1
|
Liu T, Zhai C, Tian B, Li C, Han S, Wang S, Xuan M, Liu D, Zhao Y, Zhao H, Yu W, Wang J. Downregulation of Roundabout guidance receptor 2 suppresses hepatocellular carcinoma progression by interacting with Y-box binding protein 1. Sci Rep 2024; 14:2588. [PMID: 38297025 PMCID: PMC10830551 DOI: 10.1038/s41598-024-53013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Roundabout guidance receptor 2 (Robo2) is closely related to malignant tumors such as pancreatic cancer and liver fibrosis, but there is no relevant research on the role of Robo2 in HCC. The study will further explore the function and mechanism of Robo2 and its downstream target genes in HCC. Firstly, Robo2 protein levels in human HCC tissues and paired adjacent normal liver tissues were detected. Then we established HepG2 and Huh7 hepatoma cell lines with knock-down Robo2 by transfection with lentiviral vectors, and examined the occurrence of EMT, proliferation and apoptosis abilities in HCC cells by western blot, flow cytometry, wound healing assay and TUNEL staining. Then we verified the interaction between Robo2 and its target gene by Co-IP and immunofluorescence co-staining, and further explored the mechanism of Robo2 and YB-1 by rescue study. The protein expression level of Robo2 in HCC was considerably higher than that in the normal liver tissues. After successfully constructing hepatoma cells with knock-down Robo2, it was confirmed that down-regulated Robo2 suppressed EMT and proliferation of hepatoma cells, and accelerated the cell apoptosis. High-throughput sequencing and validation experiments verified that YB-1 was the downstream target gene of Robo2, and over-expression of YB-1 could reverse the apoptosis induced by Robo2 down-regulation and its inhibitory effect on EMT and proliferation. Robo2 deficiency inhibits EMT and proliferation of hepatoma cells and augments the cell apoptosis by regulating YB-1, thus inhibits the occurrence of HCC and provides a new strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Congjie Zhai
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Bo Tian
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Chao Li
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Shuangshuang Han
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Shihui Wang
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Mingda Xuan
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Dehua Liu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Yunxia Zhao
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Hongyan Zhao
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Weifang Yu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| | - Jia Wang
- Department of Infectious Diseases, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
2
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
3
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Guens GP. YB-1 Protein in Breast Cancer (Scientific and Personal Meetings with Professor Ovchinnikov). BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S86-S47. [PMID: 35501988 DOI: 10.1134/s0006297922140073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
In the article, the author examines the properties of Y-box-binding protein (YB-1) and expression of the YBX-1 gene in various malignant tumors and provides the data from her own prospective study in breast cancer patients. YB-1 is a member of the highly conserved family of cold shock proteins with multiple functions in the cytoplasm and cell nucleus. YB-1 is involved in embryogenesis; it ensures cell proliferation and protects cell from the action of various aggressive environmental factors. In adult organisms, YB-1 is involved in a variety of cellular functions that regulate malignant phenotype in several types of tumors. YB-1 is a molecular marker of tumor progression that can be used in clinical practice as both prognostic factor and a target for anticancer therapy. Our prospective clinical study showed that expression of YB-1 mRNA is an independent prognostic factor, as breast cancer patients expressing YB-1 have a lower disease-free survival rate, regardless of the tumor stage and biological subtype. We recommend determining the level of YB-1 mRNA expression as a prognostic test in breast cancer patients.
Collapse
Affiliation(s)
- Gelena P Guens
- Department of Oncology and Radiation Therapy, Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, 127473, Russia.
| |
Collapse
|
5
|
Rybalkina EY, Moiseeva NI. Role of YB-1 Protein in Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S94-S202. [PMID: 35501989 DOI: 10.1134/s0006297922140085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
This review discusses the role of the multifunctional DNA/RNA-binding protein YB-1 in inflammation. YB-1 performs multiple functions in the cell depending on its location: it acts as transcriptional factor for many genes in the nucleus, regulates translation and stability of mRNA in the cytoplasm, and becomes a paracrine factor when secreted from the cells. The review presents the data on the YB-1-mediated regulation of inflammation-associated genes, as well as results of studies on the YB-1 role in animal model of various inflammatory diseases, such as glomerulonephritis, tubulointerstitial fibrosis, and bacterial sepsis, and on the YB-1 expression in different human diseases associated with inflammatory processes in kidney, liver, and endometrium. The last section of the review presents several approaches to the regulation of YB-1 with small molecules in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ekaterina Yu Rybalkina
- Blokhin National Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Natalia I Moiseeva
- Blokhin National Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
6
|
Wang C, Zhao N, Sato F, Tanimoto K, Okada H, Liu Y, Bhawal UK. The roles of Y-box-binding protein (YB)-1 and C-X-C motif chemokine ligand 14 (CXCL14) in the progression of prostate cancer via extracellular-signal-regulated kinase (ERK) signaling. Bioengineered 2021; 12:9128-9139. [PMID: 34696665 PMCID: PMC8809965 DOI: 10.1080/21655979.2021.1993537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cold-shock protein Y-box-binding protein (YB)-1 regulates the expression of various chemokines and their receptors at the transcriptional level. Expression of the orphan chemokine CXCL14 is repressed by EGF induced signaling. The possible links between EGF-mediated YB-1 and CXCL14 as well as the functions of critical kinase pathways in the progression of prostate cancer have remained unexplored. Here we examined the correlation between YB-1 and CXCL14, and the ERK/AKT/mTOR pathways in prostate cancer. Knockdown of YB-1 decreased cyclinD1 expression with an upregulation of cleaved-PARP in human prostate cancer cells. EGF treatment upregulated phospho-YB-1 expression in a time-dependent manner, while treatment with an ERK inhibitor completely silenced its expression in prostate cancer cells. EGF treatment stimulates CyclinD1 and YB-1 phosphorylation in an ERK-dependent pathway. Positive and negative regulation of YB-1 and CXCL14 was observed after EGF treatment in prostate cancer cells, respectively. EGF rescues cell cycle and apoptosis via the AKT and ERK pathways. Furthermore, YB-1 silencing induces G1 arrest and apoptosis, while knockdown of CXCL14 facilitates cell growth and inhibits apoptosis in prostate cancer cells. YB-1 and CXCL14 were inversely correlated in prostate cancer cells and tissues. A significant association between poor overall survival and High YB-1 expression was observed in human prostate cancer patients. In conclusion, our data reveal the functional relationship between YB-1 and CXCL14 in EGF mediated ERK signaling, and YB-1 expression is a significant prognostic marker to predict prostate cancer.
Collapse
Affiliation(s)
- Chen Wang
- Department of Histology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Na Zhao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fuyuki Sato
- Pathology Division, Shizuoka Cancer Center, Shizuoka, Japan
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yang Liu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ujjal K Bhawal
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.,Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
7
|
Liu T, Xie XL, Zhou X, Chen SX, Wang YJ, Shi LP, Chen SJ, Wang YJ, Wang SL, Zhang JN, Dou SY, Jiang XY, Cui RL, Jiang HQ. Y-box binding protein 1 augments sorafenib resistance via the PI3K/Akt signaling pathway in hepatocellular carcinoma. World J Gastroenterol 2021; 27:4667-4686. [PMID: 34366628 PMCID: PMC8326262 DOI: 10.3748/wjg.v27.i28.4667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Y-box binding protein 1 (YB-1) is closely correlated with tumors and drug resistance. However, the relationship between YB-1 and sorafenib resistance and the underlying mechanism in HCC remain unknown.
AIM To explore the role and related mechanisms of YB-1 in mediating sorafenib resistance in HCC.
METHODS The protein expression levels of YB-1 were assessed in human HCC tissues and adjacent nontumor tissues. Next, we constructed YB-1 overexpression and knockdown hepatocarcinoma cell lines with lentiviruses and stimulated these cell lines with different concentrations of sorafenib. Then, we detected the proliferation and apoptosis in these cells by terminal deoxynucleotidyl transferase dUTP nick end labeling, flow cytometry and Western blotting assays. We also constructed a xenograft tumor model to explore the effect of YB-1 on the efficacy of sorafenib in vivo. Moreover, we studied and verified the specific molecular mechanism of YB-1 mediating sorafenib resistance in hepatoma cells by digital gene expression sequencing (DGE-seq).
RESULTS YB-1 protein levels were found to be higher in HCC tissues than in corresponding nontumor tissues. YB-1 suppressed the effect of sorafenib on cell proliferation and apoptosis. Consistently, the efficacy of sorafenib in vivo was enhanced after YB-1 was knocked down. Furthermore, KEGG pathway enrichment analysis of DGE-seq demonstrated that the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was essential for the sorafenib resistance induced by YB-1. Subsequently, YB-1 interacted with two key proteins of the PI3K/Akt signaling pathway (Akt1 and PIK3R1) as shown by searching the BioGRID and HitPredict websites. Finally, YB-1 suppressed the inactivation of the PI3K/Akt signaling pathway induced by sorafenib, and the blockade of the PI3K/Akt signaling pathway by LY294002 mitigated YB-1-induced sorafenib resistance.
