.mce.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of cancer that begins within the brain; generally, the patient has a dismal prognosis and limited therapeutic options. Signal transducer and activator of transcription 3 (STAT3) is a critical mediator of tumorigenesis, tumor progression, and suppression of anti-tumor immunity in GBM. In a high percentage of GBM cells and tumor microenvironments, persistent activation of STAT3 induces cell proliferation, anti-apoptosis, glioma stem cell maintenance, tumor invasion, angiogenesis, and immune evasion. This makes STAT3 an attractive therapeutic target and a prognostic indicator in GBM. Targeting STAT3 affords an opportunity to disrupt multiple pro-oncogenic pathways at a single molecular hub. Unfortunately, there are no successful STAT3 inhibitors currently in clinical trials. However, strong clinical evidence implicating STAT3 as a major factor in GBM justifies the identification of safe and effective strategies for inhibiting STAT3.
Collapse
Affiliation(s)
- Nakho Chang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, South Korea
| | - Sun Hee Ahn
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, South Korea
| | - Doo-Sik Kong
- Departments of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Hye Won Lee
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, South Korea; Institute for Future Medicine, Samsung Medical Center, Seoul 06351, South Korea.
| | - Do-Hyun Nam
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, South Korea; Departments of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.
| |
Collapse
|
24
|
Smith SE, Mellor P, Ward AK, Kendall S, McDonald M, Vizeacoumar FS, Vizeacoumar FJ, Napper S, Anderson DH. Molecular characterization of breast cancer cell lines through multiple omic approaches. Breast Cancer Res 2017; 19:65. [PMID: 28583138 PMCID: PMC5460504 DOI: 10.1186/s13058-017-0855-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. METHODS We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. RESULTS The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated in common or unique ways. CONCLUSIONS These two new kinase or "Kin-OMIC" analyses add another dimension of important data about these frequently used breast cancer cell lines. This will assist researchers in selecting the most appropriate cell lines to use for breast cancer studies and provide context for the interpretation of the emerging results.
Collapse
Affiliation(s)
- Shari E Smith
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Paul Mellor
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Alison K Ward
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Stephanie Kendall
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Megan McDonald
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Frederick S Vizeacoumar
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Franco J Vizeacoumar
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Scott Napper
- Vaccine Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Deborah H Anderson
- Cancer Cluster, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada. .,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
25
|
Sen M, Johnston PA, Pollock NI, DeGrave K, Joyce SC, Freilino ML, Hua Y, Camarco DP, Close DA, Huryn DM, Wipf P, Grandis JR. Mechanism of action of selective inhibitors of IL-6 induced STAT3 pathway in head and neck cancer cell lines. J Chem Biol 2017; 10:129-141. [PMID: 28684999 DOI: 10.1007/s12154-017-0169-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
Studies indicate that elevated interleukin-6 (IL-6) levels engage IL6Rα-gp130 receptor complexes to activate signal transducer and activator of transcription 3 (STAT3) that is hyperactivated in many cancers including head and neck squamous cell carcinoma (HNSCC). Our previous HCS campaign identified several hits that selectively blocked IL-6-induced STAT3 activation. This study describes our investigation of the mechanism(s) of action of three of the four chemical series that progressed to lead activities: a triazolothiadiazine (864669), amino alcohol (856350), and an oxazole-piperazine (4248543). We demonstrated that all three blocked IL-6-induced upregulation of the cyclin D1 and Bcl-XL STAT3 target genes. None of the compounds exhibited direct binding interactions with STAT3 in surface plasmon resonance (SPR) binding assays; neither did they inhibit the recruitment and binding of a phospho-tyrosine-gp130 peptide to STAT3 in a fluorescence polarization assay. Furthermore, they exhibited little or no inhibition in a panel of 83 cancer-associated in vitro kinase profiling assays, including lack of inhibition of IL-6-induced Janus kinase (JAK 1, 2, and 3) activation. Further, 864669 and 4248543 selectively inhibited IL-6-induced STAT3 activation but not that induced by oncostatin M (OSM). The compounds 864669 and 4248543 abrogated IL-6-induced phosphorylation of the gp130 signaling subunit (phospho-gp130Y905) of the IL-6-receptor complex in HNSCC cell lines which generate docking sites for the SH2 domains of STAT3. Our data indicate that 864669 and 4248543 block IL-6-induced STAT activation by interfering with the recruitment, assembly, or activation of the hexamer-activated IL-6/IL-6Rα/gp130 signaling complex that occurs after IL-6 binding to IL-6Rα subunits.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Netanya I Pollock
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Kara DeGrave
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Sonali C Joyce
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Maria L Freilino
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Daniel P Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - David A Close
