1
|
Chen Z, Zhang L, Yang Y, Liu H, Kang X, Nie Y, Fan D. DNMT1 expression partially dictates 5-Azacytidine sensitivity and correlates with RAS/MEK/ERK activity in gastric cancer cells. Epigenetics 2023; 18:2254976. [PMID: 37691391 PMCID: PMC10496526 DOI: 10.1080/15592294.2023.2254976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
Though DNMTs inhibitors were widely used in myelodysplastic syndrome and leukaemia, their application in solid tumours has been limited by low response rate and lack of optimal combination strategies. In gastric cancer (GC), the therapeutic implication of KRAS mutation or MEK/ERK activation for combinational use of DNMTs inhibitors with MEK/ERK inhibitors remains elusive. In this study, stable knockdown of DNMT1 expression by lentiviral transfection led to decreased sensitivity of GC cells to 5-Azacytidine. KRAS knockdown in KRAS mutant GC cells or the MEK/ERK activation by EGF stimulation in GC cells increased DNMT1 expression, while inhibition of MEK/ERK activity by Selumetinib led to decreased DNMT1 expression. 5-Azacytidine treatment, which led to dramatic decline of DNMTs protein levels and increased activity of MEK/ERK pathway, altered the activity of MEK/ERK inhibitor Selumetinib on GC cells. Both RAS-dependent gene expression signature and expression levels of multiple MEK/ERK-dependent genes were correlated with DNMT1 expression in TCGA stomach cancer samples. In conclusion, DNMT1 expression partially dictates 5-Azacytidine sensitivity and correlates with RAS/MEK/ERK activity in GC cells. Combining DNMTs inhibitor with MEK/ERK inhibitor might be a promising strategy for patients with GC.[Figure: see text].
Collapse
Affiliation(s)
- Zhangqian Chen
- Department of Infectious Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin Zhang
- Department of Internal Medicine, Central Medical Branch of Chinese PLA General Hospital, Beijing, China
| | - Yang Yang
- Department of Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Haiming Liu
- School of Software Engineering, Beijing Jiaotong University, Beijing, China
| | - Xiaoyu Kang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Sers C, Schäfer R. Silencing effects of mutant RAS signalling on transcriptomes. Adv Biol Regul 2023; 87:100936. [PMID: 36513579 DOI: 10.1016/j.jbior.2022.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Mutated genes of the RAS family encoding small GTP-binding proteins drive numerous cancers, including pancreatic, colon and lung tumors. Besides the numerous effects of mutant RAS gene expression on aberrant proliferation, transformed phenotypes, metabolism, and therapy resistance, the most striking consequences of chronic RAS activation are changes of the genetic program. By performing systematic gene expression studies in cellular models that allow comparisons of pre-neoplastic with RAS-transformed cells, we and others have estimated that 7 percent or more of all transcripts are altered in conjunction with the expression of the oncogene. In this context, the number of up-regulated transcripts approximates that of down-regulated transcripts. While up-regulated transcription factors such as MYC, FOSL1, and HMGA2 have been identified and characterized as RAS-responsive drivers of the altered transcriptome, the suppressed factors have been less well studied as potential regulators of the genetic program and transformed phenotype in the breadth of their occurrence. We therefore have collected information on downregulated RAS-responsive factors and discuss their potential role as tumor suppressors that are likely to antagonize active cancer drivers. To better understand the active mechanisms that entail anti-RAS function and those that lead to loss of tumor suppressor activity, we focus on the tumor suppressor HREV107 (alias PLAAT3 [Phospholipase A and acyltransferase 3], PLA2G16 [Phospholipase A2, group XVI] and HRASLS3 [HRAS-like suppressor 3]). Inactivating HREV107 mutations in tumors are extremely rare, hence epigenetic causes modulated by the RAS pathway are likely to lead to down-regulation and loss of function.
Collapse
Affiliation(s)
- Christine Sers
- Laboratory of Molecular Tumor Pathology and systems Biology, Institute of Pathology, Charité Universitätstmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Reinhold Schäfer
- Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Kawai T, Nyuya A, Mori Y, Tanaka T, Tanioka H, Yasui K, Toshima T, Taniguchi F, Shigeyasu K, Umeda Y, Fujiwara T, Okawaki M, Yamaguchi Y, Goel A, Nagasaka T. Clinical and epigenetic features of colorectal cancer patients with somatic POLE proofreading mutations. Clin Epigenetics 2021; 13:117. [PMID: 34034807 PMCID: PMC8146650 DOI: 10.1186/s13148-021-01104-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Background Mutations in the POLE gene result in an ultra-hypermutated phenotype in colorectal cancer (CRC); however, the molecular characterisation of epigenetic alterations remains unclear. We examined the genetic and epigenetic profiles of POLE-mutant CRC to elucidate the clinicopathological features of the associated genetic and epigenetic alterations. Results Tumour tissues (1,013) obtained from a cohort of patients with CRC were analysed to determine associations between the proofreading domain mutations of POLE with various clinicopathological variables, microsatellite instability (MSI) status, BRAF and KRAS mutations, and the methylation status of key regions of MLH1, MGMT, and SFRP2 promoters by calculating the methylation scores (range 0–6). Only four cases (0.4%) exhibited pathogenic POLE hotspot mutations (two p.P286R [c.857C > G], one p.V411L [c.1231G > C], and p.S459F [c.1376C > T] each), which were mutually exclusive to BRAF and KRAS mutations and MSI. CRC patients were divided into four subgroups: patients with POLE mutations (POLE, 0.4%, n = 4), patients with both MSI and extensive methylation in MLH1 (MSI-M, 2.9%, n = 29), patients with MSI but no extensive methylation in MLH1 (MSI-U, 3.6%, n = 36), and patients without MSI (non-MSI, 93.2%, n = 944). The POLE group was younger at diagnosis (median 52 years, P < 0.0001), with frequent right-sided tumour localisation (frequency of tumours located in the right colon was 100%, 93.1%, 36.1%, and 29.9% in POLE, MSI-M, MSI-U, and non-MSI, respectively; P < 0.0001), and was diagnosed at an earlier stage (frequency of stages I–II was 100%, 72.4%, 77.8%, and 46.6% in POLE, MSI-M, MSI-U, and non-MSI, respectively, P < 0.0001). The mean methylation score in POLE was not different from that in MSI-U and non-MSI, but the methylation signature was distinct from that of the other subgroups. Additionally, although the examined number of POLE-mutant tumours was small, the number of CD8-positive cells increased in tumours with partial methylation in the MLH1 gene. Conclusions CRC patients with POLE proofreading mutations are rare. Such mutations are observed in younger individuals, and tumours are primarily located in the right colon. Diagnosis occurs at an earlier stage, and distinct epigenetic alterations may be associated with CD8 cell infiltration. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01104-7.
Collapse
Affiliation(s)
- Takashi Kawai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Nyuya
- Department of Clinical Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yoshiko Mori
- Department of Clinical Genetics and Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Tanioka
- Department of Clinical Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Toshima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumitaka Taniguchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Makoto Okawaki
- Department of Clinical Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yoshiyuki Yamaguchi
- Department of Clinical Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, 91016, USA
| | - Takeshi Nagasaka
- Department of Clinical Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| |
Collapse
|
4
|
Flotho C. Gene mutations do not operate in a vacuum: the increasing importance of epigenetics in juvenile myelomonocytic leukemia. Epigenetics 2019; 14:236-244. [PMID: 30773984 PMCID: PMC6557547 DOI: 10.1080/15592294.2019.1583039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) stands out among malignant neoplasms of childhood in several ways. First, JMML is a model condition to elucidate the relevance of deregulated Ras signal transduction in human cancer. Second, the identification of Ras pathway mutations in JMML has informed the field of germline cancer predisposition and advanced the understanding of molecular mechanisms underlying the progression from predisposition to neoplasia. Third and not least, genomic DNA methylation was discovered to play a salient role in the classification and prognostication of the disease. This article discusses the evolution of epigenetic research on JMML over the past years and reviews the relevance of aberrant DNA methylation in the diagnosis, concept, and clinical decision-making of JMML.
Collapse
Affiliation(s)
- Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Freiburg, Heidelberg, Germany
| |
Collapse
|
5
|
Wang R, Cui Y, Xu Y, Irudayaraj J. Basic studies on epigenetic carcinogenesis of low-dose exposure to 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) in vitro. PLoS One 2017; 12:e0172243. [PMID: 28199384 PMCID: PMC5310788 DOI: 10.1371/journal.pone.0172243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/01/2017] [Indexed: 11/30/2022] Open
Abstract
1-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) has been widely studied as a neurotoxic substance, however, only few reports have explored its effect on carcinogenicity. Since the aberrant modification of DNA methylation occurs very early in almost all human cancers, the focus of this study is to assess the carcinogenicity of TaClo by characterizing alterations of the epigenetic state, specifically, DNA methylation, upon exposure to TaClo in a HEK 293 model cell line. Our results suggest that TaClo could induce global DNA hypomethylation and transcriptional repression of critical tumor suppressor genes by increasing their promoter methylation. Enhanced cell proliferation, migration and anchorage independent growth were observed in cells exposed to TaClo. Our study highlights the epigenetic toxicity of TaClo, which contributes to its carcinogenicity by altering the DNA methylation status.
Collapse
Affiliation(s)
- Renjie Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- International R & D Center of Micro-Nano Systems and New Materials Technolog, Chongqing University, Chongqing, China
- Key disciplines laboratory of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, China
| | - Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yi Xu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
- International R & D Center of Micro-Nano Systems and New Materials Technolog, Chongqing University, Chongqing, China
- Key disciplines laboratory of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing, China
- Microsystem Research Center, School of Optoelectronic Engineering, Chongqing University, Chongqing, China
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wu B, Ootani A, Iwakiri R, Sakata Y, Fujise T, Amemori S, Yokoyama F, Tsunada S, Toda S, Fujimoto K. T Cell Deficiency Leads to Liver Carcinogenesis in Azoxymethane-Treated Rats. Exp Biol Med (Maywood) 2016; 231:91-8. [PMID: 16380649 DOI: 10.1177/153537020623100111] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
There is an increasing amount of evidence suggesting that T cell deficiency contributes to tumor development. However, it is unclear whether T cell deficiency leads to liver and colon carcinogenesis. The aim of this study was to investigate the role of T cells on liver and colon carcinogenesis. Athymic F344/N Jcl-rnu/- (nu/nu) rats and euthymic F344/N Jcl-rnu/+ (nu/+) rats were administered the carcinogen azoxymethane (AOM) at a dose of 15 mg/kg body wt once a week for 2 weeks. At 48 weeks after the second carcinogen treatment, the rats were sacrificed, and livers and colons were examined. Apoptosis and cell proliferation were evaluated by DNA fragmentation and proliferating cell nuclear antigen assays, respectively. Wild-type p53 and members of the Jun and Fos oncogene families were detected by Western blotting. AOM treatment induced 100% liver tumor and 63.6% colon tumor incidence in T cell–deficient nu/nu rats, compared with 0% and 38.5% incidence in nu/+ rats. T cell deficiency promoted the inhibitory action of AOM on apoptosis in both liver and colon at 48 weeks. In contrast, T cell deficiency increased cell proliferation after AOM treatment in both tissues. Wild-type p53 was reduced in both tissues of T cell–deficient rats. AOM treatment induced c-Jun and c-Fos expressions in the liver but increased only Fos B in the colon, whereas T cell deficiency enhanced c-Jun overexpression in the liver. These results suggest that T cell deficiency leads to liver carcinogenesis partly by a reduction in wild-type p53 and increasing c-Jun expression in AOM-treated rats.
