1
|
Dolnikova A, Kazantsev D, Klanova M, Pokorna E, Sovilj D, Kelemen CD, Tuskova L, Hoferkova E, Mraz M, Helman K, Curik N, Machova Polakova K, Andera L, Trneny M, Klener P. Blockage of BCL-XL overcomes venetoclax resistance across BCL2+ lymphoid malignancies irrespective of BIM status. Blood Adv 2024; 8:3532-3543. [PMID: 38713893 PMCID: PMC11261020 DOI: 10.1182/bloodadvances.2024012906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/09/2024] Open
Abstract
ABSTRACT Venetoclax (VEN), a B-cell lymphoma 2 (BCL2) inhibitor, has a promising single-agent activity in mantle cell lymphoma (MCL), acute lymphoblastic leukemia (ALL), and large BCLs, but remissions were generally short, which call for rational drug combinations. Using a panel of 21 lymphoma and leukemia cell lines and 28 primary samples, we demonstrated strong synergy between VEN and A1155463, a BCL-XL inhibitor. Immunoprecipitation experiments and studies on clones with knockout of expression or transgenic expression of BCL-XL confirmed its key role in mediating inherent and acquired VEN resistance. Of note, the VEN and A1155463 combination was synthetically lethal even in the cell lines with lack of expression of the proapoptotic BCL2L11/BIM and in the derived clones with genetic knockout of BCL2L11/BIM. This is clinically important because BCL2L11/BIM deletion, downregulation, or sequestration results in VEN resistance. Immunoprecipitation experiments further suggested that the proapoptotic effector BAX belongs to principal mediators of the VEN and A1155463 mode of action in the BIM-deficient cells. Lastly, the efficacy of the new proapoptotic combination was confirmed in vivo on a panel of 9 patient-derived lymphoma xenografts models including MCL (n = 3), B-ALL (n = 2), T-ALL (n = 1), and diffuse large BCL (n = 3). Because continuous inhibition of BCL-XL causes thrombocytopenia, we proposed and tested an interrupted 4 days on/3 days off treatment regimen, which retained the desired antitumor synergy with manageable platelet toxicity. The proposed VEN and A1155463 combination represents an innovative chemotherapy-free regimen with significant preclinical activity across diverse BCL2+ hematologic malignancies irrespective of the BCL2L11/BIM status.
Collapse
Affiliation(s)
- Alexandra Dolnikova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dmitry Kazantsev
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Magdalena Klanova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Eva Pokorna
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana Sovilj
- Institute of Biotechnology Czech Academy of Sciences/Biotechnology and Biomedicine Centre of the Czech Academy of Sciences and Charles University, Vestec, Czech Republic
| | - Cristina Daniela Kelemen
- Institute of Biotechnology Czech Academy of Sciences/Biotechnology and Biomedicine Centre of the Czech Academy of Sciences and Charles University, Vestec, Czech Republic
| | - Liliana Tuskova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Eva Hoferkova
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Helman
- Faculty of Informatics and Statistics, University of Economics, Prague, Czech Republic
| | - Nikola Curik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Ladislav Andera
- Institute of Biotechnology Czech Academy of Sciences/Biotechnology and Biomedicine Centre of the Czech Academy of Sciences and Charles University, Vestec, Czech Republic
- Institute of Molecular Genetics CAS, Prague, Czech Republic
| | - Marek Trneny
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| |
Collapse
|
2
|
Adhikary U, Paulo JA, Godes M, Roychoudhury S, Prew MS, Ben-Nun Y, Yu EW, Budhraja A, Opferman JT, Chowdhury D, Gygi SP, Walensky LD. Targeting MCL-1 triggers DNA damage and an anti-proliferative response independent from apoptosis induction. Cell Rep 2023; 42:113176. [PMID: 37773750 PMCID: PMC10787359 DOI: 10.1016/j.celrep.2023.113176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
MCL-1 is a high-priority target due to its dominant role in the pathogenesis and chemoresistance of cancer, yet clinical trials of MCL-1 inhibitors are revealing toxic side effects. MCL-1 biology is complex, extending beyond apoptotic regulation and confounded by its multiple isoforms, its domains of unresolved structure and function, and challenges in distinguishing noncanonical activities from the apoptotic response. We find that, in the presence or absence of an intact mitochondrial apoptotic pathway, genetic deletion or pharmacologic targeting of MCL-1 induces DNA damage and retards cell proliferation. Indeed, the cancer cell susceptibility profile of MCL-1 inhibitors better matches that of anti-proliferative than pro-apoptotic drugs, expanding their potential therapeutic applications, including synergistic combinations, but heightening therapeutic window concerns. Proteomic profiling provides a resource for mechanistic dissection and reveals the minichromosome maintenance DNA helicase as an interacting nuclear protein complex that links MCL-1 to the regulation of DNA integrity and cell-cycle progression.
Collapse
Affiliation(s)
- Utsarga Adhikary
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Godes
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Michelle S Prew
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yael Ben-Nun
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ellen W Yu
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amit Budhraja
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Maehara T, Yamazaki A, Kawabata-Iwakawa R, Fukuoka K, Akazawa A, Okura N, Nishiyama M, Nassiri F, Wang JZ, Zadeh G, Kikuta K, Oka H, Hirato J, Yokoo H, Nobusawa S. Hyperplasia of Arachnoid Trabecular Cells: A Hitherto Undescribed Lesion Observed in the Setting of Neurofibromatosis Type 1. Am J Surg Pathol 2023; 47:819-825. [PMID: 37226836 DOI: 10.1097/pas.0000000000002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Central nervous system manifestations, a variety of benign and malignant tumors as well as non-neoplastic abnormalities, are found in over 70% of neurofibromatosis type 1 (NF1) patients. Herein, we report hitherto undescribed space-occupying lesions in the setting of NF1. We aimed to clarify their characteristics, especially whether they represent neoplastic or non-neoplastic (hyperplastic) lesions. All 3 cases were preoperatively assessed as non-neoplastic; 2 and 1 cases were suspected to be arachnoid cysts and dilation of subarachnoid space, respectively. However, all lesions were revealed to be whitish jelly-like masses by operation, and the histology composed of spindle cells resembling arachnoid trabecular cells with moderate cellularity and cellular uniformity gave an impression that these lesions may be neoplastic. In contrast, electron microscopic analysis showed that the characteristics of these cells were compatible with those of normal arachnoid trabecular cells. Furthermore, whole-exome sequencing and array comparative genomic hybridization did not show any obvious alterations suggestive of their neoplastic nature. DNA methylation analysis demonstrated that these lesions were epigenetically distinct not only from meningiomas but also from normal healthy meninges. In conclusion, considering the clinicopathologic aspects of the present lesions and the results of the molecular analysis that failed to suggest their neoplastic nature, they may represent previously unrecognized rare hyperplasia of arachnoid trabecular cells, which may be associated with NF1.
Collapse
Affiliation(s)
- Tatsuro Maehara
- Department of Human Pathology, Gunma University Graduate School of Medicine
| | - Ayako Yamazaki
- Department of Human Pathology, Gunma University Graduate School of Medicine
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University
| | - Kohei Fukuoka
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama
| | - Ayumi Akazawa
- Department of Neurosurgery, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui
| | - Naoki Okura
- Department of Radiology, International University of Health and Welfare, School of Medicine, Narita
| | | | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, University of Toronto
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Justin Z Wang
- Division of Neurosurgery, Department of Surgery, University of Toronto
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Kenichiro Kikuta
- Department of Neurosurgery, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui
| | - Hidehiro Oka
- Department of Neurosurgery, Kitasato University Medical Center, Kitamoto
| | - Junko Hirato
- Department of Human Pathology, Gunma University Graduate School of Medicine
- Department of Pathology, Public Tomioka General Hospital, Tomioka, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine
| |
Collapse
|
4
|
Varshavsky A, Lewis K, Chen SJ. Deletions of DNA in cancer and their possible uses for therapy. Bioessays 2023; 45:e2300051. [PMID: 37166062 PMCID: PMC11102808 DOI: 10.1002/bies.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Despite advances in treatments over the last decades, a uniformly reliable and free of side effects therapy of human cancers remains to be achieved. During chromosome replication, a premature halt of two converging DNA replication forks would cause incomplete replication and a cytotoxic chromosome nondisjunction during mitosis. In contrast to normal cells, most cancer cells bear numerous DNA deletions. A homozygous deletion permanently marks a cell and its descendants. Here, we propose an approach to cancer therapy in which a pair of sequence-specific roadblocks is placed solely at two cancer-confined deletion sites that are located ahead of two converging replication forks. We describe this method, termed "replication blocks specific for deletions" (RBSD), and another deletions-based approach as well. RBSD can be expanded by placing pairs of replication roadblocks on several different chromosomes. The resulting simultaneous nondisjunctions of these chromosomes in cancer cells would further increase the cancer-specific toxicity of RBSD.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Shun-Jia Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
5
|
Al-Amer OM, Mir R, Hamadi A, Alasseiri MI, Altayar MA, AlZamzami W, Moawadh M, Alatawi S, Niaz HA, Oyouni AAA, Alzahrani OR, Alatwi HE, Albalawi AE, Alsharif KF, Albrakati A, Hawsawi YM. Antiapoptotic Gene Genotype and Allele Variations and the Risk of Lymphoma. Cancers (Basel) 2023; 15:cancers15041012. [PMID: 36831357 PMCID: PMC9954290 DOI: 10.3390/cancers15041012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The findings of earlier investigations of antiapoptotic gene genotypes and allele variants on lymphoma risk are ambiguous. This study aimed to examine the relationship between the mutation in the antiapoptotic genes and lymphoma risk among Saudi patients. METHODS This case-control study included 205 patients, 100 of whom had lymphoma (cases) and 105 who were healthy volunteers (controls). We used tetra amplification refractory mutation polymerase chain reaction (PCR) to identify antiapoptotic genes such as B-cell lymphoma-2 (BCL2-938 C > A), MCL1-rs9803935 T > G, and survivin (BIRC5-rs17882312 G > C and BIRC5-rs9904341 G > C). Allelic-specific PCR was used to identify alleles such as BIRC5-C, MCL1-G, and BIRC5-G. RESULTS The dominant inheritance model among cases showed that mutations in all four antiapoptotic genes were more likely to be associated with the risk of lymphoma by the odds of 2.0-, 1.98-, 3.90-, and 3.29-fold, respectively, compared to controls. Apart from the BCL-2-A allele, all three specified alleles were more likely to be associated with lymphoma by the odds of 2.04-, 1.65-, and 2.11-fold, respectively. CONCLUSION Unlike healthy individuals, lymphoma patients are more likely to have antiapoptotic gene genotypes and allele variants, apart from BCL-2-A alterations. In the future, these findings could be used to classify and identify patients at risk of lymphoma.