CONCLUSION Overall, we concluded that YB-1 augments sorafenib resistance through the PI3K/Akt signaling pathway in HCC and suggest that YB-1 is a key drug resistance-related gene, which is of great significance for the application of sorafenib in advanced-stage HCC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xue Zhou
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Sheng-Xiong Chen
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Yi-Jun Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Lin-Ping Shi
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Shu-Jia Chen
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Yong-Juan Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Shu-Ling Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Jiu-Na Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Shi-Ying Dou
- Department of Infectious Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Yu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ruo-Lin Cui
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Hui-Qing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
8
|
Alkrekshi A, Wang W, Rana PS, Markovic V, Sossey-Alaoui K. A comprehensive review of the functions of YB-1 in cancer stemness, metastasis and drug resistance. Cell Signal 2021; 85:110073. [PMID: 34224843 DOI: 10.1016/j.cellsig.2021.110073] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
The Y Box binding protein 1 (YB-1) is a member of the highly conserved Cold Shock Domain protein family with multifunctional properties both in the cytoplasm and inside the nucleus. YB-1 is also involved in various cellular functions, including regulation of transcription, mRNA stability, and splicing. Recent studies have associated YB-1 with the regulation of the malignant phenotypes in several tumor types. In this review article, we provide an in-depth and expansive review of the literature pertaining to the multiple physiological functions of YB-1. We will also review the role of YB-1 in cancer development, progression, metastasis, and drug resistance in various malignancies, with more weight on literature published in the last decade. The methodology included querying databases PubMed, Embase, and Google Scholar for Y box binding protein 1, YB-1, YBX1, and Y-box-1.
Collapse
Affiliation(s)
- Akram Alkrekshi
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Wei Wang
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Priyanka Shailendra Rana
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Vesna Markovic
- MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Khalid Sossey-Alaoui
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
9
|
Dephosphorylation of YB-1 is Required for Nuclear Localisation During G 2 Phase of the Cell Cycle. Cancers (Basel) 2020; 12:cancers12020315. [PMID: 32013098 PMCID: PMC7072210 DOI: 10.3390/cancers12020315] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 01/25/2023] Open
Abstract
Elevated levels of nuclear Y-box binding protein 1 (YB-1) are linked to poor prognosis in cancer. It has been proposed that entry into the nucleus requires specific proteasomal cleavage. However, evidence for cleavage is contradictory and high YB-1 levels are prognostic regardless of cellular location. Here, using confocal microscopy and mass spectrometry, we find no evidence of specific proteolytic cleavage. Doxorubicin treatment, and the resultant G2 arrest, leads to a significant increase in the number of cells where YB-1 is not found in the cytoplasm, suggesting that its cellular localisation is variable during the cell cycle. Live cell imaging reveals that the location of YB-1 is linked to progression through the cell cycle. Primarily perinuclear during G1 and S phases, YB-1 enters the nucleus as cells transition through late G2/M and exits at the completion of mitosis. Atomistic modelling and molecular dynamics simulations show that dephosphorylation of YB-1 at serine residues 102, 165 and 176 increases the accessibility of the nuclear localisation signal (NLS). We propose that this conformational change facilitates nuclear entry during late G2/M. Thus, the phosphorylation status of YB-1 determines its cellular location.
Collapse
|
10
|
Cho KH, Jeong BY, Park CG, Lee HY. The YB-1/EZH2/amphiregulin signaling axis mediates LPA-induced breast cancer cell invasion. Arch Pharm Res 2019; 42:519-530. [PMID: 31004257 DOI: 10.1007/s12272-019-01149-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022]
Abstract
Lysophosphatidic acid (LPA) has been known to induce epithelial-mesenchymal transition (EMT) to stimulate cancer cell invasion, and resveratrol (3,5,4'-trans-trihydroxystilbene; REV) suppresses the invasion and metastasis of various cancers. The current study aimed to identify the underlying mechanism by which LPA aggravates breast cancer cell invasion and the reversal of this phenomenon. Immunoblotting and quantitative RT-PCR analysis revealed that LPA induces amphiregulin (AREG) expression. Silencing of Y-box binding protein 1 (YB-1) or enhancer of zeste homolog 2 (EZH2) expression efficiently inhibited LPA-induced AREG expression. In addition, transfection of the cells with YB-1 siRNA abrogated LPA-induced EZH2 and AREG expression, leading to attenuation of breast cancer cell invasion. Furthermore, we observed that both REV and 5-fluorouracil (5-Fu) significantly reduce LPA-induced YB-1 phosphorylation and subsequent breast cancer invasion. Importantly, combined treatment of REV with 5-Fu showed more significant inhibition of LPA-induced breast cancer invasion compared to single treatment. Therefore, our data demonstrate that the YB-1/EZH2 signaling axis mediates LPA-induced AREG expression and breast cancer cell invasion and its inhibition by REV and 5-Fu, providing potential therapeutic targets and inhibition of breast cancer.
Collapse
Affiliation(s)
- Kyung Hwa Cho
- Department of Pharmacology, College of Medicine, Konyang University, Myunggok Medical Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Bo Young Jeong
- Department of Pharmacology, College of Medicine, Konyang University, Myunggok Medical Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Myunggok Medical Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Myunggok Medical Building, 158 Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
11
|
Tong H, Zhao K, Zhang J, Zhu J, Xiao J. YB-1 modulates the drug resistance of glioma cells by activation of MDM2/p53 pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:317-326. [PMID: 30679904 PMCID: PMC6338113 DOI: 10.2147/dddt.s185514] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Y-box-binding protein-1 (YB-1) is aberrantly expressed in a variety of cancers. However, the biological functional role of YB-1 in glioma is not yet clear. Methods The expression of MDM2 and YB-1 was analyzed by real time PCR. Overexpression and knockdown of YB-1 in glioma cells were created by transfection of pcDNA-YB-1 and siRNA against YB-1, respectively. Cell viability was performed by CCK8 assay. Results Our findings showed that glioma tissues had higher expressions of YB-1 than that in cancer-free tissues in 54 glioma patients, which were also positively correlated with Murine MDM2 expression. Overexpression of YB-1 or MDM2 renders a drug resistance feature in glioma cell exposed to temozolomide (TMZ), by directly targeting p53. Genetic or chemical inhibition of MDM2 significantly blocked YB-1-modulated response of glioma cells to TMZ. Moreover, inhibition of YB-1 or MDM2 reduced glioma cells metastasis and mortality in mice. Conclusion YB-1 facilitates the resistance of glioma cells to TMZ by direct activation of MDM2/p53 signaling and represents a promising molecular target for glioma treatment.
Collapse
Affiliation(s)
- Hui Tong
- Department of Neurosurgery, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| | - Kai Zhao
- Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang 161005, People's Republic of China,
| | - Jingyu Zhang
- Department of Internal Medicine, Jiangpu District Health Center of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Jinxin Zhu
- Department of Neurosurgery, Lianshui County People's Hospital, Huai'an, Jiangsu 223400, People's Republic of China,
| | - Jianqi Xiao
- Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang 161005, People's Republic of China,
| |
Collapse
|
12
|
Tian J, Liu X, Liu X, Jing P, Sa N, Wang H, Xu W. Notch1 serves as a prognostic factor and regulates metastasis via regulating EGFR expression in hypopharyngeal squamous cell carcinoma. Onco Targets Ther 2018; 11:7395-7405. [PMID: 30425527 PMCID: PMC6204875 DOI: 10.2147/ott.s175423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective Hypopharyngeal squamous cell carcinoma (HSCC) remains one of the most lethal malignancies in head and neck. Notch1 has been validated to play prominent roles in the occurrence and development of various types of cancer. The aim of this study was to explore the function and underlying mechanism of Notch1 in HSCC. Patients and methods Seventy-one cancer tissue samples and adjacent noncancerous formalin-fixed paraffin embedded tissue specimens were analyzed by immunohistochemistry. As Notch1 is overexpressed in HSCC, we further questioned whether there was a relationship between Notch1 and the clinicopathological characteristics. After confirming the successful knockdown of Notch1 by siRNA, the migration and invasion after gene knockdown were investigated by Transwell chambers. We then tried to identify YBX1 and EGFR expression using real-time PCR (RT-PCR) and Western blot analyses. To further determine whether the downexpression of EGFR was caused by YBX1 and the overexpression of YBX1 was caused by gene amplification, the expression of EGFR was detected by RT-PCR and Western blot assays. Results We found that the expression of Notch1 and EGFR in HSCC tissues was upregulated compared with those in the adjacent noncancerous tissues. Further clinicopathological characteristics analysis revealed that the expression of Notch1 was positively correlated with distant metastasis (P=0.003) and tumor differentiation (P=0.031). The high expression of Notch1 is an independent prognostic factor for a poor overall survival in patients with HSCC (P=0.015, χ 2=10.403). Knocking down of Notch1 significantly inhibits the migration and invasion of FaDu cells in vitro. Mechanistic investigation reveals that Notch1 knockdown is found suppressing the expression of EGFR at transcriptional level. Interestingly, we further found that Notch1 knockdown also decreased the expression of YBX1, which is a transcription factor of EGFR. Moreover, the upregulation of YBX1 reverses the suppression of Notch1 on EGFR. Furthermore, forced overexpression of YBX1 induced the invasion of FaDu cells. Conclusion Taken together, we found a positively cross-linked role of Notch1 signaling in the outcome of HSCC, providing a novel valuable prognostic marker and potential therapeutic target for the treatment of HSCC patients. Notch1 is a core signaling molecule for regulating migration and invasion via interplaying with EGFR in HSCC cells.