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94118 USA.,Clinical and Translational Science Institute, University of California, San Francisco, Box 0558, 550 16th Street, San Francisco, CA 94143 USA
| |
Collapse
|
26
|
Katakowski M, Charteris N, Chopp M, Khain E. Density-Dependent Regulation of Glioma Cell Proliferation and Invasion Mediated by miR-9. CANCER MICROENVIRONMENT 2016; 9:149-159. [PMID: 27975329 DOI: 10.1007/s12307-016-0190-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/05/2016] [Indexed: 01/11/2023]
Abstract
The phenotypic axis of invasion and proliferation in malignant glioma cells is a well-documented phenomenon. Invasive glioma cells exhibit a decreased proliferation rate and a resistance to apoptosis, and invasive tumor cells dispersed in brain subsequently revert to proliferation and contribute to secondary tumor formation. One miRNA can affect dozens of mRNAs, and some miRNAs are potent oncogenes. Multiple miRNAs are implicated in glioma malignancy, and several of which have been identified to regulate tumor cell motility and division. Using rat 9 L gliosarcoma and human U87 glioblastoma cell lines, we investigated miRNAs associated with the switch between glioma cell invasion and proliferation. Using micro-dissection of 9 L glioma tumor xenografts in rat brain, we identified disparate expression of miR-9 between cells within the periphery of the primary tumor, and those comprising tumor islets within the invasive zone. Modifying miR-9 expression in in vitro assays, we report that miR-9 controls the axis of glioma cell invasion/proliferation, and that its contribution to invasion or proliferation is biphasic and dependent upon local tumor cell density. In addition, immunohistochemistry revealed elevated hypoxia inducible factor 1 alpha (HIF-1α) in the invasive zone as compared to the primary tumor periphery. We also found that hypoxia promotes miR-9 expression in glioma cells. Based upon these findings, we propose a hypothesis for the contribution of miR-9 to the dynamics glioma invasion and satellite tumor formation in brain adjacent to tumor.
Collapse
Affiliation(s)
- Mark Katakowski
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Evgeniy Khain
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
27
|
Bharadwaj U, Kasembeli MM, Tweardy DJ. STAT3 Inhibitors in Cancer: A Comprehensive Update. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42949-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Stat3 contributes to cancer progression by regulating Jab1/Csn5 expression. Oncogene 2016; 36:1069-1079. [PMID: 27524414 PMCID: PMC5311075 DOI: 10.1038/onc.2016.271] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/04/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Our previous studies demonstrated that Jab1/Csn5 overexpression is correlated with low survival rates in cancer patients, including nasopharyngeal carcinoma (NPC), breast cancer and hepatocellular carcinoma, and contributes to NPC's resistance to radiotherapy and cisplatin by regulating DNA damage and repair pathways. However, the molecular mechanism by which Jab1/Csn5 expression is upregulated in NPCs has yet to be determined. In the present study, we identified the upstream regulator of Jab1/Csn5 expression and demonstrated its role in intrinsic resistance of NPC cells to treatment with cisplatin. Signal transducer and activator of transcription-3 (Stat3) expression correlates with and contributes to Jab1/Csn5 transcription. Consistently, silencing of Stat3 in tumors reduced Jab1/Csn5 expression, thereby sensitizing NPC cells to cisplatin-induced apoptosis both in vitro and in vivo. Mechanistically, Stat3 transcriptionally regulated Jab1/Csn5. Furthermore, high mRNA expression levels of Stat3 or Jab1 in colon cancer, breast cancer and glioblastoma are associated with significantly shorter survival times from the R2 online database. These findings identify a novel Stat3-Jab1/Csn5 signaling axis in cancer pathogenesis with therapeutic and prognostic relevance.
Collapse
|
29
|
Xue J, Zhou A, Wu Y, Morris SA, Lin K, Amin S, Verhaak R, Fuller G, Xie K, Heimberger AB, Huang S. miR-182-5p Induced by STAT3 Activation Promotes Glioma Tumorigenesis. Cancer Res 2016; 76:4293-304. [PMID: 27246830 PMCID: PMC5033679 DOI: 10.1158/0008-5472.can-15-3073] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/23/2016] [Indexed: 01/17/2023]
Abstract
Malignant glioma is an often fatal type of cancer. Aberrant activation of STAT3 leads to glioma tumorigenesis. STAT3-induced transcription of protein-coding genes has been extensively studied; however, little is known about STAT3-regulated miRNA gene transcription in glioma tumorigenesis. In this study, we found that abnormal activation or decreased expression of STAT3 promotes or inhibits the expression of miR-182-5p, respectively. Bioinformatics analyses determined that tumor suppressor protocadherin-8 (PCDH8) is a candidate target gene of miR-182-5p. miR-182-5p negatively regulated PCDH8 expression by directly targeting its 3'-untranslated region. PCDH8 knockdown induced the proliferative and invasive capacities of glioma cells. Silencing of PCDH8 or miR-182-5p mimics could reverse the inhibitory effect of WP1066, a STAT3 inhibitor, or STAT3 knockdown in vitro and in vivo on glioma progression. Clinically, expression levels of PCDH8 were inversely correlated with those of p-STAT3 or miR-182-5p in glioblastoma tissues. These findings reveal that the STAT3/miR-182-5p/PCDH8 axis has a critical role in glioma tumorigenesis and that targeting the axis may provide a new therapeutic approach for human glioma. Cancer Res; 76(14); 4293-304. ©2016 AACR.