Collapse
Affiliation(s)
- Osama M. Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
- Correspondence:
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Mohammed I. Alasseiri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Malik A. Altayar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Waseem AlZamzami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Mamdoh Moawadh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Sael Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Hanan A. Niaz
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Othman R. Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hanan E. Alatwi
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aishah E. Albalawi
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif 21944, Saudi Arabia
| | - Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, MBC-J04, P.O. Box 40047, Jeddah 21499, Saudi Arabia
| |
Collapse
|
6
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22:45-64. [PMID: 34663943 DOI: 10.1038/s41568-021-00407-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Apoptosis is a form of programmed cell death that is regulated by the balance between prosurvival and proapoptotic BCL-2 protein family members. Evasion of apoptosis is a hallmark of cancer that arises when this balance is tipped in favour of survival. One form of anticancer therapeutic, termed 'BH3-mimetic drugs', has been developed to directly activate the apoptosis machinery in malignant cells. These drugs bind to and inhibit specific prosurvival BCL-2 family proteins, thereby mimicking their interaction with the BH3 domains of proapoptotic BCL-2 family proteins. The BCL-2-specific inhibitor venetoclax is approved by the US Food and Drug Administration and many regulatory authorities worldwide for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia. BH3-mimetic drugs targeting other BCL-2 prosurvival proteins have been tested in preclinical models of cancer, and drugs targeting MCL-1 or BCL-XL have advanced into phase I clinical trials for certain cancers. As with all therapeutics, efficacy and tolerability need to be carefully balanced to achieve a therapeutic window whereby there is significant anticancer activity with an acceptable safety profile. In this Review, we outline the current state of BH3-mimetic drugs targeting various prosurvival BCL-2 family proteins and discuss emerging data regarding primary and acquired resistance to these agents and approaches that may overcome this. We highlight issues that need to be addressed to further advance the clinical application of BH3-mimetic drugs, both alone and in combination with additional anticancer agents (for example, standard chemotherapeutic drugs or inhibitors of oncogenic kinases), for improved responses in patients with cancer.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Dai H, Meng XW, Ye K, Jia J, Kaufmann SH. Therapeutics targeting BCL2 family proteins. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:197-260. [DOI: 10.1016/b978-0-12-814208-0.00007-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Zheng J, Li G, Wang J, Wang S, Tang Q, Sheng H, Wu W, Wang S. Compound Kushen Injection Protects Skin From Radiation Injury via Regulating Bim. Front Pharmacol 2021; 12:753068. [PMID: 34955827 PMCID: PMC8696473 DOI: 10.3389/fphar.2021.753068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Radiation-induced skin injury is a major side-effect observed in cancer patients who received radiotherapy. Thus identifying new radioprotective drugs for prevention or treatment of post-irradiation skin injury should be prompted. A large number of clinical studies have confirmed that Compound Kushen injection (CKI) can enhance efficacy and reduce toxicity of radiotherapy. The aim of this study is to confirm the effect of CKI in alleviating radiotherapy injury in the skin and explore the exact mechanism. Methods: 60 patients who met the inclusion/exclusion criteria were allocated to treatment group (CKI before radiotherapy) or control group (normal saline before radiotherapy) randomly. MTT assay, flow cytometry, Western Blot, and transient transfection were performed to detect the cell viability, cell apoptosis and Bim expression after treatment with CKI or/and radiotherapy. Results: CKI had the effect of alleviating skin injury in cancer patients who received radiotherapy in clinic. CKI induced cancer cell apoptosis when combined with irradiation (IR), while it reversed the induction of cell apoptosis by IR in human skin fibroblast (HSF) cells. And Bim, as a tumor suppressor, was induced in cancer cells but had no change in HSF cells when treated with CKI. Moreover, the above effect could be attenuated when Bim was silenced by siRNA. Conclusion: We conclude that CKI represents a promising radio-protective agent with a potential differential beneficial effect on both cancer cells (inducing apoptosis) and HSF cells (providing radio-protection via inhibiting IR-induced apoptosis), via regulating Bim. Our study uncovers a novel mechanism by which CKI inhibits human cancer cell while protects skin from radiotherapy, indicating CKI might be a promising radio-protective drug. Clinical Trial Registration: Chinese Clinical Trial Registry (www.chictr.org.cn), identifier ChiCTR2100049164.
Collapse
Affiliation(s)
- Jianxiao Zheng
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gong Li
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juanjuan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shujing Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Tang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honghao Sheng
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
The ROR1 antibody-drug conjugate huXBR1-402-G5-PNU effectively targets ROR1+ leukemia. Blood Adv 2021; 5:3152-3162. [PMID: 34424320 DOI: 10.1182/bloodadvances.2020003276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/18/2021] [Indexed: 11/20/2022] Open
Abstract
Antibody-drug conjugates directed against tumor-specific targets have allowed targeted delivery of highly potent chemotherapy to malignant cells while sparing normal cells. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein with limited expression on normal adult tissues and is overexpressed on the surface of malignant cells in mantle cell lymphoma, acute lymphocytic leukemia with t(1;19)(q23;p13) translocation, and chronic lymphocytic leukemia. This differential expression makes ROR1 an attractive target for antibody-drug conjugate therapy, especially in malignancies such as mantle cell lymphoma and acute lymphocytic leukemia, in which systemic chemotherapy remains the gold standard. Several preclinical and phase 1 clinical studies have established the safety and effectiveness of anti-ROR1 monoclonal antibody-based therapies. Herein we describe a humanized, first-in-class anti-ROR1 antibody-drug conjugate, huXBR1-402-G5-PNU, which links a novel anti-ROR1 antibody (huXBR1-402) to a highly potent anthracycline derivative (PNU). We found that huXBR1-402-G5-PNU is cytotoxic to proliferating ROR1+ malignant cells in vitro and suppressed leukemia proliferation and extended survival in multiple models of mice engrafted with human ROR1+ leukemia. Lastly, we show that the B-cell lymphoma 2 (BCL2)-dependent cytotoxicity of huXBR1-402-G5-PNU can be leveraged by combined treatment strategies with the BCL2 inhibitor venetoclax. Together, our data present compelling preclinical evidence for the efficacy of huXBR1-402-G5-PNU in treating ROR1+ hematologic malignancies.
Collapse
|
11
|
Liu T, Lam V, Thieme E, Sun D, Wang X, Xu F, Wang L, Danilova OV, Xia Z, Tyner JW, Kurtz SE, Danilov AV. Pharmacologic Targeting of Mcl-1 Induces Mitochondrial Dysfunction and Apoptosis in B-Cell Lymphoma Cells in a TP53- and BAX-Dependent Manner. Clin Cancer Res 2021; 27:4910-4922. [PMID: 34233959 DOI: 10.1158/1078-0432.ccr-21-0464] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Bcl-2 has been effectively targeted in lymphoid malignancies. However, resistance is inevitable, and novel approaches to target mitochondrial apoptosis are necessary. AZD5991, a selective BH3-mimetic in clinical trials, inhibits Mcl-1 with high potency. EXPERIMENTAL DESIGN We explored the preclinical activity of AZD5991 in diffuse large B-cell lymphoma (DLBCL) and ibrutinib-resistant mantle cell lymphoma (MCL) cell lines, MCL patient samples, and mice bearing DLBCL and MCL xenografts using flow cytometry, immunoblotting, and Seahorse respirometry assay. Cas9 gene editing and ex vivo functional drug screen assays helped identify mechanisms of resistance to Mcl-1 inhibition. RESULTS Mcl-1 was expressed in DLBCL and MCL cell lines and primary tumors. Treatment with AZD5991 restricted growth of DLBCL cells independent of cell of origin and overcame ibrutinib resistance in MCL cells. Mcl-1 inhibition led to mitochondrial dysfunction as manifested by mitochondrial membrane depolarization, decreased mitochondrial mass, and induction of mitophagy. This was accompanied by impairment of oxidative phosphorylation. TP53 and BAX were essential for sensitivity to Mcl-1, and oxidative phosphorylation was implicated in resistance to Mcl-1 inhibition. Induction of prosurvival proteins (e.g., Bcl-xL) in stromal conditions that mimic the tumor microenvironment rendered protection of primary MCL cells from Mcl-1 inhibition, while BH3-mimetics targeting Bcl-2/xL sensitized lymphoid cells to AZD5991. Treatment with AZD5991 reduced tumor growth in murine lymphoma models and prolonged survival of MCL PDX mice. CONCLUSIONS Selective targeting Mcl-1 is a promising therapeutic approach in lymphoid malignancies. TP53 apoptotic network and metabolic reprogramming underlie susceptibility to Mcl-1 inhibition.