Collapse
Affiliation(s)
- Bin Wu
- Department of Internal Medicine, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ahlers KE, Chakravarti B, Fisher RA. RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer. AAPS JOURNAL 2016; 18:560-72. [PMID: 27002730 DOI: 10.1208/s12248-016-9899-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Regulator of G protein signaling (RGS) proteins are gatekeepers regulating the cellular responses induced by G protein-coupled receptor (GPCR)-mediated activation of heterotrimeric G proteins. Specifically, RGS proteins determine the magnitude and duration of GPCR signaling by acting as a GTPase-activating protein for Gα subunits, an activity facilitated by their semiconserved RGS domain. The R7 subfamily of RGS proteins is distinguished by two unique domains, DEP/DHEX and GGL, which mediate membrane targeting and stability of these proteins. RGS6, a member of the R7 subfamily, has been shown to specifically modulate Gαi/o protein activity which is critically important in the central nervous system (CNS) for neuronal responses to a wide array of neurotransmitters. As such, RGS6 has been implicated in several CNS pathologies associated with altered neurotransmission, including the following: alcoholism, anxiety/depression, and Parkinson's disease. In addition, unlike other members of the R7 subfamily, RGS6 has been shown to regulate G protein-independent signaling mechanisms which appear to promote both apoptotic and growth-suppressive pathways that are important in its tumor suppressor function in breast and possibly other tissues. Further highlighting the importance of RGS6 as a target in cancer, RGS6 mediates the chemotherapeutic actions of doxorubicin and blocks reticular activating system (Ras)-induced cellular transformation by promoting degradation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to prevent its silencing of pro-apoptotic and tumor suppressor genes. Together, these findings demonstrate the critical role of RGS6 in regulating both G protein-dependent CNS pathology and G protein-independent cancer pathology implicating RGS6 as a novel therapeutic target.
Collapse
Affiliation(s)
- Katelin E Ahlers
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA
| | - Bandana Chakravarti
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA
| | - Rory A Fisher
- Department of Pharmacology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2-505 Bowen Science Building, Iowa City, Iowa, 52242, USA. .,Department of Internal Medicine, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
8
|
Wilhelm T, Lipka DB, Witte T, Wierzbinska JA, Fluhr S, Helf M, Mücke O, Claus R, Konermann C, Nöllke P, Niemeyer CM, Flotho C, Plass C. Epigenetic silencing of AKAP12 in juvenile myelomonocytic leukemia. Epigenetics 2016; 11:110-9. [PMID: 26891149 DOI: 10.1080/15592294.2016.1145327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A-kinase anchor protein 12 (AKAP12) is a regulator of protein kinase A and protein kinase C signaling, acting downstream of RAS. Epigenetic silencing of AKAP12 has been demonstrated in different cancer entities and this has been linked to the process of tumorigenesis. Here, we used quantitative high-resolution DNA methylation measurement by MassARRAY to investigate epigenetic regulation of all three AKAP12 promoters (i.e., α, β, and γ) within a large cohort of juvenile myelomonocytic leukemia (JMML) patient samples. The AKAP12α promoter shows DNA hypermethylation in JMML samples, which is associated with decreased AKAP12α expression. Promoter methylation of AKAP12α correlates with older age at diagnosis, elevated levels of fetal hemoglobin and poor prognosis. In silico screening for transcription factor binding motifs around the sites of most pronounced methylation changes in the AKAP12α promoter revealed highly significant scores for GATA-2/-1 sequence motifs. Both transcription factors are known to be involved in the haematopoietic differentiation process. Methylation of a reporter construct containing this region resulted in strong suppression of AKAP12 promoter activity, suggesting that DNA methylation might be involved in the aberrant silencing of the AKAP12 promoter in JMML. Exposure to DNMT- and HDAC-inhibitors reactivates AKAP12α expression in vitro, which could potentially be a mechanism underlying clinical treatment responses upon demethylating therapy. Together, these data provide evidence for epigenetic silencing of AKAP12α in JMML and further emphasize the importance of dysregulated RAS signaling in JMML pathogenesis.
Collapse
Affiliation(s)
- Thomas Wilhelm
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Daniel B Lipka
- b Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Tania Witte
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Justyna A Wierzbinska
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany.,b Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Silvia Fluhr
- c Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology-Oncology, University of Freiburg Medical Center , Freiburg , Germany.,d Hermann Staudinger Graduate School, University of Freiburg , Freiburg , Germany
| | - Monika Helf
- b Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Oliver Mücke
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany.,b Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Rainer Claus
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany.,e Department of Medicine , Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center , Freiburg , Germany
| | - Carolin Konermann
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Peter Nöllke
- c Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology-Oncology, University of Freiburg Medical Center , Freiburg , Germany
| | - Charlotte M Niemeyer
- c Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology-Oncology, University of Freiburg Medical Center , Freiburg , Germany.,f German Cancer Consortium (DKTK)
| | - Christian Flotho
- c Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology-Oncology, University of Freiburg Medical Center , Freiburg , Germany.,f German Cancer Consortium (DKTK)
| | - Christoph Plass
- a Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany.,f German Cancer Consortium (DKTK)
| |
Collapse
|
9
|
Stewart A, Maity B, Fisher RA. Two for the Price of One: G Protein-Dependent and -Independent Functions of RGS6 In Vivo. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:123-51. [PMID: 26123305 DOI: 10.1016/bs.pmbts.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Regulator of G protein signaling 6 (RGS6) is unique among the members of the RGS protein family as it remains the only protein with the demonstrated capacity to control G protein-dependent and -independent signaling cascades in vivo. RGS6 inhibits signaling mediated by γ-aminobutyric acid B receptors, serotonin 1A receptors, μ opioid receptors, and muscarinic acetylcholine 2 receptors. RGS6 deletion triggers distinct behavioral phenotypes resulting from potentiated signaling by these G protein-coupled receptors namely ataxia, a reduction in anxiety and depression, enhanced analgesia, and increased parasympathetic tone, respectively. In addition, RGS6 possesses potent proapoptotic and growth suppressive actions. In heart, RGS6-dependent reactive oxygen species (ROS) production promotes doxorubicin (Dox)-induced cardiomyopathy, while in cancer cells RGS6/ROS signaling is necessary for activation of the ataxia telangiectasia mutated/p53/apoptosis pathway required for the chemotherapeutic efficacy of Dox. Further, by facilitating Tip60 (trans-acting regulator protein of HIV type 1-interacting protein 60 kDa)-dependent DNA methyltransferase 1 degradation, RGS6 suppresses cellular transformation in response to oncogenic Ras. The culmination of these G protein-independent actions results in potent tumor suppressor actions of RGS6 in the murine mammary epithelium. This work summarizes evidence from human genetic studies and model animals implicating RGS6 in normal physiology, disease, and the pharmacological actions of multiple drugs. Though efforts by multiple laboratories have contributed to the ever-growing RGS6 oeuvre, the pleiotropic nature of this gene will likely lead to additional work detailing the importance of RGS6 in neuropsychiatric disorders, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Biswanath Maity
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
10
|
Koptyra M, Park TJ, Curran T. Crk and CrkL are required for cell transformation by v-fos and v-ras. Mol Carcinog 2015; 55:97-104. [PMID: 25557916 DOI: 10.1002/mc.22262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 01/26/2023]
Abstract
Crk and CrkL are SH2- and SH3-containing cytosolic adaptor proteins that can induce anchorage-independent growth of fibroblasts. Crk and CrkL play key roles in maintaining cytoskeletal integrity, cell motility and migration. We investigated the role of these two proteins in oncogenic transformation induced by v-fos and v-ras oncogenes using cell lines and fibroblasts carrying conditional alleles of Crk or CrkL. Transformation was assessed by cell morphology, saturation density and anchorage-independent growth in soft agar. We found that cell lines expressing v-fos or v-ras in the absence of Crk or CrkL displayed no evident morphological alterations and reduced anchorage-independent growth compared to those retaining Crk and CrkL. Similarly, overexpression of v-fos in mouse embryonic fibroblasts conferred a growth advantage and induced morphological changes, both of which were abrogated in the absence of either Crk or CrkL. In contrast, Crk, but not CrkL, contributed to v-ras-induced transformation of embryonic fibroblasts. These results suggest that both Crk and CrkL are required for the acquisition of cellular transformation by v-fos, whereas Crk plays a more prominent role than CrkL in v-ras-induced transformation.
Collapse
Affiliation(s)
- Mateusz Koptyra
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Tae-Ju Park
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Tom Curran
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Siegel EM, Eschrich S, Winter K, Riggs B, Berglund A, Ajidahun A, Simko J, Moughan J, Ajani J, Magliocco A, Elahi A, Hoffe S, Shibata D. Epigenomic characterization of locally advanced anal cancer: a radiation therapy oncology group 98-11 specimen study. Dis Colon Rectum 2014; 57:941-57. [PMID: 25003289 PMCID: PMC4100249 DOI: 10.1097/dcr.0000000000000160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The Radiation Therapy Oncology Group 98-11 clinical trial demonstrated the superiority of standard 5-fluorouracil/mitomycin-C over 5-fluorouracil/cisplatin in combination with radiation in the treatment of anal squamous cell cancer. Tumor size (>5 cm) and lymph node metastases are associated with disease progression. There may be key molecular differences (eg, DNA methylation changes) in tumors at high risk for progression. OBJECTIVE The objectives of this study were to determine whether there are differences in DNA methylation at individual CpG sites and within genes among locally advanced anal cancers, with large tumor size and/or nodal involvement, compared with those that are less advanced. DESIGN This was a case-case study among 121 patients defined as high risk (tumor size >5 cm and/or nodal involvement; n = 59) or low risk (≤5 cm, node negative; n = 62) within the mitomycin-C arm of the Radiation Therapy Oncology Group 98-11 trial. DNA methylation was measured using the Illumina HumanMethylation450 Array. SETTINGS The study was conducted in a tertiary care cancer center in collaboration with a national clinical trials cooperative group. PATIENTS The patients consisted of 74 women and 47 men with a median age of 54 years (range, 25-79 years). MAIN OUTCOME MEASURES DNA methylation differences at individual CpG sites and within genes between low- and high-risk patients were compared using the Mann-Whitney test (p < 0.001). RESULTS A total of 16 CpG loci were differentially methylated (14 increased and 2 decreased) in high- versus low-risk cases. Genes harboring differentially methylated CpG sites included known tumor suppressor genes and novel targets. LIMITATIONS This study only included patients in the mitomycin-C arm with tumor tissue; however, this sample was representative of the trial. CONCLUSIONS This is the first study to apply genome-wide methylation analysis to anal cancer. Biologically relevant differences in methylated targets were found to discriminate locally advanced from early anal cancer. Epigenetic events likely play a significant role in the progression of anal cancer and may serve as potential biomarkers.