Collapse
Affiliation(s)
- Jianfei Xue
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yamei Wu
- Department of Hematology, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Saint-Aaron Morris
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kangyu Lin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samirkumar Amin
- Department of Genomic Medicine; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roeland Verhaak
- Department of Genomic Medicine; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas. Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas. Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas.
| |
Collapse
|
30
|
Yang R, Rincon M. Mitochondrial Stat3, the Need for Design Thinking. Int J Biol Sci 2016; 12:532-44. [PMID: 27019635 PMCID: PMC4807418 DOI: 10.7150/ijbs.15153] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022] Open
Abstract
Stat3 has been studied extensively as a transcription factor, however the finding that Stat3 also localizes to mitochondria has opened a new area to discover non-classical functions. Here we review the current knowledge of mitochondrial Stat3 as a regulator of the electron transport chain (ETC) and its impact on mitochondrial production of ATP and ROS. We also describe recent findings identifying Stat3 as a regulator of mitochondrial Ca(2+) homeostasis through its effect on the ETC. It is becoming evident that these non-classical functions of Stat3 can have a major impact on cancer progression, cardiovascular diseases, and inflammatory diseases. Therefore, mitochondrial Stat3 functions challenge the current design of therapies that solely target Stat3 as a transcription factor and suggest the need for "design thinking," which leads to the development of novel strategies, to intervene the Stat3 pathway.
Collapse
|
31
|
Bonastre E, Verdura S, Zondervan I, Facchinetti F, Lantuejoul S, Chiara MD, Rodrigo JP, Carretero J, Condom E, Vidal A, Sidransky D, Villanueva A, Roz L, Brambilla E, Savola S, Sanchez-Cespedes M. PARD3 Inactivation in Lung Squamous Cell Carcinomas Impairs STAT3 and Promotes Malignant Invasion. Cancer Res 2016; 75:1287-97. [PMID: 25833829 DOI: 10.1158/0008-5472.can-14-2444] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Correct apicobasal polarization and intercellular adhesions are essential for the appropriate development of normal epithelia. Here, we investigated the contribution of the cell polarity regulator PARD3 to the development of lung squamous cell carcinomas (LSCC). Tumor-specific PARD3 alterations were found in 8% of LSCCs examined, placing PARD3 among the most common tumor suppressor genes in this malignancy. Most PAR3-mutant proteins exhibited a relative reduction in the ability to mediate formation of tight junctions and actin-based protrusions, bind atypical protein kinase C, activate RAC1, and activate STAT3 at cell confluence. Thus, PARD3 alterations prevented the formation of contacts between neighboring cells and the subsequent downstream signaling. Notably, reconstituting PAR3 activity in vivo reduced tumor-invasive and metastatic properties. Our findings define PARD3 as a recurrently inactivated cell polarity regulator in LSCC that affects tumor aggressiveness and metastasis.
Collapse
Affiliation(s)
- Ester Bonastre
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Verdura
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | | | - Federica Facchinetti
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Sylvie Lantuejoul
- Department of Pathology, Institut Albert Bonniot, INSERM U823, University Joseph Fourier, CHU, Grenoble Hôpital Michallon, Grenoble, France
| | - Maria Dolores Chiara
- Department of Otolaryngology of the Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan Pablo Rodrigo
- Department of Otolaryngology of the Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Julian Carretero
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Spain
| | - Enric Condom
- Pathology Department, Bellvitge Hospital, Hospitalet de Llobregat, Barcelona, Spain
| | - Agustin Vidal
- Pathology Department, Bellvitge Hospital, Hospitalet de Llobregat, Barcelona, Spain
| | - David Sidransky
- Departments of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alberto Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology (ICO)-IDIBELL, Barcelona, Spain
| | - Luca Roz
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Elisabeth Brambilla
- Department of Pathology, Institut Albert Bonniot, INSERM U823, University Joseph Fourier, CHU, Grenoble Hôpital Michallon, Grenoble, France
| | - Suvi Savola
- MRC-Holland, Willem Schoutenstraat, the Netherlands
| | - Montse Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
32
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
33
|
Niit M, Hoskin V, Carefoot E, Geletu M, Arulanandam R, Elliott B, Raptis L. Cell-cell and cell-matrix adhesion in survival and metastasis: Stat3 versus Akt. Biomol Concepts 2015; 6:383-99. [DOI: 10.1515/bmc-2015-0022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/23/2015] [Indexed: 01/05/2023] Open
Abstract
AbstractBoth cell-cell and cell-matrix adhesion are important for epithelial cell differentiation and function. Classical cadherins mediate cell to cell interactions and are potent activators of the signal transducer and activator of transcription (Stat3), thereby offering survival signaling. While the epithelial (E)-cadherin is required for cells to remain tightly associated within differentiated epithelial tissues, cadherin-11 promotes invasion and metastasis, preferentially to the bone. Cell adhesion to the extracellular matrix is mediated through the integrin receptors that bind to the focal adhesion kinase (FAK)/Src complex, thus activating downstream effectors such as Ras/Erk1/2 and PI3k/Akt, but not Stat3. Therefore, at high densities of cultured cells or in epithelial tissues, co-ordinate activation of the complementary cadherin/Stat3 and integrin/FAK pathways can greatly enhance survival and growth of tumor cells. In neoplastically transformed cells on the other hand, a variety of oncogenes including activated Src or receptor tyrosine kinases, activate both pathways. Still, most single-agent therapies directed against these signaling pathways have proven disappointing in the clinic. Combined targeting of the Src/FAK and Stat3 pathways with inhibitory drugs would be expected to have greater efficacy in inhibiting tumor cell survival, and enhancing sensitivity to conventional cytotoxic drugs for treatment of metastatic disease.
