1
|
Chen A, Li S, Gui J, Zhou H, Zhu L, Mi Y. Mechanisms of tropomyosin 3 in the development of malignant tumors. Heliyon 2024; 10:e35723. [PMID: 39170461 PMCID: PMC11336884 DOI: 10.1016/j.heliyon.2024.e35723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Tropomyosin (TPM) is an important regulatory protein that binds to actin in fine myofilaments, playing a crucial role in the regulation of muscle contraction. TPM3, as one of four tropomyosin genes, is notably prevalent in eukaryotic cells. Traditionally, abnormal gene expression of TPM3 has been exclusively associated with myopathy. However, recent years have witnessed a surge in studies highlighting the close correlation between abnormal expression of TPM3 and the onset, progression, metastasis, and prognosis of various malignant tumors. In light of this, investigating the mechanisms underlying the pathogenetic role of TPM3 holds significant promise for early diagnosis and more effective treatment strategies. This article aims to provide an insightful review of the structural characteristics of TPM3 and its intricate role in the occurrence and development of malignant tumors.
Collapse
Affiliation(s)
- Anjie Chen
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Sixin Li
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Jiandong Gui
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Hangsheng Zhou
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| |
Collapse
|
2
|
Luedersen J, Stadt UZ, Richter J, Oschlies I, Klapper W, Rosenwald A, Kalinova M, Simonitsch-Klupp I, Siebert R, Zimmermann M, Qi M, Nakel J, Scheinemann K, Knörr F, Attarbaschi A, Kabickova E, Woessmann W, Damm-Welk C. Variant ALK-fusion positive anaplastic large cell lymphoma (ALCL): A population-based paediatric study of the NHL-BFM study group. Br J Haematol 2024; 204:1894-1898. [PMID: 38279625 DOI: 10.1111/bjh.19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Frequency, distribution and prognostic meaning of ALK-partner genes other than NPM1 in ALK-positive anaplastic large-cell lymphoma (ALCL) are unknown. Forty-nine of 316 ALCL diagnosed in the NHL-BFM study group showed no nuclear ALK expression suggestive of a variant ALK-partner; 41 were analysed by genomic capture high-throughput sequencing or specific RT-PCRs. NPM1::ALK was detected in 13 cases. Among the 28 patients with a non-NPM1::ALK-fusion partner, ATIC (n = 8; 29%) and TPM3 (n = 9; 32%) were the most common. Five of eight patients with ATIC::ALK-positive ALCL relapsed, none of nine with TPM3::ALK. Variant ALK-partners are rare and potentially associated with different prognoses.
Collapse
Affiliation(s)
- Jette Luedersen
- Paediatric Haematology and Oncology and NHL-BFM Study Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Zur Stadt
- Paediatric Haematology and Oncology and CoALL Study Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Richter
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ilske Oschlies
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Rosenwald
- Department of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Marketa Kalinova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University Prague and University Hospital in Motol, Prague, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University Prague and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany
| | - Martin Zimmermann
- Department of Paediatric Haematology and Oncology, Hannover Medical School, and NHL-BFM Study Centre, Hannover, Germany
| | - Minyue Qi
- Bioinformatics Core, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Katrin Scheinemann
- Division of Paediatric Haematology/Oncology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Science and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Paediatrics, McMaster Children's Hospital and McMaster University, Hamilton, Ontario, Canada
| | - Fabian Knörr
- Paediatric Haematology and Oncology and NHL-BFM Study Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg- Eppendorf, Hamburg, Germany
| | - Andishe Attarbaschi
- Department of Paediatric Haematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Edita Kabickova
- Department of Pediatric Hematology and Oncology, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Wilhelm Woessmann
- Paediatric Haematology and Oncology and NHL-BFM Study Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Damm-Welk
- Paediatric Haematology and Oncology and NHL-BFM Study Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Wu R, Lim MS. Updates in pathobiological aspects of anaplastic large cell lymphoma. Front Oncol 2023; 13:1241532. [PMID: 37810974 PMCID: PMC10556522 DOI: 10.3389/fonc.2023.1241532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCL) encompass several distinct subtypes of mature T-cell neoplasms that are unified by the expression of CD30 and anaplastic cytomorphology. Identification of the cytogenetic abnormality t(2;5)(p23;q35) led to the subclassification of ALCLs into ALK+ ALCL and ALK- ALCL. According to the most recent World Health Organization (WHO) Classification of Haematolymphoid Tumours as well as the International Consensus Classification (ICC) of Mature Lymphoid Neoplasms, ALCLs encompass ALK+ ALCL, ALK- ALCL, and breast implant-associated ALCL (BI-ALCL). Approximately 80% of systemic ALCLs harbor rearrangement of ALK, with NPM1 being the most common partner gene, although many other fusion partner genes have been identified to date. ALK- ALCLs represent a heterogeneous group of lymphomas with distinct clinical, immunophenotypic, and genetic features. A subset harbor recurrent rearrangement of genes, including TYK2, DUSP22, and TP63, with a proportion for which genetic aberrations have yet to be characterized. Although primary cutaneous ALCL (pc-ALCL) is currently classified as a subtype of primary cutaneous T-cell lymphoma, due to the large anaplastic and pleomorphic morphology together with CD30 expression in the malignant cells, this review also discusses the pathobiological features of this disease entity. Genomic and proteomic studies have contributed significant knowledge elucidating novel signaling pathways that are implicated in ALCL pathogenesis and represent candidate targets of therapeutic interventions. This review aims to offer perspectives on recent insights regarding the pathobiological and genetic features of ALCL.
Collapse
Affiliation(s)
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
4
|
Cipri S, Del Baldo G, Fabozzi F, Boccuto L, Carai A, Mastronuzzi A. Unlocking the power of precision medicine for pediatric low-grade gliomas: molecular characterization for targeted therapies with enhanced safety and efficacy. Front Oncol 2023; 13:1204829. [PMID: 37397394 PMCID: PMC10311254 DOI: 10.3389/fonc.2023.1204829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
In the past decade significant advancements have been made in the discovery of targetable lesions in pediatric low-grade gliomas (pLGGs). These tumors account for 30-50% of all pediatric brain tumors with generally a favorable prognosis. The latest 2021 WHO classification of pLGGs places a strong emphasis on molecular characterization for significant implications on prognosis, diagnosis, management, and the potential target treatment. With the technological advances and new applications in molecular diagnostics, the molecular characterization of pLGGs has revealed that tumors that appear similar under a microscope can have different genetic and molecular characteristics. Therefore, the new classification system divides pLGGs into several distinct subtypes based on these characteristics, enabling a more accurate strategy for diagnosis and personalized therapy based on the specific genetic and molecular abnormalities present in each tumor. This approach holds great promise for improving outcomes for patients with pLGGs, highlighting the importance of the recent breakthroughs in the discovery of targetable lesions.
Collapse
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Xiao A, Shahmarvand N, Nagy A, Kumar J, Van Ziffle J, Devine P, Huang F, Lezama L, Li P, Ohgami RS. TFG::ALK fusion in ALK positive large B-cell lymphoma: a case report and review of literature. Front Oncol 2023; 13:1174606. [PMID: 37305584 PMCID: PMC10248242 DOI: 10.3389/fonc.2023.1174606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) positive large B-cell lymphoma (ALK+ LBCL) is an aggressive and rare subtype of B-cell lymphoma. Patients typically present with advanced clinical stage disease and do not respond to conventional chemotherapy; the median overall survival is 1.8 years. The genetic landscape of this entity remains poorly understood. Here we report a unique case of ALK+ LBCL harbouring a rare TFG::ALK fusion. Targeted next-generation sequencing showed no significant single nucleotide variants, insertions/deletions, or other structural variants beyond the TFG::ALK fusion; deep deletions of FOXO1, PRKCA, and the MYB locus were also detected. Our case report draws attention to this rare disease, highlights a need for larger genetic profiling studies, and focuses on the pathogenesis and potential therapeutic targets of this aggressive disease. To our knowledge, this is the first report of a TFG::ALK fusion in ALK+ LBCL.
Collapse
Affiliation(s)
- Andrew Xiao
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | | | - Alexandra Nagy
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Jyoti Kumar
- Department of Pathology, Stanford University, Stanford, CA, United States
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jessica Van Ziffle
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Patrick Devine
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Franklin Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Lhara Lezama
- Department of Pathology, Kaiser Permanente, Los Angeles, CA, United States
| | - Peng Li
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, United States
| | - Robert S. Ohgami
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, United States
| |
Collapse
|
6
|
Xiao X, Xu Y, Yu X, Chen Y, Zhao W, Xie Z, Zhu X, Xu H, Yang Y, Zhang P. Discovery of imidazo[1,2-b]pyridazine macrocyclic derivatives as novel ALK inhibitors capable of combating multiple resistant mutants. Bioorg Med Chem Lett 2023; 89:129309. [PMID: 37127101 DOI: 10.1016/j.bmcl.2023.129309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
Anaplastic lymphoma kinase (ALK)-tyrosine kinase inhibitor (TKI) often loses effectiveness against non-small cell lung malignancies (NSCLCs) with ALK gene rearrangements (ALK+). 19 novel imidazo[1,2-b]pyridazine macrocyclic derivatives were designed, synthesized, and tested for their biological activities in an effort to develop ALK inhibitors that would overcome second-generation ALK-TKIs, particularly the G1202R mutation and the lorlatinib-resistant L1196M/G1202R double mutations. Of all the target substances, O-10 had the most effective enzymatic inhibitory activity, with IC50 values for ALKWT, ALKG1202R, and ALKL1196M/G1202R of 2.6, 6.4, and 23 nM, respectively. O-10, on the other hand, reduced the growth of ALK-positive Karpas299, BaF3-EML4-ALKG1202R, and BaF3-EML4-ALKL1196M/G1202R cells with IC50 values of 38, 52, and 64 nM, respectively. This was equally effective to the reference drug Repotrectinib (IC50 = 40, 164, and 208 nM). The kinase selectivity profile, liver microsome stability test and in vivo pharmacokinetic properties in SD rats of compound O-10 were further evaluated. O-10 was regarded as an effective ALK inhibitor for the treatment of mutations overall.