Collapse
Affiliation(s)
- Tingting Liu
- City of Hope National Medical Center, Duarte, California
| | - Vi Lam
- City of Hope National Medical Center, Duarte, California
| | - Elana Thieme
- City of Hope National Medical Center, Duarte, California
| | - Duanchen Sun
- Oregon Health and Science University, Portland, Oregon
| | - Xiaoguang Wang
- City of Hope National Medical Center, Duarte, California
| | - Fei Xu
- Oregon Health and Science University, Portland, Oregon
| | - Lili Wang
- City of Hope National Medical Center, Duarte, California
| | | | - Zheng Xia
- Oregon Health and Science University, Portland, Oregon
| | | | | | | |
Collapse
|
12
|
Hirose T, Kobayashi A, Nobusawa S, Jimbo N. Hybrid Schwannoma/Perineurioma: Morphologic Variations and Genetic Profiles. Appl Immunohistochem Mol Morphol 2021; 29:433-439. [PMID: 33337633 DOI: 10.1097/pai.0000000000000896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022]
Abstract
To clarify the morphologic spectrum and molecular profiles of hybrid schwannoma/perineurioma (HSP), we investigated 15 tumors clinicopathologically and cytogenetically. HSP was classified into 2 morphologic types: mixed cellular and combined tumor types. The former comprising of 14 tumors mostly arose in the subcutaneous tissue of the extremities and the trunk of middle-aged adults. They were well-circumscribed and composed of elongated spindle-shaped tumor cells arranged in storiform and whorl patterns. Immunostaining revealed a mixed cellular proliferation of S-100 protein-positive and SOX10-positive Schwann cells and epithelial membrane antigen-positive, claudin 1-positive, and GLUT1-positive perineurial cells. During follow-up, no tumors were found to have recurred in any cases. In contrast, in the combined tumor type arising in the mediastinum of a young male with neurofibromatosis type 2, the intraneural perineurioma-like areas, characterized by small whorl-like structures, were present in plexiform schwannoma-like areas. No recurrence was noted in the case. Molecular analyses (array comparative genomic hybridization and fluorescence in situ hybridization) revealed LOH 22q in 2 tumors of 5 studied: one each of the mixed cellular and combined tumor types. Although the same diagnostic term, HSP, has been applied to both mixed and combined types, they should be separated from each other.
Collapse
Affiliation(s)
- Takanori Hirose
- Departments of Pathology for Regional Communication
- Department of Diagnostic Pathology, Hyogo Cancer Center, Akashi
- Department of Diagnostic Pathology, Tokushima Prefectural Central Hospital, Tokushima
| | - Anna Kobayashi
- Department of Diagnostic Pathology, Hyogo Cancer Center, Akashi
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University School of Medicine, Maebashi, Japan
| | - Naoe Jimbo
- Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe
| |
Collapse
|
13
|
SPZ1 promotes deregulation of Bim to boost apoptosis resistance in colorectal cancer. Biosci Rep 2021; 134:155-167. [PMID: 31934723 DOI: 10.1042/cs20190865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancies in adults. Similar to other solid tumors, CRC cells show increased proliferation and suppressed apoptosis during the development and progression of the disease. Previous studies have shown that a novel tumor oncogene, spermatogenic basic helix-loop-helix transcription factor zip 1 (SPZ1), can promote proliferation. However, it is unclear whether SPZ1 plays a role in suppressing apoptosis, and the molecular mechanism behind SPZ1's suppression of apoptosis in CRC remains unclear. Here, we found that silencing endogenous SPZ1 inhibits cell growth and induces apoptosis, and overexpression of SPZ1 promotes cell growth. These findings were corroborated by in vitro and in vivo studies. Interestingly, SPZ1 overexpressing cells were resistant to 5-fluorouracil, a drug commonly used to treat cancer. Moreover, knocking down SPZ1 led to the activation of caspase through the deregulation of Bim by ERK1/2, we found that CRC tissues had significantly higher SPZ1 and lower Bim expression, and SPZ1HBimL were associated with advanced clinical stage of CRC. Collectively, our findings demonstrate that SPZ1 contributes to tumor progression by limiting apoptosis. SPZ1 reduces apoptosis by altering the stability of Bim, suggesting SPZ1 may serve as a biomarker and therapeutic target for CRC.
Collapse
|
14
|
Senichkin VV, Pervushin NV, Zuev AP, Zhivotovsky B, Kopeina GS. Targeting Bcl-2 Family Proteins: What, Where, When? BIOCHEMISTRY (MOSCOW) 2021; 85:1210-1226. [PMID: 33202206 DOI: 10.1134/s0006297920100090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins of the Bcl-2 family are known as regulators of apoptosis, one of the most studied forms of programmed cell death. The Bcl-2 protein family is represented by both pro- and antiapoptotic members. Antiapoptotic proteins are often exploited by tumor cells to avoid their death, thus playing an important role in carcinogenesis and in acquisition of resistance to various therapeutic agents. Therefore, antiapoptotic proteins represent attractive targets for cancer therapy. A detailed investigation of interactions between Bcl-2 family proteins resulted in the development of highly selective inhibitors of individual antiapoptotic members. These agents are currently being actively studied at the preclinical and clinical stages and represent a promising therapeutic strategy, which is highlighted by approval of venetoclax, a selective inhibitor of Bcl-2, for medical use. Meanwhile, inhibition of antiapoptotic Bcl-2 family proteins has significant therapeutic potential that is yet to be revealed. In the coming era of precision medicine, a detailed study of the mechanisms responsible for the sensitivity or resistance of tumor cells to various therapeutic agents, as well as the search for the most effective combinations, is of great importance. Here, we discuss mechanisms of how the Bcl-2 family proteins function, principles of their inhibition by small molecules, success of this approach in cancer therapy, and, eventually, biochemical features that can be exploited to improve the use of Bcl-2 family inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- V V Senichkin
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - N V Pervushin
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - A P Zuev
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - B Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.,Institute of Environmental Medicine, Karolinska Institute, Stockholm, 171 77, Sweden
| | - G S Kopeina
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.
| |
Collapse
|
15
|
Fairlie WD, Lee EF. Co-Operativity between MYC and BCL-2 Pro-Survival Proteins in Cancer. Int J Mol Sci 2021; 22:2841. [PMID: 33799592 PMCID: PMC8000576 DOI: 10.3390/ijms22062841] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
B-Cell Lymphoma 2 (BCL-2), c-MYC and related proteins are arguably amongst the most widely studied in all of biology. Every year there are thousands of papers reporting on different aspects of their biochemistry, cellular and physiological mechanisms and functions. This plethora of literature can be attributed to both proteins playing essential roles in the normal functioning of a cell, and by extension a whole organism, but also due to their central role in disease, most notably, cancer. Many cancers arise due to genetic lesions resulting in deregulation of both proteins, and indeed the development and survival of tumours is often dependent on co-operativity between these protein families. In this review we will discuss the individual roles of both proteins in cancer, describe cancers where co-operativity between them has been well-characterised and finally, some strategies to target these proteins therapeutically.
Collapse
Affiliation(s)
- Walter Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3084, Australia
| | - Erinna F. Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3084, Australia
| |
Collapse
|
16
|
Arulananda S, Lee EF, Fairlie WD, John T. The role of BCL-2 family proteins and therapeutic potential of BH3-mimetics in malignant pleural mesothelioma. Expert Rev Anticancer Ther 2020; 21:413-424. [PMID: 33238762 DOI: 10.1080/14737140.2021.1856660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: With limited recent therapeutic changes, malignant pleural mesothelioma (MPM) is associated with poor survival and death within 12 months, making it one of the most lethal malignancies. Due to unregulated asbestos use in developing countries and home renovation exposures, cases of MPM are likely to present for decades. As MPM is largely driven by dysregulation of tumor suppressor genes, researchers have examined other mechanisms of subverting tumor proliferation and spread. Over-expression of pro-survival BCL-2 family proteins impairs cells from undergoing apoptosis, and BH3-mimetics targeting them are a novel treatment option across various cancers, though have not been widely investigated in MPM.Areas covered: This review provides an overview of MPM and its current treatment landscape. It summarizes the role of BCL-2 family proteins in tumorigenesis and the therapeutic potential of BH3-mimetics . Finally, it discusses the role of BCL-2 proteins in MPM and the pre-clinical rationale for investigating BH3-mimetics as a therapeutic strategy.Expert opinion: As a disease without readily actionable oncogene driver mutations and with modest benefit from immune checkpoint inhibition, novel therapeutic options are urgently needed for MPM. Hence, BH3-mimetics provide a promising treatment option, with evidence supporting dependence on pro-survival BCL-2 proteins for MPM cell survival.
Collapse
Affiliation(s)
- Surein Arulananda
- Department of Medical Oncology, Austin Health, Heidelberg, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Thomas John
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
17
|
Lin VS, Xu ZF, Huang DCS, Thijssen R. BH3 Mimetics for the Treatment of B-Cell Malignancies-Insights and Lessons from the Clinic. Cancers (Basel) 2020; 12:cancers12113353. [PMID: 33198338 PMCID: PMC7696913 DOI: 10.3390/cancers12113353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary B-cell malignancies, including chronic lymphocytic leukemia (CLL), non-Hodgkin lymphoma (NHL), and plasma cell dyscrasias, are significant contributors to cancer morbidity and mortality worldwide. The pathogenesis of many B-cell malignancies involves perturbations in the intrinsic pathway of apoptosis that allow cells to evade cell death. BH3 mimetics represent a class of anti-cancer agents that can restore the ability of cancer cells to undergo apoptosis. Venetoclax, a recently approved BH3 mimetic, has transformed the therapeutic landscape for CLL. Other BH3 mimetics are currently under development. This review summarizes the available data on existing BH3 mimetics and highlights both the rapidly expanding role of BH3 mimetics in the treatment of B-cell malignancies and the clinical challenges of their use. Abstract The discovery of the link between defective apoptotic regulation and cancer cell survival engendered the idea of targeting aberrant components of the apoptotic machinery for cancer therapy. The intrinsic pathway of apoptosis is tightly controlled by interactions amongst members of three distinct subgroups of the B-cell lymphoma 2 (BCL2) family of proteins. The pro-survival BCL2 proteins prevent apoptosis by keeping the pro-apoptotic effector proteins BCL2-associated X protein (BAX) and BCL2 homologous antagonist/killer (BAK) in check, while the BH3-only proteins initiate apoptosis by either neutralizing the pro-survival BCL2 proteins or directly activating the pro-apoptotic effector proteins. This tripartite regulatory mechanism is commonly perturbed in B-cell malignancies facilitating cell death evasion. Over the past two decades, structure-based drug discovery has resulted in the development of a series of small molecules that mimic the function of BH3-only proteins called the BH3 mimetics. The most clinically advanced of these is venetoclax, which is a highly selective inhibitor of BCL2 that has transformed the treatment landscape for chronic lymphocytic leukemia (CLL). Other BH3 mimetics, which selectively target myeloid cell leukemia 1 (MCL1) and B-cell lymphoma extra large (BCLxL), are currently under investigation for use in diverse malignancies. Here, we review the current role of BH3 mimetics in the treatment of CLL and other B-cell malignancies and address open questions in this rapidly evolving field.