Collapse
Affiliation(s)
- Jiajun Tian
- Department of Otorhinolaryngology- Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China, ,
| | - Xianfang Liu
- Shandong Provincial Key Laboratory of Otology, Jinan 250022, Shandong, China, ,
| | - Xiuxiu Liu
- Shandong Provincial Key Laboratory of Otology, Jinan 250022, Shandong, China, ,
| | - Peihang Jing
- Department of Otorhinolaryngology- Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China, ,
| | - Na Sa
- Department of Otorhinolaryngology- Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China, ,
| | - Haibo Wang
- Department of Otorhinolaryngology- Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China, , .,Shandong Provincial Key Laboratory of Otology, Jinan 250022, Shandong, China, ,
| | - Wei Xu
- Department of Otorhinolaryngology- Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China, , .,Shandong Provincial Key Laboratory of Otology, Jinan 250022, Shandong, China, ,
| |
Collapse
|
13
|
Lindquist JA, Mertens PR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal 2018; 16:63. [PMID: 30257675 PMCID: PMC6158828 DOI: 10.1186/s12964-018-0274-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cold shock proteins are multifunctional RNA/DNA binding proteins, characterized by the presence of one or more cold shock domains. In humans, the best characterized members of this family are denoted Y-box binding proteins, such as Y-box binding protein-1 (YB-1). Biological activities range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. Indeed, the secretion of YB-1 from cells via exosomes has opened the door to further potent activities. Evidence links a skewed cold shock protein expression pattern with cancer and inflammatory diseases. In this review the evidence for a causative involvement of cold shock proteins in disease development and progression is summarized. Furthermore, the potential application of cold shock proteins for diagnostics and as targets for therapy is elucidated.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Peter R Mertens
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| |
Collapse
|
14
|
Davies AH, Reipas K, Hu K, Berns R, Firmino N, Stratford AL, Dunn SE. Inhibition of RSK with the novel small-molecule inhibitor LJI308 overcomes chemoresistance by eliminating cancer stem cells. Oncotarget 2016; 6:20570-7. [PMID: 26011941 PMCID: PMC4653026 DOI: 10.18632/oncotarget.4135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 11/25/2022] Open
Abstract
The triple-negative breast cancer (TNBC) subtype is enriched in cancer stem cells (CSCs) and clinically correlated with the highest rate of recurrence. Several studies implicate the RSK pathway as being pivotal for the growth and proliferation of CSCs, which are postulated to drive tumor relapse. We now address the potential for the newly developed RSK inhibitor LJI308 to target the CSC population and repress TNBC growth and dissemination. Overexpression of the Y-box binding protein-1 (YB-1) oncogene in human mammary epithelial cells (HMECs) drove TNBC tumor formation characterized by a multi-drug resistance phenotype, yet these cells were sensitive to LJI308 in addition to the classic RSK inhibitors BI-D1870 and luteolin. Notably, LJI308 specifically targeted transformed cells as it had little effect on the non-tumorigenic parental HMECs. Loss of cell growth, both in 2D and 3D culture, was attributed to LJI308-induced apoptosis. We discovered CD44+/CD49f+ TNBC cells to be less sensitive to chemotherapy compared to the isogenic CD44-/CD49f- cells. However, inhibition of RSK using LJI308, BI-D1870, or luteolin was sufficient to eradicate the CSC population. We conclude that targeting RSK using specific and potent inhibitors, such as LJI308, delivers the promise of inhibiting the growth of TNBC.
Collapse
Affiliation(s)
- Alastair H Davies
- Department of Urological Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Kristen Reipas
- School of Medicine, Queen's University, Kingston, ON, Canada
| | - Kaiji Hu
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rachel Berns
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Natalie Firmino
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Anna L Stratford
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
15
|
Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and Mdm2. Int J Cancer 2015; 138:1577-85. [PMID: 26132471 DOI: 10.1002/ijc.29663] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is activated upon cellular stresses such as DNA damage, oncogene activation, hypoxia, which transactivates sets of genes that induce DNA repair, cell cycle arrest, apoptosis, or autophagy, playing crucial roles in the prevention of tumor formation. The central regulator of the p53 pathway is Mdm2 which inhibits transcriptional activity, nuclear localization and protein stability. More than 30 cellular p53-binding proteins have been isolated and characterized including Mdm2, Mdm4, p300, BRCA1/2, ATM, ABL and 53BP-1/2. Most of them are nuclear proteins; however, not much is known about p53-binding transcription factors. In this review, we focus on transcription factors that directly interact with p53/Mdm2 through direct binding including Dmp1, E2F1, YB-1 and YY1. Dmp1 and YB-1 bind only to p53 while E2F1 and YY1 bind to both p53 and Mdm2. Dmp1 has been shown to bind to p53 and block all the known functions for Mdm2 on p53 inhibition, providing a secondary mechanism for tumor suppression in Arf-null cells. Although E2F1-p53 binding provides a checkpoint mechanism to silence hyperactive E2F1, YB-1 or YY1 interaction with p53 subverts the activity of p53, contributing to cell cycle progression and tumorigenesis. Thus, the modes and consequences for each protein-protein interaction vary from the viewpoint of tumor development and suppression.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Elizabeth A Fry
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Donna P Frazier
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| |
Collapse
|
16
|
Davies AH, Reipas KM, Pambid MR, Berns R, Stratford AL, Fotovati A, Firmino N, Astanehe A, Hu K, Maxwell C, Mills GB, Dunn SE. YB-1 transforms human mammary epithelial cells through chromatin remodeling leading to the development of basal-like breast cancer. Stem Cells 2015; 32:1437-50. [PMID: 24648416 DOI: 10.1002/stem.1707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 12/18/2022]
Abstract
There is growing evidence that cancer-initiation could result from epigenetic changes. Y-box binding protein-1 (YB-1) is a transcription/translation factor that promotes the formation of tumors in transgenic mice; however, the underlying molecular events are not understood. To explore this in a human model system, YB-1 was expressed in mammary epithelial cells under the control of a tetracycline-inducible promoter. The induction of YB-1 promoted phenotypes associated with malignancy in three-dimensional breast acini cultures. This was attributed to YB-1 enhancing the expression and activity of the histone acetyltransferase p300 leading to chromatin remodeling. Specifically, this relaxation of chromatin allowed YB-1 to bind to the BMI1 promoter. The induction of BMI1 engaged the Polycomb complex resulting in histone H2A ubiquitylation and repression of the CDKN2A locus. These events manifested functionally as enhanced self-renewal capacity that occurred in a BMI1-dependent manner. Conversely, p300 inhibition with anacardic acid prevented YB-1 from binding to the BMI1 promoter and thereby subverted self-renewal. Despite these early changes, full malignant transformation was not achieved until RSK2 became overexpressed concomitant with elevated human telomerase reverse transcriptase (hTERT) activity. The YB-1/RSK2/hTERT expressing cells formed tumors in mice that were molecularly subtyped as basal-like breast cancer. We conclude that YB-1 cooperates with p300 to allow BMI1 to over-ride p16(INK4a) -mediated cell cycle arrest enabling self-renewal and the development of aggressive breast tumors.
Collapse
Affiliation(s)
- Alastair H Davies
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Self-reinforcing loop of amphiregulin and Y-box binding protein-1 contributes to poor outcomes in ovarian cancer. Oncogene 2013; 33:2846-56. [PMID: 23851501 DOI: 10.1038/onc.2013.259] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/05/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
The Y-box binding protein-1 (YB-1) transcription factor is associated with unfavorable clinical outcomes. However, the mechanisms underlying this association remain to be fully elucidated. We demonstrate that YB-1 phosphorylation, indicative of YB-1 activation, is a powerful marker of outcomes for ovarian cancer patients. In ovarian cancer, YB-1 phosphorylation is induced by activation of the lysophosphatidic acid (LPA) receptor (LPAR) via SRC-dependent transactivation of the epidermal growth factor receptor (EGFR) that is coupled to MAPK/p90 ribosomal S6 kinase (p90RSK), but not phosphatidylinositol 3-kinase (PI3K)/AKT signaling. Activation of the LPAR/SRC/EGFR/MAPK/p90RSK/YB-1 axis leads to production of the EGFR ligand amphiregulin (AREG). AREG induces ongoing YB-1 phosphorylation as well as YB-1-dependent AREG expression, thus constituting an AREG/YB-1 self-reinforcing loop. Disruption of transactivation of the EGFR and the downstream self-reinforcing loop decreases invasiveness of ovarian cancer cells in vitro and limits ovarian cancer growth in xenograft models. These findings established the regulation and significance of YB-1 phosphorylation, therefore further exploration of this signaling axis as a therapeutic avenue in ovarian cancer is warranted.