Collapse
Affiliation(s)
- Xiaofei Xiao
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Yunsheng Xu
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Xihua Yu
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Yinbo Chen
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Weiwei Zhao
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Zhendong Xie
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Xueyan Zhu
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Hongjiang Xu
- Drug Screening and Evaluation Department of R & D Institute, Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing 210023, PR China
| | - Yulei Yang
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| | - Peng Zhang
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 285 Gebaini Road, Shanghai 201203, China
| |
Collapse
|
7
|
Zhao T, Zhang X, Liu X, Ren M, Cheng Y, Wang J, Luo Z. Case Report: Clinical response to anaplastic lymphoma kinase inhibitor-based targeted therapy in uterine inflammatory myofibroblastic tumor harboring ALK-IGFBP5 fusion. Front Oncol 2023; 13:1147974. [PMID: 37035208 PMCID: PMC10076585 DOI: 10.3389/fonc.2023.1147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Background An inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor with a prevalence ranging from 0.04% to 0.7% worldwide, in which the lung is the most common predilection site, accounting for 33% of cases, followed by the abdomen, pelvis, mesentery, and uterus. Approximately 50% of uterine IMTs present as anaplastic lymphoma kinase (ALK) positive along with ALK gene fusion, which lays a solid foundation for the development of ALK-based target therapy to optimize treatment strategies. Case presentation Herein we describe a 57-year-old woman who presented with a slow-growing mass in the uterus for over 10 years and then received surgical resection because of significant progressive enlargement of the mass during follow-up. She was diagnosed with uterine leiomyosarcoma (LMS) with no further interventions until recurrence. We revised the diagnosis to uterine IMT based on diffuse ALK expression, ALK-IGFBP5 gene fusion, and the morphologic features of the tumors by pathology consultation. Based on these, we recommended an ALK tyrosine kinase inhibitor (TKI) treatment, crizotinib (250 mg bid), and she achieved a complete response (CR) with at least 18 months of progression-free survival (PFS). We monitored the dynamics of target lesions and peripheral blood cells at regular intervals through CT scans and routine blood tests during the treatment process. We present patient responses to ALK inhibitor-based targeted therapy with uterine IMT harboring ALK-IGFBP5 fusion, and the neutrophil-to-lymphocyte ratio (NLR) may be an effective indicator to predict prognosis.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaowei Zhang
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Head & Neck Tumors and Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yufan Cheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiguo Luo
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Zhiguo Luo,
| |
Collapse
|
8
|
Bonnet-Magnaval F, Diallo LH, Brunchault V, Laugero N, Morfoisse F, David F, Roussel E, Nougue M, Zamora A, Marchaud E, Tatin F, Prats AC, Garmy-Susini B, DesGroseillers L, Lacazette E. High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation. Int J Mol Sci 2021; 23:215. [PMID: 35008641 PMCID: PMC8745428 DOI: 10.3390/ijms23010215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.
Collapse
Affiliation(s)
- Florence Bonnet-Magnaval
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Leïla Halidou Diallo
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Valérie Brunchault
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Nathalie Laugero
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florent Morfoisse
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florian David
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emilie Roussel
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Manon Nougue
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Audrey Zamora
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Emmanuelle Marchaud
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Florence Tatin
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Anne-Catherine Prats
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Barbara Garmy-Susini
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| | - Luc DesGroseillers
- Département de Biochimie Et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Édouard Montpetit Montréal, Montreal, QC H3T 1J4, Canada;
| | - Eric Lacazette
- U1297-Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, F-31432 Toulouse, France; (F.B.-M.); (L.H.D.); (V.B.); (N.L.); (F.M.); (F.D.); (E.R.); (M.N.); (A.Z.); (E.M.); (F.T.); (B.G.-S.)
| |
Collapse
|
9
|
Defining Pathological Activities of ALK in Neuroblastoma, a Neural Crest-Derived Cancer. Int J Mol Sci 2021; 22:ijms222111718. [PMID: 34769149 PMCID: PMC8584162 DOI: 10.3390/ijms222111718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumour of childhood, responsible for 15% of cancer-related deaths in children. Prognoses vary from spontaneous remission to aggressive disease with extensive metastases, where treatment is challenging. Tumours are thought to arise from sympathoadrenal progenitor cells, which derive from an embryonic cell population called neural crest cells that give rise to diverse cell types, such as facial bone and cartilage, pigmented cells, and neurons. Tumours are found associated with mature derivatives of neural crest, such as the adrenal medulla or paraspinal ganglia. Sympathoadrenal progenitor cells express anaplastic lymphoma kinase (ALK), which encodes a tyrosine kinase receptor that is the most frequently mutated gene in neuroblastoma. Activating mutations in the kinase domain are common in both sporadic and familial cases. The oncogenic role of ALK has been extensively studied, but little is known about its physiological role. Recent studies have implicated ALK in neural crest migration and sympathetic neurogenesis. However, very few downstream targets of ALK have been identified. Here, we describe pathological activation of ALK in the neural crest, which promotes proliferation and migration, while preventing differentiation, thus inducing the onset of neuroblastoma. Understanding the effects of ALK activity on neural crest cells will help find new targets for neuroblastoma treatment.
Collapse
|
10
|
Zhou H, Xu B, Xu J, Zhu G, Guo Y. Novel MRPS9-ALK Fusion Mutation in a Lung Adenocarcinoma Patient: A Case Report. Front Oncol 2021; 11:670907. [PMID: 34168990 PMCID: PMC8217641 DOI: 10.3389/fonc.2021.670907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) rearrangements account for approximately 5-6% of non-small-cell lung cancer (NSCLC) patients. In this study, a case of lung adenocarcinoma harboring a novel MRPS9-ALK fusion is reported. The patient responded well to the first and second generation of ALK-tyrosine kinase inhibitors (ALK-TKIs) (crizotinib then alectinib), as her imaging findings and clinical symptoms significantly improved. At last follow-up, over 21 months of overall survival (OS) has been achieved since ALK-TKI treatment. The progression-free survival (PFS) is already ten months since alectinib. The adverse effects were manageable. The case presented here provides first clinical evidence of the efficacy of ALK-TKIs in NSCLC patients with MRPS9-ALK fusion.
Collapse
Affiliation(s)
- Huamiao Zhou
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Binyue Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jili Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guomeng Zhu
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yong Guo
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
11
|
Pediatric Glioma: An Update of Diagnosis, Biology, and Treatment. Cancers (Basel) 2021; 13:cancers13040758. [PMID: 33673070 PMCID: PMC7918156 DOI: 10.3390/cancers13040758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Recent research has enhanced our understanding of the diverse biological processes that occur in pediatric gliomas; and molecular genetic analysis has become essential to diagnose and treat these conditions. Because targetable molecular aberrations can be detected in pediatric gliomas, identifying these aberrations is very important. This review provides an overview of pediatric gliomas, and describes recent developments made in strategies for their diagnosis and treatment. Additionally, it presents a current picture of pediatric gliomas in light of advances in molecular genetics, and describes the current scientific progress in gliomas’ treatment using information from recently completed and ongoing clinical trials. The era of incorporating molecular genetic analysis into clinical practice is emerging. Abstract Recent research has promoted elucidation of the diverse biological processes that occur in pediatric central nervous system (CNS) tumors. Molecular genetic analysis is essential not only for proper classification, but also for monitoring biological behavior and clinical management of tumors. Ever since the 2016 World Health Organization classification of CNS tumors, molecular profiling has become an indispensable step in the diagnosis, prediction of prognosis, and treatment of pediatric as well as adult CNS tumors. These molecular data are changing diagnosis, leading to new guidelines, and offering novel molecular targeted therapies. The Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) makes practical recommendations using recent advances in CNS tumor classification, particularly in molecular discernment of these neoplasms as morphology-based classification of tumors is being replaced by molecular-based classification. In this article, we summarize recent knowledge to provide an overview of pediatric gliomas, which are major pediatric CNS tumors, and describe recent developments in strategies employed for their diagnosis and treatment.
Collapse
|
12
|
Uchihara Y, Tago K, Tamura H, Funakoshi‐Tago M. EBP2, a novel NPM-ALK-interacting protein in the nucleolus, contributes to the proliferation of ALCL cells by regulating tumor suppressor p53. Mol Oncol 2021; 15:167-194. [PMID: 33040459 PMCID: PMC7782078 DOI: 10.1002/1878-0261.12822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), found in anaplastic large-cell lymphoma (ALCL), localizes to the cytosol, nucleoplasm, and nucleolus. However, the relationship between its localization and transforming activity remains unclear. We herein demonstrated that NPM-ALK localized to the nucleolus by binding to nucleophosmin 1 (NPM1), a nucleolar protein that exhibits shuttling activity between the nucleolus and cytoplasm, in a manner that was dependent on its kinase activity. In the nucleolus, NPM-ALK interacted with Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2), which is involved in rRNA biosynthesis. Moreover, enforced expression of NPM-ALK induced tyrosine phosphorylation of EBP2. Knockdown of EBP2 promoted the activation of the tumor suppressor p53, leading to G0 /G1 -phase cell cycle arrest in Ba/F3 cells transformed by NPM-ALK and ALCL patient-derived Ki-JK cells, but not ALCL patient-derived SUDH-L1 cells harboring p53 gene mutation. In Ba/F3 cells transformed by NPM-ALK and Ki-JK cells, p53 activation induced by knockdown of EBP2 was significantly inhibited by Akt inhibitor GDC-0068, mTORC1 inhibitor rapamycin, and knockdown of Raptor, an essential component of mTORC1. These results suggest that the knockdown of EBP2 triggered p53 activation through the Akt-mTORC1 pathway in NPM-ALK-positive cells. Collectively, the present results revealed the critical repressive mechanism of p53 activity by EBP2 and provide a novel therapeutic strategy for the treatment of ALCL.