Collapse
Affiliation(s)
- Victor S. Lin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 3000 Melbourne, Australia
| | - Zhuo-Fan Xu
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- School of Medicine, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Department of Medical Biology, University of Melbourne, 3000 Melbourne, Australia
| | - Rachel Thijssen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, 3052 Parkville, Australia; (V.S.L.); (Z.-F.X.); (D.C.S.H.)
- Department of Medical Biology, University of Melbourne, 3000 Melbourne, Australia
- Correspondence:
| |
Collapse
|
18
|
Roué G, Sola B. Management of Drug Resistance in Mantle Cell Lymphoma. Cancers (Basel) 2020; 12:cancers12061565. [PMID: 32545704 PMCID: PMC7352245 DOI: 10.3390/cancers12061565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a rare but aggressive B-cell hemopathy characterized by the translocation t(11;14)(q13;q32) that leads to the overexpression of the cell cycle regulatory protein cyclin D1. This translocation is the initial event of the lymphomagenesis, but tumor cells can acquire additional alterations allowing the progression of the disease with a more aggressive phenotype and a tight dependency on microenvironment signaling. To date, the chemotherapeutic-based standard care is largely inefficient and despite the recent advent of different targeted therapies including proteasome inhibitors, immunomodulatory drugs, tyrosine kinase inhibitors, relapses are frequent and are generally related to a dismal prognosis. As a result, MCL remains an incurable disease. In this review, we will present the molecular mechanisms of drug resistance learned from both preclinical and clinical experiences in MCL, detailing the main tumor intrinsic processes and signaling pathways associated to therapeutic drug escape. We will also discuss the possibility to counteract the acquisition of drug refractoriness through the design of more efficient strategies, with an emphasis on the most recent combination approaches.
Collapse
Affiliation(s)
- Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: (G.R.); (B.S.); Tel.: +34-935572800 (ext. 4080) (G.R.); +33-231068210 (B.S.)
| | - Brigitte Sola
- MICAH Team, INSERM U1245, UNICAEN, CEDEX 5, 14032 Caen, France
- Correspondence: (G.R.); (B.S.); Tel.: +34-935572800 (ext. 4080) (G.R.); +33-231068210 (B.S.)
| |
Collapse
|
19
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int J Mol Sci 2020; 21:ijms21103726. [PMID: 32466293 PMCID: PMC7279491 DOI: 10.3390/ijms21103726] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are major contributors to immunosurveillance and control of tumor development by inducing apoptosis of malignant cells. Among the main mechanisms involved in NK cell-mediated cytotoxicity, the death receptor pathway and the release of granules containing perforin/granzymes stand out due to their efficacy in eliminating tumor cells. However, accumulated evidence suggest a profound immune suppression in the context of tumor progression affecting effector cells, such as NK cells, leading to decreased cytotoxicity. This diminished capability, together with the development of resistance to apoptosis by cancer cells, favor the loss of immunogenicity and promote immunosuppression, thus partially inducing NK cell-mediated killing resistance. Altered expression patterns of pro- and anti-apoptotic proteins along with genetic background comprise the main mechanisms of resistance to NK cell-related apoptosis. Herein, we summarize the main effector cytotoxic mechanisms against tumor cells, as well as the major resistance strategies acquired by tumor cells that hamper the extrinsic and intrinsic apoptotic pathways related to NK cell-mediated killing.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ángel R. Payer
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| |
Collapse
|
20
|
BCL-2 Proteins in Pathogenesis and Therapy of B-Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2020; 12:cancers12040938. [PMID: 32290241 PMCID: PMC7226356 DOI: 10.3390/cancers12040938] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
The ability to inhibit mitochondrial apoptosis is a hallmark of B-cell non-Hodgkin lymphomas (B-NHL). Activation of mitochondrial apoptosis is tightly controlled by members of B-cell leukemia/lymphoma-2 (BCL-2) family proteins via protein-protein interactions. Altering the balance between anti-apoptotic and pro-apoptotic BCL-2 proteins leads to apoptosis evasion and extended survival of malignant cells. The pro-survival BCL-2 proteins: B-cell leukemia/lymphoma-2 (BCL-2/BCL2), myeloid cell leukemia-1 (MCL-1/MCL1) and B-cell lymphoma-extra large (BCL-XL/BCL2L1) are frequently (over)expressed in B-NHL, which plays a crucial role in lymphoma pathogenesis, disease progression, and drug resistance. The efforts to develop inhibitors of anti-apoptotic BCL-2 proteins have been underway for several decades and molecules targeting anti-apoptotic BCL-2 proteins are in various stages of clinical testing. Venetoclax is a highly specific BCL-2 inhibitor, which has been approved by the US Food and Drug Agency (FDA) for the treatment of patients with chronic lymphocytic leukemia (CLL) and is in advanced clinical testing in other types of B-NHL. In this review, we summarize the biology of BCL-2 proteins and the mechanisms of how these proteins are deregulated in distinct B-NHL subtypes. We describe the mechanism of action of BH3-mimetics and the status of their clinical development in B-NHL. Finally, we summarize the mechanisms of sensitivity/resistance to venetoclax.
Collapse
|
21
|
Li KP, Ladle BH, Kurtulus S, Sholl A, Shanmuganad S, Hildeman DA. T-cell receptor signal strength and epigenetic control of Bim predict memory CD8 + T-cell fate. Cell Death Differ 2020; 27:1214-1224. [PMID: 31558776 PMCID: PMC7206134 DOI: 10.1038/s41418-019-0410-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Most effector CD8+ T cells die, while some persist and become either "effector" (TEM) or "central" (TCM) memory T cells. Paradoxically, effector CD8+ T cells with greater memory potential have higher levels of the pro-apoptotic molecule Bim. Here, we report, using a novel Bim-mCherry knock-in mouse, that cells with high levels of Bim preferentially develop into TCM cells. Bim levels remained stable and were regulated by DNA methylation at the Bim promoter. Notably, high levels of Bcl-2 were required for Bimhi cells to survive. Using Nur77-GFP mice as an indicator of TCR signal strength, Nur77 levels correlated with Bim expression and Nur77hi cells also selectively developed into TCM cells. Altogether, these data show that Bim levels and TCR signal strength are predictive of TEM- vs. TCM-cell fate. Further, given the many other biologic functions of Bim, these mice will have broad utility beyond CD8+ T-cell fate.
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Brian H Ladle
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Johns Hopkins Hospital, 1800 Orleans Street, The Charlotte R. Bloomberg Children's Center Building, 11th Floor, Baltimore, MD, 21287, USA
| | - Sema Kurtulus
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Allyson Sholl
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - David A Hildeman
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
22
|
Kelly GL, Strasser A. Toward Targeting Antiapoptotic MCL-1 for Cancer Therapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apoptosis is critical for embryonic development, tissue homeostasis, and the removal of infected or otherwise dangerous cells. It is controlled by three subgroups of the BCL-2 protein family—the BH3-only proteins that initiate cell death; the effectors of cell killing, BAX and BAK; and the antiapoptotic guardians, including MCL-1 and BCL-2. Defects in apoptosis can promote tumorigenesis and render malignant cells refractory to anticancer therapeutics. Activation of cell death by inhibiting antiapoptotic BCL-2 family members has emerged as an attractive strategy for cancer therapy, with the BCL-2 inhibitor venetoclax leading the way. Large-scale cancer genome analyses have revealed frequent amplification of the locus encoding antiapoptotic MCL-1 in human cancers, and functional studies have shown that MCL-1 is essential for the sustained survival and expansion of many types of tumor cells. Structural analysis and medicinal chemistry have led to the development of three distinct small-molecule inhibitors of MCL-1 that are currently undergoing clinical testing.
Collapse
Affiliation(s)
- Gemma L. Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia;,
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia;,
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
23
|
Ngoi NYL, Choong C, Lee J, Bellot G, Wong ALA, Goh BC, Pervaiz S. Targeting Mitochondrial Apoptosis to Overcome Treatment Resistance in Cancer. Cancers (Basel) 2020; 12:E574. [PMID: 32131385 PMCID: PMC7139457 DOI: 10.3390/cancers12030574] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023] Open
Abstract
Deregulated cellular apoptosis is a hallmark of cancer and chemotherapy resistance. The B-cell lymphoma 2 (BCL-2) protein family members are sentinel molecules that regulate the mitochondrial apoptosis machinery and arbitrate cell fate through a delicate balance between pro- and anti-apoptotic factors. The recognition of the anti-apoptotic BCL2 gene as an oncogenic driver in hematological malignancies has directed attention toward unraveling the biological significance of each of the BCL-2 superfamily members in cancer progression and garnered interest in the targeting of apoptosis in cancer therapy. Accordingly, the approval of venetoclax (ABT-199), a small molecule BCL-2 inhibitor, in patients with chronic lymphocytic leukemia and acute myeloid leukemia has become the proverbial torchbearer for novel candidate drug approaches selectively targeting the BCL-2 superfamily. Despite the inspiring advances in this field, much remains to be learned regarding the optimal therapeutic context for BCL-2 targeting. Functional assays, such as through BH3 profiling, may facilitate prediction of treatment response, development of drug resistance and shed light on rational combinations of BCL-2 inhibitors with other branches of cancer therapy. This review summarizes the pathological roles of the BCL-2 family members in cancer, discusses the current landscape of their targeting in clinical practice, and highlights the potential for future therapeutic inroads in this important area.
Collapse
Affiliation(s)
- Natalie Yan Li Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Clarice Choong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
| | - Gregory Bellot
- Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore 119228, Singapore;
| | - Andrea LA Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228, Singapore; (N.Y.L.N.); (C.C.); (J.L.); (A.L.W.); (B.C.G.)