Collapse
|
18
|
Li W, Wang X, Gao G. Expression of YB-1 enhances production of murine leukemia virus vectors by stabilizing genomic viral RNA. Protein Cell 2012; 3:943-9. [PMID: 23225179 DOI: 10.1007/s13238-012-2090-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/04/2012] [Indexed: 12/25/2022] Open
Abstract
Murine leukemia virus (MLV)-based retroviral vectors is widely used for gene transfer and basic research, and production of high-titer retroviral vectors is very important. Here we report that expression of the Y-box binding protein 1 (YB-1) enhanced the production of infectious MLV vectors. YB-1 specifically increased the stability of viral genomic RNA in virus-producing cells, and thus increasing viral RNA levels in both producer cells and virion particles. The viral element responsive to YB-1 was mapped to the repeat sequence (R region) in MLV genomic RNA. These results identified YB-1 as a MLV mRNA stabilizer, which can be used for improving production of MLV vectors.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
19
|
Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN. Y-box-binding protein 1 (YB-1) and its functions. BIOCHEMISTRY (MOSCOW) 2012; 76:1402-33. [PMID: 22339596 DOI: 10.1134/s0006297911130049] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review describes the structure and functions of Y-box binding protein 1 (YB-1) and its homologs. Interactions of YB-1 with DNA, mRNAs, and proteins are considered. Data on the participation of YB-1 in DNA reparation and transcription, mRNA splicing and translation are systematized. Results on interactions of YB-1 with cytoskeleton components and its possible role in mRNA localization are discussed. Data on intracellular distribution of YB-1, its redistribution between the nucleus and the cytoplasm, and its secretion and extracellular functions are summarized. The effect of YB-1 on cell differentiation, its involvement in extra- and intracellular signaling pathways, and its role in early embryogenesis are described. The mechanisms of regulation of YB-1 expression in the cell are presented. Special attention is paid to the involvement of YB-1 in oncogenic cell transformation, multiple drug resistance, and dissemination of tumors. Both the oncogenic and antioncogenic activities of YB-1 are reviewed. The potential use of YB-1 in diagnostics and therapy as an early cancer marker and a molecular target is discussed.
Collapse
Affiliation(s)
- I A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
20
|
de Hoon JPJ, Veeck J, Vriens BEPJ, Calon TGA, van Engeland M, Tjan-Heijnen VCG. Taxane resistance in breast cancer: a closed HER2 circuit? Biochim Biophys Acta Rev Cancer 2012; 1825:197-206. [PMID: 22280939 DOI: 10.1016/j.bbcan.2012.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 12/11/2022]
Abstract
Microtubule inhibitors, such as the taxanes docetaxel and paclitaxel, are commonly used drugs for the treatment of breast cancer. Although highly active in a large fraction of individuals a considerable number of patients show poor response due to either intrinsic or acquired drug resistance. Extensive research in the past identified several taxane resistance-related mechanisms being activated by pathologically altered single gene function. To date, however, a clinically relevant predictive biomarker for taxanes has not been derived yet from this knowledge, most likely due to the manifold of resistance mechanisms that may combine in one tumor, thereby fostering escape from taxane cytotoxicity. Here, we aimed to comprehensively review the current literature on taxane resistance mechanisms in breast cancer. Interestingly, besides altered microtubule physiology we identified the HER2 signaling cascade as a major dominator influencing several routes of cytotoxicity escape, such as cell survival, apoptosis, drug efflux, and drug metabolism. Furthermore, the transcription factor YBX-1, activated by HER2, facilitates a sustaining HER2 signaling feedback loop contributing to the establishment of cellular survival detours. In conclusion, taxane resistance in breast cancer follows a multiplex establishment of drug cytotoxicity escape routes, which may be most efficiently therapeutically targeted by interference with their mutually governing signaling nodes.
Collapse
Affiliation(s)
- Joep P J de Hoon
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Lasham A, Samuel W, Cao H, Patel R, Mehta R, Stern JL, Reid G, Woolley AG, Miller LD, Black MA, Shelling AN, Print CG, Braithwaite AW. YB-1, the E2F pathway, and regulation of tumor cell growth. J Natl Cancer Inst 2011; 104:133-46. [PMID: 22205655 DOI: 10.1093/jnci/djr512] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Y-box binding factor 1 (YB-1) has been associated with prognosis in many tumor types. Reduced YB-1 expression inhibits tumor cell growth, but the mechanism is unclear. METHODS YB-1 mRNA levels were compared with tumor grade and histology using microarray data from 771 breast cancer patients and with disease-free survival and distant metastasis-free survival using data from 375 of those patients who did not receive adjuvant therapy. Microarrays were further searched for genes that had correlated expression with YB-1 mRNA. Small interfering RNA (siRNA) was used to study the effects of reduced YB-1 expression on growth of three tumor cell lines (MCF-7 breast, HCT116 colon, and A549 lung cancer cells), on tumorigenesis by A549 cells in nude mice, and on global transcription in the three cancer cell lines. Reporter gene assays were used to determine whether YB-1 siRNAs affected the expression of E2F1, and chromatin immunoprecipitation was used to determine whether YB-1 bound to various E2F promoters as well as E2F1-regulated promoters. All P values were from two-sided tests. RESULTS YB-1 levels were elevated in more aggressive tumors and were strongly associated with poor disease-free survival and distant metastasis-free survival. YB-1 expression was often associated with the expression of genes with E2F sites in their promoters. Cells expressing YB-1 siRNA grew substantially more slowly than control cells and formed tumors less readily in nude mice. Transcripts that were altered in cancer cell lines with YB-1 siRNA included 32 genes that are components of prognostic gene expression signatures. YB-1 regulated expression of an E2F1 promoter-reporter construct in A549 cells (eg, relative E2F1 promoter activity with control siRNA = 4.04; with YB-1 siRNA = 1.40, difference= -2.64, 95% confidence interval = -3.57 to -1.71, P < .001) and bound to the promoters of several well-defined E2F1 target genes. CONCLUSION YB-1 expression is associated with the activity of E2F transcription factors and may control tumor cell growth by this mechanism.
Collapse
Affiliation(s)
- Annette Lasham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Expression of Y-box-binding protein YB-1 allows stratification into long- and short-term survivors of head and neck cancer patients. Br J Cancer 2011; 105:1864-73. [PMID: 22095225 PMCID: PMC3251888 DOI: 10.1038/bjc.2011.491] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Histology-based classifications and clinical parameters of head and neck squamous cell carcinoma (HNSCC) are limited in their clinical capacity to provide information on prognosis and treatment choice of HNSCC. The primary aim of this study was to analyse Y-box-binding protein-1 (YB-1) protein expression in different grading groups of HNSCC patients, and to correlate these findings with the disease-specific survival (DSS). Methods: We investigated the expression and cellular localisation of the oncogenic transcription/translation factor YB-1 by immunohistochemistry on tissue micro arrays in a total of 365 HNSCC specimens and correlated expression data with clinico-pathological parameters including DSS. Results: Compared with control tissue from healthy individuals, a significantly (P<0.01) increased YB-1 protein expression was observed in high-grade HNSCC patients. By univariate survival data analysis, HNSCC patients with elevated YB-1 protein expression had a significantly (P<0.01) decreased DSS. By multivariate Cox regression analysis, high YB-1 expression and nuclear localisation retained its significance as a statistically independent (P<0.002) prognostic marker for DSS. Within grade 2 group of HNSCC patients, a subgroup defined by high nuclear and cytoplasmic YB-1 levels (co-expression pattern) in the cells of the tumour invasion front had a significantly poorer 5-year DSS rate of only 38% compared with overall 55% for grade 2 patients. Vice versa, the DSS rate was markedly increased to 74% for grade 2 cancer patients with low YB-1 protein expression at the same localisation. Conclusion: Our findings point to the fact that YB-1 expression in combination with histological classification in a double stratification strategy is superior to classical grading in the prediction of tumour progression in HNSCC.