Collapse
Affiliation(s)
- Yuki Uchihara
- Division of Hygienic ChemistryFaculty of PharmacyKeio UniversityTokyoJapan
| | - Kenji Tago
- Division of Structural BiochemistryDepartment of BiochemistryJichi Medical UniversityShimotsuke‐shiJapan
| | - Hiroomi Tamura
- Division of Hygienic ChemistryFaculty of PharmacyKeio UniversityTokyoJapan
| | | |
Collapse
|
13
|
Bruno R, Fontanini G. Next Generation Sequencing for Gene Fusion Analysis in Lung Cancer: A Literature Review. Diagnostics (Basel) 2020; 10:E521. [PMID: 32726941 PMCID: PMC7460167 DOI: 10.3390/diagnostics10080521] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023] Open
Abstract
Gene fusions have a pivotal role in non-small cell lung cancer (NSCLC) precision medicine. Several techniques can be used, from fluorescence in situ hybridization and immunohistochemistry to next generation sequencing (NGS). Although several NGS panels are available, gene fusion testing presents more technical challenges than other variants. This is a PubMed-based narrative review aiming to summarize NGS approaches for gene fusion analysis and their performance on NSCLC clinical samples. The analysis can be performed at DNA or RNA levels, using different target enrichment (hybrid-capture or amplicon-based) and sequencing chemistries, with both custom and commercially available panels. DNA sequencing evaluates different alteration types simultaneously, but large introns and repetitive sequences can impact on the performance and it does not discriminate between expressed and unexpressed gene fusions. RNA-based targeted approach analyses and quantifies directly fusion transcripts and is more accurate than DNA panels on tumor tissue, but it can be limited by RNA quality and quantity. On liquid biopsy, satisfying data have been published on circulating tumor DNA hybrid-capture panels. There is not a perfect method for gene fusion analysis, but NGS approaches, though still needing a complete standardization and optimization, present several advantages for the clinical practice.
Collapse
Affiliation(s)
- Rossella Bruno
- Unit of Pathological Anatomy, University Hospital of Pisa, Via Roma 67, 56126 Pisa, Italy;
| | - Gabriella Fontanini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| |
Collapse
|
14
|
dBMHCC: A comprehensive hepatocellular carcinoma (HCC) biomarker database provides a reliable prediction system for novel HCC phosphorylated biomarkers. PLoS One 2020; 15:e0234084. [PMID: 32497121 PMCID: PMC7272086 DOI: 10.1371/journal.pone.0234084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC), which is associated with an absence of obvious symptoms and poor prognosis, is the second leading cause of cancer death worldwide. Genome-wide molecular biology studies should provide biological insights into HCC development. Based on the importance of phosphorylation for signal transduction, several protein kinase inhibitors have been developed that improve the survival of cancer patients. However, a comprehensive database of HCC-related phosphorylated biomarkers (HCCPMs) and novel HCCPMs prediction platform has been lacking. We have thus constructed the dBMHCC databases to provide expression profiles, phosphorylation and drug information, and evidence type; gathered information on HCC-related pathways and their involved genes as candidate HCC biomarkers; and established a system for evaluating protein phosphorylation and HCC-related biomarkers to improve the reliability of biomarker prediction. The resulting dBMHCC contains 611 notable HCC-related genes, 234 HCC-related pathways, 17 phosphorylation-related motifs and their 255 corresponding protein kinases, 5955 HCC biomarkers, and 1077 predicted HCCPMs. Methionine adenosyltransferase 2B (MAT2B) and acireductone dioxygenase 1 (ADI1), which regulate HCC development and hepatitis C virus infection, respectively, were among the top 10 HCCPMs predicted by dBMHCC. Platelet-derived growth factor receptor alpha (PDGFRA), which had the highest evaluation score, was identified as the target of one HCC drug (Regorafenib), five cancer drugs, and four non-cancer drugs. dBMHCC is an open resource for HCC phosphorylated biomarkers, which supports researchers investigating the development of HCC and designing novel diagnosis methods and drug treatments. Database URL:http://predictor.nchu.edu.tw/dBMHCC.
Collapse
|
15
|
Yang J, Li J, Gu WY, Jin L, Duan YL, Huang S, Zhang M, Wang XS, Liu Y, Zhou CJ, Gao C, Zheng HY, Zhang YH. Central nervous system relapse in a pediatric anaplastic large cell lymphoma patient with CLTC/ALK translocation treated with alectinib: A case report. World J Clin Cases 2020; 8:1685-1692. [PMID: 32420302 PMCID: PMC7211542 DOI: 10.12998/wjcc.v8.i9.1685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The aberrant expression of the anaplastic lymphoma kinase (ALK) gene in ALK-positive (ALK+) anaplastic large cell lymphoma (ALCL) is usually due to t(2;5)/NPM-ALK. However, rarely, aberrant ALK expression can also result from a rearrangement of the ALK gene with various partner genes. Central nervous system (CNS) metastasis is very rare in ALK+ALCL. Patients with CNS involvement show an inferior prognosis.
CASE SUMMARY Here, we present the case of an 8-year-old girl diagnosed with ALK+ALCL. She presented with fever, skin nodules, leg swelling, and abdominal pain over the preceding 6 mo. She had extensive involvement and showed an extraordinary rare translocation, t(2;17)/CLTC-ALK, as demonstrated by RNA-seq. She underwent chemotherapy as per ALCL99, followed by vinblastine (VBL) maintenance treatment, and achieved complete remission. However, she developed CNS relapse during VBL monotherapy. The patient achieved a durable second remission with high-dose chemotherapy (including methotrexate 8 g/m2) and continuous treatment with alectinib and VBL.
CONCLUSION Alectinib showed significant and durable CNS effects in this patient. However, more cases are needed to prove the efficacy and safety of alectinib for pediatric ALK+ALCL patients.
Collapse
Affiliation(s)
- Jing Yang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Jun Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Wei-Yue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing 101111, China
| | - Ling Jin
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Yan-Long Duan
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Shuang Huang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Meng Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Xi-Si Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Yi Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Chun-Ju Zhou
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Yong-Hong Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| |
Collapse
|
16
|
Ryall S, Tabori U, Hawkins C. Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun 2020; 8:30. [PMID: 32164789 PMCID: PMC7066826 DOI: 10.1186/s40478-020-00902-z] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Low grade gliomas are the most frequent brain tumors in children and encompass a spectrum of histologic entities which are currently assigned World Health Organisation grades I and II. They differ substantially from their adult counterparts in both their underlying genetic alterations and in the infrequency with which they transform to higher grade tumors. Nonetheless, children with low grade glioma are a therapeutic challenge due to the heterogeneity in their clinical behavior – in particular, those with incomplete surgical resection often suffer repeat progressions with resultant morbidity and, in some cases, mortality. The identification of up-regulation of the RAS–mitogen-activated protein kinase (RAS/MAPK) pathway as a near universal feature of these tumors has led to the development of targeted therapeutics aimed at improving responses while mitigating patient morbidity. Here, we review how molecular information can help to further define the entities which fall under the umbrella of pediatric-type low-grade glioma. In doing so we discuss the specific molecular drivers of pediatric low grade glioma and how to effectively test for them, review the newest therapeutic agents and their utility in treating this disease, and propose a risk-based stratification system that considers both clinical and molecular parameters to aid clinicians in making treatment decisions.
Collapse
|
17
|
Pinsolle J, McLeer-Florin A, Giaj Levra M, de Fraipont F, Emprou C, Gobbini E, Toffart AC. Translating Systems Medicine Into Clinical Practice: Examples From Pulmonary Medicine With Genetic Disorders, Infections, Inflammations, Cancer Genesis, and Treatment Implication of Molecular Alterations in Non-small-cell Lung Cancers and Personalized Medicine. Front Med (Lausanne) 2019; 6:233. [PMID: 31737634 PMCID: PMC6828737 DOI: 10.3389/fmed.2019.00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
Non-small-cell lung cancers (NSCLC) represent 85% of all lung cancers, with adenocarcinoma as the most common subtype. Since the 2000's, the discovery of molecular alterations including epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements together with the development of specific tyrosine kinase inhibitors (TKIs) has facilitated the development of personalized medicine in the management of this disease. This review focuses on the biology of molecular alterations in NSCLC as well as the diagnostic tools and therapeutic alternatives available for each targetable alteration. Rapid and sensitive methods are essential to detect gene alterations, using tumor tissue biopsies or liquid biopsies. Massive parallel sequencing or Next Generation Sequencing (NGS) allows to simultaneously analyze numerous genes from relatively low amounts of DNA. The detection of oncogenic fusions can be conducted using fluorescence in situ hybridization, reverse-transcription polymerase chain reaction, immunohistochemistry, or NGS. EGFR mutations, ALK and ROS1 rearrangements, MET (MET proto-oncogenereceptor tyrosine kinase), BRAF (B-Raf proto-oncogen serine/threonine kinase), NTRK (neurotrophic tropomyosin receptor kinase), and RET (ret proto-oncogene) alterations are described with their respective TKIs, either already authorized or still in development. We have herein paid particular attention to the mechanisms of resistance to EGFR and ALK-TKI. As a wealth of diagnostic tools and personalized treatments are currently under development, a close collaboration between molecular biologists, pathologists, and oncologists is crucial.