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- National University Cancer Institute, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review highlights the importance of the Bcl-2 family members in lymphoma cell survival and discusses the approaches to modulate their function, directly or indirectly, to advance lymphoma therapeutics. RECENT FINDINGS The balance of cell death versus survival is ultimately leveraged at the mitochondria. Mitochondrial outer membrane permeabilization (MOMP) is the critical event that governs the release of pro-apoptotic molecules from the intermembrane mitochondrial space. MOMP is achieved through the coordinated actions of pro- and anti-apoptotic Bcl-2 family member proteins. Recognition of functional alterations among the Bcl-2 family member proteins led to identification of tractable targets to combat hematologic malignancies. A new class of drugs, termed BH3 mimetics, was introduced in the clinic. Venetoclax, a Bcl-2 inhibitor, received regulatory approvals in therapy of chronic lymphocytic leukemia and acute myeloid leukemia. Alternative pro-survival Bcl-2 family proteins, in particular Mcl-1, have been successfully targeted in preclinical studies using novel-specific BH3 mimetics. Finally, anti-apoptotic Bcl-2 family members may be targeted indirectly, via interference with the pro-survival signaling pathways, e.g., phosphoinotiside-3 kinase, B-cell receptor signaling, and NF-κB.
Collapse
|
25
|
Potent efficacy of MCL-1 inhibitor-based therapies in preclinical models of mantle cell lymphoma. Oncogene 2019; 39:2009-2023. [PMID: 31772331 DOI: 10.1038/s41388-019-1122-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Apoptosis-regulating BCL-2 family members, which can promote malignant transformation and resistance to therapy, have become prime therapeutic targets, as illustrated by the striking efficacy in certain lymphoid malignancies of the BCL-2-specific inhibitor venetoclax. In other lymphoid malignancies, however, such as the aggressive mantle cell lymphoma (MCL), cell survival might rely instead or also on BCL-2 relative MCL-1. We have explored MCL-1 as a target for killing MCL cells by both genetic and pharmacologic approaches. In several MCL cell lines, MCL-1 knockout with an inducible CRISPR/Cas9 system triggered spontaneous apoptosis. Accordingly, most MCL cell lines proved sensitive to the specific MCL-1 inhibitor S63845, and MCL-1 inhibition also proved efficacious in an MCL xenograft model. Furthermore, its killing efficacy rose on combination with venetoclax, the BCL-XL-specific inhibitor A-1331852, or Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which reduced pro-survival signals. We also tested the MCL-1 inhibitor in primary samples from 13 MCL patients, using CD40L-expressing feeder cells to model their microenvironmental support. Notably, all unstimulated primary MCL samples were very sensitive to S63845, but the CD40L stimulation attenuated their sensitivity. Mass cytometric analysis revealed that the stimulation likely conveyed protection by elevating BCL-XL and MCL-1. Accordingly, sensitivity of the CD40L-stimulated cells to S63845 was substantially restored by co-treatment with venetoclax, the BCL-XL-specific inhibitor or ibrutinib. Overall, our findings indicate that MCL-1 is very important for survival of MCL cells and that the MCL-1 inhibitor, both alone and together with ibrutinib, venetoclax or a BCL-XL inhibitor, offers promise for novel improved MCL therapies.
Collapse
|
26
|
Nobusawa S, Nakata S, Yoshida Y, Yamazaki T, Ueki K, Amano K, Yamamoto J, Miyahara M, Sugai T, Nakazato Y, Hirato J, Yokoo H. Secondary INI1-deficient rhabdoid tumors of the central nervous system: analysis of four cases and literature review. Virchows Arch 2019; 476:763-772. [PMID: 31707588 DOI: 10.1007/s00428-019-02686-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/09/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Atypical teratoid/rhabdoid tumors (AT/RT) are rare, highly malignant neoplasms of the central nervous system that predominantly occur in infants, and are characterized by the presence of rhabdoid cells and inactivation of INI1 or (extremely rarely) BRG1. The vast majority of AT/RT are recognized as primary tumors; however, rare AT/RT or INI1-deficient RT arising from other primary tumors have been reported. To better characterize secondary RT, we performed a histological and molecular analysis of four RT arising from pleomorphic xanthoastrocytoma (PXA), anaplastic PXA, low-grade astrocytoma, or ependymoma. Histologically, although conventional AT/RT are usually not largely composed of rhabdoid cells, three secondary RT were composed mainly of rhabdoid cells, two of which arising from (anaplastic) PXA exhibited marked nuclear pleomorphism reminiscent of that in the precursor lesions. Regarding INI1 alterations, although mutations including small indels are frequent in conventional AT/RT, only in one secondary RT had a mutation. Moreover, together with previously reported cases, biallelic INI1 inactivation in secondary RT was mostly due to biallelic focal and/or broad deletions. Although conventional AT/RT have stable chromosomal profiles, i.e., the frequency of copy number changes involving chromosomes other than chromosome 22 is remarkably low, our array comparative genomic hybridization analysis revealed numerous copy number changes in the secondary RT. In conclusion, secondary RT of the central nervous system are clinicopathologically and molecularly different from conventional pediatric AT/RT, and a nosological issue is whether these secondary RT should be called secondary "AT/RT" as most of the reported cases were.
Collapse
Affiliation(s)
- Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Satoshi Nakata
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuka Yoshida
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Yamazaki
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Keisuke Ueki
- Department of Neurosurgery, Dokkyo Medical University Hospital, Mibu, Japan
| | - Keishiro Amano
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makiko Miyahara
- Department of Neurosurgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tsutomu Sugai
- Department of Neurosurgery, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | | | - Junko Hirato
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Pathology, Public Tomioka General Hospital, Tomioka, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
27
|
Wang JD, Katz SG, Morgan EA, Yang DT, Pan X, Xu ML. Proapoptotic protein BIM as a novel prognostic marker in mantle cell lymphoma. Hum Pathol 2019; 93:54-64. [PMID: 31425695 PMCID: PMC7038910 DOI: 10.1016/j.humpath.2019.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Numerous studies have demonstrated many genetic aberrations in MCL in addition to the characteristic t(11:14), including frequent biallelic deletions of Bim, a proapoptotic member of the BCL-2 family. In mice, Bim deletion coupled with cyclin D1 overexpression generates pathologic and molecular features of human MCL. Since the regulation of apoptosis is crucial in MCL pathogenesis, we hypothesize that BIM expression may be associated with tumor cell survival. Clinical data and tissue from 100 nodal MCL cases between 1988 and 2009 were collected from three large academic medical centers. The average patient age of our MCL cohort was 65.5 years old (range, 42-97) with a 2:1 male to female ratio. Immunohistochemistry was performed with a validated anti-BIM antibody. Patients were separated into low and high BIM-expressing categories with a cutoff of 80%. As expected for a proapoptotic tumor suppressor, patients with high BIM expression were less likely to have progressive disease and more likely to have a complete response (P = .022). In addition, high BIM-expressing MCL tumors revealed a trend toward increased overall survival with this trend persisting in sub-analysis of Ann Arbor stages III and IV. No correlation between BIM expression, Ki-67 index, and MIPI score was observed, suggesting a role for BIM as a novel independent prognostic factor. While BIM is only one member of a complex family of apoptosis-regulating proteins, these findings may yield clinically relevant information for the prognosis and therapeutic susceptibility of MCL.
Collapse
Affiliation(s)
- Jeff D Wang
- Department of Pathology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06510.
| | - Samuel G Katz
- Department of Pathology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06510.
| | - Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.
| | - David T Yang
- Department of Pathology, University of Wisconsin Medical Center, Madison, WI 53705-2281.
| | - Xueliang Pan
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210.
| | - Mina L Xu
- Department of Pathology, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT 06510.
| |
Collapse
|
28
|
Klener P. Advances in Molecular Biology and Targeted Therapy of Mantle Cell Lymphoma. Int J Mol Sci 2019; 20:ijms20184417. [PMID: 31500350 PMCID: PMC6770169 DOI: 10.3390/ijms20184417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a heterogeneous malignancy with a broad spectrum of clinical behavior from indolent to highly aggressive cases. Despite the fact that MCL remains in most cases incurable by currently applied immunochemotherapy, our increasing knowledge on the biology of MCL in the last two decades has led to the design, testing, and approval of several innovative agents that dramatically changed the treatment landscape for MCL patients. Most importantly, the implementation of new drugs and novel treatment algorithms into clinical practice has successfully translated into improved outcomes of MCL patients not only in the clinical trials, but also in real life. This review focuses on recent advances in our understanding of the pathogenesis of MCL, and provides a brief survey of currently used treatment options with special focus on mode of action of selected innovative anti-lymphoma molecules. Finally, it outlines future perspectives of patient management with progressive shift from generally applied immunotherapy toward risk-stratified, patient-tailored protocols that would implement innovative agents and/or procedures with the ultimate goal to eradicate the lymphoma and cure the patient.
Collapse
Affiliation(s)
- Pavel Klener
- First Dept. of Medicine-Hematology, General University Hospital in Prague, 128 08 Prague, Czech Republic.
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic.
| |
Collapse
|
29
|
Al-Zoughool M, Bird M, Rice J, Baan RA, Billard M, Birkett N, Krewski D, Zielinski JM. Development of a database on key characteristics of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:264-287. [PMID: 31379270 DOI: 10.1080/10937404.2019.1642593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A database on mechanistic characteristics of human carcinogenic agents was developed by collecting mechanistic information on agents identified as human carcinogens (Group 1) by the International Agency for Research on Cancer (IARC) in the IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. A two-phase process is described for the construction of the database according to 24 toxicological endpoints, derived from appropriate test systems that were acquired from data obtained from the mechanisms sections of the IARC Monographs (Section 4) and a supplementary PubMed search. These endpoints were then aligned with 10 key characteristics of human carcinogens that reflect the broader attributes of these agents relating to the development of cancer in humans. The considerations involved in linking of toxicological endpoints to key characteristics are described and specific examples of the determination of key characteristics for six specific agents (tamoxifen, hepatitis B virus, arsenic, ultraviolet and solar radiation, tobacco smoking, and dioxin) are provided. Data for humans and animals were tabulated separately, as were results for in-vivo and for in-vitro sources of information. The database was constructed to support a separate analysis of the expression of these endpoints by 86 Group 1 carcinogens, in-vivo and in-vitro along with an analysis of the key characteristics of these agents.