Collapse
Affiliation(s)
- Erin M Siegel
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL
| | - Steven Eschrich
- Department of Biomedical Informatics, Moffitt Cancer Center, Tampa, FL
| | - Kathryn Winter
- Department of Statistics, Radiation Therapy Oncology Group, Philadelphia, PA and San Francisco, CA
| | - Bridget Riggs
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL
| | - Anders Berglund
- Department of Biomedical Informatics, Moffitt Cancer Center, Tampa, FL
| | - Abidemi Ajidahun
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL
| | - Jeff Simko
- Department of Biospecimen Resource, Radiation Therapy Oncology Group, Philadelphia, PA and San Francisco, CA
| | - Jennifer Moughan
- Department of Statistics, Radiation Therapy Oncology Group, Philadelphia, PA and San Francisco, CA
| | - Jaffer Ajani
- Department of Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | | | - Abul Elahi
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL
| | - Sarah Hoffe
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| | - David Shibata
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL,Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
12
|
Huang J, Stewart A, Maity B, Hagen J, Fagan RL, Yang J, Quelle DE, Brenner C, Fisher RA. RGS6 suppresses Ras-induced cellular transformation by facilitating Tip60-mediated Dnmt1 degradation and promoting apoptosis. Oncogene 2013; 33:3604-11. [PMID: 23995786 DOI: 10.1038/onc.2013.324] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 04/16/2013] [Accepted: 07/04/2013] [Indexed: 12/17/2022]
Abstract
The RAS protooncogene has a central role in regulation of cell proliferation, and point mutations leading to oncogenic activation of Ras occur in a large number of human cancers. Silencing of tumor-suppressor genes by DNA methyltransferase 1 (Dnmt1) is essential for oncogenic cellular transformation by Ras, and Dnmt1 is overexpressed in numerous human cancers. Here we provide new evidence that the pleiotropic regulator of G protein signaling (RGS) family member RGS6 suppresses Ras-induced cellular transformation by facilitating Tip60-mediated degradation of Dmnt1 and promoting apoptosis. Employing mouse embryonic fibroblasts from wild-type and RGS6(-/-) mice, we found that oncogenic Ras induced upregulation of RGS6, which in turn blocked Ras-induced cellular transformation. RGS6 functions to suppress cellular transformation in response to oncogenic Ras by downregulating Dnmt1 protein expression leading to inhibition of Dnmt1-mediated anti-apoptotic activity. Further experiments showed that RGS6 functions as a scaffolding protein for both Dnmt1 and Tip60 and is required for Tip60-mediated acetylation of Dnmt1 and subsequent Dnmt1 ubiquitylation and degradation. The RGS domain of RGS6, known only for its GTPase-activating protein activity toward Gα subunits, was sufficient to mediate Tip60 association with RGS6. This work demonstrates a novel signaling action for RGS6 in negative regulation of oncogene-induced transformation and provides new insights into our understanding of the mechanisms underlying Ras-induced oncogenic transformation and regulation of Dnmt1 expression. Importantly, these findings identify RGS6 as an essential cellular defender against oncogenic stress and a potential therapeutic target for developing new cancer treatments.
Collapse
Affiliation(s)
- J Huang
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Stewart
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - B Maity
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - J Hagen
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - R L Fagan
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - J Yang
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - D E Quelle
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - C Brenner
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - R A Fisher
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Teitz T, Inoue M, Valentine MB, Zhu K, Rehg JE, Zhao W, Finkelstein D, Wang YD, Johnson MD, Calabrese C, Rubinstein M, Hakem R, Weiss WA, Lahti JM. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res 2013; 73:4086-97. [PMID: 23536557 PMCID: PMC3702642 DOI: 10.1158/0008-5472.can-12-2681] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroblastoma, the most common extracranial pediatric solid tumor, is responsible for 15% of all childhood cancer deaths. Patients frequently present at diagnosis with metastatic disease, particularly to the bone marrow. Advances in therapy and understanding of the metastatic process have been limited due, in part, to the lack of animal models harboring bone marrow disease. The widely used transgenic model, the Th-MYCN mouse, exhibits limited metastasis to this site. Here, we establish the first genetic immunocompetent mouse model for metastatic neuroblastoma with enhanced secondary tumors in the bone marrow. This model recapitulates 2 frequent alterations in metastatic neuroblastoma, overexpression of MYCN and loss of caspase-8 expression. Mouse caspase-8 gene was deleted in neural crest lineage cells by crossing a Th-Cre transgenic mouse with a caspase-8 conditional knockout mouse. This mouse was then crossed with the neuroblastoma prone Th-MYCN mouse. Although overexpression of MYCN by itself rarely caused bone marrow metastasis, combining MYCN overexpression and caspase-8 deletion significantly enhanced bone marrow metastasis (37% incidence). Microarray expression studies of the primary tumors mRNAs and microRNAs revealed extracellular matrix structural changes, increased expression of genes involved in epithelial to mesenchymal transition, inflammation, and downregulation of miR-7a and miR-29b. These molecular changes have been shown to be associated with tumor progression and activation of the cytokine TGF-β pathway in various tumor models. Cytokine TGF-β can preferentially promote single cell motility and blood-borne metastasis and therefore activation of this pathway may explain the enhanced bone marrow metastasis observed in this animal model.
Collapse
Affiliation(s)
- Tal Teitz
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| | - Madoka Inoue
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| | - Marcus B. Valentine
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| | - Kejin Zhu
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
38105, USA
| | - Wei Zhao
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis,
TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s
Research Hospital, Memphis, TN 38105, USA
| | - Melissa D. Johnson
- Animal Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN
38105, USA
| | - Christopher Calabrese
- Animal Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN
38105, USA
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología
Molecular, Consejo Nacional de Investigaciones Científicas y Tecnológicas and
Universidad de Buenos Aires C1428ADN, Argentina
| | - Razqallah Hakem
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto,
Toronto, Ontario M5G 2M9, Canada
| | - William A. Weiss
- Departments of Neurology, Pediatrics and Neurological Surgery, University of
California, San Francisco, CA 94158, USA
| | - Jill M. Lahti
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital,
Memphis, TN 38105, USA
| |
Collapse
|
14
|
Maity B, Stewart A, O'Malley Y, Askeland RW, Sugg SL, Fisher RA. Regulator of G protein signaling 6 is a novel suppressor of breast tumor initiation and progression. Carcinogenesis 2013; 34:1747-55. [PMID: 23598467 DOI: 10.1093/carcin/bgt128] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Breast cancer is a large global health burden and the most frequently diagnosed malignancy in women worldwide. Here, we utilize RGS6(-/-) mice to interrogate the role of regulator of G protein signaling 6 (RGS6), localized to the ductal epithelium in mouse and human breast, as a novel tumor suppressor in vivo. RGS6(-/-) mice exhibit accelerated 7,12-dimethylbenza[α]anthracene (DMBA)-induced tumor initiation and progression, as well as decreased overall survival. Analysis of carcinogenic aberrations in the mammary glands of DMBA-treated mice revealed a failure of the DNA damage response concurrent with augmented oncogenesis in RGS6(-/-) animals. Furthermore, RGS6 suppressed cell growth induced by either human epidermal growth factor receptor 2 or estrogen receptor activation in both MCF-7 breast cancer cells and mammary epithelial cells (MECs). MECs isolated from RGS6(-/-) mice also showed a deficit in DMBA-induced ATM/p53 activation, reactive oxygen species generation and apoptosis confirming that RGS6 is required for effective activation of the DNA damage response in these cells, a critical countermeasure against carcinogen-mediated genotoxic stress. The ability of RGS6 to simultaneously enhance DNA-damage-induced apoptotic signaling and suppress oncogenic cell growth likely underlie the accelerated tumorigenesis and cellular transformation observed in DMBA-treated RGS6(-/-) mice and isolated MECs, respectively. Unsurprisingly, spontaneous tumor formation was also seen in old female RGS6(-/-) but not in wild-type mice. Our finding that RGS6 is downregulated in all human breast cancer subtypes independent of their molecular classification indicates that obtaining a means to restore the growth suppressive and pro-apoptotic actions of RGS6 in breast might be a viable means to treat a large spectrum of breast tumors.
Collapse
Affiliation(s)
- Biswanath Maity
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
15
|
Mostafa MR, Yahia RS, Abd El Messih HM, El-Sisy E, El Ghannam DM. Gravin gene expression in acute myeloid leukemia. Med Oncol 2013; 30:548. [PMID: 23543478 DOI: 10.1007/s12032-013-0548-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/16/2013] [Indexed: 11/25/2022]
Abstract
Acute leukemias are caused by genetic and epigenetic mechanisms involving tumor suppressor genes and oncogenes. Aberrant DNA methylation patterns are the most frequent molecular alterations detected in acute myeloid leukemia (AML). Gravin is down-regulated in several solid tumors and is implicated in tumorigenesis. To explore its role in the molecular pathogenesis and its possible prognostic importance in AML, we have evaluated the expression levels of the gravin gene in 83 acute myeloid leukemia patients as compared with controls using quantitative real-time polymerase chain reaction (qRT-PCR). Mean gravin expression was 0.53 ± 1.34 and 8.81 ± 11.6 for patients and controls, respectively, and was found to be about 16-fold lower than controls. Gravin gene expression was lower than controls in 83.1 % (69/83) and was similar to controls in 16.9 % (14/83) of cases (p < 0.0001). It was found that there was no significant correlation between gravin expression and laboratory prognostic markers (p > 0.05). Gravin expression was highest in complete remission (1.065 ± 1.79) and lowest in relapse (0.019 ± 0.03) with a statistical difference (p = 0.004). Patients with gravin expression below median level had higher risk to develop relapse (OR = 8.689, 95 % CI = 2.464-30.638; p < 0.0001). No statistical correlation was reported between gravin expression and survival times (OS, DFS) (p = 0.482, 0.409, respectively), and this was confirmed in multivariate analysis. Gravin gene expression was found to be decreased in acute myeloid leukemia, and the degree of its decreased expression has been found to be correlated with poor prognosis.