Collapse
Affiliation(s)
- Julian Pinsolle
- Department of Pneumology, CHU Grenoble Alpes, Grenoble, France
- Medicine Faculty, Université Grenoble Alpes, Grenoble, France
| | - Anne McLeer-Florin
- Medicine Faculty, Université Grenoble Alpes, Grenoble, France
- Departement of Pathological Anatomy and Cytology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France
- UGA/INSERM U1209/CNRS 5309-Institute for Advanced Biosciences - Université Grenoble Alpes, Grenoble, France
| | - Matteo Giaj Levra
- Department of Pneumology, CHU Grenoble Alpes, Grenoble, France
- Department of Biochemistry, Molecular Biology and Environmental Toxicology, CHU Grenoble Alpes, Grenoble, France
| | - Florence de Fraipont
- UGA/INSERM U1209/CNRS 5309-Institute for Advanced Biosciences - Université Grenoble Alpes, Grenoble, France
- Department of Biochemistry, Molecular Biology and Environmental Toxicology, CHU Grenoble Alpes, Grenoble, France
| | - Camille Emprou
- Medicine Faculty, Université Grenoble Alpes, Grenoble, France
- Departement of Pathological Anatomy and Cytology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, Grenoble, France
| | - Elisa Gobbini
- Department of Pneumology, CHU Grenoble Alpes, Grenoble, France
- Cancer Research Center Lyon, Centre Léon Bérard, Lyon, France
| | - Anne-Claire Toffart
- Department of Pneumology, CHU Grenoble Alpes, Grenoble, France
- Medicine Faculty, Université Grenoble Alpes, Grenoble, France
- UGA/INSERM U1209/CNRS 5309-Institute for Advanced Biosciences - Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
18
|
Ducray SP, Natarajan K, Garland GD, Turner SD, Egger G. The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis. Cancers (Basel) 2019; 11:cancers11081074. [PMID: 31366041 PMCID: PMC6721376 DOI: 10.3390/cancers11081074] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase involved in neuronal and gut development. Initially discovered in T cell lymphoma, ALK is frequently affected in diverse cancers by oncogenic translocations. These translocations involve different fusion partners that facilitate multimerisation and autophosphorylation of ALK, resulting in a constitutively active tyrosine kinase with oncogenic potential. ALK fusion proteins are involved in diverse cellular signalling pathways, such as Ras/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Janus protein tyrosine kinase (JAK)/STAT. Furthermore, ALK is implicated in epigenetic regulation, including DNA methylation and miRNA expression, and an interaction with nuclear proteins has been described. Through these mechanisms, ALK fusion proteins enable a transcriptional programme that drives the pathogenesis of a range of ALK-related malignancies.
Collapse
Affiliation(s)
- Stephen P Ducray
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | | | - Gavin D Garland
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK.
| | - Gerda Egger
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Lin CC, Arkenau HT, Lu S, Sachdev J, de Castro Carpeño J, Mita M, Dziadziuszko R, Su WC, Bobilev D, Hughes L, Chan J, Zhang ZY, Weiss GJ. A phase 1, open-label, dose-escalation trial of oral TSR-011 in patients with advanced solid tumours and lymphomas. Br J Cancer 2019; 121:131-138. [PMID: 31217479 PMCID: PMC6738096 DOI: 10.1038/s41416-019-0503-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in non-small-cell lung cancer (NSCLC). TSR-011 is a dual ALK and tropomyosin-related kinase (TRK) inhibitor, active against ALK inhibitor resistant tumours in preclinical studies. Here, we report the safety, tolerability and recommended phase 2 dose (RP2D) of TSR-011 in patients with relapsed or refractory ALK- and TRK-positive advanced cancers. METHODS In this sequential, open-label, phase 1 trial (NCT02048488), patients received doses of 30 mg, escalated to 480 mg every 24 hours (Q24h), followed by an expansion cohort of patients with ALK-positive cancers. The primary objective was to evaluate safety and tolerability. Secondary objectives included pharmacokinetics. RESULTS TSR-011 320- and 480-mg Q24h doses exceeded the maximum tolerated dose. At the RP2D of 40 mg every 8 hours (Q8h), the most common grade 3-4 treatment-emergent adverse events occurred in 3.2-6.5% of patients. Of 14 ALK inhibitor-naive patients with ALK-positive NSCLC, 6 experienced partial responses and 8 had stable disease. CONCLUSIONS At the RP2D (40 mg Q8h), TSR-011 demonstrated a favourable safety profile with acceptable QTc changes. Limited clinical activity was observed. Based on the competitive ALK inhibitor landscape and benefit/risk considerations, further TSR-011 development was discontinued. CLINICAL TRIAL REGISTRATION NUMBER NCT02048488.
Collapse
Affiliation(s)
- Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hendrik-Tobias Arkenau
- Department of Medical Oncology, Sarah Cannon Research Institute and University College London, London, UK
| | - Sharon Lu
- Department of Clinical Science, TESARO: A GSK Company, Waltham, MA, USA
| | - Jasgit Sachdev
- Department of Hematology and Oncology, HonorHealth Research Institute, Scottsdale, AZ, USA
| | | | - Monica Mita
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy, Uniwersyteckie Centrum Kliniczne, Gdansk, Poland
| | - Wu-Chou Su
- Department of Hematology and Oncology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Dmitri Bobilev
- Department of Clinical Science, TESARO: A GSK Company, Waltham, MA, USA
| | - Lorraine Hughes
- Department of Clinical Science, TESARO: A GSK Company, Waltham, MA, USA
| | - Jian Chan
- Department of Clinical Science, TESARO: A GSK Company, Waltham, MA, USA
| | - Zhi-Yi Zhang
- Department of Clinical Science, TESARO: A GSK Company, Waltham, MA, USA
| | - Glen J Weiss
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Fushimi M, Fujimori I, Wakabayashi T, Hasui T, Kawakita Y, Imamura K, Kato T, Murakami M, Ishii T, Kikko Y, Kasahara M, Nakatani A, Hiura Y, Miyamoto M, Saikatendu K, Zou H, Lane SW, Lawson JD, Imoto H. Discovery of Potent, Selective, and Brain-Penetrant 1H-Pyrazol-5-yl-1H-pyrrolo[2,3-b]pyridines as Anaplastic Lymphoma Kinase (ALK) Inhibitors. J Med Chem 2019; 62:4915-4935. [DOI: 10.1021/acs.jmedchem.8b01630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Makoto Fushimi
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ikuo Fujimori
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeshi Wakabayashi
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoaki Hasui
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Youichi Kawakita
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Keisuke Imamura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoko Kato
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Morio Murakami
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Ishii
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yorifumi Kikko
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maki Kasahara
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsushi Nakatani
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuto Hiura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maki Miyamoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kumar Saikatendu
- Takeda California, Inc., 10410 Science Center Drive, San Diego, California 92121, United States
| | - Hua Zou
- Takeda California, Inc., 10410 Science Center Drive, San Diego, California 92121, United States
| | - Scott Weston Lane
- Takeda California, Inc., 10410 Science Center Drive, San Diego, California 92121, United States
| | - J. David Lawson
- Takeda California, Inc., 10410 Science Center Drive, San Diego, California 92121, United States
| | - Hiroshi Imoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
21
|
Targeting ALK in Cancer: Therapeutic Potential of Proapoptotic Peptides. Cancers (Basel) 2019; 11:cancers11030275. [PMID: 30813562 PMCID: PMC6468335 DOI: 10.3390/cancers11030275] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 01/30/2023] Open
Abstract
ALK is a receptor tyrosine kinase, associated with many tumor types as diverse as anaplastic large cell lymphomas, inflammatory myofibroblastic tumors, breast and renal cell carcinomas, non-small cell lung cancer, neuroblastomas, and more. This makes ALK an attractive target for cancer therapy. Since ALK–driven tumors are dependent for their proliferation on the constitutively activated ALK kinase, a number of tyrosine kinase inhibitors have been developed to block tumor growth. While some inhibitors are under investigation in clinical trials, others are now approved for treatment, notably in ALK-positive lung cancer. Their efficacy is remarkable, however limited in time, as the tumors escape and become resistant to the treatment through different mechanisms. Hence, there is a pressing need to target ALK-dependent tumors by other therapeutic strategies, and possibly use them in combination with kinase inhibitors. In this review we will focus on the therapeutic potential of proapoptotic ALK-derived peptides based on the dependence receptor properties of ALK. We will also try to make a non-exhaustive list of several alternative treatments targeting ALK-dependent and independent signaling pathways.
Collapse
|
22
|
Childress MA, Himmelberg SM, Chen H, Deng W, Davies MA, Lovly CM. ALK Fusion Partners Impact Response to ALK Inhibition: Differential Effects on Sensitivity, Cellular Phenotypes, and Biochemical Properties. Mol Cancer Res 2018; 16:1724-1736. [PMID: 30002191 PMCID: PMC6214753 DOI: 10.1158/1541-7786.mcr-18-0171] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/25/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Oncogenic tyrosine kinase fusions involving the anaplastic lymphoma kinase (ALK) are detected in numerous tumor types. Although more than 30 distinct 5' fusion partner genes have been reported, treatment of ALK-rearranged cancers is decided without regard to which 5' partner is present. There is little data addressing how the 5' partner affects the biology of the fusion or responsiveness to ALK tyrosine kinase inhibitors (TKI). On the basis of the hypothesis that the 5' partner influences the intrinsic properties of the fusion protein, cellular functions that impact oncogenic potential, and sensitivity to ALK TKIs, clonal 3T3 cell lines stably expressing seven different ALK fusion variants were generated. Biochemical and cellular assays were used to assess the efficacy of various ALK TKIs in clinical use, transformative phenotypes, and biochemical properties of each fusion. All seven ALK fusions induced focus formation and colonies in soft agar, albeit to varying degrees. IC50s were calculated for different ALK TKIs (crizotinib, ensartinib, alectinib, lorlatinib) and consistent differences (5-10 fold) in drug sensitivity were noted across the seven ALK fusions tested. Finally, biochemical analyses revealed negative correlations between kinase activity and protein stability. These results demonstrate that the 5' fusion partner plays an important biological role that affects sensitivity to ALK TKIs.Implications: This study shows that the 5' ALK fusion partner influences ALK TKI drug sensitivity. As many other kinase fusions are found in numerous cancers, often with overlapping fusion partners, these studies have ramifications for other kinase-driven malignancies. Mol Cancer Res; 16(11); 1724-36. ©2018 AACR.
Collapse
Affiliation(s)
| | - Stephen M Himmelberg
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Huiqin Chen
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wanleng Deng
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine M Lovly
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee.