Collapse
Affiliation(s)
- Mustafa Al-Zoughool
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Jerry Rice
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Georgetown, DC, USA
| | - Robert A Baan
- International Agency for Research on Cancer (retired), Lyon, France
| | - Mélissa Billard
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Risk Sciences International, Ottawa, Canada
| | - Jan M Zielinski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Yalniz FF, Wierda WG. Targeting BCL2 in Chronic Lymphocytic Leukemia and Other Hematologic Malignancies. Drugs 2019; 79:1287-1304. [PMID: 31313099 DOI: 10.1007/s40265-019-01163-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis, the process of programmed cell death, occurs normally during development and aging. Members of the B-cell lymphoma 2 (BCL2) family of proteins are central regulators of apoptosis, and resistance to apoptosis is one of the hallmarks of cancer. Targeting the apoptotic pathway via BCL2 inhibitors has been considered a promising treatment strategy in the past decade. Initial efforts with small molecule BH3 mimetics such as ABT-737 and ABT-263 (navitoclax) pioneered the development of the first-in-class Food and Drug Administration (FDA)-approved oral BCL2 inhibitor, venetoclax. Venetoclax was approved for the treatment of chronic lymphocytic leukemia and acute myeloid leukemia, and is now being studied in a number of hematologic malignancies. Several other inhibitors targeting different BCL2 family members are now in early stages of development.
Collapse
Affiliation(s)
- Fevzi F Yalniz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 428, Houston, TX, 77030, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 428, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Takayama Y, Ono Y, Mizukami Y, Itoh H, Nakajima N, Arai H, Tanaka S, Nobusawa S, Yokoo H, Onozato Y. Comparative genome-wide analysis of gastric adenocarcinomas with hyperplastic polyp components. Virchows Arch 2019; 475:383-389. [DOI: 10.1007/s00428-019-02592-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/06/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
|
32
|
Prukova D, Andera L, Nahacka Z, Karolova J, Svaton M, Klanova M, Havranek O, Soukup J, Svobodova K, Zemanova Z, Tuskova D, Pokorna E, Helman K, Forsterova K, Pacheco-Blanco M, Vockova P, Berkova A, Fronkova E, Trneny M, Klener P. Cotargeting of BCL2 with Venetoclax and MCL1 with S63845 Is Synthetically Lethal In Vivo in Relapsed Mantle Cell Lymphoma. Clin Cancer Res 2019; 25:4455-4465. [DOI: 10.1158/1078-0432.ccr-18-3275] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/30/2019] [Accepted: 04/16/2019] [Indexed: 11/16/2022]
|
33
|
Adams CM, Clark-Garvey S, Porcu P, Eischen CM. Targeting the Bcl-2 Family in B Cell Lymphoma. Front Oncol 2019; 8:636. [PMID: 30671383 PMCID: PMC6331425 DOI: 10.3389/fonc.2018.00636] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
Although lymphoma is a very heterogeneous group of biologically complex malignancies, tumor cells across all B cell lymphoma subtypes share a set of underlying traits that promote the development and sustain malignant B cells. One of these traits, the ability to evade apoptosis, is essential for lymphoma development. Alterations in the Bcl-2 family of proteins, the key regulators of apoptosis, is a hallmark of B cell lymphoma. Significant efforts have been made over the last 30 years to advance knowledge of the biology, molecular mechanisms, and therapeutic potential of targeting Bcl-2 family members. In this review, we will highlight the complexities of the Bcl-2 family, including our recent discovery of overexpression of the anti-apoptotic Bcl-2 family member Bcl-w in lymphomas, and describe recent advances in the field that include the development of inhibitors of anti-apoptotic Bcl-2 family members for the treatment of B cell lymphomas and their performance in clinical trials.
Collapse
Affiliation(s)
- Clare M Adams
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sean Clark-Garvey
- Internal Medicine Residency Program, Department of Internal Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pierluigi Porcu
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
34
|
Tessoulin B, Papin A, Gomez-Bougie P, Bellanger C, Amiot M, Pellat-Deceunynck C, Chiron D. BCL2-Family Dysregulation in B-Cell Malignancies: From Gene Expression Regulation to a Targeted Therapy Biomarker. Front Oncol 2019; 8:645. [PMID: 30666297 PMCID: PMC6330761 DOI: 10.3389/fonc.2018.00645] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
BCL2-family proteins have a central role in the mitochondrial apoptosis machinery and their expression is known to be deregulated in many cancer types. Effort in the development of small molecules that selectively target anti-apoptotic members of this family i.e., Bcl-2, Bcl-xL, Mcl-1 recently opened novel therapeutic opportunities. Among these apoptosis-inducing agents, BH3-mimetics (i.e., venetoclax) led to promising preclinical and clinical activity in B cell malignancies. However, several mechanisms of intrinsic or acquired resistance have been described ex vivo therefore predictive markers of response as well as mechanism-based combinations have to be designed. In the present study, we analyzed the expression of the BCL2-family genes across 10 mature B cell malignancies through computational normalization of 21 publicly available Affimetrix datasets gathering 1,219 patient samples. To better understand the deregulation of anti- and pro-apoptotic members of the BCL2-family in hematological disorders, we first compared gene expression profiles of malignant B cells to their relative normal control (naïve B cell to plasma cells, n = 37). We further assessed BCL2-family expression according to tissue localization i.e., peripheral blood, bone marrow, and lymph node, molecular subgroups or disease status i.e., indolent to aggressive. Across all cancer types, we showed that anti-apoptotic genes are upregulated while pro-apoptotic genes are downregulated when compared to normal counterpart cells. Of interest, our analysis highlighted that, independently of the nature of malignant B cells, the pro-apoptotic BH3-only BCL2L11 and PMAIP1 are deeply repressed in tumor niches, suggesting a central role of the microenvironment in their regulation. In addition, we showed selective modulations across molecular subgroups and showed that the BCL2-family expression profile was related to tumor aggressiveness. Finally, by integrating recent data on venetoclax-monotherapy clinical activity with the expression of BCL2-family members involved in the venetoclax response, we determined that the ratio (BCL2+BCL2L11+BAX)/BCL2L1 was the strongest predictor of venetoclax response for mature B cell malignancies in vivo.
Collapse
Affiliation(s)
- Benoît Tessoulin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,Department of Hematology, Centre Hospitalier Universitaire Nantes, France
| | - Antonin Papin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| | - Patricia Gomez-Bougie
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| | - Celine Bellanger
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| | - Martine Amiot
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| | - Catherine Pellat-Deceunynck
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| | - David Chiron
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes Nantes, France.,L'Héma-NexT, i-Site NexT Nantes, France.,CNRS GDR3697 Micronit Tours, France
| |
Collapse
|
35
|
Nuclear immunoreactivity of BLM-s, a proapoptotic BCL-2 family member, is specifically detected in salivary adenoid cystic carcinoma. Hum Pathol 2018; 84:81-91. [PMID: 30261190 DOI: 10.1016/j.humpath.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/24/2022]
Abstract
Tumor cells frequently evade apoptosis triggered by cellular stress via aberrant regulation of the BCL-2 family members, which are key players in regulating cell death under physiological and pathological situations. Previously, we have identified a novel BH3-only protein of the BCL-2 family, BLM-s (BCL-2-like molecule, short form), that modulates apoptosis of postmitotic immature neurons during corticohistogenesis. Whether BLM-s expression correlates with any subtype of human tumors has not been investigated. Here, via BLM-s immunohistochemistry performed in various kinds of human tumors, we demonstrate that BLM-s is specifically expressed in tumors derived from salivary gland (specificity, 0.76 [95% confidence interval, or CI], 0.65-0.85]; sensitivity, 1 [95% CI, 0.99-1]). Stratification of BLM-s immunointensity and its subcellular localization in correlation with salivary gland tumor subtype shows a statistically significant increase in proportion and in intensity of nuclear staining for adenoid cystic carcinoma (ACC; specificity, 0.92 [95% CI, 0.88-0.95]; sensitivity, 0.82 [95% CI, 0.66-0.92]), a locally aggressive head and neck malignancy. Comparison among salivary ACC in correlation with MYB/MYBL fluorescence in situ hybridization, c-KIT immunohistochemistry, and BLM-s immunohistochemistry shows that BLM-s' nuclear immunoreactivity has lower false-negative detection rate (18.5% compared with 26.3% [MYB/MYBL fluorescence in situ hybridization] and 34.2% [c-KIT], respectively). Intriguingly, ACC derived from other cell origins such as breast shows negative BLM-s immunoreactivity. We thus propose that nuclear localization of BLM-s detected by immunohistochemistry could be potentially used as an ancillary diagnostic marker for ACC originating from the salivary gland, especially when the biopsy specimen is small with an unknown tumor origin.
Collapse
|
36
|
Zhang H, Jenkins SM, Lee CT, Harrington SM, Liu Z, Dong H, Zhang L. Bim is an independent prognostic marker in intrahepatic cholangiocarcinoma. Hum Pathol 2018; 78:97-105. [PMID: 29698699 DOI: 10.1016/j.humpath.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver malignant tumor and has a poor prognosis. The prognostic factors associated with outcome remain poorly defined. In this study, we investigated the role of an important cell apoptosis initiator, Bcl-2 interacting mediator of cell death (Bim), by evaluating its expression and association with other clinicopathological features in ICCs. We analyzed 56 cases of ICC with clinical follow-up. The expression of Bim in ICC cells and other cellular components was evaluated by immunohistochemistry. Bim expression was considered up-regulated if Bim was detected in 10% or more of tumor cells. Of the 56 ICC samples, 19 (34%) had high Bim expression level, 15 (27%) were completely negative, and 22 (39%) were classified as low Bim expression (<10% positivity). Patients who had tumors with high Bim level had significantly longer overall survival than did those with low or no staining (median survival, 7.6 versus 2.6 years; hazard ratio, 0.40; P = .006). High Bim expression was also correlated with low Ki-67 index, and more importantly, none of the tumors with high Bim expression had lymph node metastases at the time of surgery. Our study demonstrates that Bim is an important and independent prognostic factor in ICC. Tumors with high Bim expression are associated with better prognosis through inhibiting tumor cell proliferation and metastatic ability. The development of new agents directly or indirectly targeting Bim may provide promising anticancer treatments.
Collapse
Affiliation(s)
- Henan Zhang
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, 110000, China; Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sarah M Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Chuang-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, 704, Republic of China
| | | | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital, China Medical University, Shenyang, 110000, China.