Collapse
|
23
|
Silveira CGT, Krampe J, Ruhland B, Diedrich K, Hornung D, Agic A. Cold-shock domain family member YB-1 expression in endometrium and endometriosis. Hum Reprod 2011; 27:173-82. [PMID: 22095791 DOI: 10.1093/humrep/der368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The Y-box-binding protein (YB-1) is described as a potential oncogene highly expressed in tumors and associated with increased cell survival, proliferation, migration and anti-apoptotic signaling. The aim of our study was to examine the expression and role of YB-1 in human endometriosis (Eo) and its association with cell survival, proliferation and invasion. METHODS We analyzed the gene and protein expression levels of YB-1 by quantitative real-time RT-PCR and immunoassays, respectively, in peritoneal macrophages, ovarian endometrioma and eutopic endometrial tissues/cells derived from women with (n= 120) and without (n= 91) Eo. We also evaluated the functional consequences of YB-1 knockdown in the Z12 Eo cell line by measuring cell proliferation [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid cell proliferation assay], invasion (Matrigel invasion assay) and spontaneous and tumour necrosis factor (TNFα)-induced RANTES (regulated upon activation, normal T-cell expressed and secreted chemokine) expression and apoptosis (ELISA-based assay). RESULTS YB-1 gene and protein expression was statistically significantly higher in ovarian lesions, eutopic endometrium and peritoneal macrophages of patients with Eo in comparison with the control group. Interestingly, the strongest YB-1 expression was observed in the epithelial compartment of endometrial tissues. In the Z12 cell line, YB-1 knockdown resulted in significant cell growth inhibitory effects including reduced cell proliferation and increased rates of spontaneous and TNFα-induced apoptosis. Significantly, higher RANTES expression and decreased cell invasion in vitro were also associated with YB-1 inactivation. CONCLUSION High YB-1 expression could have an impact on the development and progression of Eo. This study suggests the role of YB-1 as a potential therapeutic target for Eo patients.
Collapse
Affiliation(s)
- C G T Silveira
- Department of Obstetrics and Gynecology, University of Schleswig-Holstein, Campus Luebeck, Ratzeburgerallee 160, 23538 Luebeck, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Baillo A, Giroux C, Ethier SP. Knock-down of amphiregulin inhibits cellular invasion in inflammatory breast cancer. J Cell Physiol 2011; 226:2691-701. [PMID: 21302279 DOI: 10.1002/jcp.22620] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have previously shown that SUM-149 human breast cancer cells require an amphiregulin (AREG) autocrine loop for cell proliferation. We also demonstrated that AREG can increase epidermal growth factor receptor (EGFR) stability and promote EGFR localization to the plasma membrane. In the present studies we successfully knocked-down AREG expression in SUM-149 cells by lentiviral infection of AREG shRNA. In the absence of AREG expression, SUM-149 cell growth was slowed, but not completely inhibited. Furthermore, cells infected with AREG shRNA constructs showed an increase in EGFR protein expression by Western blot. Immunofluorescence and confocal microscopy showed that following AREG knock-down, EGFR continued to localize to the cell surface. Soft agar assays demonstrated that AREG knock-down cells retain anchorage-independent growth capacity. Additionally mammosphere forming assays and Adefluor staining analysis showed that knock-down of AREG expression did not affect the expression of stem cell phenotypes. However, following AREG knock-down, SUM-149 cells demonstrated a dramatic decrease in their ability to invade a Matrigel matrix. Consistent with this observation, microarray analysis comparing cells infected with a non-silencing vector to the AREG knock-down cells, identified genes associated with the invasive phenotype such as RHOB and DKK1, and networks associated with cell motility such as integrin-linked kinase signaling, and focal adhesion kinase signaling. AREG was also found to modulate WNT and Notch signaling in these cells. Thus, AREG functions in regulating the invasive phenotype, and we propose that this regulation may be through altered signaling that occurs when AREG activates plasma membrane localized EGFR.
Collapse
Affiliation(s)
- Andrea Baillo
- Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | | | | |
Collapse
|
25
|
Expression of Y-Box-binding protein 1 in Chinese patients with breast cancer. Tumour Biol 2011; 33:63-71. [DOI: 10.1007/s13277-011-0246-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022] Open
|
26
|
Raffetseder U, Liehn EA, Weber C, Mertens PR. Role of cold shock Y-box protein-1 in inflammation, atherosclerosis and organ transplant rejection. Eur J Cell Biol 2011; 91:567-75. [PMID: 21943779 DOI: 10.1016/j.ejcb.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 12/14/2022] Open
Abstract
Chemokines (chemoattractant cytokines) are crucial regulators of immune cell extravasation from the bloodstream into inflamed tissue. Dysfunctional regulation and perpetuated chemokine gene expression are linked to progressive chronic inflammatory diseases and, in respect to transplanted organs, may trigger graft rejection. RANTES (regulated upon activation, normal T cell expressed and secreted (also known as CCL5)) is a model chemokine with relevance in numerous inflammatory diseases where the innate immune response predominates. Transcription factor Y-box binding protein-1 (YB-1) serves as a trans-regulator of CCL5 gene transcription in vascular smooth muscle cells and leucocytes. This review provides an update on YB-1 as a mediator of inflammatory processes and focuses on the role of YB-1 in CCL5 expression in diseases with monocytic cell infiltrates, albeit acute or chronic. Paradigms of such diseases encompass atherosclerosis and transplant rejection where cold shock protein YB-1 takes a dominant role in transcriptional regulation.
Collapse
Affiliation(s)
- Ute Raffetseder
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Pauwelsstrasse 30, 52057 Aachen, Germany.
| | | | | | | |
Collapse
|
27
|
Zhang Y, Reng SR, Wang L, Lu L, Zhao ZH, Zhang ZK, Feng XD, Ding XD, Wang J, Feng G, Dai TZ, Pu J, Du XB. Overexpression of Y-box binding protein-1 in cervical cancer and its association with the pathological response rate to chemoradiotherapy. Med Oncol 2011; 29:1992-7. [DOI: 10.1007/s12032-011-0062-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 11/30/2022]
|
28
|
Tacke F, Kanig N, En-Nia A, Kaehne T, Eberhardt CS, Shpacovitch V, Trautwein C, Mertens PR. Y-box protein-1/p18 fragment identifies malignancies in patients with chronic liver disease. BMC Cancer 2011; 11:185. [PMID: 21595987 PMCID: PMC3120803 DOI: 10.1186/1471-2407-11-185] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 05/20/2011] [Indexed: 01/18/2023] Open
Abstract
Background Immunohistochemical detection of cold shock proteins is predictive for deleterious outcome in various malignant diseases. We recently described active secretion of a family member, denoted Y-box (YB) protein-1. We tested the clinical and diagnostic value of YB-1 protein fragment p18 (YB-1/p18) detection in blood for malignant diseases. Methods We used a novel monoclonal anti-YB-1 antibody to detect YB-1/p18 by immunoblotting in plasma samples of healthy volunteers (n = 33), patients with non-cancerous, mostly inflammatory diseases (n = 60), hepatocellular carcinoma (HCC; n = 25) and advanced solid tumors (n = 20). YB-1/p18 was then tested in 111 patients with chronic liver diseases, alongside established tumor markers and various diagnostic measures, during evaluation for potential liver transplantation. Results We developed a novel immunoblot to detect the 18 kD fragment of secreted YB-1 in human plasma (YB-1/p18) that contains the cold-shock domains (CSD) 1-3 of the full-length protein. YB-1/p18 was detected in 11/25 HCC and 16/20 advanced carcinomas compared to 0/33 healthy volunteers and 10/60 patients with non-cancerous diseases. In 111 patients with chronic liver disease, YB-1/p18 was detected in 20 samples. Its occurrence was not associated with advanced Child stages of liver cirrhosis or liver function. In this cohort, YB-1/p18 was not a good marker for HCC, but proved most powerful in detecting malignancies other than HCC (60% positive) with a lower rate of false-positive results compared to established tumor markers. Alpha-fetoprotein (AFP) was most sensitive in detecting HCC, but simultaneous assessment of AFP, CA19-9 and YB-1/p18 improved overall identification of HCC patients. Conclusions Plasma YB-1/p18 can identify patients with malignancies, independent of acute inflammation, renal impairment or liver dysfunction. The detection of YB-1/p18 in human plasma may have potential as a tumor marker for screening of high-risk populations, e.g. before organ transplantation, and should therefore be evaluated in larger prospective studies.