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
23
|
Genomic heterogeneity of ALK fusion breakpoints in non-small-cell lung cancer. Mod Pathol 2018; 31:791-808. [PMID: 29327716 DOI: 10.1038/modpathol.2017.181] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 01/06/2023]
Abstract
In lung adenocarcinoma, canonical EML4-ALK inversion results in a fusion protein with a constitutively active ALK kinase domain. Evidence of ALK rearrangement occurs in a minority (2-7%) of lung adenocarcinoma, and only ~60% of these patients will respond to targeted ALK inhibition by drugs such as crizotinib and ceritinib. Clinically, targeted anti-ALK therapy is often initiated based on evidence of an ALK genomic rearrangement detected by fluorescence in situ hybridization (FISH) of interphase cells in formalin-fixed, paraffin-embedded tissue sections. At the genomic level, however, ALK rearrangements are heterogeneous, with multiple potential breakpoints in EML4, and alternate fusion partners. Using next-generation sequencing of DNA and RNA together with ALK immunohistochemistry, we comprehensively characterized genomic breakpoints in 33 FISH-positive lung adenocarcinomas. Of these 33 cases, 29 (88%) had detectable DNA level ALK rearrangements involving EML4, KIF5B, or non-canonical partners including ASXL2, ATP6V1B1, PRKAR1A, and SPDYA. A subset of 12 cases had material available for RNA-Seq. Of these, eight of eight (100%) cases with DNA rearrangements showed ALK fusion transcripts from RNA-Seq; three of four cases (75%) without detectable DNA rearrangements were similarly negative by RNA-Seq, and one case was positive by RNA-Seq but negative by DNA next-generation sequencing. By immunohistochemistry, 17 of 19 (89%) tested cases were clearly positive for ALK protein expression; the remaining cases had no detectable DNA level rearrangement or had a non-canonical rearrangement not predicted to form a fusion protein. Survival analysis of patients treated with targeted ALK inhibitors demonstrates a significant difference in mean survival between patients with next-generation sequencing confirmed EML4-ALK rearrangements, and those without (20.6 months vs 5.4 months, P<0.01). Together, these data demonstrate abundant genomic heterogeneity among ALK-rearranged lung adenocarcinoma, which may account for differences in treatment response with targeted ALK inhibitors.
Collapse
|
24
|
Sharma GG, Mota I, Mologni L, Patrucco E, Gambacorti-Passerini C, Chiarle R. Tumor Resistance against ALK Targeted Therapy-Where It Comes From and Where It Goes. Cancers (Basel) 2018; 10:E62. [PMID: 29495603 PMCID: PMC5876637 DOI: 10.3390/cancers10030062] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, particularly in non-small-cell lung cancer (NSCLC), which has generated considerable interest and effort in developing ALK tyrosine kinase inhibitors (TKI). Crizotinib was the first ALK inhibitor to receive FDA approval for ALK-positive NSCLC patients treatment. However, the clinical benefit observed in targeting ALK in NSCLC is almost universally limited by the emergence of drug resistance with a median of occurrence of approximately 10 months after the initiation of therapy. Thus, to overcome crizotinib resistance, second/third-generation ALK inhibitors have been developed and received, or are close to receiving, FDA approval. However, even when treated with these new inhibitors tumors became resistant, both in vitro and in clinical settings. The elucidation of the diverse mechanisms through which resistance to ALK TKI emerges, has informed the design of novel therapeutic strategies to improve patients disease outcome. This review summarizes the currently available knowledge regarding ALK physiologic function/structure and neoplastic transforming role, as well as an update on ALK inhibitors and resistance mechanisms along with possible therapeutic strategies that may overcome the development of resistance.
Collapse
Affiliation(s)
- Geeta Geeta Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
| | - Ines Mota
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
- Galkem Srl, Monza 20900, Italy.
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
- Galkem Srl, Monza 20900, Italy.
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza 20900, Italy.
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Wu W, Haderk F, Bivona TG. Non-Canonical Thinking for Targeting ALK-Fusion Onco-Proteins in Lung Cancer. Cancers (Basel) 2017; 9:cancers9120164. [PMID: 29189709 PMCID: PMC5742812 DOI: 10.3390/cancers9120164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) gene rearrangements have been identified in lung cancer at 3–7% frequency, thus representing an important subset of genetic lesions that drive oncogenesis in this disease. Despite the availability of multiple FDA-approved small molecule inhibitors targeting ALK fusion proteins, drug resistance to ALK kinase inhibitors is a common problem in clinic. Thus, there is an unmet need to deepen the current understanding of genomic characteristics of ALK rearrangements and to develop novel therapeutic strategies that can overcome ALK inhibitor resistance. In this review, we present the genomic landscape of ALK fusions in the context of co-occurring mutations with other cancer-related genes, pointing to the central role of genetic epistasis (gene-gene interactions) in ALK-driven advanced-stage lung cancer. We discuss the possibility of targeting druggable domains within ALK fusion partners in addition to available strategies inhibiting the ALK kinase domain directly. Finally, we examine the potential of targeting ALK fusion-specific neoantigens in combination with other treatments, a strategy that could open a new avenue for the improved treatment of ALK positive lung cancer patients.
Collapse
Affiliation(s)
- Wei Wu
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94115, USA.
- Department of Medicine, University of California, San Francisco, CA 94115, USA.
| | - Franziska Haderk
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94115, USA.
- Department of Medicine, University of California, San Francisco, CA 94115, USA.
| | - Trever G Bivona
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94115, USA.
- Department of Medicine, University of California, San Francisco, CA 94115, USA.
| |
Collapse
|
26
|
Abstract
A vast array of oncogenic variants has been identified for anaplastic lymphoma kinase (ALK). Therefore, there is a need to better understand the role of ALK in cancer biology in order to optimise treatment strategies. This review summarises the latest research on the receptor tyrosine kinase ALK, and how this information can guide the management of patients with cancer that is ALK-positive. A variety of ALK gene alterations have been described across a range of tumour types, including point mutations, deletions and rearrangements. A wide variety of ALK fusions, in which the kinase domain of ALK and the amino-terminal portion of various protein partners are fused, occur in cancer, with echinoderm microtubule-associated protein-like 4 (EML4)-ALK being the most prevalent in non-small-cell lung cancer (NSCLC). Different ALK fusion proteins can mediate different signalling outputs, depending on properties such as subcellular localisation and protein stability. The ALK fusions found in tumours lack spatial and temporal regulation, which can also affect dimerisation and substrate specificity. Two ALK tyrosine kinase inhibitors (TKIs), crizotinib and ceritinib, are currently approved in Europe for use in ALK-positive NSCLC and several others are in development. These ALK TKIs bind slightly differently within the ATP-binding pocket of the ALK kinase domain and are associated with the emergence of different resistance mutation patterns during therapy. This emphasises the need to tailor the sequence of ALK TKIs according to the ALK signature of each patient. Research into the oncogenic functions of ALK, and fast paced development of ALK inhibitors, has substantially improved outcomes for patients with ALK-positive NSCLC. Limited data are available surrounding the physiological ligand-stimulated activation of ALK signalling and further research is needed. Understanding the role of ALK in tumour biology is key to further optimising therapeutic strategies for ALK-positive disease.
Collapse
Affiliation(s)
- B Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - R H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Abstract
The expanding spectrum of both established and candidate oncogenic driver mutations identified in non-small-cell lung cancer (NSCLC), coupled with the increasing number of clinically available signal transduction pathway inhibitors targeting these driver mutations, offers a tremendous opportunity to enhance patient outcomes. Despite these molecular advances, advanced-stage NSCLC remains largely incurable due to therapeutic resistance. In this Review, we discuss alterations in the targeted oncogene ('on-target' resistance) and in other downstream and parallel pathways ('off-target' resistance) leading to resistance to targeted therapies in NSCLC, and we provide an overview of the current understanding of the bidirectional interactions with the tumour microenvironment that promote therapeutic resistance. We highlight common mechanistic themes underpinning resistance to targeted therapies that are shared by NSCLC subtypes, including those with oncogenic alterations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1), serine/threonine-protein kinase b-raf (BRAF) and other less established oncoproteins. Finally, we discuss how understanding these themes can inform therapeutic strategies, including combination therapy approaches, and overcome the challenge of tumour heterogeneity.
Collapse
Affiliation(s)
- Julia Rotow
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
- Cellular and Molecular Pharmacology, University of California San Francisco, Box 2140, San Francisco, California 94158, USA
| |
Collapse
|
28
|
Takita J. The role of anaplastic lymphoma kinase in pediatric cancers. Cancer Sci 2017; 108:1913-1920. [PMID: 28756644 PMCID: PMC5623752 DOI: 10.1111/cas.13333] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene was initially identified as a fusion partner of the nucleophosmin gene in anaplastic large-cell lymphoma with t(2;5)(p23;q35) translocation, and then described with different genetic abnormalities in a number of tumors. Although ALK is known to be involved in the pathogenesis of neuroblastoma through activating mutations or gene amplification, its role in the pathogenesis of other pediatric cancers is still elusive. In addition to neuroblastoma, the high-grade amplification of ALK has been described in a subset of rhabdomyosarcoma cases. Normal ALK protein expression is restricted to the nervous systems of adult mammals, but the aberrant expression of ALK has been observed in a variety of pediatric cancers, including glioma and Ewing sarcoma. The discovery of oncogenic activation of ALK in neuroblastoma suggests that this cancer could be potentially treated with an ALK inhibitor, as could other cancers, such as non-small-cell lung cancer and anaplastic large-cell lymphoma. However, cellular responses to mutant ALK are complex when compared to rearranged ALK, and treatment remains a challenge. This review focuses on the biology of ALK in pediatric cancers and possible therapeutic strategies for ALK-associated tumors.