Collapse
Affiliation(s)
- Maximilian Niit
- 1Department of Pathology and Molecular Medicine, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | | | | | - Mulu Geletu
- 3Department of Chemical and Physical Sciences, University of Toronto, Mississauga, William Davis 3126B Room 3023, 3359 Mississauga Rd., N Mississauga, Ontario, Canada
| | - Rozanne Arulanandam
- 4Department of Pathology and Molecular Medicine, Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa K1H 8L6, Ontario, Canada
| | | | | |
Collapse
|
34
|
van Adrichem AJ, Wennerberg K. MgcRacGAP inhibition stimulates JAK-dependent STAT3 activity. FEBS Lett 2015; 589:3859-65. [DOI: 10.1016/j.febslet.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/26/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
35
|
Suman S, Sharma PK, Rai G, Mishra S, Arora D, Gupta P, Shukla Y. Current perspectives of molecular pathways involved in chronic inflammation-mediated breast cancer. Biochem Biophys Res Commun 2015; 472:401-9. [PMID: 26522220 DOI: 10.1016/j.bbrc.2015.10.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/25/2015] [Indexed: 02/07/2023]
Abstract
Inflammation has multifaceted role in cancer progression including initiation, promotion and invasion by affecting the immune surveillance and associated signaling pathways. Inflammation facilitates the over-expression of cytokines, chemokines and growth factors involved in progression of different cancers including breast cancer progression. Deregulation of biological processes such as oxidative stress, angiogenesis, and autophagy elicit favorable immune response towards chronic inflammation. Apart from the role in carcinogenesis, chronic inflammation also favors the emergence of drug resistance clones by inducing the growth of breast cancer stem-like cells. Immunomodulation mediated by cytokines, chemokines and several other growth factors present in the tumor microenvironment regulate chronic inflammatory response and alter crosstalk among various signaling pathways such as NF-κB, Nrf-2, JAK-STAT, Akt and MAPKs involved in the progression of breast cancer. In this review, we focused on cellular and molecular processes involved in chronic inflammation, crosstalk among different signaling pathways and their association in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Shankar Suman
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| | - Girish Rai
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanjay Mishra
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Deepika Arora
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Bioscience, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Prachi Gupta
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Yogeshwer Shukla
- Proteomics & Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
36
|
Böttger K, Hatzikirou H, Voss-Böhme A, Cavalcanti-Adam EA, Herrero MA, Deutsch A. An Emerging Allee Effect Is Critical for Tumor Initiation and Persistence. PLoS Comput Biol 2015; 11:e1004366. [PMID: 26335202 PMCID: PMC4559422 DOI: 10.1371/journal.pcbi.1004366] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
Tumor cells develop different strategies to cope with changing microenvironmental conditions. A prominent example is the adaptive phenotypic switching between cell migration and proliferation. While it has been shown that the migration-proliferation plasticity influences tumor spread, it remains unclear how this particular phenotypic plasticity affects overall tumor growth, in particular initiation and persistence. To address this problem, we formulate and study a mathematical model of spatio-temporal tumor dynamics which incorporates the microenvironmental influence through a local cell density dependence. Our analysis reveals that two dynamic regimes can be distinguished. If cell motility is allowed to increase with local cell density, any tumor cell population will persist in time, irrespective of its initial size. On the contrary, if cell motility is assumed to decrease with respect to local cell density, any tumor population below a certain size threshold will eventually extinguish, a fact usually termed as Allee effect in ecology. These results suggest that strategies aimed at modulating migration are worth to be explored as alternatives to those mainly focused at keeping tumor proliferation under control. Controlling tumor growth remains a major medical challenge. Current clinical therapies focus on strategies to reduce tumor cell proliferation. However, during tumor progression, tumor cells may switch between proliferative and migratory behaviors, thereby allowing adaptation to microenvironmental changes that result in variations in local tumor cell density. We herein explore by means of a mathematical model the impact of migration-proliferation plasticity on tumor initiation and persistence. Our work suggests that small tumors can become extinct solely by their intrinsic cell population dynamics if cell motility decreases along with local cell density. In contrast, if cell motility increases with cell density, the tumor inevitably grows. Our model suggests that the regulation of cell migration plays a key role in tumor growth as a whole, making this feature a potential target for clinical studies.