Collapse
Affiliation(s)
- Mohamed R Mostafa
- Physical Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND Mutations of the KRAS or BRAF genes are now recognized as prognostic markers for colorectal cancer (CRC). They are also important predictive markers for resistance to the monoclonal antibodies that target the epidermal growth factor receptor. METHODS In this retrospective study, KRAS and BRAF mutations were analyzed using a direct sequence method in 254 Japanese CRC patients, and the associations between KRAS or BRAF mutations and clinicopathological characteristics or outcome were evaluated. RESULTS KRAS and BRAF mutations were detected in 33.5 and 6.7 % of all patients, respectively. Consistent with previous reports, BRAF mutations were significantly correlated with the anatomical site of the tumor (P < 0.001), tumor grade (P = 0.001) and high frequency of microsatellite instability (P < 0.001). BRAF mutations were correlated with poor overall survival in the full patient cohort (P = 0.009). KRAS mutations were significantly correlated with poor recurrence-free survival (P = 0.03), particularly in patients with stage II CRC (P = 0.007). Cox regression analysis showed that KRAS mutations were a negative predictor of recurrence-free survival in patients with stage II CRC. CONCLUSION KRAS mutation status could be a novel biomarker for predicting disease recurrence in Japanese patients with stage II CRC.
Collapse
|
17
|
Dudziec E, Goepel JR, Catto JWF. Global epigenetic profiling in bladder cancer. Epigenomics 2012; 3:35-45. [PMID: 22126151 DOI: 10.2217/epi.10.71] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Urothelial carcinoma of the bladder is a common disease that arises from two distinct molecular pathways, and is one of the most expensive malignancies to manage. Accurate biomarkers that could detect tumor recurrence or predict future progression would improve the care of patients and reduce the cost of managing the disease. DNA methylation, histone modification and ncRNA expression are important epigenetic mechanisms that regulate the expression of genes. These regulatory mechanisms are altered with bladder cancer, and therefore, represent potential biomarkers and therapeutic targets owing to the reversible nature of their modification. In this article, we will discuss these epigenetic changes in bladder cancer and assess their clinical potential.
Collapse
Affiliation(s)
- Ewa Dudziec
- The Institute for Cancer Studies & The Academic Urology Unit, University of Sheffield, UK
| | | | | |
Collapse
|
18
|
Gelman IH. Emerging Roles for SSeCKS/Gravin/AKAP12 in the Control of Cell Proliferation, Cancer Malignancy, and Barriergenesis. Genes Cancer 2011; 1:1147-56. [PMID: 21779438 DOI: 10.1177/1947601910392984] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Emerging data suggest that SSeCKS/Gravin/AKAP12 ("AKAP12"), originally identified as an autoantigen in cases of myasthenia gravis, controls multiple biological processes through its ability to scaffold key signaling proteins such as protein kinase (PK) C and A, calmodulin, cyclins, phosphoinositides, "long" β-1,4 galactosyltransferase (GalTase) isoform, Src, as well as the actin cytoskeleton in a spatiotemporal manner. Specialized functions attributed to AKAP12 include the suppression of cancer malignancy, especially aspects of metastatic progression, regulation of blood-brain and blood-retina barrier formation, and resensitization of β2-adrenergic pain receptors. Recent data identify a direct role for AKAP12 in cytokinesis completion, further suggesting a function as a negative regulator of cell senescence. The current review will discuss the emerging knowledge base of AKAP12-related biological roles and how the factors that affect AKAP12 expression or that interact with AKAP12 at the protein level control cancer progression and blood-tissue barrier formation.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
19
|
Abstract
Aberrant DNA methylation contributes to the malignant phenotype in virtually all types of cancer, including myeloid leukemia. We hypothesized that CpG island hypermethylation also occurs in juvenile myelomonocytic leukemia (JMML) and investigated whether it is associated with clinical, hematologic, or prognostic features. Based on quantitative measurements of DNA methylation in 127 JMML cases using mass spectrometry (MassARRAY), we identified 4 gene CpG islands with frequent hypermethylation: BMP4 (36% of patients), CALCA (54%), CDKN2B (22%), and RARB (13%). Hypermethylation was significantly associated with poor prognosis: when the methylation data were transformed into prognostic scores using a LASSO Cox regression model, the 5-year overall survival was 0.41 for patients in the top tertile of scores versus 0.72 in the lowest score tertile (P = .002). Among patients given allogeneic hematopoietic stem cell transplantation, the 5-year cumulative incidence of relapse was 0.52 in the highest versus 0.10 in the lowest score tertile (P = .007). In multivariate models, DNA methylation retained prognostic value independently of other clinical risk factors. Longitudinal analyses indicated that some cases acquired a more extensively methylated phenotype at relapse. In conclusion, our data suggest that a high-methylation phenotype characterizes an aggressive biologic variant of JMML and is an important molecular predictor of outcome.
Collapse
|
20
|
Ryu SH, Kim KH, Kim HB, Kim MH, Kim NH, Kang Y, Hyun JW, Seo HJ, Jun JY, You HJ. Oncogenic Ras-mediated downregulation of Clast1/LR8 is involved in Ras-mediated neoplastic transformation and tumorigenesis in NIH3T3 cells. Cancer Sci 2010; 101:1990-6. [PMID: 20550525 PMCID: PMC11158549 DOI: 10.1111/j.1349-7006.2010.01626.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncogenic Ras proteins transform cells by way of multiple downstream signaling pathways that promote the genesis of human cancers. However, the exact cellular mechanisms by which downstream targets are regulated are not fully understood. Here, we show that oncogenic Ras reduced Clast1/LR8 transcript levels in mouse NIH3T3 fibroblasts and human WI38 fibroblasts. Clast1/LR8 transcript was undetectable in H460, A549, and H1299 cells showing high Ras activity, but was relatively abundant in DMS53 cells displaying low Ras activity. We also showed that K-Ras siRNA restored Clast1/LR8 expression in H460 and A549 cells, and that inhibitors of DNA methylation and histone deacetylation reversed oncogenic H-Ras-mediated suppression of Clast1/LR8 transcription. Additionally, ectopic expression of Clast1/LR8 inhibited serum-stimulated phosphorylation of ERK1/2 and Akt in H-RasV12-transformed NIH3T3 cells. We further showed that the expression of Clast1/LR8 interfered with oncogenic Ras-induced NIH3T3 cell transformation and invasion. Finally, our results showed that Clast1/LR8 inhibited Ras-induced proliferation of, and tumor formation by, oncogenic H-RasV12-transformed NIH3T3 cells in vivo. This study identifies the downregulation of Clast1/LR8 as a potentially important mechanism by which oncogenic Ras-mediated neoplastic transformation occurs.
Collapse
Affiliation(s)
- Sun-Hyo Ryu
- Department of Pharmacology, DNA Repair Research Center, Chosun University School of Medicine, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
van Roon EHJ, van Puijenbroek M, Middeldorp A, van Eijk R, de Meijer EJ, Erasmus D, Wouters KAD, van Engeland M, Oosting J, Hes FJ, Tops CMJ, van Wezel T, Boer JM, Morreau H. Early onset MSI-H colon cancer with MLH1 promoter methylation, is there a genetic predisposition? BMC Cancer 2010; 10:180. [PMID: 20444249 PMCID: PMC2880297 DOI: 10.1186/1471-2407-10-180] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 05/05/2010] [Indexed: 12/12/2022] Open
Abstract
Background To investigate the etiology of MLH1 promoter methylation in mismatch repair (MMR) mutation-negative early onset MSI-H colon cancer. As this type of colon cancer is associated with high ages, young patients bearing this type of malignancy are rare and could provide additional insight into the etiology of sporadic MSI-H colon cancer. Methods We studied a set of 46 MSI-H colon tumors cases with MLH1 promoter methylation which was enriched for patients with an age of onset below 50 years (n = 13). Tumors were tested for CIMP marker methylation and mutations linked to methylation: BRAF, KRAS, GADD45A and the MLH1 -93G>A polymorphism. When available, normal colon and leukocyte DNA was tested for GADD45A mutations and germline MLH1 methylation. SNP array analysis was performed on a subset of tumors. Results We identified two cases (33 and 60 years) with MLH1 germline promoter methylation. BRAF mutations were less frequent in colon cancer patients below 50 years relative to patients above 50 years (p-value: 0.044). CIMP-high was infrequent and related to BRAF mutations in patients below 50 years. In comparison with published controls the G>A polymorphism was associated with our cohort. Although similar distribution of the pathogenic A allele was observed in the patients with an age of onset above and below 50 years, the significance for the association was lost for the group under 50 years. GADD45A sequencing yielded an unclassified variant. Tumors from both age groups showed infrequent copy number changes and loss-of-heterozygosity. Conclusion Somatic or germline GADD45A mutations did not explain sporadic MSI-H colon cancer. Although germline MLH1 methylation was found in two individuals, locus-specific somatic MLH1 hypermethylation explained the majority of sporadic early onset MSI-H colon cancer cases. Our data do not suggest an intrinsic tendency for CpG island hypermethylation in these early onset MSI-H tumors other than through somatic mutation of BRAF.
Collapse
Affiliation(s)
- Eddy H J van Roon
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Epigenetics refers to mitotically and/or meiotically heritable variations in gene expression that are not caused by changes in DNA sequence. Epigenetic mechanisms regulate all biological processes from conception to death, including genome reprogramming during early embryogenesis and gametogenesis, cell differentiation and maintenance of a committed lineage. Key epigenetic players are DNA methylation and histone post-translational modifications, which interplay with each other, with regulatory proteins and with non-coding RNAs, to remodel chromatin into domains such as euchromatin, constitutive or facultative heterochromatin and to achieve nuclear compartmentalization. Besides epigenetic mechanisms such as imprinting, chromosome X inactivation or mitotic bookmarking which establish heritable states, other rapid and transient mechanisms, such as histone H3 phosphorylation, allow cells to respond and adapt to environmental stimuli. However, these epigenetic marks can also have long-term effects, for example in learning and memory formation or in cancer. Erroneous epigenetic marks are responsible for a whole gamut of diseases including diseases evident at birth or infancy or diseases becoming symptomatic later in life. Moreover, although epigenetic marks are deposited early in development, adaptations occurring through life can lead to diseases and cancer. With epigenetic marks being reversible, research has started to focus on epigenetic therapy which has had encouraging success. As we witness an explosion of knowledge in the field of epigenetics, we are forced to revisit our dogma. For example, recent studies challenge the idea that DNA methylation is irreversible. Further, research on Rett syndrome has revealed an unforeseen role for methyl-CpG-binding protein 2 (MeCP2) in neurons.