Collapse
Affiliation(s)
- Frank Tacke
- Department of Medicine III, University Hospital Aachen, RWTH-Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Davies AH, Barrett I, Pambid MR, Hu K, Stratford AL, Freeman S, Berquin IM, Pelech S, Hieter P, Maxwell C, Dunn SE. YB-1 evokes susceptibility to cancer through cytokinesis failure, mitotic dysfunction and HER2 amplification. Oncogene 2011; 30:3649-60. [PMID: 21423216 PMCID: PMC3121916 DOI: 10.1038/onc.2011.82] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Y-box binding protein-1 (YB-1) expression in the mammary gland promotes breast carcinoma that demonstrates a high degree of genomic instability. In the present study, we developed a model of premalignancy to characterize the role of this gene during breast cancer initiation and early progression. Antibody microarray technology was used to ascertain global changes in signal transduction following the conditional expression of YB-1 in human mammary epithelial cells (HMEC). Cell cycle associated proteins were frequently altered with the most dramatic being LIM Kinase 1/2 (LIMK1/2). Consequently, the misexpression of LIMK1/2 was associated with cytokinesis failure that acted as a precursor to centrosome amplification. Detailed investigation revealed that YB-1 localized to the centrosome in a phosphorylation-dependent manner where it complexed with pericentrin and γ-tubulin. This was found to be essential in maintaining the structural integrity and microtubule nucleation capacity of the organelle. Prolonged exposure to YB-1 led to rampant acceleration toward tumourigenesis with the majority of cells acquiring numerical and structural chromosomal abnormalities. Slippage through the G1/S checkpoint due to overexpression of cyclin E promoted continued proliferation of these genomically compromised cells. As malignancy further progressed, we identified a subset of cells harbouring HER2 amplification. Our results recognize YB-1 as a cancer susceptibility gene with the capacity to prime cells for tumourigenesis.
Collapse
Affiliation(s)
- A H Davies
- Laboratory of Oncogenomic Research, Departments of Pediatrics and Experimental Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jürchott K, Kuban RJ, Krech T, Blüthgen N, Stein U, Walther W, Friese C, Kiełbasa SM, Ungethüm U, Lund P, Knösel T, Kemmner W, Morkel M, Fritzmann J, Schlag PM, Birchmeier W, Krueger T, Sperling S, Sers C, Royer HD, Herzel H, Schäfer R. Identification of Y-box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells. PLoS Genet 2010; 6:e1001231. [PMID: 21170361 PMCID: PMC2996331 DOI: 10.1371/journal.pgen.1001231] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 11/01/2010] [Indexed: 12/30/2022] Open
Abstract
Transcriptional signatures are an indispensible source of correlative information on disease-related molecular alterations on a genome-wide level. Numerous candidate genes involved in disease and in factors of predictive, as well as of prognostic, value have been deduced from such molecular portraits, e.g. in cancer. However, mechanistic insights into the regulatory principles governing global transcriptional changes are lagging behind extensive compilations of deregulated genes. To identify regulators of transcriptome alterations, we used an integrated approach combining transcriptional profiling of colorectal cancer cell lines treated with inhibitors targeting the receptor tyrosine kinase (RTK)/RAS/mitogen-activated protein kinase pathway, computational prediction of regulatory elements in promoters of co-regulated genes, chromatin-based and functional cellular assays. We identified commonly co-regulated, proliferation-associated target genes that respond to the MAPK pathway. We recognized E2F and NFY transcription factor binding sites as prevalent motifs in those pathway-responsive genes and confirmed the predicted regulatory role of Y-box binding protein 1 (YBX1) by reporter gene, gel shift, and chromatin immunoprecipitation assays. We also validated the MAPK-dependent gene signature in colorectal cancers and provided evidence for the association of YBX1 with poor prognosis in colorectal cancer patients. This suggests that MEK/ERK-dependent, YBX1-regulated target genes are involved in executing malignant properties.
Collapse
Affiliation(s)
- Karsten Jürchott
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf-Jürgen Kuban
- Laboratory of Functional Genomics, Universitätsmedizin Berlin, Berlin, Germany
| | - Till Krech
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| | - Ulrike Stein
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Christian Friese
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
| | - Szymon M. Kiełbasa
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ute Ungethüm
- Laboratory of Functional Genomics, Universitätsmedizin Berlin, Berlin, Germany
| | - Per Lund
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Knösel
- Institute of Pathology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wolfgang Kemmner
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité Comprehensive Cancer Center, Berlin, Germany
| | - Markus Morkel
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | - Tammo Krueger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Silke Sperling
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christine Sers
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Royer
- Center of Advanced European Studies and Research, Bonn, Germany
- Institute of Human Genetics and Anthropology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| | - Reinhold Schäfer
- Laboratory of Molecular Tumor Pathology, Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Functional Genomics, Universitätsmedizin Berlin, Berlin, Germany
- Charité Comprehensive Cancer Center, Berlin, Germany
| |
Collapse
|
31
|
Suppression of Her2/neu expression through ILK inhibition is regulated by a pathway involving TWIST and YB-1. Oncogene 2010; 29:6343-56. [PMID: 20838384 PMCID: PMC3007675 DOI: 10.1038/onc.2010.366] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In a previous study it was found that the therapeutic effects of QLT0267, a small molecule inhibitor of integrin-linked kinase (ILK), were influenced by Her2/neu expression. To understand how inhibition or silencing of ILK influences Her2/neu expression, Her2/neu signaling was evaluated in six Her2/neu-positive breast cancer cell lines (LCC6Her2, MCF7Her2, SKBR3, BT474, JIMT-1 and KPL-4). Treatment with QLT0267 engendered suppression (32–87%) of total Her2/neu protein in these cells. Suppression of Her2/neu was also observed following small interfering RNA-mediated silencing of ILK expression. Time course studies suggest that ILK inhibition or silencing caused transient decreases in P-AKTser473, which were not temporally related to Her2/neu downregulation. Attenuation of ILK activity or expression was, however, associated with decreases in YB-1 (Y-box binding protein-1) protein and transcript levels. YB-1 is a known transcriptional regulator of Her2/neu expression, and in this study it is demonstrated that inhibition of ILK activity using QLT0267 decreased YB-1 promoter activity by 50.6%. ILK inhibition was associated with changes in YB-1 localization, as reflected by localization of cytoplasmic YB-1 into stress granules. ILK inhibition also suppressed TWIST (a regulator of YB-1 expression) protein expression. To confirm the role of ILK on YB-1 and TWIST, cells were engineered to overexpress ILK. This was associated with a fourfold increase in the level of YB-1 in the nucleus, and a 2- and 1.5-fold increase in TWIST and Her2/neu protein levels, respectively. Taken together, these data indicate that ILK regulates the expression of Her2/neu through TWIST and YB-1, lending support to the use of ILK inhibitors in the treatment of aggressive Her2/neu-positive tumors.
Collapse
|
32
|
Napieralski R, Brünner N, Mengele K, Schmitt M. Emerging biomarkers in breast cancer care. Biomark Med 2010; 4:505-22. [DOI: 10.2217/bmm.10.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, decision-making for breast cancer treatment in the clinical setting is mainly based on clinical data, histomorphological features of the tumor tissue and a few cancer biomarkers such as steroid hormone receptor status (estrogen and progesterone receptors) and oncoprotein HER2 status. Although various therapeutic options were introduced into the clinic in recent decades, with the objective of improving surgery, radiotherapy, biochemotherapy and chemotherapy, varying response of individual patients to certain types of therapy and therapy resistance is still a challenge in breast cancer care. Therefore, since breast cancer treatment should be based on individual features of the patient and her tumor, tailored therapy should be an option by integrating cancer biomarkers to define patients at risk and to reliably predict their course of the disease and/or response to cancer therapy. Recently, candidate-marker approaches and genome-wide transcriptomic and epigenetic screening of different breast cancer tissues and bodily fluids resulted in new promising biomarker panels, allowing breast cancer prognosis, prediction of therapy response and monitoring of therapy efficacy. These biomarkers are now subject of validation in prospective clinical trials.
Collapse
Affiliation(s)
- Rudolf Napieralski
- Clinical Research Unit, Department of Obstetrics & Gynecology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Germany
| | - Nils Brünner
- University of Copenhagen, Faculty of Life Sciences, Department of Veterinary Disease Biology, Ridebanevej 9, DK-1870 Frederiksberg C, Denmark
| | - Karin Mengele
- Clinical Research Unit, Department of Obstetrics & Gynecology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Germany
| | - Manfred Schmitt
- Clinical Research Unit, Department of Obstetrics & Gynecology, Ismaninger Strasse 22, Klinikum rechts der Isar, Technische Universitaet Muenchen, D-81675 Munich, Germany
| |
Collapse
|
33
|
Basaki Y, Taguchi KI, Izumi H, Murakami Y, Kubo T, Hosoi F, Watari K, Nakano K, Kawaguchi H, Ohno S, Kohno K, Ono M, Kuwano M. Y-box binding protein-1 (YB-1) promotes cell cycle progression through CDC6-dependent pathway in human cancer cells. Eur J Cancer 2010; 46:954-65. [PMID: 20079629 DOI: 10.1016/j.ejca.2009.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/10/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Y-box binding protein-1 (YB-1) plays pivotal roles in acquisition of global drug resistance and cell growth promotion through transcriptional activation of genes for both drug resistance and growth factor receptors. In this study, we investigated whether YB-1 is involved in regulation of the cell cycle and cell proliferation of human cancer cells. Treatment with YB-1 siRNA caused a marked suppression of cell proliferation and expression of a cell cycle related gene, CDC6 by cancer cells. Of cell cycle of cancer cells, S phase content was specifically reduced by knockdown of YB-1. The overexpression of CDC6 abrogated this inhibition of both cell proliferation and S phase entry. ChIP assay demonstrated that YB-1 binds to a Y-box located in the promoter region of the CDC6 gene. Expression of cyclin D1, CDK1 and CDK2 was also reduced with increased expression of p21(Cip1) and p16(INK4A) when treated with YB-1 siRNA. Furthermore, the nuclear YB-1 expression was significantly associated with the level of CDC6 nuclear expression in patients with breast cancer. In conclusion, YB-1 plays an important role in cell cycle progression at G1/S of human cancer cells. YB-1 thus could be a potent biomarker for tumour growth and cell cycle in its close association with CDC6.