Collapse
Affiliation(s)
- Katrin Böttger
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | | | - Anja Voss-Böhme
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
- Hochschule für Technik und Wirtschaft Dresden, Dresden, Germany
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Heidelberg, Germany
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Miguel A. Herrero
- Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, Madrid, Spain
| | - Andreas Deutsch
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
37
|
Arulanandam R, Batenchuk C, Angarita FA, Ottolino-Perry K, Cousineau S, Mottashed A, Burgess E, Falls TJ, De Silva N, Tsang J, Howe GA, Bourgeois-Daigneault MC, Conrad DP, Daneshmand M, Breitbach CJ, Kirn DH, Raptis L, Sad S, Atkins H, Huh MS, Diallo JS, Lichty BD, Ilkow CS, Le Boeuf F, Addison CL, McCart JA, Bell JC. VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection. Cancer Cell 2015. [PMID: 26212250 DOI: 10.1016/j.ccell.2015.06.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oncolytic viruses designed to attack malignant cells can in addition infect and destroy tumor vascular endothelial cells. We show here that this expanded tropism of oncolytic vaccinia virus to the endothelial compartment is a consequence of VEGF-mediated suppression of the intrinsic antiviral response. VEGF/VEGFR2 signaling through Erk1/2 and Stat3 leads to upregulation, nuclear localization, and activation of the transcription repressor PRD1-BF1/Blimp1. PRD1-BF1 does not contribute to the mitogenic effects of VEGF, but directly represses genes involved in type I interferon (IFN)-mediated antiviral signaling. In vivo suppression of VEGF signaling diminishes PRD1-BF1/Blimp1 expression in tumor vasculature and inhibits intravenously administered oncolytic vaccinia delivery to and consequent spread within the tumor.
Collapse
Affiliation(s)
- Rozanne Arulanandam
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Cory Batenchuk
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Fernando A Angarita
- Toronto General Research Institute (TGRI), University Health Network, Toronto, ON M5G 2M9, Canada
| | - Kathryn Ottolino-Perry
- Toronto General Research Institute (TGRI), University Health Network, Toronto, ON M5G 2M9, Canada
| | - Sophie Cousineau
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Amelia Mottashed
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Emma Burgess
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Theresa J Falls
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Naomi De Silva
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Jovian Tsang
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Grant A Howe
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - David P Conrad
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Manijeh Daneshmand
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - David H Kirn
- SillaJen Biotherapeutics, San Francisco, CA 94111-3380, USA
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Harold Atkins
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Michael S Huh
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Fabrice Le Boeuf
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Christina L Addison
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - J Andrea McCart
- Toronto General Research Institute (TGRI), University Health Network, Toronto, ON M5G 2M9, Canada; Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
38
|
Arulanandam R, Batenchuk C, Varette O, Zakaria C, Garcia V, Forbes NE, Davis C, Krishnan R, Karmacharya R, Cox J, Sinha A, Babawy A, Waite K, Weinstein E, Falls T, Chen A, Hamill J, De Silva N, Conrad DP, Atkins H, Garson K, Ilkow C, Kærn M, Vanderhyden B, Sonenberg N, Alain T, Le Boeuf F, Bell JC, Diallo JS. Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing. Nat Commun 2015; 6:6410. [PMID: 25817275 DOI: 10.1038/ncomms7410] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/27/2015] [Indexed: 12/11/2022] Open
Abstract
In this study, we show that several microtubule-destabilizing agents used for decades for treatment of cancer and other diseases also sensitize cancer cells to oncolytic rhabdoviruses and improve therapeutic outcomes in resistant murine cancer models. Drug-induced microtubule destabilization leads to superior viral spread in cancer cells by disrupting type I IFN mRNA translation, leading to decreased IFN protein expression and secretion. Furthermore, microtubule-destabilizing agents specifically promote cancer cell death following stimulation by a subset of infection-induced cytokines, thereby increasing viral bystander effects. This study reveals a previously unappreciated role for microtubule structures in the regulation of the innate cellular antiviral response and demonstrates that unexpected combinations of approved chemotherapeutics and biological agents can lead to improved therapeutic outcomes.