Collapse
Affiliation(s)
- Geneviève P Delcuve
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
23
|
Wang X, Sun DF, Lu R, Chen ZF, Chen YX, Fang JY. RAF may induce cell proliferation through hypermethylation of tumor suppressor gene promoter in gastric epithelial cells. Cancer Sci 2009; 100:117-25. [PMID: 19037990 PMCID: PMC11158421 DOI: 10.1111/j.1349-7006.2008.01017.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) is critical in human malignancies. It remained to be established whether DNA methyltransferases (Dnmt) and proliferating cell nuclear antigen (PCNA) involved in DNA methylation during RAF-transformed cell proliferation. The plasmid of constitutively active RAF was used to transfect gastric cell GES-1 and cancer cell AGS. RAF promoted cell proliferation, growth in soft agar and induced cell cycle progress faster than empty plasmid by accelerating G1/S transition in both cell lines, a massive induction of cyclin D1 and PCNA expression was observed, along with reduced expression of p16INK4A, p21WAF1 and p27KIP1. Methylation-specific polymerase chain reaction and bisulfite sequencing showed that the promoter of p16INK4A was methylated in RAF-transformed cells, treatment with 5-aza-dC or PD98059 restored the expression of p16INK4A, increased p21WAF1 and p27KIP1 partially, associated with upregulation of the activity of Dnmt in RAF-transformed cell GES-1, and also decreased the hypermethylation status of p16INK4A, but not all CpG islands of p21WAF1 and p27KIP1. These data suggest that RAF may induce cell proliferation through hypermethylation of tumor suppressor gene p16INK4A, while the epigenetic inactivation of p21WAF1 and p27KIP1 may be not a key factor in RAF-transformed cells.
Collapse
Affiliation(s)
- Xia Wang
- Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China
| | | | | | | | | | | |
Collapse
|
24
|
Microarray transfection analysis of conserved genomic sequences from three immediate early genes. Genomics 2008; 93:159-68. [PMID: 18955127 DOI: 10.1016/j.ygeno.2008.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/26/2008] [Accepted: 09/29/2008] [Indexed: 11/22/2022]
Abstract
In an effort to define novel transcriptional regulatory elements, microarray cotransfection was used to functionally characterize conserved non-coding sequences (CNSs) of three immediate early genes: c-fos, JunB and EGR-1. Cotransfection of fluorescent CNS reporter constructs and expression vectors for constitutively active signaling proteins demonstrated that many of the CNSs alter both the basal and regulated expressions of reporter constructs, but the effects of these CNSs were usually specific for their homologous promoter. One CNS located in the first intron of the c-fos gene conferred regulation by cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG) and Raf. Mutagenesis and cotransfection experiments showed that PKA regulation of this c-fos intronic element was mediated by two adjacent CRE-like sequences and the transcription factor CREB. In the context of a reporter containing previously characterized regulatory elements, the novel intronic sequence contributed 50% of the transcriptional response to PKA. These studies suggest that microarray transfection studies may be useful in functional characterization of conserved genomic sequences on a larger scale.
Collapse
|
25
|
Durchdewald M, Guinea-Viniegra J, Haag D, Riehl A, Lichter P, Hahn M, Wagner EF, Angel P, Hess J. Podoplanin is a novel fos target gene in skin carcinogenesis. Cancer Res 2008; 68:6877-83. [PMID: 18757399 DOI: 10.1158/0008-5472.can-08-0299] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression and function of the oncogenic transcription factor activator protein (AP-1; mainly composed of Jun and Fos proteins) is required for neoplastic transformation of keratinocytes in vitro and tumor promotion as well as malignant progression in vivo. Here, we describe the identification of 372 differentially expressed genes comparing skin tumor samples of K5-SOS-F transgenic mice (Fos(f/f) SOS(+)) with samples derived from animals with a specific deletion of c-Fos in keratinocytes (Fos(Deltaep) SOS(+)). Fos-dependent transcription of selected genes was confirmed by quantitative real-time PCR analysis using tumor samples and mouse back skin treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). One of the most differentially expressed genes encodes the small mucin-like glycoprotein Podoplanin (Pdpn), whose expression correlates with malignant progression in mouse tumor model systems and human cancer. We found Pdpn and Fos expression in chemically induced mouse skin tumors, and detailed analysis of the Pdpn gene promoter revealed impaired activity in Fos-deficient mouse embryonic fibroblasts, which could be restored by ectopic Fos expression. Direct Fos protein binding to the Pdpn promoter was shown by chromatin immunoprecipitation and a TPA-induced complex at a TPA-responsive element-like motif in the proximal promoter was identified by electrophoretic mobility shift assays. In summary, we could define a Fos-dependent genetic program in a well-established model of skin tumors. Systematic analysis of these novel target genes will guide us in elucidating the molecular mechanisms of AP-1-regulated pathways that are critically implicated in neoplastic transformation and/or malignant progression.
Collapse
Affiliation(s)
- Moritz Durchdewald
- Division of Transduction and Growth Control, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nagasaka T, Koi M, Kloor M, Gebert J, Vilkin A, Nishida N, Shin SK, Sasamoto H, Tanaka N, Matsubara N, Boland CR, Goel A. Mutations in both KRAS and BRAF may contribute to the methylator phenotype in colon cancer. Gastroenterology 2008; 134:1950-60, 1960.e1. [PMID: 18435933 PMCID: PMC2543132 DOI: 10.1053/j.gastro.2008.02.094] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/21/2008] [Accepted: 02/28/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Colorectal cancers (CRCs) with the CpG island methylator phenotype (CIMP) often associate with epigenetic silencing of hMLH1 and an activating mutation in the BRAF gene. However, the current CIMP criteria are ambiguous and often result in an underestimation of CIMP frequencies in CRCs. Because BRAF and KRAS belong to same signaling pathway, we hypothesized that not only mutations in BRAF but mutant KRAS may also associate with CIMP in CRC. METHODS We determined the methylation status in a panel of 14 markers (7 canonical CIMP-related loci and 7 new loci), microsatellite instability status, and BRAF/KRAS mutations in a collection of 487 colorectal tissues that included both sporadic and Lynch syndrome patients. RESULTS Methylation analysis of 7 CIMP-related markers revealed that the mean number of methylated loci was highest in BRAF-mutated CRCs (3.6) vs KRAS-mutated (1.2, P < .0001) or BRAF/KRAS wild-type tumors (0.7, P < .0001). However, analyses with 7 additional markers showed that the mean number of methylated loci in BRAF mutant tumors (4.4) was the same as in KRAS mutant CRCs (4.3, P = .8610). Although sporadic microsatellite instability high tumors had the highest average number of methylated markers (8.4), surprisingly, Lynch syndrome CRCs also demonstrated frequent methylation (5.1). CONCLUSIONS CIMP in CRC may result from activating mutations in either BRAF or KRAS, and the inclusion of additional methylation markers that correlate with mutant KRAS may help clarify CIMP in future studies. Additionally, aberrant DNA methylation is a common event not only in sporadic CRC but also in Lynch syndrome CRCs.
Collapse
Affiliation(s)
- Takeshi Nagasaka
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Matthias Kloor
- Institute of Molecular Pathology, University of Heidelberg, Heidelberg, Germany
| | - Johannes Gebert
- Institute of Molecular Pathology, University of Heidelberg, Heidelberg, Germany
| | - Alex Vilkin
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Naoshi Nishida
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Sung Kwan Shin
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Hiromi Sasamoto
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Noriaki Tanaka
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nagahide Matsubara
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - C. Richard Boland
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Ajay Goel
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| |
Collapse
|
27
|
Ouyang X, Jessen WJ, Al-Ahmadie H, Serio AM, Lin Y, Shih WJ, Reuter VE, Scardino PT, Shen MM, Aronow BJ, Vickers AJ, Gerald WL, Abate-Shen C. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res 2008; 68:2132-44. [PMID: 18381418 DOI: 10.1158/0008-5472.can-07-6055] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To identify biomarkers that discriminate the aggressive forms of prostate cancer, we performed gene expression profiling of prostate tumors using a genetically engineered mouse model that recapitulates the stages of human prostate cancer, namely Nkx3.1; Pten mutant mice. We observed a significant deregulation of the epidermal growth factor and mitogen-activated protein kinase (MAPK) signaling pathways, as well as their major downstream effectors--the activator protein-1 transcription factors c-Fos and c-Jun. Forced expression of c-Fos and c-Jun in prostate cancer cells promotes tumorigenicity and results in activation of extracellular signal-regulated kinase (Erk) MAPK signaling. In human prostate cancer, up-regulation of c-Fos and c-Jun proteins occurs in advanced disease and is correlated with Erk MAPK pathway activation, whereas high levels of c-Jun expression are associated with disease recurrence. Our analyses reveal a hitherto unappreciated role for AP-1 transcription factors in prostate cancer progression and identify c-Jun as a marker of high-risk prostate cancer. This study provides a striking example of how accurate mouse models can provide insights on molecular processes involved in progression and recurrence of human cancer.
Collapse
Affiliation(s)
- Xuesong Ouyang
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry, New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sun L, Huang L, Nguyen P, Bisht KS, Bar-Sela G, Ho AS, Bradbury CM, Yu W, Cui H, Lee S, Trepel JB, Feinberg AP, Gius D. DNA methyltransferase 1 and 3B activate BAG-1 expression via recruitment of CTCFL/BORIS and modulation of promoter histone methylation. Cancer Res 2008; 68:2726-35. [PMID: 18413740 PMCID: PMC2733164 DOI: 10.1158/0008-5472.can-07-6654] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In a previous genomic analysis, using somatic methyltransferase (DNMT) knockout cells, we showed that hypomethylation decreased the expression of as many genes as were observed to increase, suggesting a previously unknown mechanism for epigenetic regulation. To address this idea, the expression of the BAG family genes was used as a model. These genes were used because their expression was decreased in DNMT1(-/-), DNMT3B(-/-), and double knockout cells and increased in DNMT1-overexpressing and DNMT3B-overexpressing cells. Chromatin immunoprecipitation analysis of the BAG-1 promoter in DNMT1-overexpressing or DNMT3B-overexpressing cells showed a permissive dimethyl-H3-K4/dimethyl-H3-K9 chromatin status associated with DNA-binding of CTCFL/BORIS, as well as increased BAG-1 expression. In contrast, a nonpermissive dimethyl-H3-K4/dimethyl-H3-K9 chromatin status was associated with CTCF DNA-binding and decreased BAG-1 expression in the single and double DNMT knockout cells. BORIS short hairpin RNA knockdown decreased both promoter DNA-binding, as well as BAG-1 expression, and changed the dimethyl-H3-K4/dimethyl-H3-K9 ratio to that characteristic of a nonpermissive chromatin state. These results suggest that DNMT1 and DNMT3B regulate BAG-1 expression via insulator protein DNA-binding and chromatin dynamics by regulating histone dimethylation.
Collapse
Affiliation(s)
- Lunching Sun
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Lei Huang
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Phuongmai Nguyen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kheem S. Bisht
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Gil Bar-Sela
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Allen S. Ho
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - C. Matthew Bradbury
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Wenqiang Yu
- Department of Medicine and Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hengmi Cui
- Department of Medicine and Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sunmin Lee
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jane B. Trepel
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Andrew P. Feinberg
- Department of Medicine and Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Gius
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
29
|
Cheng X. Silent assassin: oncogenic ras directs epigenetic inactivation of target genes. Sci Signal 2008; 1:pe14. [PMID: 18385037 DOI: 10.1126/stke.113pe14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oncogenic transformation is associated with genetic changes and epigenetic alterations. A study now shows that oncogenic Ras uses a complex and elaborate epigenetic silencing program to specifically repress the expression of multiple unrelated cancer-suppressing genes through a common pathway. These results suggest that cancer-related epigenetic modifications may arise through a specific and instructive mechanism and that genetic changes and epigenetic alterations are intimately connected and contribute to tumorigenesis cooperatively.