Collapse
Affiliation(s)
- Yuji Basaki
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gluz O, Mengele K, Schmitt M, Kates R, Diallo-Danebrock R, Neff F, Royer HD, Eckstein N, Mohrmann S, Ting E, Kiechle M, Poremba C, Nitz U, Harbeck N. Y-Box–Binding Protein YB-1 Identifies High-Risk Patients With Primary Breast Cancer Benefiting From Rapidly Cycled Tandem High-Dose Adjuvant Chemotherapy. J Clin Oncol 2009; 27:6144-51. [DOI: 10.1200/jco.2008.19.6261] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose To investigate the potential of Y-box–binding protein YB-1, a multifunctional protein linked to tumor aggressiveness and multidrug resistance, to identify patients with breast cancer likely to benefit from dose-intensified chemotherapy regimens. Patients and Methods YB-1 was immunohistochemically determined in 211 primary tumors from the prospective, randomized West German Study Group WSG-AM-01 trial in high-risk (≥ 10 involved lymph-nodes) breast cancer (HRBC). Predictive impact of YB-1 was assessed by multivariate survival analysis, including time-varying factor-therapy interactions. Results At median follow-up of 61.7 months, patients receiving rapidly cycled tandem high-dose therapy (HD; two cycles [2×] epirubicin 90 mg/m2 and cyclophosphamide 600 mg/m2 every 14 days, followed by 2× epirubicin 90 mg/m2, cyclophosphamide 3,000 mg/m2, and thiotepa 400 mg/m2 every 21 days) had better disease-free survival (DFS; hazard ratio [HR] = 0.62; 95% CI, 0.44 to 0.89) and overall survival (OS; HR = 0.59; 95% CI, 0.4 to 0.89) than those receiving conventional dose-dense chemotherapy (DD; 4× epirubicin 90 mg/m2 and cyclophosphamide 600 mg/m2, followed by 3× cyclophosphamide 600 mg/m2, methotrexate 40 mg/m2, and fluorouracil 600 mg/m2 every 14 days). High YB-1 was associated with aggressive tumor phenotype (negative steroid hormone receptor status, positive human epidermal growth factor receptor 2 and p53 status, high MIB-1, unfavorable tumor grade) and poor OS (median 78 v 97 months; P = .01). In patients with high YB-1, HD yielded a 63-month median DFS (P = .001) and a 46-month median OS advantage (P = .002) versus DD. In multivariate models, patients with high B-1 receiving HD (v DD) had one third the hazard rate after 20 months for DFS and one sixth after 40 months for OS. Conclusion In a randomized prospective cancer therapy trial, for the first time, a strong predictive impact of YB-1 on survival has been demonstrated: enhanced benefit from HD (v DD) therapy occurs in HRBC with high YB-1. Future trials could therefore address optimal chemotherapeutic strategies,taking YB-1 into account.
Collapse
Affiliation(s)
- Oleg Gluz
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Karin Mengele
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Manfred Schmitt
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Ronald Kates
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Raihana Diallo-Danebrock
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Frauke Neff
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Hans-Dieter Royer
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Niels Eckstein
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Svjetlana Mohrmann
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Evelyn Ting
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Marion Kiechle
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Christopher Poremba
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Ulrike Nitz
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| | - Nadia Harbeck
- From the Departments of Obstetrics and Gynecology and Pathology, Technische Universitaet Muenchen, Munich; West German Study Group, Heinrich-Heine-University Duesseldorf/Breast Center Niederrhein, Moenchengladbach; Department of Pathology, Heinrich-Heine-University Duesseldorf, Duesseldorf; Research Group for Neurological Therapeutics, Philipps University Marburg, Marburg; and Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
35
|
Nuclear detection of Y-box protein-1 (YB-1) closely associates with progesterone receptor negativity and is a strong adverse survival factor in human breast cancer. BMC Cancer 2009; 9:410. [PMID: 19930682 PMCID: PMC2788584 DOI: 10.1186/1471-2407-9-410] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 11/24/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Y-box binding protein-1 (YB-1) is the prototypic member of the cold shock protein family that fulfills numerous cellular functions. In the nucleus YB-1 protein orchestrates transcription of proliferation-related genes, whereas in the cytoplasm it associates with mRNA and directs translation. In human tumor entities, such as breast, lung and prostate cancer, cellular YB-1 expression indicates poor clinical outcome, suggesting that YB-1 is an attractive marker to predict patients' prognosis and, potentially, is suitable to individualize treatment protocols. Given these predictive qualities of YB-1 detection we sought to establish a highly specific monoclonal antibody (Mab) for diagnostic testing and its characterization towards outcome prediction (relapse-free and overall survival). METHODS Hybridoma cell generation was carried out with recombinant YB-1 protein as immunogen and Mab characterization was performed using immunoblotting and ELISA with recombinant and tagged YB-1 proteins, as well as immunohistochemistry of healthy and breast cancer specimens. Breast tumor tissue array staining results were analyzed for correlations with receptor expression and outcome parameters. RESULTS YB-1-specific Mab F-E2G5 associates with conformational binding epitopes mapping to two domains within the N-terminal half of the protein and detects nuclear YB-1 protein by immunohistochemistry in paraffin-embedded breast cancer tissues. Prognostic evaluation of Mab F-E2G5 was performed by immunohistochemistry of a human breast cancer tissue microarray comprising 179 invasive breast cancers, 8 ductal carcinoma in situ and 37 normal breast tissue samples. Nuclear YB-1 detection in human breast cancer cells was associated with poor overall survival (p = 0.0046). We observed a close correlation between nuclear YB-1 detection and absence of progesterone receptor expression (p = 0.002), indicating that nuclear YB-1 detection marks a specific subgroup of breast cancer. Likely due to limitation of sample size Cox regression models failed to demonstrate significance for nuclear YB-1 detection as independent prognostic marker. CONCLUSION Monoclonal YB-1 antibody F-E2G5 should be of great value for prospective studies to validate YB-1 as a novel biomarker suitable to optimize breast cancer treatment.
Collapse
|
36
|
Cohen SB, Ma W, Valova VA, Algie M, Harfoot R, Woolley AG, Robinson PJ, Braithwaite AW. Genotoxic stress-induced nuclear localization of oncoprotein YB-1 in the absence of proteolytic processing. Oncogene 2009; 29:403-10. [PMID: 19838214 DOI: 10.1038/onc.2009.321] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Y-box-binding protein 1 (YB-1) is an oncogenic transcription factor whose overexpression and nuclear localization is associated with tumor progression and drug resistance. Transcriptional activation of YB-1 in response to genotoxic stress is believed to occur in the cytoplasm through sequence-specific endoproteolytic cleavage by the 20S Proteasome, followed by nuclear translocation of cleaved YB-1. To study the proteolysis model, we developed a two-step affinity purification of endogenous YB-1 protein species and characterized the products using mass spectrometry. Whereas full-length YB-1 was readily identified, the smaller protein band thought to be activated YB-1 was identified as hnRNP A1. An antibody specific for YB-1 was generated, which revealed only one YB-1 species, even after genotoxic stress-induced nuclear YB-1 translocation. These findings warrant re-evaluation of the mechanism of YB-1 nuclear translocation and transcriptional activation. The relationship between nuclear YB-1 and tumor progression may also have to re-evaluated in some cases.