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
37
|
Maegawa S, Chinen Y, Shimura Y, Tanba K, Takimoto T, Mizuno Y, Matsumura-Kimoto Y, Kuwahara-Ota S, Tsukamoto T, Kobayashi T, Horiike S, Taniwaki M, Kuroda J. Phosphoinositide-dependent protein kinase 1 is a potential novel therapeutic target in mantle cell lymphoma. Exp Hematol 2018; 59:72-81.e2. [DOI: 10.1016/j.exphem.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
|
38
|
Nakajima N, Nobusawa S, Nakata S, Nakada M, Yamazaki T, Matsumura N, Harada K, Matsuda H, Funata N, Nagai S, Nakamura H, Sasaki A, Akimoto J, Hirato J, Yokoo H. BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions are frequent in epithelioid glioblastomas: a histological and molecular analysis focusing on intratumoral heterogeneity. Brain Pathol 2017; 28:663-673. [PMID: 29105198 DOI: 10.1111/bpa.12572] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 12/28/2022] Open
Abstract
Epithelioid glioblastoma (E-GBM) is a rare aggressive variant of IDH-wildtype glioblastoma newly recognized in the 2016 World Health Organization classification, composed predominantly of monotonous, patternless sheets of round cells with laterally positioned nuclei and plump eosinophilic cytoplasm. Approximately 50% of E-GBM harbor BRAF V600E, which is much less frequently found in other types of glioblastomas. Most E-GBM are recognized as primary/de novo lesions; however, several E-GBM with co- or pre-existing lower-grade lesions have been reported. To better understand associations between E-GBM and the lower-grade lesions, we undertook a histological and molecular analysis of 14 E-GBM, 10 of which exhibited lower-grade glioma-like components (8 E-GBM with co-existing diffuse glioma-like components, 1 E-GBM with a co-existing PXA-like component and 1 E-GBM with a pre-existing PXA). Molecular results demonstrated that the prevalence of BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions in E-GBM were 13/14 (93%), 10/14 (71%) and 11/14 (79%), respectively, and concurrent BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions were observed in 7/14 (50%) of E-GBM. These alterations were also frequently seen in the lower-grade lesions irrespective of the histology. Genetic analysis including array comparative genomic hybridization performed for 5 E-GBM with co- and pre-existing lower-grade components revealed that all molecular changes found in the lower-grade components were also observed in the E-GBM components, and additional changes were detected in the E-GBM components. In conclusion, E-GBM frequently exhibit BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions and these alterations tend to coexist in E-GBM. Taken together with the facts that only one PXA preceded E-GBM among these lower-grade lesions, and that co-occurrence of BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions have been reported to be rare in conventional lower-grade diffuse gliomas, the diffuse glioma-like components may be distinct infiltrative components of E-GBM, reflecting intratumoral heterogeneity.
Collapse
Affiliation(s)
- Nozomi Nakajima
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satoshi Nakata
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tatsuya Yamazaki
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nozomi Matsumura
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hadzki Matsuda
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Japan
| | - Nobuaki Funata
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Shoichi Nagai
- Department of Neurosurgery Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hideo Nakamura
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Moroyama, Japan
| | - Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Junko Hirato
- Department of Pathology, Gunma University Hospital, Maebashi, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
39
|
Hirose T, Nobusawa S, Sugiyama K, Amatya VJ, Fujimoto N, Sasaki A, Mikami Y, Kakita A, Tanaka S, Yokoo H. Astroblastoma: a distinct tumor entity characterized by alterations of the X chromosome and MN1 rearrangement. Brain Pathol 2017; 28:684-694. [PMID: 28990708 DOI: 10.1111/bpa.12565] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022] Open
Abstract
Astroblastoma is a rare, enigmatic tumor of the central nervous system (CNS) which shares some clinicopathologic aspects with other CNS tumors, especially ependymoma. To further clarify the nature of astroblastoma, we performed clinicopathologic and molecular genetic studies on eight cases of astroblastoma. The median age of the patients was 14.5 years, ranging from 5 to 60 years, and seven of the patients were female. All tumors arose in the cerebral hemisphere and radiologically appeared to be well-bordered, nodular tumors often associated with cystic areas and contrast-enhancement. Six of the seven patients with prognosis data survived without recurrences during the follow-up periods ranging from six to 76 months. One patient had multiple recurrences and died six years later. All tumors exhibited salient microscopic features, such as being well demarcated from the surrounding brain tissue, perivascular arrangement of epithelioid tumor cells (represented by "astroblastic" pseudorosettes, trabecular alignment, and pseudopapillary patterns), and hyalinized blood vessels. Immunoreactivity for GFAP, S-100 protein, Olig2, and EMA was variably demonstrated in all tumors, and IDH1 R132H and L1CAM were negative. Array comparative genomic hybridization revealed numerous heterozygous deletions on chromosome X in the four tumors studied, and break-apart fluorescence in situ hybridization demonstrated rearrangement of MN1 in five tumors with successful testing. The characteristic clinicopathologic and genetic findings support the idea that astroblastoma is distinct from other CNS tumors, in particular, ependymoma. In addition, MN1 rearrangement and aberrations of chromosome X may partly be involved in the pathogenesis of astroblastoma.
Collapse
Affiliation(s)
- Takanori Hirose
- Pathology for Regional Communication, Kobe University School of Medicine, Kobe, Japan.,Department of Diagnostic Pathology, Hyogo Cancer Center, Akashi, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology and Neuro-oncology Program, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Vishwa J Amatya
- Department of Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naomi Fujimoto
- Department of Neurosurgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University School of Medicine, Moroyama, Japan
| | - Yoshiki Mikami
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
40
|
Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ 2017; 25:27-36. [PMID: 29099483 PMCID: PMC5729526 DOI: 10.1038/cdd.2017.161] [Citation(s) in RCA: 380] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/30/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023] Open
Abstract
Impaired apoptosis plays a central role in cancer development and limits the efficacy of conventional cytotoxic therapies. Deepening understanding of how opposing factions of the BCL-2 protein family switch on apoptosis and of their structures has driven development of a new class of cancer drugs that targets various pro-survival members by mimicking their natural inhibitors, the BH3-only proteins. These ‘BH3 mimetic’ drugs seem destined to become powerful new weapons in the arsenal against cancer. Successful clinical trials of venetoclax/ABT-199, a specific inhibitor of BCL-2, have led to its approval for a refractory form of chronic lymphocytic leukaemia and to scores of on-going trials for other malignancies. Furthermore, encouraging preclinical studies of BH3 mimetics that target other BCL-2 pro-survival members, particularly MCL-1, offer promise for cancers resistant to venetoclax. This review sketches the impact of the BCL-2 family on cancer development and therapy, describes how interactions of family members trigger apoptosis and discusses the potential of BH3 mimetic drugs to advance cancer therapy.
Collapse
Affiliation(s)
- Jerry M Adams
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
41
|
Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev 2017; 32:8-28. [PMID: 28802908 DOI: 10.1016/j.blre.2017.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/05/2017] [Accepted: 08/06/2017] [Indexed: 12/14/2022]
Abstract
Apoptosis is an essential biological process involved in tissue homeostasis and immunity. Aberrations of the two main apoptotic pathways, extrinsic and intrinsic, have been identified in hematological malignancies; many of these aberrations are associated with pathogenesis, prognosis and resistance to standard chemotherapeutic agents. Targeting components of the apoptotic pathways, especially the chief regulatory BCL-2 family in the intrinsic pathway, has proved to be a promising therapeutic approach for patients with hematological malignances, with the expectation of enhanced efficacy and reduced adverse events. Continuous investigations regarding the biological importance of each of the BCL-2 family components and the clinical rationale to achieve optimal therapeutic outcomes, using either monotherapy or in combination with other targeted agents, have generated inspiring progress in the field. Genomic, epigenomic and biological analyses including BH3 profiling facilitate effective evaluation of treatment response, cancer recurrence and drug resistance. In this review, we summarize the biological features of each of the components in the BCL-2 apoptotic pathways, analyze the regulatory mechanisms and the pivotal roles of BCL-2 family members in the pathogenesis of major types of hematologic malignances, and evaluate the potential of apoptosis- and BCL-2-targeted strategies as effective approaches in anti-cancer therapies.
Collapse
|
42
|
Sarosiek KA, Letai A. Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using BH3 mimetics - recent successes, current challenges and future promise. FEBS J 2017; 283:3523-3533. [PMID: 26996748 DOI: 10.1111/febs.13714] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/17/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Apoptosis within cancer cells is controlled by the BCL-2 family of proteins, making them powerful arbiters of cell fate in response to stress induced by neoplastic transformation as well as exposure to anti-cancer therapies. Many cancers evade pro-apoptotic stress signals by up-regulating anti-apoptotic proteins such as BCL-2, BCL-XL or MCL-1 to maintain their survival. However, this may come at a cost, as these cancers may also become dependent on these anti-apoptotic proteins for survival. The development and deployment of BCL-2 family inhibitors (drugs that mimic the activity of pro-apoptotic BH3-only proteins or 'BH3 mimetics') is based on this paradigm, and the first potent and specific molecules are now being evaluated in clinical trials. We review the recent successes in this field, the challenges currently being faced, and the promising future ahead.
Collapse
Affiliation(s)
- Kristopher A Sarosiek
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Nguyen L, Papenhausen P, Shao H. The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects. Genes (Basel) 2017; 8:genes8040116. [PMID: 28379189 PMCID: PMC5406863 DOI: 10.3390/genes8040116] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to overexpression of intact c-MYC protein, in contrast to the somatic mutations or fusion proteins seen in many other oncogenes. Dysregulation of c-MYC in B-cell lymphomas occurs either as a primary event in Burkitt lymphoma, or secondarily in aggressive lymphomas such as diffuse large B-cell lymphoma, plasmablastic lymphoma, mantle cell lymphoma, or double-hit lymphoma. Secondary c-MYC changes include gene translocation and gene amplification, occurring against a background of complex karyotype, and most often confer aggressive clinical behavior, as evidenced in the double-hit lymphomas. In low-grade B-cell lymphomas, acquisition of c-MYC rearrangement usually results in transformation into highly aggressive lymphomas, with some exceptions. In this review, we discuss the role that c-MYC plays in the pathogenesis of B-cell lymphomas, the molecular alterations that lead to c-MYC dysregulation, and their effect on prognosis and diagnosis in specific types of B-cell lymphoma.