Collapse
Affiliation(s)
- Rozanne Arulanandam
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Cory Batenchuk
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Oliver Varette
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Chadi Zakaria
- Department of Biochemistry, Goodman Cancer Center, McGill University, 1160 Pine Avenue West, Montréal, Quebec, Canada H3A 1A3
| | - Vanessa Garcia
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Nicole E Forbes
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Colin Davis
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Ramya Krishnan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Raunak Karmacharya
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Julie Cox
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Anisha Sinha
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Andrew Babawy
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Katherine Waite
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Erica Weinstein
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Theresa Falls
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Andrew Chen
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Jeff Hamill
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Naomi De Silva
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - David P Conrad
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Harold Atkins
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Kenneth Garson
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Carolina Ilkow
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Mads Kærn
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Barbara Vanderhyden
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Center, McGill University, 1160 Pine Avenue West, Montréal, Quebec, Canada H3A 1A3
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario, Canada K1H 8L1
| | - Fabrice Le Boeuf
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - John C Bell
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| |
Collapse
|
39
|
Mali SB. Review of STAT3 (Signal Transducers and Activators of Transcription) in head and neck cancer. Oral Oncol 2015; 51:565-9. [PMID: 25817923 DOI: 10.1016/j.oraloncology.2015.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 12/14/2022]
Abstract
STATs can be activated independently of JAKs, most notably by c-Src kinases. In cancer cells, STAT3 and STAT5 activation leads to the increased expression of downstream target genes, leading to increased cell proliferation, cell survival, angiogenesis, and immune system evasion. STAT3 and STAT5 are expressed and activated in head and neck squamous cell carcinoma where they contribute to cell survival and proliferation. STATs can be activated by a number of signal transduction pathways, including the epidermal growth factor receptor (EGFR), nicotinic receptor, interleukin (IL) receptor, and erythropoietin receptor pathways. Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumor progression is a promising strategy for cancer chemoprevention. Several approaches have been used to inhibit STAT3 in the hope of developing an antitumor agent. Although several STAT3-specific agents are promising, none are in clinical development, mostly because of drug delivery and stability issues.
Collapse
|
40
|
|
41
|
Geletu M, Guy S, Firth K, Raptis L. A functional assay for gap junctional examination; electroporation of adherent cells on indium-tin oxide. J Vis Exp 2014:e51710. [PMID: 25350637 DOI: 10.3791/51710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In this technique, cells are cultured on a glass slide that is partly coated with indium-tin oxide (ITO), a transparent, electrically conductive material. A variety of molecules, such as peptides or oligonucleotides can be introduced into essentially 100% of the cells in a non-traumatic manner. Here, we describe how it can be used to study intercellular, gap junctional communication. Lucifer yellow penetrates into the cells when an electric pulse, applied to the conductive surface on which they are growing, causes pores to form through the cell membrane. This is electroporation. Cells growing on the nonconductive glass surface immediately adjacent to the electroporated region do not take up Lucifer yellow by electroporation but do acquire the fluorescent dye as it is passed to them via gap junctions that link them to the electroporated cells. The results of the transfer of dye from cell to cell can be observed microscopically under fluorescence illumination. This technique allows for precise quantitation of gap junctional communication. In addition, it can be used for the introduction of peptides or other non-permeant molecules, and the transfer of small electroporated peptides via gap junctions to inhibit the signal in the adjacent, non-electroporated cells is a powerful demonstration of signal inhibition.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Microbiology and Immunology and Department of Pathology, Queen's University
| | - Stephanie Guy
- Department of Microbiology and Immunology and Department of Pathology, Queen's University
| | | | - Leda Raptis
- Department of Microbiology and Immunology and Department of Pathology, Queen's University;
| |
Collapse
|
42
|
García-Hernández V, Flores-Maldonado C, Rincon-Heredia R, Verdejo-Torres O, Bonilla-Delgado J, Meneses-Morales I, Gariglio P, Contreras RG. EGF Regulates Claudin-2 and -4 Expression Through Src and STAT3 in MDCK Cells. J Cell Physiol 2014; 230:105-15. [DOI: 10.1002/jcp.24687] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Vicky García-Hernández
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Catalina Flores-Maldonado
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Ruth Rincon-Heredia
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
- Department of Pharmacology; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Odette Verdejo-Torres
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - José Bonilla-Delgado
- Laboratory of Genetics and Molecular Diagnosis; Research Unit; Hospital Juárez de México; México City México
| | - Ivan Meneses-Morales
- Breast Cancer investigation program; National Autonomous University of México (UNAM); México
- Department of Molecular Biology and Biotechnology; Biomedical Research Institute; National Autonomous University of México (UNAM); México
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Rubén G. Contreras
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| |
Collapse
|
43
|
Kanthou C, Dachs GU, Lefley DV, Steele AJ, Coralli-Foxon C, Harris S, Greco O, Dos Santos SA, Reyes-Aldasoro CC, English WR, Tozer GM. Tumour cells expressing single VEGF isoforms display distinct growth, survival and migration characteristics. PLoS One 2014; 9:e104015. [PMID: 25119572 PMCID: PMC4131915 DOI: 10.1371/journal.pone.0104015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/09/2014] [Indexed: 01/15/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF) is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120) on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188) or wild type controls (fswt) were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and VEGF120-producing cells (fs164 and fs120 respectively) were less typically mesenchymal, lacked ruffles but formed abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21 cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform expression through complex interactions that are independent of tyrosine kinase receptor activation. VEGF isoforms are emerging as potential biomarkers for anti-VEGF therapies. Our results reveal novel roles of individual isoforms associated with cancer growth and metastasis and highlight the importance of understanding their diverse actions.