Collapse
Affiliation(s)
- Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
van der Krogt JA, Bempt MV, Ferreiro JF, Mentens N, Jacobs K, Pluys U, Doms K, Geerdens E, Uyttebroeck A, Pierre P, Michaux L, Devos T, Vandenberghe P, Tousseyn T, Cools J, Wlodarska I. Anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with the variant RNF213-, ATIC- and TPM3-ALK fusions is characterized by copy number gain of the rearranged ALK gene. Haematologica 2017; 102:1605-1616. [PMID: 28659337 PMCID: PMC5685221 DOI: 10.3324/haematol.2016.146571] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma is characterized by 2p23/ALK aberrations, including the classic t(2;5)(p23;q35)/NPM1-ALK rearrangement present in ~80% of cases and several variant t(2p23/ALK) occurring in the remaining cases. The ALK fusion partners play a key role in the constitutive activation of the chimeric protein and its subcellular localization. Using various molecular technologies, we have characterized ALK fusions in eight recently diagnosed anaplastic large cell lymphoma cases with cytoplasmic-only ALK expression. The identified partner genes included EEF1G (one case), RNF213/ALO17 (one case), ATIC (four cases) and TPM3 (two cases). Notably, all cases showed copy number gain of the rearranged ALK gene, which is never observed in NPM1-ALK-positive lymphomas. We hypothesized that this could be due to lower expression levels and/or lower oncogenic potential of the variant ALK fusions. Indeed, all partner genes, except EEF1G, showed lower expression in normal and malignant T cells, in comparison with NPM1. In addition, we investigated the transformation potential of endogenous Npm1-Alk and Atic-Alk fusions generated by clustered regularly interspaced short palindromic repeats/Cas9 genome editing in Ba/F3 cells. We found that Npm1-Alk has a stronger transformation potential than Atic-Alk, and we observed a subclonal gain of Atic-Alk after a longer culture period, which was not observed for Npm1-Alk. Taken together, our data illustrate that lymphomas driven by the variant ATIC-ALK fusion (and likely by RNF213-ALK and TPM3-ALK), but not the classic NPM1-ALK, require an increased dosage of the ALK hybrid gene to compensate for the relatively low and insufficient expression and signaling properties of the chimeric gene.
Collapse
Affiliation(s)
| | - Marlies Vanden Bempt
- Center for Human Genetics, KU Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | | | - Nicole Mentens
- Center for Human Genetics, KU Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | - Kris Jacobs
- Center for Human Genetics, KU Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | | | | | - Ellen Geerdens
- Center for Human Genetics, KU Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | | | - Pascal Pierre
- Department of Hematology, Cliniques Sud Luxembourg, Arlon, Belgium
| | | | - Timothy Devos
- Department of Hematology, University Hospitals Leuven, Belgium
| | - Peter Vandenberghe
- Center for Human Genetics, KU Leuven, Belgium.,Department of Hematology, University Hospitals Leuven, Belgium
| | - Thomas Tousseyn
- Translational Cell and Tissue Research KU Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Belgium
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | | |
Collapse
|
30
|
Palmirotta R, Quaresmini D, Lovero D, Silvestris F. ALK gene alterations in cancer: biological aspects and therapeutic implications. Pharmacogenomics 2017; 18:277-292. [PMID: 28112990 DOI: 10.2217/pgs-2016-0166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ALK was first reported in 1994 as a translocation in anaplastic large cell lymphoma and then described with different abnormalities in a number of tumors. Recently, a shortly accumulated biomedical research clarified the numerous biological processes underlying its ability to support cancer development, growth and progression. Advent of precision medicine has finally provided unexpected advances, leading to the development of ALK-targeting inhibitors with superior efficacy as compared with standard chemotherapy regimens, as well as the identification of resistance mechanisms and the creation of ‘next-generation’ treatments. This review summarizes the current understanding of ALK-driven cancers from the oncogenesis and mutation frequency by The Cancer Genome Atlas database through the diagnostic approach, to an updated portrait of available tyrosine kinase inhibitors, considering their effectiveness in cancer treatment, the molecular reasons of therapeutic failure, and the actual and future ways to overcome resistances.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Department of Biomedical Sciences & Human Oncology, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Davide Quaresmini
- Department of Biomedical Sciences & Human Oncology, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences & Human Oncology, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences & Human Oncology, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
31
|
Lin JJ, Riely GJ, Shaw AT. Targeting ALK: Precision Medicine Takes on Drug Resistance. Cancer Discov 2017; 7:137-155. [PMID: 28122866 PMCID: PMC5296241 DOI: 10.1158/2159-8290.cd-16-1123] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, including non-small cell lung cancer. However, the clinical benefit of targeting ALK using tyrosine kinase inhibitors (TKI) is almost universally limited by the emergence of drug resistance. Diverse mechanisms of resistance to ALK TKIs have now been discovered, and these basic mechanisms are informing the development of novel therapeutic strategies to overcome resistance in the clinic. In this review, we summarize the current successes and challenges of targeting ALK. SIGNIFICANCE Effective long-term treatment of ALK-rearranged cancers requires a mechanistic understanding of resistance to ALK TKIs so that rational therapies can be selected to combat resistance. This review underscores the importance of serial biopsies in capturing the dynamic therapeutic vulnerabilities within a patient's tumor and offers a perspective into the complexity of on-target and off-target ALK TKI resistance mechanisms. Therapeutic strategies that can successfully overcome, and potentially prevent, these resistance mechanisms will have the greatest impact on patient outcome. Cancer Discov; 7(2); 137-55. ©2017 AACR.
Collapse
Affiliation(s)
- Jessica J Lin
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Gregory J Riely
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.
| |
Collapse
|
32
|
Holla VR, Elamin YY, Bailey AM, Johnson AM, Litzenburger BC, Khotskaya YB, Sanchez NS, Zeng J, Shufean MA, Shaw KR, Mendelsohn J, Mills GB, Meric-Bernstam F, Simon GR. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud 2017; 3:a001115. [PMID: 28050598 PMCID: PMC5171696 DOI: 10.1101/mcs.a001115] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent ALK alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, ALK copy-number gains and activating ALK mutations have been described. Dramatic and often prolonged responses are seen in patients with ALK alterations when treated with ALK inhibitors. Three of these—crizotinib, ceritinib, and alectinib—are now FDA approved for the treatment of metastatic NSCLC positive for ALK fusions. However, the emergence of resistance is universal. Newer ALK inhibitors and other targeting strategies are being developed to counteract the newly emergent mechanism(s) of ALK inhibitor resistance. This review outlines the recent developments in our understanding and treatment of tumors with ALK alterations.
Collapse
Affiliation(s)
- Vijaykumar R Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ann Marie Bailey
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amber M Johnson
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Beate C Litzenburger
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yekaterina B Khotskaya
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nora S Sanchez
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jia Zeng
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Md Abu Shufean
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kenna R Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - John Mendelsohn
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gordon B Mills
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Funda Meric-Bernstam
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - George R Simon
- Department of Thoracic/Head and Neck, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
33
|
Nelson KN, Peiris MN, Meyer AN, Siari A, Donoghue DJ. Receptor Tyrosine Kinases: Translocation Partners in Hematopoietic Disorders. Trends Mol Med 2016; 23:59-79. [PMID: 27988109 DOI: 10.1016/j.molmed.2016.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 02/07/2023]
Abstract
Receptor tyrosine kinases (RTKs) activate various signaling pathways and regulate cellular proliferation, survival, migration, and angiogenesis. Malignant neoplasms often circumvent or subjugate these pathways by promoting RTK overactivation through mutation or chromosomal translocation. RTK translocations create a fusion protein containing a dimerizing partner fused to an RTK kinase domain, resulting in constitutive kinase domain activation, altered RTK cellular localization, upregulation of downstream signaling, and novel pathway activation. While RTK translocations in hematological malignancies are relatively rare, clinical evidence suggests that patients with these genetic abnormalities benefit from RTK-targeted inhibitors. Here, we present a timely review of an exciting field by examining RTK chromosomal translocations in hematological cancers, such as Anaplastic Lymphoma Kinase (ALK), Fibroblast Growth Factor Receptor (FGFR), Platelet-Derived Growth Factor Receptor (PDGFR), REarranged during Transfection (RET), Colony Stimulating Factor 1 Receptor (CSF1R), and Neurotrophic Tyrosine Kinase Receptor Type 3 (NTRK3) fusions, and discuss current therapeutic options.
Collapse
Affiliation(s)
- Katelyn N Nelson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Asma Siari
- Université Joseph Fourier Grenoble, Grenoble, France
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
34
|
Vaysse C, Philippe C, Martineau Y, Quelen C, Hieblot C, Renaud C, Nicaise Y, Desquesnes A, Pannese M, Filleron T, Escourrou G, Lawson M, Rintoul RC, Delisle MB, Pyronnet S, Brousset P, Prats H, Touriol C. Key contribution of eIF4H-mediated translational control in tumor promotion. Oncotarget 2016; 6:39924-40. [PMID: 26498689 PMCID: PMC4741870 DOI: 10.18632/oncotarget.5442] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/03/2015] [Indexed: 02/06/2023] Open
Abstract
Dysregulated expression of translation initiation factors has been associated with carcinogenesis, but underlying mechanisms remains to be fully understood. Here we show that eIF4H (eukaryotic translation initiation factor 4H), an activator of the RNA helicase eIF4A, is overexpressed in lung carcinomas and predictive of response to chemotherapy. In lung cancer cells, depletion of eIF4H enhances sensitization to chemotherapy, decreases cell migration and inhibits tumor growth in vivo, in association with reduced translation of mRNA encoding cell-proliferation (c-Myc, cyclin D1) angiogenic (FGF-2) and anti-apoptotic factors (CIAP-1, BCL-xL). Conversely, each isoform of eIF4H acts as an oncogene in NIH3T3 cells by stimulating transformation, invasion, tumor growth and resistance to drug-induced apoptosis together with increased translation of IRES-containing or structured 5′UTR mRNAs. These results demonstrate that eIF4H plays a crucial role in translational control and can promote cellular transformation by preferentially regulating the translation of potent growth and survival factor mRNAs, indicating that eIF4H is a promising new molecular target for cancer therapy.