Collapse
Affiliation(s)
- Lynh Nguyen
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Peter Papenhausen
- Cytogenetics Laboratory, Laboratory Corporation of America, Research Triangle Park, NC 27709, USA.
| | - Haipeng Shao
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
44
|
Kakizaki F, Sonoshita M, Miyoshi H, Itatani Y, Ito S, Kawada K, Sakai Y, Taketo MM. Expression of metastasis suppressor gene AES driven by a Yin Yang (YY) element in a CpG island promoter and transcription factor YY2. Cancer Sci 2017; 107:1622-1631. [PMID: 27561171 PMCID: PMC5132282 DOI: 10.1111/cas.13063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 01/25/2023] Open
Abstract
We recently found that the product of the AES gene functions as a metastasis suppressor of colorectal cancer (CRC) in both humans and mice. Expression of amino‐terminal enhancer of split (AES) protein is significantly decreased in liver metastatic lesions compared with primary colon tumors. To investigate its downregulation mechanism in metastases, we searched for transcriptional regulators of AES in human CRC and found that its expression is reduced mainly by transcriptional dysregulation and, in some cases, by additional haploidization of its coding gene. The AES promoter‐enhancer is in a typical CpG island, and contains a Yin‐Yang transcription factor recognition sequence (YY element). In human epithelial cells of normal colon and primary tumors, transcription factor YY2, a member of the YY family, binds directly to the YY element, and stimulates expression of AES. In a transplantation mouse model of liver metastases, however, expression of Yy2 (and therefore of Aes) is downregulated. In human CRC metastases to the liver, the levels of AES protein are correlated with those of YY2. In addition, we noticed copy‐number reduction for the AES coding gene in chromosome 19p13.3 in 12% (5/42) of human CRC cell lines. We excluded other mechanisms such as point or indel mutations in the coding or regulatory regions of the AES gene, CpG methylation in the AES promoter enhancer, expression of microRNAs, and chromatin histone modifications. These results indicate that Aes may belong to a novel family of metastasis suppressors with a CpG‐island promoter enhancer, and it is regulated transcriptionally.
Collapse
Affiliation(s)
- Fumihiko Kakizaki
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Sonoshita
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hiroyuki Miyoshi
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiro Itatani
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Kawada
- Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiharu Sakai
- Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
45
|
Glab JA, Mbogo GW, Puthalakath H. BH3-Only Proteins in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:163-196. [PMID: 28069133 DOI: 10.1016/bs.ircmb.2016.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BH3-only proteins are proapoptotic members of the broader Bcl-2 family, which promote cell death by directly or indirectly activating Bax and Bak. The expression of BH3-only proteins is regulated both transcriptionally and posttranscriptionally in a cell type-specific and a tissue-specific manner. Research over the last 20 years has provided significant insights into their roles in tissue homeostasis and various pathologies, which in turn has led to the development of novel therapeutics for numerous diseases. In this review, a snapshot of the progress over this period is given, including our current understanding of their regulation, mode of action, role in mammalian development, and pathology.
Collapse
Affiliation(s)
- J A Glab
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Drive, Melbourne, VIC, Australia
| | - G W Mbogo
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Drive, Melbourne, VIC, Australia
| | - H Puthalakath
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Kingsbury Drive, Melbourne, VIC, Australia.
| |
Collapse
|
46
|
Delbridge ARD, Pang SHM, Vandenberg CJ, Grabow S, Aubrey BJ, Tai L, Herold MJ, Strasser A. RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice. J Exp Med 2016; 213:2039-48. [PMID: 27621418 PMCID: PMC5030795 DOI: 10.1084/jem.20150477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/08/2016] [Indexed: 01/29/2023] Open
Abstract
Delbridge, Strasser, and collaborators show that potentially oncogenic RAG1/2-dependent DNA lesions trigger apoptosis through the induction of BIM, which functions as an efficient tumor suppressor. Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53−/− mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers.
Collapse
Affiliation(s)
- Alex R D Delbridge
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brandon J Aubrey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia Department of Clinical Haematology and Bone Marrow Transplant Service, the Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
47
|
Harnessing Noxa demethylation to overcome Bortezomib resistance in mantle cell lymphoma. Oncotarget 2016; 6:27332-42. [PMID: 25714012 PMCID: PMC4694993 DOI: 10.18632/oncotarget.2903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/13/2014] [Indexed: 11/25/2022] Open
Abstract
Bortezomib (BZM) is the first proteasome inhibitor approved for relapsed Mantle Cell Lymphoma (MCL) with durable responses seen in 30%–50% of patients. Given that a large proportion of patients will not respond, BZM resistance is a significant barrier to use this agent in MCL. We hypothesized that a subset of aberrantly methylated genes may be modulating BZM response in MCL patients. Genome-wide DNA methylation analysis using a NimbleGen array platform revealed a striking promoter hypomethylation in MCL patient samples following BZM treatment. Pathway analysis of differentially methylated genes identified molecular mechanisms of cancer as a top canonical pathway enriched among hypomethylated genes in BZM treated samples. Noxa, a pro-apoptotic Bcl-2 family member essential for the cytotoxicity of BZM, was significantly hypomethylated and induced following BZM treatment. Therapeutically, we could demethylate Noxa and induce anti-lymphoma activity using BZM and the DNA methytransferase inhibitor Decitabine (DAC) and their combination in vitro and in vivo in BZM resistant MCL cells. These findings suggest a role for dynamic Noxa methylation for the therapeutic benefit of BZM. Potent and synergistic cytotoxicity between BZM and DAC in vitro and in vivo supports a strategy for using epigenetic priming to overcome BZM resistance in relapsed MCL patients.
Collapse
|
48
|
Nobusawa S, Hirato J, Sugai T, Okura N, Yamazaki T, Yamada S, Ikota H, Nakazato Y, Yokoo H. Atypical Teratoid/Rhabdoid Tumor (AT/RT) Arising From Ependymoma: A Type of AT/RT Secondarily Developing From Other Primary Central Nervous System Tumors. J Neuropathol Exp Neurol 2016; 75:167-74. [PMID: 26769252 DOI: 10.1093/jnen/nlv017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RT) are rare, aggressive, embryonal brain tumors that occur most frequently in very young children; they are characterized by rhabdoid cells and loss of INI1 protein nuclear expression. Here, we report the case of a 24-year-old man with a left frontal lobe tumor that was composed mainly of rhabdoid cells showing loss of INI1 nuclear reactivity and polyphenotypic immunohistochemical expression, with a small INI1-positive component of ependymoma. Array comparative genomic hybridization separately conducted for each histologically distinct component revealed 22 shared identical copy number alterations, including loss of heterozygosity of chromosome 22q containing the INI1 locus. Furthermore, we found the C11orf95-RELA fusion gene, the genetic hallmark of supratentorial ependymomas, not only in the ependymoma component but also in the AT/RT component by fluorescence in situ hybridization analysis, suggesting that the AT/RT cells secondarily progressed from the preexisting ependymoma cells. A second genetic inactivating event in the INI1 gene was not detected in the AT/RT component. There are several reported cases of AT/RT (or INI1-negative rhabdoid tumors) arising in the setting of other primary brain tumors (gangliogliomas, pleomorphic xanthoastrocytomas, and high-grade gliomas), but the present case
Collapse
|
49
|
Wood CD, Veenstra H, Khasnis S, Gunnell A, Webb HM, Shannon-Lowe C, Andrews S, Osborne CS, West MJ. MYC activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs. eLife 2016; 5:e18270. [PMID: 27490482 PMCID: PMC5005034 DOI: 10.7554/elife.18270] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
Lymphomagenesis in the presence of deregulated MYC requires suppression of MYC-driven apoptosis, often through downregulation of the pro-apoptotic BCL2L11 gene (Bim). Transcription factors (EBNAs) encoded by the lymphoma-associated Epstein-Barr virus (EBV) activate MYC and silence BCL2L11. We show that the EBNA2 transactivator activates multiple MYC enhancers and reconfigures the MYC locus to increase upstream and decrease downstream enhancer-promoter interactions. EBNA2 recruits the BRG1 ATPase of the SWI/SNF remodeller to MYC enhancers and BRG1 is required for enhancer-promoter interactions in EBV-infected cells. At BCL2L11, we identify a haematopoietic enhancer hub that is inactivated by the EBV repressors EBNA3A and EBNA3C through recruitment of the H3K27 methyltransferase EZH2. Reversal of enhancer inactivation using an EZH2 inhibitor upregulates BCL2L11 and induces apoptosis. EBV therefore drives lymphomagenesis by hijacking long-range enhancer hubs and specific cellular co-factors. EBV-driven MYC enhancer activation may contribute to the genesis and localisation of MYC-Immunoglobulin translocation breakpoints in Burkitt's lymphoma.
Collapse
Affiliation(s)
- C David Wood
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | | - Sarika Khasnis
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Andrea Gunnell
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Helen M Webb
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Claire Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, United Kingdom
| | - Cameron S Osborne
- Department of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Michelle J West
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
50
|
Targeting BCL-2-like Proteins to Kill Cancer Cells. Trends Cancer 2016; 2:443-460. [PMID: 28741496 DOI: 10.1016/j.trecan.2016.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023]
Abstract
Mutations that impair apoptosis contribute to cancer development and reduce the effectiveness of conventional anti-cancer therapies. These insights and understanding of how the B cell lymphoma (BCL)-2 protein family governs apoptosis have galvanized the search for a new class of cancer drugs that target its pro-survival members by mimicking their natural antagonists, the BCL-2 homology (BH)3-only proteins. Successful initial clinical trials of the BH3 mimetic venetoclax/ABT-199, specific for BCL-2, have led to its recent licensing for refractory chronic lymphocytic leukemia and to multiple ongoing trials for other malignancies. Moreover, preclinical studies herald the potential of emerging BH3 mimetics targeting other BCL-2 pro-survival members, particularly myeloid cell leukemia (MCL)-1, for multiple cancer types. Thus, BH3 mimetics seem destined to become powerful new weapons in the arsenal against cancer. This review sketches the discovery of the BCL-2 family and its impact on cancer development and therapy; describes how interactions of family members trigger apoptosis; outlines the development of BH3 mimetic drugs; and discusses their potential to advance cancer therapy.
Collapse
|