Collapse
Affiliation(s)
- Chryso Kanthou
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
- * E-mail:
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Diane V. Lefley
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| | - Andrew J. Steele
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Claudia Coralli-Foxon
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| | - Sheila Harris
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| | - Olga Greco
- University of Sheffield, Sheffield, United Kingdom
| | - Sofia A. Dos Santos
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| | | | - William R. English
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| | - Gillian M. Tozer
- Tumour Microcirculation Group, CR-UK/YCR Sheffield Cancer Research Centre, The University of Sheffield, Department of Oncology, School of Medicine, Sheffield, United Kingdom
| |
Collapse
|
44
|
Purvis HA, Anderson AE, Young DA, Isaacs JD, Hilkens CMU. A negative feedback loop mediated by STAT3 limits human Th17 responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:1142-50. [PMID: 24973454 DOI: 10.4049/jimmunol.1302467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor STAT3 is critically required for the differentiation of Th17 cells, a T cell subset involved in various chronic inflammatory diseases. In this article, we report that STAT3 also drives a negative-feedback loop that limits the formation of IL-17-producing T cells within a memory population. By activating human memory CD4(+)CD45RO(+) T cells at a high density (HiD) or a low density (LoD) in the presence of the pro-Th17 cytokines IL-1β, IL-23, and TGF-β, we observed that the numbers of Th17 cells were significantly higher under LoD conditions. Assessment of STAT3 phosphorylation revealed a more rapid and stronger STAT3 activation in HiD cells than in LoD cells. Transient inhibition of active STAT3 in HiD cultures significantly enhanced Th17 cell numbers. Expression of the STAT3-regulated ectonucleotidase CD39, which catalyzes ATP hydrolysis, was higher in HiD, than in LoD, cell cultures. Interestingly, inhibition of CD39 ectonucleotidase activity enhanced Th17 responses under HiD conditions. Conversely, blocking the ATP receptor P2X7 reduced Th17 responses in LoD cultures. These data suggest that STAT3 negatively regulates Th17 cells by limiting the availability of ATP. This negative-feedback loop may provide a safety mechanism to limit tissue damage by Th17 cells during chronic inflammation. Furthermore, our results have relevance for the design of novel immunotherapeutics that target the STAT3-signaling pathway, because inhibition of this pathway may enhance, rather than suppress, memory Th17 responses.
Collapse
Affiliation(s)
- Harriet A Purvis
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Amy E Anderson
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - David A Young
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - John D Isaacs
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
45
|
Stat3 and gap junctions in normal and lung cancer cells. Cancers (Basel) 2014; 6:646-62. [PMID: 24670366 PMCID: PMC4074796 DOI: 10.3390/cancers6020646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 01/04/2023] Open
Abstract
Gap junctions are channels linking the interiors of neighboring cells. A reduction in gap junctional intercellular communication (GJIC) correlates with high cell proliferation, while oncogene products such as Src suppress GJIC, through the Ras/Raf/Erk and other effector pathways. High Src activity was found to correlate with high levels of the Src effector, Signal Transducer and Activator of Transcription-3 (Stat3) in its tyrosine-705 phosphorylated, i.e., transcriptionally activated form, in the majority of Non-Small Cell Lung Cancer lines examined. However, Stat3 inhibition did not restore GJIC in lines with high Src activity. In the contrary, Stat3 inhibition in normal cells or in lines with low Src activity and high GJIC eliminated gap junctional communication. Therefore, despite the fact that Stat3 is growth promoting and in an activated form acts like an oncogene, it is actually required for junctional permeability.
Collapse
|
46
|
Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BKH, Sethi G, Bishayee A. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta Rev Cancer 2014; 1845:136-54. [PMID: 24388873 DOI: 10.1016/j.bbcan.2013.12.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 12/25/2022]
Abstract
Signal transducers and activators of transcription (STATs) comprise a family of cytoplasmic transcription factors that mediate intracellular signaling that is usually generated at cell surface receptors and thereby transmit it to the nucleus. Numerous studies have demonstrated constitutive activation of STAT3 in a wide variety of human tumors, including hematological malignancies (leukemias, lymphomas, and multiple myeloma) as well as diverse solid tumors (such as head and neck, breast, lung, gastric, hepatocellular, colorectal and prostate cancers). There is strong evidence to suggest that aberrant STAT3 signaling promotes initiation and progression of human cancers by either inhibiting apoptosis or inducing cell proliferation, angiogenesis, invasion, and metastasis. Suppression of STAT3 activation results in the induction of apoptosis in tumor cells, and accordingly its pharmacological modulation by tyrosine kinase inhibitors, antisense oligonucleotides, decoy nucleotides, dominant negative proteins, RNA interference and chemopreventive agents have been employed to suppress the proliferation of various human cancer cells in culture and tumorigenicity in vivo. However, the identification and development of novel drugs that can target deregulated STAT3 activation effectively remains an important scientific and clinical challenge. This review presents the evidence for critical roles of STAT3 in oncogenesis and discusses the potential for development of novel cancer therapies based on mechanistic understanding of STAT3 signaling cascade.