Collapse
Affiliation(s)
- Charlotte Vaysse
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Céline Philippe
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Yvan Martineau
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Cathy Quelen
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Corinne Hieblot
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Claire Renaud
- Department of Thoracic Surgery, Rangueil-Larrey Hospital, Toulouse, France
| | - Yvan Nicaise
- Department of Pathology, CHU Rangueil, Toulouse, France
| | | | | | - Thomas Filleron
- Clinical Trial Office, Cellule Biostatistique Institut Universitaire du Cancer Toulouse, Toulouse, France
| | - Ghislaine Escourrou
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Department of Pathology, CHU Rangueil, Toulouse, France
| | - Malcolm Lawson
- Department of Respiratory Medicine, Broomfield Hospital, Chelmsford, Essex, UK
| | - Robert C Rintoul
- Department of Thoracic Oncology, Papworth Hospital, Cambridge, UK
| | - Marie Bernadette Delisle
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Department of Pathology, CHU Rangueil, Toulouse, France
| | - Stéphane Pyronnet
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Pierre Brousset
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer, Toulouse, France
| | - Hervé Prats
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Christian Touriol
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| |
Collapse
|
35
|
ALK-positive large B-cell lymphoma: identification of EML4-ALK and a review of the literature focusing on the ALK immunohistochemical staining pattern. Int J Hematol 2016; 103:399-408. [DOI: 10.1007/s12185-016-1934-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 12/27/2022]
|
36
|
Ybe JA. Novel clathrin activity: developments in health and disease. Biomol Concepts 2015; 5:175-82. [PMID: 25372751 DOI: 10.1515/bmc-2013-0040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
Clathrin self-assembles into a coat around vesicles filled with cargo such as nutrients, hormones, and proteins destined for degradation. Recent developments indicate clathrin is not a specialist, but is involved in different processes relevant to health and disease. Clathrin is used to strengthen centrosomes and mitotic spindles essential for chromosome segregation in cell division. In Wnt signaling, clathrin is a component of signalosomes on the plasma membrane needed to produce functional Wnt receptors. In glucose metabolism, a muscle-specific isoform, CHC22 clathrin, is key to the formation of storage compartments for GLUT4 receptor, and CHC22 dysfunction has been tied to type 2 diabetes. The activity of clathrin to self-assemble and to work with huntingtin-interacting proteins to organize actin is exploited by Listeria and enteropathic Escherichia coli in their infection pathways. Finally, there is an important connection between clathrin and human malignancies. Clathrin is argued to help transactivate tumor suppressor p53 that controls specific genes in DNA repair and apoptosis. However, this is debatable because trimeric clathrin must be made monomeric. To get insight on how the clathrin structure could be converted, the crystal structure of the trimerization domain is used in the development of the detrimerization switch hypothesis. This novel hypothesis will be relevant if connections continue to be found between CHC17 and p53 anti-cancer activity in the nucleus.
Collapse
|
37
|
Wehkamp U, Oschlies I, Nagel I, Brasch J, Kneba M, Günther A, Klapper W, Weichenthal M. ALK-positive primary cutaneous T-cell-lymphoma (CTCL) with unusual clinical presentation and aggressive course. J Cutan Pathol 2015; 42:870-7. [DOI: 10.1111/cup.12547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/17/2014] [Accepted: 01/11/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Ulrike Wehkamp
- Department of Dermatology; University of Kiel; Kiel Germany
| | - Ilske Oschlies
- Department of Pathology, Section for Hematopathology; University of Kiel; Kiel Germany
| | - Inga Nagel
- Department of Human Genetics; University of Kiel; Kiel Germany
| | - Jochen Brasch
- Department of Dermatology; University of Kiel; Kiel Germany
| | - Michael Kneba
- Medical Department II; University of Kiel; Kiel Germany
| | - Andreas Günther
- Division of Stem Cell Transplantation and Immunotherapy; University of Kiel; Kiel Germany
| | - Wolfram Klapper
- Department of Pathology, Section for Hematopathology; University of Kiel; Kiel Germany
| | | |
Collapse
|
38
|
Aubry A, Galiacy S, Ceccato L, Marchand C, Tricoire C, Lopez F, Bremner R, Racaud-Sultan C, Monsarrat B, Malecaze F, Allouche M. Peptides derived from the dependence receptor ALK are proapoptotic for ALK-positive tumors. Cell Death Dis 2015; 6:e1736. [PMID: 25950466 PMCID: PMC4669685 DOI: 10.1038/cddis.2015.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 01/03/2023]
Abstract
ALK is a receptor tyrosine kinase with an oncogenic role in various types of human malignancies. Despite constitutive activation of the kinase through gene alterations, such as chromosomal translocation, gene amplification or mutation, treatments with kinase inhibitors invariably lead to the development of resistance. Aiming to develop new tools for ALK targeting, we took advantage of our previous demonstration identifying ALK as a dependence receptor, implying that in the absence of ligand the kinase-inactive ALK triggers or enhances apoptosis. Here, we synthesized peptides mimicking the proapoptotic domain of ALK and investigated their biological effects on tumor cells. We found that an ALK-derived peptide of 36 amino acids (P36) was cytotoxic for ALK-positive anaplastic large-cell lymphoma and neuroblastoma cell lines. In contrast, ALK-negative tumor cells and normal peripheral blood mononuclear cells were insensitive to P36. The cytotoxic effect was due to caspase-dependent apoptosis and required N-myristoylation of the peptide. Two P36-derived shorter peptides as well as a cyclic peptide also induced apoptosis. Surface plasmon resonance and mass spectrometry analysis of P36-interacting proteins from two responsive cell lines, Cost lymphoma and SH-SY5Y neuroblastoma, uncovered partners that could involve p53-dependent signaling and pre-mRNA splicing. Furthermore, siRNA-mediated knockdown of p53 rescued these cells from P36-induced apoptosis. Finally, we observed that a treatment combining P36 with the ALK-specific inhibitor crizotinib resulted in additive cytotoxicity. Therefore, ALK-derived peptides could represent a novel targeted therapy for ALK-positive tumors.
Collapse
Affiliation(s)
- A Aubry
- 1] Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France [2] Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada [3] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - S Galiacy
- 1] Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France [2] CHU Purpan, Toulouse F-31300, France
| | - L Ceccato
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| | - C Marchand
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| | - C Tricoire
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| | - F Lopez
- INSERM, UMR1037, CRCT, Toulouse F-31000, France
| | - R Bremner
- 1] Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5G 1X5, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - C Racaud-Sultan
- 1] INSERM, UMR 1043, CPTP, Toulouse F-31300, France [2] CNRS, UMR 5282, CPTP, Toulouse F-31300, France
| | - B Monsarrat
- CNRS, UMR 5089, IPBS, Toulouse F-31077, France
| | - F Malecaze
- 1] Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France [2] CHU Purpan, Toulouse F-31300, France
| | - M Allouche
- Université de Toulouse, UPS, EA4555, GR2DE, CPTP, Toulouse F-31300, France
| |
Collapse
|
39
|
Amano Y, Ishikawa R, Sakatani T, Ichinose J, Sunohara M, Watanabe K, Kage H, Nakajima J, Nagase T, Ohishi N, Takai D. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3. Biochem Biophys Res Commun 2015; 457:457-60. [DOI: 10.1016/j.bbrc.2015.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/06/2015] [Indexed: 01/17/2023]
|
40
|
Fawal M, Espinos E, Jean-Jean O, Morello D. Looking for the functions of RNA granules in ALK-transformed cells. BIOARCHITECTURE 2014; 1:91-95. [PMID: 21866270 DOI: 10.4161/bioa.1.2.16269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/02/2011] [Accepted: 05/02/2011] [Indexed: 01/02/2023]
Abstract
Numerous cytoplasmic foci containing mRNA s and their associated proteins have been described in mammalian somatic and germ cells. The best studied examples are given by the processing bodies (PBs) that are present in all cell types, and the stress granules (SGs) that are transiently formed following stress stimuli. Those foci are non-membranous dynamic structures that, through the continuous exchange of their content with the cytoplasm, are believed to control mRNA storage, translation and degradation. However, due in part to the fact that their composition has not been fully characterized, their relevance to mRNA regulation and cell survival remains a matter of debate. In a recent study, we described new cytoplasmic foci that form specifically in transformed cells expressing the constitutively active ALK tyrosine kinase. Those granules, further called AGs for ALK granules, contain polyadenylated mRNAs but are distinct from PBs and SGs. Using a method based on sucrose density gradient fractionation, we further purified AGs and identified their mRNA content. We discuss our findings in relation to other granules containing untranslated mRNAs and speculate on the possible contribution of AGs to the oncogenic properties of ALK-expressing cells.
Collapse
Affiliation(s)
- Mohamad Fawal
- Université Toulouse 3; Centre de Biologie du Développement; UMR 5547 CNRS/UPS; Paris, France
| | | | | | | |
Collapse
|
41
|
Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A 2014; 111:4233-8. [PMID: 24613930 DOI: 10.1073/pnas.1321937111] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thyroid cancer is a common endocrine malignancy that encompasses well-differentiated as well as dedifferentiated cancer types. The latter tumors have high mortality and lack effective therapies. Using a paired-end RNA-sequencing approach, we report the discovery of rearrangements involving the anaplastic lymphoma kinase (ALK) gene in thyroid cancer. The most common of these involves a fusion between ALK and the striatin (STRN) gene, which is the result of a complex rearrangement involving the short arm of chromosome 2. STRN-ALK leads to constitutive activation of ALK kinase via dimerization mediated by the coiled-coil domain of STRN and to a kinase-dependent, thyroid-stimulating hormone-independent proliferation of thyroid cells. Moreover, expression of STRN-ALK transforms cells in vitro and induces tumor formation in nude mice. The kinase activity of STRN-ALK and the ALK-induced cell growth can be blocked by the ALK inhibitors crizotinib and TAE684. In addition to well-differentiated papillary cancer, STRN-ALK was found with a higher prevalence in poorly differentiated and anaplastic thyroid cancers, and it did not overlap with other known driver mutations in these tumors. Our data demonstrate that STRN-ALK fusion occurs in a subset of patients with highly aggressive types of thyroid cancer and provide initial evidence suggesting that it may represent a therapeutic target for these patients.