Collapse
Affiliation(s)
- Xiaodong Cheng
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA.
| |
Collapse
|
30
|
Kukushkin AN, Svetlikova SB, Amanzholov RA, Pospelov VA. Anisomycin abrogates repression of protooncogenec-fos transcription in E1A + cHa-ras-transformed cells through activation of MEK/ERK kinase cascade. J Cell Biochem 2008; 103:1005-12. [PMID: 17647273 DOI: 10.1002/jcb.21471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have previously shown that transcription of immediate-early c-fos protooncogene is becoming strongly repressed in rat embryo fibroblasts transformed by oncogenes E1A and cHa-ras, so that serum only slightly stimulated c-fos transcription in these cells in contrast to high level of c-fos activation in non-transformed REF52 cells. Here we showed that stress-inducing agent anisomycin was able to override the c-fos repression and to induce c-fos transcription in E1A + ras transformants. In vitro kinase assay data demonstrated that anisomycin increased phosphorylation of transactivation domain of Elk-1 transcription factor--a key regulator of inducible c-fos transcription. Importantly, this activation was mediated through up-regulation of MEK/ERK but not stress-kinase cascades JNK or p38. The activating effect of anisomycin on c-fos transcription could be abrogated by a prior treatment with N-acetyl-L-cysteine. This indicates that anisomycin potentiates generation of reactive oxygen species (ROS), which, in turn, can modulate the activity of MAP kinase-specific phosphatases (MKPs). As anisomycin did not cause acetylation of nucleosome core histones, the present work focuses on the molecular mechanisms mediating the HDAC-independent induction of IEG c-fos by anisomycin in E1A + cHa-ras-transformed fibroblasts.
Collapse
Affiliation(s)
- Alexander N Kukushkin
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg 194064, Russia.
| | | | | | | |
Collapse
|
31
|
Flotho C, Paulun A, Batz C, Niemeyer CM. AKAP12, a gene with tumour suppressor properties, is a target of promoter DNA methylation in childhood myeloid malignancies. Br J Haematol 2007; 138:644-50. [PMID: 17686059 DOI: 10.1111/j.1365-2141.2007.06709.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A-kinase anchor protein 12 (AKAP12) is a scaffold protein that participates in mitotic regulation and other signalling processes and probably exerts tumour suppressor function. We hypothesized that epigenetic repression of the AKAP12 gene might occur in malignant myeloid disorders. This study demonstrated that the 5' CpG island of AKAP12 was unmethylated in normal haematopoietic progenitors and granulocytes but exhibited profound methylation in Kasumi-1 and SKNO-1 leukaemic myeloblasts. Correspondingly, AKAP12 was expressed in normal progenitors but transcriptionally silent in leukaemic blasts. Re-expression of AKAP12 in Kasumi-1 and SKNO-1 cells was accomplished by treatment with MS275 alone or in combination with zebularine, indicating epigenetic mechanisms of gene repression. AKAP12 hypermethylation was found in one case of refractory anaemia with excess blasts (RAEB) and two cases of acute myeloid leukaemia (AML) in a panel of 21 blood or bone marrow samples from children with malignant myeloid disorders including refractory cytopenia, RAEB, juvenile myelomonocytic leukaemia and AML. While AKAP12 function has not been previously linked to leukaemogenesis, our results raise the possibility that epigenetic silencing of AKAP12 is involved in myeloid malignancies.
Collapse
MESH Headings
- A Kinase Anchor Proteins
- Adolescent
- Anemia, Refractory, with Excess of Blasts/genetics
- Anemia, Refractory, with Excess of Blasts/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Child
- Child, Preschool
- DNA Methylation
- DNA, Neoplasm/genetics
- Epigenesis, Genetic
- Female
- Gene Silencing
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myelomonocytic, Acute/genetics
- Leukemia, Myelomonocytic, Acute/metabolism
- Male
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Neoplasm Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Christian Flotho
- Division of Paediatric Haematology-Oncology, University of Freiburg, Freiburg, Germany.
| | | | | | | |
Collapse
|
32
|
Yates B, Zetterberg C, Rajeev V, Reiss M, Rittling SR. Promoter-independent regulation of vimentin expression in mammary epithelial cells by val(12)ras and TGFbeta. Exp Cell Res 2007; 313:3718-28. [PMID: 17719575 PMCID: PMC2097954 DOI: 10.1016/j.yexcr.2007.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/20/2007] [Accepted: 07/16/2007] [Indexed: 12/25/2022]
Abstract
The 1,029 series of mammary epithelial cell lines (D6, GP+E, r3 and r3T) are progressively more transformed: the latter two by val(12)ras. These cell lines respond to TGFbeta by undergoing early events of epithelial-mesenchymal transition (EMT), including morphological changes and redistribution of E-cadherin. Tumors formed by r3T cells in the choroid of the eye express vimentin, a late marker of EMT, possibly in response to TGFbeta. In vitro, vimentin expression is induced in all the cell lines by TGFbeta treatment, whereas cytokeratin expression is only slightly affected. Surprisingly, ras transformation results in a 10-fold suppression of vimentin expression. Neither suppression of vimentin by ras transformation nor induction by TGFbeta is mediated by the vimentin promoter in r3T cells. In transient transfection assays, several human vimentin promoter constructs are more active in the low-expressing r3T cell line than in the vimentin-expressing mesenchymal cell line NIH3T3. In the r3T cells, there is no effect of TGFbeta treatment for 9 days on the activity of either promoter. Azacytidine treatment does not affect vimentin expression in either NIH3T3 or r3T, suggesting that promoter methylation is not the mechanism of suppression by ras. Finally, the half-life of the vimentin mRNA is similar in both the r3T cells and NIH3T3 cells. We conclude that the suppression of vimentin expression by ras, and the relief of this suppression by TGFbeta, occurs in a promoter-independent fashion, possibly through sequences in the first or second intron.
Collapse
Affiliation(s)
- Bradley Yates
- The Forsyth Institute 140 The Fenway, Boston, MA 02115
| | | | | | | | - Susan R Rittling
- The Forsyth Institute 140 The Fenway, Boston, MA 02115
- To whom correspondence should be addressed:
| |
Collapse
|
33
|
Ho Sui SJ, Fulton DL, Arenillas DJ, Kwon AT, Wasserman WW. oPOSSUM: integrated tools for analysis of regulatory motif over-representation. Nucleic Acids Res 2007; 35:W245-52. [PMID: 17576675 PMCID: PMC1933229 DOI: 10.1093/nar/gkm427] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The identification of over-represented transcription factor binding sites from sets of co-expressed genes provides insights into the mechanisms of regulation for diverse biological contexts. oPOSSUM, an internet-based system for such studies of regulation, has been improved and expanded in this new release. New features include a worm-specific version for investigating binding sites conserved between Caenorhabditis elegans and C. briggsae, as well as a yeast-specific version for the analysis of co-expressed sets of Saccharomyces cerevisiae genes. The human and mouse applications feature improvements in ortholog mapping, sequence alignments and the delineation of multiple alternative promoters. oPOSSUM2, introduced for the analysis of over-represented combinations of motifs in human and mouse genes, has been integrated with the original oPOSSUM system. Analysis using user-defined background gene sets is now supported. The transcription factor binding site models have been updated to include new profiles from the JASPAR database. oPOSSUM is available at http://www.cisreg.ca/oPOSSUM/
Collapse
Affiliation(s)
- Shannan J. Ho Sui
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Genetics Graduate Program and Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
| | - Debra L. Fulton
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Genetics Graduate Program and Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
| | - David J. Arenillas
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Genetics Graduate Program and Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
| | - Andrew T. Kwon
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Genetics Graduate Program and Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Genetics Graduate Program and Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
- *To whom correspondence should be addressed. +1 604 875 3812+1 604 875 3819
| |
Collapse
|
34
|
Sasai K, Romer JT, Kimura H, Eberhart DE, Rice DS, Curran T. Medulloblastomas Derived fromCxcr6Mutant Mice Respond to Treatment with a Smoothened Inhibitor. Cancer Res 2007; 67:3871-7. [PMID: 17413002 DOI: 10.1158/0008-5472.can-07-0493] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sonic hedgehog (Shh) pathway is activated in approximately 30% of human medulloblastoma resulting in increased expression of downstream target genes. In about half of these cases, this has been shown to be a consequence of mutations in regulatory genes within the pathway, including Ptc1, Smo, and Sufu. However, for some tumors, no mutations have been detected in known pathway genes. This suggests that either mutations in other genes promote tumorigenesis or that epigenetic alterations increase pathway activity in these tumors. Here, we report that 3% to 4% of mice lacking either one or both functional copies of Cxcr6 develop medulloblastoma. Although CXCR6 is not known to be involved in Shh signaling, tumors derived from Cxcr6 mutant mice expressed Shh pathway target genes including Gli1, Gli2, Ptc2, and Sfrp1, indicating elevated pathway activity. Interestingly, the level of Ptc1 expression was decreased in tumor cells although two normal copies of Ptc1 were retained. This implies that reduced CXCR6 function leads to suppression of Ptc1 thereby increasing Smoothened function and promoting tumorigenesis. We used a direct transplant model to test the sensitivity of medulloblastoma arising in Cxcr6 mutant mice to a small-molecule inhibitor of Smoothened (HhAntag). We found that transplanted tumors were dramatically inhibited in mice treated for only 4 days with HhAntag. These findings suggest that HhAntag may be effective against tumors lacking mutations in known Shh pathway genes.
Collapse
MESH Headings
- Animals
- Female
- Gene Expression Profiling
- Genetic Predisposition to Disease
- Hedgehog Proteins/metabolism
- Medulloblastoma/drug therapy
- Medulloblastoma/genetics
- Medulloblastoma/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Patched Receptors
- Patched-1 Receptor
- Receptors, CXCR
- Receptors, CXCR6
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Smoothened Receptor
Collapse
Affiliation(s)
- Ken Sasai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
35
|
Schäfer R, Tchernitsa OI, Györffy B, Serra V, Abdul-Ghani R, Lund P, Sers C. Functional transcriptomics: an experimental basis for understanding the systems biology for cancer cells. ACTA ACUST UNITED AC 2007; 47:41-62. [PMID: 17335873 DOI: 10.1016/j.advenzreg.2006.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Reinhold Schäfer
- Laboratory of Molecular Tumor Pathology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Lost-on-transformation 1 (LOT1) (PLAGL1/ZAC1) is a member of the novel subfamily of zinc-finger transcription factors, designated as PLAG family. The other members in this group include PLAG1 and PLAGL2, which share high homology with each other and with LOT1, particularly in their zinc-finger amino-terminal region. They are structurally similar but functionally different. For example, the LOT1 gene encodes a growth suppressor protein and is localized on human chromosome 6q24-25, a chromosomal region that is frequently deleted in many types of human cancers. The gene is maternally imprinted and is linked to developmental disorders such as growth retardation and transient neonatal diabetes mellitus (TNDM). LOT1 is a target of growth factor signaling pathway(s) and silenced by epigenetic mechanisms, as well as by the loss of heterozygosity in different tumor tissues. PLAG1 is a protooncogene that is localized on chromosome 8q12 and was found to be a target of several types of chromosomal rearrangement including the one identified in pleomorphic adenomas of the salivary gland. Since the discovery of the PLAG family members in 1997, much has been learned about their structure and function, as are summarized in this review. While the available data suggest that these proteins may play important roles in regulating normal physiological functions in the mammals, a great deal more about their signaling pathway(s), potential role in the complex pathologies such as cancer and developmental disorders, and functional relationship between different family members and splice variants still remains to be uncovered.