Collapse
Affiliation(s)
| | - Sakshi Sikka
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Rohit Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Western Australia, Australia; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Benny K H Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, CA, USA.
| |
Collapse
|
47
|
Geletu M, Guy S, Arulanandam R, Feracci H, Raptis L. Engaged for survival: From cadherin ligation to STAT3 activation. JAKSTAT 2013; 2:e27363. [PMID: 24470979 DOI: 10.4161/jkst.27363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/15/2022] Open
Abstract
In normal tissues or tumors, cells have extensive opportunities for adhesion to their neighbors. This state is mimicked by dense cell cultures. In this review, we integrate some recent findings on a key signal transducer, STAT3 (signal transducer and activator of transcription-3), whose activity is dramatically increased following cadherin-mediated cell to cell adhesion. Cadherin engagement, favored in dense cell cultures, causes a dramatic increase in total Rac/Cdc42 protein levels through inhibition of proteasomal degradation, which is followed by activation of IL-6 and STAT3. The cadherin/Rac/IL-6/STAT3 axis offers a potent survival signal that is a prerequisite for neoplastic transformation, as well as normal tissue function.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Pathology; Queen's University; Kingston, ON Canada
| | - Stephanie Guy
- Department of Pathology; Queen's University; Kingston, ON Canada
| | | | - Hélène Feracci
- Université Bordeaux 1; Centre de Recherche Paul Pascal; CNRS UPR 8641; Pessac, France
| | - Leda Raptis
- Department of Pathology; Queen's University; Kingston, ON Canada ; Department of Biomedical and Molecular Sciences; Queen's University; Kingston, ON Canada
| |
Collapse
|
48
|
Geletu M, Arulanandam R, Chevalier S, Saez B, Larue L, Feracci H, Raptis L. Classical cadherins control survival through the gp130/Stat3 axis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1947-59. [DOI: 10.1016/j.bbamcr.2013.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 01/02/2023]
|
49
|
Deficiency of Erbin induces resistance of cervical cancer cells to anoikis in a STAT3-dependent manner. Oncogenesis 2013; 2:e52. [PMID: 23774064 PMCID: PMC3740302 DOI: 10.1038/oncsis.2013.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epithelial cell polarization and integration are essential to their function and loss of epithelial polarity and tissue architecture correlates with the development of aggressive tumors. Erbin is a basolateral membrane-associated protein. The roles of Erbin in establishing cell polarization and regulating cell adhesion have been suggested. Erbin is also a negative regulator in Ras-Raf-ERK (extracellular signal-regulated kinase) signaling pathway. However, the potential functions of Erbin in human cancer are basically unknown. In the present study, we show, for the first time, that loss of Erbin endows cervical cancer cells with resistance to anoikis both in vitro and in vivo and promotes the growth and metastasis of human cervical cancer xenografts in nude mice. We found that knockdown of Erbin induced the phosphorylation, nuclear translocation and transcriptional activities of signal transducer and activator of transcription factor 3 (STAT3) in cervical cancer cells. Overexpression of STAT3C or induction of endogenous STAT3 activation by interleukin (IL)-6 evidently inhibited anoikis of cervical cancer cells, whereas WP1066, a potent inhibitor of Janus-activated kinase 2 (Jak2)/STAT3, effectively blocked the effect of Erbin knockdown on cell survival under anchorage-independent conditions, indicating that loss of Erbin confers resistance of cervical cancer cells to anoikis in a STAT3-dependent manner. Interestingly, IL-6 induced STAT3 activation and Erbin expression simultaneously. Overexpression of STAT3C also significantly upregulated the level of Erbin, whereas the Jak2 inhibitor AG490 remarkably blocked not only STAT3 phosphorylation but also IL-6-induced Erbin expression. Knockdown of Erbin augmented the effects of IL-6 on STAT3 activation and anoikis resistance. In addition, by immunohistochemical analysis of Erbin expression, we demonstrate that the expression of Erbin is significantly decreased or even lost in cervical cancer tissues. These data reveal that Erbin is a novel negative regulator of STAT3, and the IL-6/STAT3/Erbin loop has a crucial role in cervical cancer progression and metastasis.
Collapse
|
50
|
Davis FM, Azimi I, Faville RA, Peters AA, Jalink K, Putney JW, Goodhill GJ, Thompson EW, Roberts-Thomson SJ, Monteith GR. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene 2013; 33:2307-16. [PMID: 23686305 PMCID: PMC3917976 DOI: 10.1038/onc.2013.187] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/15/2013] [Accepted: 04/04/2013] [Indexed: 01/05/2023]
Abstract
Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. Although intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of calcium-signaling pathways controlling EMT induction in cancer cells may therefore be an important therapeutic strategy for preventing metastases.
Collapse
Affiliation(s)
- F M Davis
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - I Azimi
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - R A Faville
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - A A Peters
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - K Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J W Putney
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - G J Goodhill
- 1] Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia [2] School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
| | - E W Thompson
- 1] St Vincent's Institute, Fitzroy, Victoria, Australia [2] Department of Surgery, University of Melbourne, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - S J Roberts-Thomson
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - G R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|