Collapse
|
42
|
ALK: Anaplastic lymphoma kinase. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
43
|
Tokuda K, Eguchi-Ishimae M, Yagi C, Kawabe M, Moritani K, Niiya T, Tauchi H, Ishii E, Eguchi M. CLTC-ALK fusion as a primary event in congenital blastic plasmacytoid dendritic cell neoplasm. Genes Chromosomes Cancer 2013; 53:78-89. [PMID: 24142740 DOI: 10.1002/gcc.22119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/26/2013] [Indexed: 01/28/2023] Open
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a subtype of acute myeloid leukemia, affecting mainly the elderly. It is thought to be derived from plasmacytoid dendritic cell precursors, which frequently present as cutaneous lesions. We have made a detailed analysis of an infant with BPDCN, who manifested with hemophagocytic lymphohistiocytosis. The peripheral blood leukocytes revealed the t(2;17;8)(p23;q23;p23) translocation and a CLTC-ALK fusion gene, which have never been reported in BPDCN or in any myeloid malignancies thus far. Neonatal blood spots on the patient's Guthrie card were analyzed for the presence of the CLTC-ALK fusion gene, identifying the in utero origin of the leukemic cell. Although the leukemic cells were positive for CD4, CD56, CD123, and CD303, indicating a plasmacytoid dendritic cell phenotype, detailed analysis of the lineage distribution of CLTC-ALK revealed that part of monocytes, neutrophils, and T cells possessed the fusion gene and were involved in the leukemic clone. These results indicated that leukemic cells with CLTC-ALK originated in a multipotent hematopoietic progenitor in utero. This is the first report of the CLTC-ALK fusion gene being associated with a myeloid malignancy, which may give us an important clue to the origin of this rare neoplasm.
Collapse
Affiliation(s)
- Kiriko Tokuda
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
ALK as a paradigm of oncogenic promiscuity: different mechanisms of activation and different fusion partners drive tumors of different lineages. Cancer Genet 2013; 206:357-73. [PMID: 24091028 DOI: 10.1016/j.cancergen.2013.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 12/23/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase protein implicated in a variety of hematological malignancies and solid tumors. Since the identification of the ALK gene in 1994 as the target of the t(2;5) chromosomal translocation in anaplastic large cell lymphoma, ALK has been proven a remarkably promiscuous oncogene. ALK contributes to the development of a notable assortment of tumor types from different lineages, including hematolymphoid, mesenchymal, epithelial and neural tumors, through a variety of genetic mechanisms: gene fusions, activating point mutations, and gene amplification. Recent developments led to significant diagnostic and therapeutic advances, including efficient diagnostic tests and ALK-targeting agents readily available in the clinical setting. This review addresses some therapeutic considerations of ALK-targeted agents and the biologic implications of ALK oncogenic promiscuity, but the main points discussed are: 1) the variety of mechanisms that result in activation of the ALK oncogene, with emphasis on the promiscuous partnerships demonstrated in chromosomal rearrangements; 2) the diversity of tumor types of different lineages in which ALK has been implicated as a pathogenic driver; and 3) the different diagnostic tests available to identify ALK-driven tumors, and their respective indications.
Collapse
|
45
|
Abstract
The burgeoning field of anaplastic lymphoma kinase (ALK) in cancer encompasses many cancer types, from very rare cancers to the more prevalent non-small-cell lung cancer (NSCLC). The common activation of ALK has led to the use of the ALK tyrosine kinase inhibitor (TKI) crizotinib in a range of patient populations and to the rapid development of second-generation drugs targeting ALK. In this Review, we discuss our current understanding of ALK function in human cancer and the implications for tumour treatment.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Antineoplastic Agents/therapeutic use
- Caenorhabditis elegans Proteins/physiology
- Cell Transformation, Neoplastic/genetics
- Clinical Trials as Topic
- Crizotinib
- Drosophila Proteins/physiology
- Drug Resistance, Neoplasm
- Enzyme Induction
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large-Cell, Anaplastic/enzymology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Mice
- Models, Biological
- Models, Molecular
- Mutation
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms/drug therapy
- Neoplasms/enzymology
- Neoplasms/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Protein Conformation
- Protein-Tyrosine Kinases/physiology
- Pyrazoles/therapeutic use
- Pyridines/therapeutic use
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Signal Transduction
- Translocation, Genetic
- Zebrafish Proteins/physiology
Collapse
Affiliation(s)
- Bengt Hallberg
- Department of Molecular Biology, Building 6L, Umeå University, Umeå S-90187, Sweden
| | | |
Collapse
|
46
|
d’Amore ES, Visco C, Menin A, Famengo B, Bonvini P, Lazzari E. STAT3 Pathway Is Activated in ALK-positive Large B-cell Lymphoma Carrying SQSTM1-ALK Rearrangement and Provides a Possible Therapeutic Target. Am J Surg Pathol 2013; 37:780-6. [DOI: 10.1097/pas.0b013e318287791f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Takagi D, Tatsumi Y, Yokochi T, Takatori A, Ohira M, Kamijo T, Kondo S, Fujii Y, Nakagawara A. Novel adaptor protein Shf interacts with ALK receptor and negatively regulates its downstream signals in neuroblastoma. Cancer Sci 2013; 104:563-72. [PMID: 23360421 DOI: 10.1111/cas.12115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/17/2013] [Accepted: 01/22/2012] [Indexed: 12/14/2022] Open
Abstract
Our neuroblastoma cDNA project previously identified Src homology 2 domain containing F (Shf) as one of the genes expressed at high levels in favorable neuroblastoma. Shf is an adaptor protein containing four putative tyrosine phosphorylation sites and an SH2 domain. In this study, we found that Shf interacted with anaplastic lymphoma kinase (ALK), an oncogenic receptor tyrosine kinase in neuroblastoma. Real-time PCR analysis showed that Shf mRNA is highly expressed in non-metastatic neuroblastomas compared to metastatic tumor samples (P < 0.030, n = 106). Interestingly, patients showing high ALK and low Shf mRNA expressions showed poor prognosis, whereas low ALK and high Shf expressions were related to better prognosis (P < 0.023, n = 38). Overexpression of ALK and siRNA-mediated knockdown of Shf yielded similar results, such as an increase in cellular growth and phosphorylation of ALK, in addition to Erk1/2 and signal transducer and activator of transcription 3 (STAT3) that are downstream signals of the ALK-initiated phospho-transduction pathway. Knockdown of Shf also increased the cellular mobility and invasive capability of neuroblastoma cells. These results suggest that Shf interacts with ALK and negatively regulates the ALK-initiated signal transduction pathway in neuroblastoma. We thus propose that Shf inhibits phospho-transduction signals mediated by ALK, which is one of the major key players on neuroblastoma development, resulting in better prognosis of the tumor.
Collapse
Affiliation(s)
- Daisuke Takagi
- Division of Biochemistry and Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Kruczynski A, Delsol G, Laurent C, Brousset P, Lamant L. Anaplastic lymphoma kinase as a therapeutic target. Expert Opin Ther Targets 2012; 16:1127-38. [PMID: 22998583 DOI: 10.1517/14728222.2012.719498] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK), a tyrosine kinase receptor, has been initially identified through its involvement in chromosomal translocations associated with anaplastic large cell lymphoma. However, recent evidence that aberrant ALK activity is also involved in an expanding number of tumor types, such as other lymphomas, inflammatory myofibroblastic tumor, neuroblastomas and some carcinomas, including non-small cell lung carcinomas, is boosting research progress in ALK-targeted therapies. AREAS COVERED The first aim of this review is to describe current understandings about the ALK tyrosine kinase and its implication in the oncogenesis of human cancers as a fusion protein or through mutations. The second goal is to discuss its interest as a therapeutic target and to provide a review of the literature regarding ALK inhibitors. Mechanisms of acquired resistance are also reviewed. EXPERT OPINION Several ALK inhibitors have recently been developed, offering new treatment options in tumors driven by abnormal ALK signaling. However, as observed with other tyrosine kinase inhibitors, resistance has emerged in patients treated with these agents. The complexity of mechanisms of acquired resistance recently described suggests that other therapeutic options, including combination of ALK and other kinases targeted drugs, will be required in the future.
Collapse
Affiliation(s)
- Anna Kruczynski
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, Cedex 4, France
| | | | | | | | | |
Collapse
|
50
|
NPM-ALK: The Prototypic Member of a Family of Oncogenic Fusion Tyrosine Kinases. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:123253. [PMID: 22852078 PMCID: PMC3407651 DOI: 10.1155/2012/123253] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/28/2012] [Indexed: 02/07/2023]
Abstract
Anaplastic lymphoma kinase (ALK) was first identified in 1994 with the discovery that the gene encoding for this kinase was involved in the t(2;5)(p23;q35) chromosomal translocation observed in a subset of anaplastic large cell lymphoma (ALCL). The NPM-ALK fusion protein generated by this translocation is a constitutively active tyrosine kinase, and much research has focused on characterizing the signalling pathways and cellular activities this oncoprotein regulates in ALCL. We now know about the existence of nearly 20 distinct ALK translocation partners, and the fusion proteins resulting from these translocations play a critical role in the pathogenesis of a variety of cancers including subsets of large B-cell lymphomas, nonsmall cell lung carcinomas, and inflammatory myofibroblastic tumours. Moreover, the inhibition of ALK has been shown to be an effective treatment strategy in some of these malignancies. In this paper we will highlight malignancies where ALK translocations have been identified and discuss why ALK fusion proteins are constitutively active tyrosine kinases. Finally, using ALCL as an example, we will examine three key signalling pathways activated by NPM-ALK that contribute to proliferation and survival in ALCL.
Collapse
|