Collapse
Affiliation(s)
- Abbas Abdollahi
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| |
Collapse
|
37
|
Numachi Y, Shen H, Yoshida S, Fujiyama K, Toda S, Matsuoka H, Sora I, Sato M. Methamphetamine alters expression of DNA methyltransferase 1 mRNA in rat brain. Neurosci Lett 2007; 414:213-7. [PMID: 17254711 DOI: 10.1016/j.neulet.2006.12.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/06/2006] [Accepted: 12/14/2006] [Indexed: 11/20/2022]
Abstract
Methamphetamine, a potent and indirect dopaminergic agonist, also increases glucocorticoid hormone secretion. Glucocorticoid hormones facilitate behavioral effects of methamphetamine in rodents. Several reports suggest that glucocorticoid hormones modulate expression of DNA (cytosine-5-)-methyltransferase 1 (Dnmt1). Dnmt1 was originally recognized as being involved in DNA replication, but a recent study found high levels of Dnmt1 in rodent brains, suggesting a neuron-specific unknown function of Dnmt1. In the present study, we found subchronic methamphetamine treatment (4 mg/kg, i.p., once daily for 21 days) to induce different patterns of Dnmt1 mRNA expression in the nucleus caudatus and nucleus accumbens of two inbred rat strains, Fischer 344/N (increased Dnmt1) and Lewis/N (decreased Dnmt1). These patterns paralleled methamphetamine-induced striatal glucocorticoid receptor mRNA in these two rat strains in our previous study. Because Fischer rats have a hyperresponsive negative feedback in their hypothalamic-pituitary-adrenocortical (HPA) axis and thus a shorter duration corticosterone response to subchronic methamphetamine treatment, they were resistant to sensitizing effects of methamphetamine and their glucocorticoid receptor mRNA levels were upregulated. Lewis rats which have a hyporesponsive feedback in their HPA axis and a longer duration of corticosterone secretion with subchronic methamphetamine were prone to methamphetamine sensitization and their striatal glucocorticoid receptor mRNA levels were downregulated. Our present data suggest that methamphetamine results in differential DNA methylation as well as gene expression in the nucleus caudatus and nucleus accumbens of F344 and Lewis rats. Methamphetamine-induced differences in gene expression might be related to the contrasting susceptibilities of these rats to behavioral and neurochemical effects of methamphetamine.
Collapse
Affiliation(s)
- Yohtaro Numachi
- Clinical Research Institute, National Hospital Organization Hanamaki Hospital, Hanamaki, and Department of Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Barz T, Hoffmann A, Panhuysen M, Spengler D. Peroxisome proliferator-activated receptor gamma is a Zac target gene mediating Zac antiproliferation. Cancer Res 2006; 66:11975-82. [PMID: 17178896 DOI: 10.1158/0008-5472.can-06-1529] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Zac is a C2H2 zinc finger protein, which regulates apoptosis and cell cycle arrest through DNA binding and transactivation. During tumorigenesis and in response to mitogenic activation, Zac gene expression is down-regulated in a methylation-sensitive manner. As yet, no target genes have been identified that could explain the potent antiproliferative function of Zac. Here, applying genome-wide expression analysis, we identify peroxisome proliferator-activated receptor gamma (PPARgamma) as a new bona fide Zac target gene, which is induced by direct Zac binding to the proximal PPARgamma1 promoter. We show that in human colon carcinoma cells, ZAC activates expression of PPARgamma target genes in a PPARgamma-dependent manner. Moreover, we show that treatment of pituitary tumor cells with octreotide, a somatostatin analogue, leads to Zac induction and subsequent Zac-dependent up-regulation of PPARgamma, which thereupon mediates part of the antiproliferative activity of Zac. Our work provides a first step toward elucidating a functional relationship between Zac and PPARgamma that could be relevant to the understanding of tumorigenesis and diabetes as well.
Collapse
Affiliation(s)
- Thomas Barz
- Molecular Neuroendocrinology, Max-Planck-Institute of Psychiatry, Munich, Germany
| | | | | | | |
Collapse
|
39
|
Chang HC, Cho CY, Hung WC. Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Res 2006; 66:8413-20. [PMID: 16951151 DOI: 10.1158/0008-5472.can-06-0685] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RECK is a membrane-anchored glycoprotein that may negatively regulate matrix metalloproteinase activity to suppress tumor invasion and metastasis. Our previous study indicated that oncogenic RAS inhibited RECK expression via a histone deacetylation mechanism. In this study, we address whether DNA methyltransferases (DNMT) participate in the inhibition of RECK by RAS. Induction of Ha-RAS(Val12) oncogene increased DNMT3b, but not DNMT1 and DNMT3a, expression in 2-12 cells. In addition, induction of DNMT3b by RAS was through the extracellular signal-regulated kinase signaling pathway. Oncogenic RAS increased the binding of DNMT3b to the promoter of RECK gene and this binding induced promoter methylation, which could be reversed by 5'-azacytidine and DNMT3b small interfering RNA (siRNA). The MEK inhibitor U0126 also reversed RAS-induced DNMT3b binding and RECK promoter methylation. Treatment of 5'-azacytidine and DNMT3b siRNA restored RECK expression in 2-12 cells and potently suppressed RAS-stimulated cell invasion. In addition, the inhibitory effect of 5'-azacytidine on RAS-induced cell invasion was attenuated after knockdown of RECK by siRNA. Interestingly, human lung cancer cells harboring constitutively activated RAS exhibited lower RECK expression and higher promoter methylation of RECK gene. 5'-Azacytidine and DNMT3b siRNA restored RECK expression in these cells and effectively suppressed invasiveness. Collectively, our results suggest that RAS oncogene induces RECK gene silencing through DNMT3b-mediated promoter methylation, and DNMT inhibitors may be useful for the treatment of RAS-induced metastasis.
Collapse
Affiliation(s)
- Hui-Chiu Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
40
|
Ozanne BW, Spence HJ, McGarry LC, Hennigan RF. Transcription factors control invasion: AP-1 the first among equals. Oncogene 2006; 26:1-10. [PMID: 16799638 DOI: 10.1038/sj.onc.1209759] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastasis, the aggressive spread of a malignant tumor to distant organs, is a major cause of death in cancer patients. Despite this critical role in cancer outcomes, the molecular mechanisms that control this process are just beginning to be understood. Metastasis is largely dependent upon the ability of tumor cells to invade the barrier formed by the basement membrane and to migrate through neighboring tissues. This review will summarize the evidence that tumor cell invasion is the result of oncogene-mediated signal transduction pathways that control the expression of a specific set of genes that together mediate tumor cell invasion. We focus on the role of the transcription factor AP-1 to both induce the expression of genes that function as invasion effectors and repress other genes that function as invasion suppressors. This identifies AP-1 as a critical regulator of a complex program of gene expression that defines the invasive phenotype.
Collapse
Affiliation(s)
- B W Ozanne
- Invasion and Metastasis Laboratory, Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD Scotland, UK
| | | | | | | |
Collapse
|
41
|
Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006; 38:787-93. [PMID: 16804544 DOI: 10.1038/ng1834] [Citation(s) in RCA: 1458] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 05/30/2006] [Indexed: 12/15/2022]
Abstract
Aberrant DNA methylation of CpG islands has been widely observed in human colorectal tumors and is associated with gene silencing when it occurs in promoter areas. A subset of colorectal tumors has an exceptionally high frequency of methylation of some CpG islands, leading to the suggestion of a distinct trait referred to as 'CpG island methylator phenotype', or 'CIMP'. However, the existence of CIMP has been challenged. To resolve this continuing controversy, we conducted a systematic, stepwise screen of 195 CpG island methylation markers using MethyLight technology, involving 295 primary human colorectal tumors and 16,785 separate quantitative analyses. We found that CIMP-positive (CIMP+) tumors convincingly represent a distinct subset, encompassing almost all cases of tumors with BRAF mutation (odds ratio = 203). Sporadic cases of mismatch repair deficiency occur almost exclusively as a consequence of CIMP-associated methylation of MLH1 . We propose a robust new marker panel to classify CIMP+ tumors.
Collapse
Affiliation(s)
- Daniel J Weisenberger
- Department of Surgery, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California 90089-9176, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sasai K, Romer JT, Lee Y, Finkelstein D, Fuller C, McKinnon PJ, Curran T. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res 2006; 66:4215-22. [PMID: 16618744 DOI: 10.1158/0008-5472.can-05-4505] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gene expression profiling indicates that the Sonic Hedgehog (Shh) pathway is active in approximately 30% of human medulloblastomas, suggesting that it could provide a useful therapeutic target. Previously, we showed that spontaneous medulloblastomas in Ptc1(+/-)p53-/- mice could be eradicated by treatment with a small-molecule inhibitor (HhAntag) of Smoothened (Smo). Here, we compared the responses of mouse medulloblastoma cells propagated in flank allografts, either directly or after culture in vitro, to HhAntag. We found that Shh pathway activity was suppressed in medulloblastoma cells cultured in vitro and it was not restored when these cells were transplanted into the flank of nude mice. The growth of these transplanted tumor cells was not inhibited by treatment of mice with doses of HhAntag that completely suppressed Smo activity. Interestingly, tumor cells transplanted directly into the flank maintained Smo activity and were sensitive to treatment with HhAntag. These findings indicate that propagation of tumor cells in culture inhibits Smo activity in a way that cannot be reversed by transplantation in vivo, and they raise concerns about the use of cultured tumor cells to test the efficacy of Shh pathway inhibitors as anticancer therapies.
Collapse
Affiliation(s)
- Ken Sasai
- Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim S, Denny CT, Wisdom R. Cooperative DNA binding with AP-1 proteins is required for transformation by EWS-Ets fusion proteins. Mol Cell Biol 2006; 26:2467-78. [PMID: 16537893 PMCID: PMC1430316 DOI: 10.1128/mcb.26.7.2467-2478.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key molecular event in the genesis of Ewing's sarcoma is the consistent presence of chromosomal translocations that result in the formation of proteins in which the amino terminus of EWS is fused to the carboxyl terminus, including the DNA binding domain, of one of five different Ets family proteins. These fusion proteins function as deregulated transcription factors, resulting in aberrant control of gene expression. Recent data indicate that some EWS-Ets target promoters, including the uridine phosphorylase (UPP) promoter, harbor tandem binding sites for Ets and AP-1 proteins. Here we show that those Ets family proteins that participate in Ewing's sarcoma, including Fli1, ERG, and ETV1, cooperatively bind these tandem elements with Fos-Jun while other Ets family members do not. Analysis of this cooperativity in vitro shows that (i) many different spatial arrangements of the Ets and AP-1 sites support cooperative binding, (ii) the bZIP motifs of Fos and Jun are sufficient to support this cooperativity, and (iii) both the Ets domain and carboxy-terminal sequences of Fli1 are important for cooperative DNA binding. EWS-Fli1 activates the expression of UPP mRNA, is directly bound to the UPP promoter, and transforms 3T3 fibroblasts; in contrast, a C-terminally truncated mutant form of EWS-Fli1 that cannot cooperatively bind DNA with Fos-Jun is defective in all of these properties. The results show that the ability of EWS-Ets proteins to cooperatively bind DNA with Fos-Jun is critical to the biologic activities of these proteins. The results have implications for understanding the pathogenesis of Ewing's sarcoma. In addition, they may be relevant to the mechanisms of Ras-dependent activation of genes that harbor tandem Ets and AP-1 binding sites.
Collapse
Affiliation(s)
- Sungeun Kim
- Division of Hematology/Oncology and UC Davis Cancer Center, University of California at Davis, USA
| | | | | |
Collapse
|
44
|
Spence HJ, McGarry L, Chew CS, Carragher NO, Scott-Carragher LA, Yuan Z, Croft DR, Olson MF, Frame M, Ozanne BW. AP-1 differentially expressed proteins Krp1 and fibronectin cooperatively enhance Rho-ROCK-independent mesenchymal invasion by altering the function, localization, and activity of nondifferentially expressed proteins. Mol Cell Biol 2006; 26:1480-95. [PMID: 16449658 PMCID: PMC1367185 DOI: 10.1128/mcb.26.4.1480-1495.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transcription factor AP-1, which is composed of Fos and Jun family proteins, plays an essential role in tumor cell invasion by altering gene expression. We report here that Krp1, the AP-1 up-regulated protein that has a role in pseudopodial elongation in v-Fos-transformed rat fibroblast cells, forms a novel interaction with the nondifferentially expressed actin binding protein Lasp-1. Krp1 and Lasp-1 colocalize with actin at the tips of pseudopodia, and this localization is maintained by continued AP-1 mediated down-regulation of fibronectin that in turn suppresses integrin and Rho-ROCK signaling and allows pseudopodial protrusion and mesenchyme-like invasion. Mutation analysis of Lasp-1 demonstrates that its SH3 domain is necessary for pseudopodial extension and invasion. The results support the concept of an AP-1-regulated multigenic invasion program in which proteins encoded by differentially expressed genes direct the function, localization, and activity of proteins that are not differentially expressed to enhance the invasiveness of cells.
Collapse
Affiliation(s)
- Heather J Spence
- Invasion and Metastasis Laboratory, Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lund P, Weisshaupt K, Mikeska T, Jammas D, Chen X, Kuban RJ, Ungethüm U, Krapfenbauer U, Herzel HP, Schäfer R, Walter J, Sers C. Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene 2006; 25:4890-903. [PMID: 16568090 DOI: 10.1038/sj.onc.1209502] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Silencing of gene expression by methylation of CpG islands in regulatory elements is frequently observed in cancer. However, an influence of the most common oncogenic signalling pathways onto DNA methylation has not yet been investigated thoroughly. To address this issue, we identified genes suppressed in HRAS-transformed rat fibroblasts but upregulated after treatment with the demethylating agent 5-Aza-2-deoxycytidine and with the MEK1,2 inhibitor U0126. Analysis of gene expression by microarray and Northern blot analysis revealed the MEK/ERK target genes clusterin, matrix metalloproteinase 2 (Mmp2), peptidylpropyl isomerase C-associated protein, syndecan 4, Timp2 and Thbs1 to be repressed in the HRAS-transformed FE-8 cells in a MEK/ERK- and methylation-dependent manner. Hypermethylation of putative regulatory elements in HRAS-transformed cells as compared to immortalized fibroblasts was detected within a CpG island 14.5 kb upstream of clusterin, within the clusterin promoter and within a CpG island of the Mmp2 promoter by bisulphite sequencing. Furthermore, hypermethylation of the clusterin promoter was observed 10 days after induction of HRAS in immortalized rat fibroblasts and a clear correlation between reduced clusterin expression and hypermethlyation could also be observed in distinct rat tissues. These results suggest that silencing of individual genes by DNA methylation is controlled by oncogenic signalling pathways, yet the mechanisms responsible for initial target gene suppression are variable.
Collapse
Affiliation(s)
- P Lund
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jair KW, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen RWC, Baylin SB, Schuebel KE. De novo CpG island methylation in human cancer cells. Cancer Res 2006; 66:682-92. [PMID: 16423997 DOI: 10.1158/0008-5472.can-05-1980] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major obstacle toward understanding how patterns of abnormal mammalian cytosine DNA methylation are established is the difficulty in quantitating the de novo methylation activities of DNA methyltransferases (DNMT) thought to catalyze these reactions. Here, we describe a novel method, using native human CpG island substrates from genes that frequently become hypermethylated in cancer, which generates robust activity for measuring de novo CpG methylation. We then survey colon cancer cells with genetically engineered deficiencies in different DNMTs and find that the major activity against these substrates in extracts of these cells is DNMT1, with minor contribution from DNMT 3b and none from DNMT3a, the only known bona fide de novo methyltransferases. The activity of DNMT1 against unmethylated CpG rich DNA was further tested by introducing CpG island substrates and DNMT1 into Drosophila melanogaster cells. The exogenous DNMT1 methylates the integrated mammalian CpG islands but not the Drosophila DNA. Additionally, in human cancer cells lacking DNMT1 and DNMT3b and having nearly absent genomic methylation, gene-specific de novo methylation can be initiated by reintroduction of DNMT1. Our studies provide a new assay for de novo activity of DNMTs and data suggesting a potential role for DNMT1 in the initiation of promoter CpG island hypermethylation in human cancer cells.
Collapse
Affiliation(s)
- Kam-Wing Jair
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mei FC, Young TW, Liu J, Cheng X. RAS-mediated epigenetic inactivation of OPCML in oncogenic transformation of human ovarian surface epithelial cells. FASEB J 2005; 20:497-9. [PMID: 16384911 DOI: 10.1096/fj.05-4586fje] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Opioid binding protein/cell adhesion molecule-like gene (OPCML), a recently identified tumor-suppressor, is frequently inactivated by allele loss and CpG island promoter methylation in epithelial ovarian cancer. Since elevated activation of the RAS signaling pathway, including overexpression of HER-2/neu and mutations of RAS and BRAF, is common in human ovarian carcinoma, we examined the cellular effect of oncogenic RAS on the expression status of OPCML in a genetically defined human ovarian cancer model. Our study revealed that RAS(V12)-mediated oncogenic transformation was accompanied by a concomitant loss of OPCML expression. Methylation-sensitive PCR analysis showed that the OPCML promoter was hypermethylated in RAS-transformed human ovarian epithelial cells (T29H) and that treatment with the DNA methyltransferase inhibitor 5'-aza-2'-deoxycytidine promoted demethylation of the OPCML promoter and restored OPCML expression in T29H cells. Furthermore, suppression of oncogenic RAS activity by stable siRNA specific for HRAS(V12) led to the demethylation and re-expression of OPCML in T29H cells, demonstrating that oncogenic RAS activity is directly responsible for the observed OPCML promoter hypermethylation and epigenetic gene silencing of OPCML. Taken together, our study suggests that elevation of the RAS signaling pathway may play an important role in epigenetic inactivation of OPCML in human epithelial ovarian cancer.
Collapse
Affiliation(s)
- Fang C Mei
- Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology, School of Medicine, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | |
Collapse
|
48
|
Ozanne BW, Spence HJ, McGarry LC, Hennigan RF. Invasion is a genetic program regulated by transcription factors. Curr Opin Genet Dev 2005; 16:65-70. [PMID: 16377173 DOI: 10.1016/j.gde.2005.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 12/12/2005] [Indexed: 01/05/2023]
Abstract
The invasive and metastatic behaviour of tumours impacts crucially on the clinical management of cancer. Accordingly, it is important to understand the regulation of tumour cell invasiveness. Genetic analysis of worms, Drosophila and mice has provided evidence that invasion is a genetic pathway regulated by transcription factors that are often implicated in tumour cell invasion. Recent evidence has revealed much concerning the role of one particular transcription factor, AP1, which is involved in the regulation of a multigenic invasion program in which upregulated and downregulated genes function as invasion effectors and suppressors, respectively. Differentially expressed genes cooperatively enhance pseudopod elongation during the mesenchymal mode of invasion by altering the function, localisation and activity of non-differentially expressed proteins.
Collapse
Affiliation(s)
- Bradford W Ozanne
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD Scotland, UK.
| | | | | | | |
Collapse
|
49
|
Gius D, Bradbury CM, Sun L, Awwad RT, Huang L, Smart DDK, Bisht KS, Ho AS, Nguyen P. The epigenome as a molecular marker and target. Cancer 2005; 104:1789-93. [PMID: 16149092 DOI: 10.1002/cncr.21395] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor cell proliferation, de-differentiation, and progression depend on a complex combination of altered cell cycle regulation, excessive growth factor pathway activation, and decreased apoptosis. The understanding of these complex mechanisms should lead to the identification of potential molecular markers, targets, and molecular profiles that should eventually expand and improve therapeutic intervention. It now appears clear that methylation plays a central role in transformation, both in vitro and in vivo. However, the exact targets and mechanism(s) are not yet fully understood. This is partly due to the significant number of genes altered by changes in intracellular methyltransferase activity and the chemical agents used to modulate gene expression. The complex nature of methylation's role in regulating gene expression suggests that in addition to investigating individual genes, researchers should develop more comprehensive methods to examine gene expression patterns and their predictive value as this will likely be necessary in the future. If methylation plays a role in transformation, then it seems logical that genes regulating intracellular methylation status may be used as molecular markers to profile tumors by any new methods currently being developed. Perhaps more noteworthy is that DNMT genes may be found to be novel molecular targets for new factor-specific anticancer agents. This idea will be addressed.
Collapse
Affiliation(s)
- David Gius
- Molecular Radiation Oncology Section, Radiation Oncology Branch, Radiation Oncology Sciences Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1002, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bjornsson HT, Cui H, Gius D, Fallin MD, Feinberg AP. The new field of epigenomics: implications for cancer and other common disease research. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:447-56. [PMID: 16117680 PMCID: PMC5434869 DOI: 10.1101/sqb.2004.69.447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- H T Bjornsson
- Predoctoral Program in Human Genetics and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|