Collapse
Affiliation(s)
- S B Cohen
- Cell Transformation Unit, Children's Medical Research Institute, Westmead, New South Wales, 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nuclear Y-Box Binding Protein-1, a Predictive Marker of Prognosis, Is Correlated with Expression of HER2/ErbB2 and HER3/ErbB3 in Non-small Cell Lung Cancer. J Thorac Oncol 2009; 4:1066-74. [DOI: 10.1097/jto.0b013e3181ae2828] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Law JH, Habibi G, Hu K, Masoudi H, Wang MYC, Stratford AL, Park E, Gee JMW, Finlay P, Jones HE, Nicholson RI, Carboni J, Gottardis M, Pollak M, Dunn SE. Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res 2009; 68:10238-46. [PMID: 19074892 DOI: 10.1158/0008-5472.can-08-2755] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drugs that target the insulin-like growth factor-I receptor (IGF-IR) and/or insulin receptor (IR) are currently under investigation for a variety of malignancies including breast cancer. Although we have previously reported that IGF-IR expression in primary breast tumors is common, the activation status of this receptor has not been examined in relation to survival. Phosphorylated IGF-IR/IR (P-IGF-IR/IR) and its downstream signaling partner phospho-S6 (P-S6) were evaluated immunohistochemically in tumor tissue microarrays representing 438 cases of invasive breast cancer. P-IGF-IR/IR (n = 114; P = 0.046) and total levels of IR (n = 122; P = 0.009) were indicative of poor survival, whereas total IGF-IR (n = 112; P = 0.304) was not. P-IGF-IR/IR and P-S6 were coordinately expressed in primary breast tumors (likelihood ratio, 11.57; P = 6.70 x 10(-4)). Importantly, P-IGF-IR/IR was detected in all breast cancer subtypes (luminal, 48.1%; triple negative, 41.9%; and HER2, 64.3%). In vitro, the IGF-IR/IR inhibitor BMS-536924 decreased phospho-RSK and P-S6, and significantly suppressed the growth of breast cancer cell lines MCF-7, SUM149, and AU565 representing the luminal, triple negative, and HER2 subtypes, respectively, in monolayer and soft agar. BMS-536924 also inhibited growth in tamoxifen resistant MCF-7 Tam-R cells while having little effect on immortalized normal breast epithelial cells. Thus, we can determine which patients have the activated receptor and provide evidence that P-IGF-IR/IR is a prognostic factor for breast cancer. Beyond this, P-IGF-IR/IR could be a predictive marker for response to IGF-IR and/or IR-targeted therapies, as these inhibitors may be of benefit in all breast cancer subtypes including those with acquired resistance to tamoxifen.
Collapse
Affiliation(s)
- Jennifer H Law
- Department of Pediatrics, Laboratory for Oncogenomic Research, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tight junctions and the regulation of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:761-7. [PMID: 19121284 DOI: 10.1016/j.bbamem.2008.11.024] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/08/2023]
Abstract
Cell adhesion is a key regulator of cell differentiation. Cell interactions with neighboring cells and the extracellular matrix regulate gene expression, cell proliferation, polarity and apoptosis. Apical cell-cell junctions participate in these processes using different types of proteins, some of them exhibit nuclear and junctional localization and are called NACos for Nuclear Adhesion Complexes. Tight junctions are one type of such cell-cell junctions and several signaling complexes have been identified to associate with them. In general, expression of tight junction components suppresses proliferation to allow differentiation in a coordinated manner with adherens junctions and extracellular matrix adhesion. These tight junction components have been shown to affect several signaling and transcriptional pathways, and changes in the expression of tight junction proteins are associated with several disease conditions, such as cancer. Here, we will review how tight junction proteins participate in the regulation of gene expression and cell proliferation, as well as how they are regulated themselves by different mechanisms involved in gene expression and cell differentiation.
Collapse
|
40
|
Stratford AL, Fry CJ, Desilets C, Davies AH, Cho YY, Li Y, Dong Z, Berquin IM, Roux PP, Dunn SE. Y-box binding protein-1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells. Breast Cancer Res 2008; 10:R99. [PMID: 19036157 PMCID: PMC2656895 DOI: 10.1186/bcr2202] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 11/25/2008] [Accepted: 11/27/2008] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Basal-like breast cancers (BLBC) frequently overexpress the epidermal growth factor receptor (EGFR) and subsequently have high levels of signaling through the MAP kinase pathway, which is thought to contribute to their aggressive behavior. While we have previously reported the expression of Y-box binding protein-1 (YB-1) in 73% of BLBC, it is unclear whether it can be regulated by a component of the MAP kinase signaling pathway. Phosphorylation of YB-1 at the serine 102 residue is required for transcriptional activation of growth-enhancing genes, such as EGFR. Using Motifscan we identified p90 ribosomal S6 kinase (RSK) as a potential candidate for activating YB-1. METHODS Inhibition of RSK1 and RSK2 was achieved using siRNA and the small molecule SL0101. RSK1, RSK2, activated RSK and kinase-dead RSK were expressed in HCC1937 cells. Kinase assays were performed to illustrate direct phosphorylation of YB-1 by RSK. The impact of inhibiting RSK on YB-1 function was measured by luciferase assays and chromatin immunoprecipitation. RESULTS Using an in vitro kinase assay, RSK1 and RSK2 were shown to directly phosphorylate YB-1. Interestingly, they were more effective activators of YB-1 than AKT or another novel YB-1 kinase, PKC alpha. Phosphorylation of YB-1 (serine 102 residue) is blocked by inhibition of the MAP kinase pathway or by perturbing RSK1/RSK2 with siRNA or SL0101. In immortalized breast epithelial cells where RSK is active yet AKT is not, YB-1 is phosphorylated. Supporting this observation, RSK2-/- mouse embryo fibroblasts lose the ability to phosphorylate YB-1 in response to epidermal growth factor. This subsequently interfered with the ability of YB-1 to regulate the expression of EGFR. The RSK inhibitor SL0101 decreased the ability of YB-1 to bind the promoter, transactivate and ultimately reduce EGFR expression. In concordance with these results the expression of constitutively active RSK1 increased YB-1 phosphorylation, yet the kinase-dead RSK did not. CONCLUSIONS We therefore conclude that RSK1/RSK2 are novel activators of YB-1, able to phosphorylate the serine 102 residue. This provides a newly described mechanism whereby YB-1 is activated in breast cancer. This implicates the EGFR/RSK/YB-1 pathway as an important component of BLBC, providing an important opportunity for therapeutic intervention.
Collapse
MESH Headings
- Animals
- Benzopyrans/pharmacology
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Chromatin Immunoprecipitation
- Electrophoretic Mobility Shift Assay
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- ErbB Receptors/metabolism
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoprecipitation
- Luciferases/metabolism
- MAP Kinase Signaling System
- Mice
- Monosaccharides/pharmacology
- Neoplasms, Basal Cell/genetics
- Neoplasms, Basal Cell/metabolism
- Neoplasms, Basal Cell/pathology
- Phosphorylation/drug effects
- Promoter Regions, Genetic
- Protein Kinase C-alpha/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/pharmacology
- Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Serine/chemistry
- Serine/metabolism
- Y-Box-Binding Protein 1/genetics
- Y-Box-Binding Protein 1/metabolism
Collapse
Affiliation(s)
- Anna L Stratford
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | - Curtis Desilets
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923, USA
| | - Alastair H Davies
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Yong Y Cho
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Yvonne Li
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Zigang Dong
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Isabelle M Berquin
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Philippe P Roux
- Department of Pathology and Cell Biology, Faculty of Medicine, Institute for Research in Immunology and Cancer, P.O. Box 6128, Station Centre-Ville, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Sandra E Dunn
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
41
|
Milanezi F, Carvalho S, Schmitt FC. EGFR/HER2 in breast cancer: a biological approach for molecular diagnosis and therapy. Expert Rev Mol Diagn 2008; 8:417-34. [PMID: 18598224 DOI: 10.1586/14737159.8.4.417] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Novel cancer therapies have focused on specific molecular markers present in malignant tumors. The rationale of targeted therapy relies on the knowledge of molecular mechanisms involved in carcinogenesis and their influence in clinical outcome allied to a more specific and less toxic treatment. Activation of EGF receptor and HER2 is an important factor for initiation and progression of malignancies, including breast cancer where the status of HER2 is an essential step in the diagnostic workup; EGFR overexpression has been associated to the so-called basal-like breast carcinomas, which opens a new avenue for diagnosis and therapeutic approach in these tumors. This review will focus on mechanisms of HER2 and EGF receptor upregulation, the targeted therapies that are currently in use for these receptors, possible combined therapies, as well as the approach for molecular diagnosis from the pathologist's point of view.
Collapse
Affiliation(s)
- Fernanda Milanezi
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| | | | | |
Collapse
|
42
|
Orazine CI, Hincapie M, Hancock WS, Hattersley M, Hanke JH. A Proteomic Analysis of the Plasma Glycoproteins of a MCF-7 Mouse Xenograft: A Model System for the Detection of Tumor Markers. J Proteome Res 2008; 7:1542-54. [DOI: 10.1021/pr7008516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christina I. Orazine
- Barnett Institute, Northeastern University, 341 Mugar Building, Boston, Massachusetts 02115, and AstraZeneca R&D Boston, PLC, 35 Gatehouse Drive, Waltham, Massachusetts 02451
| | - Marina Hincapie
- Barnett Institute, Northeastern University, 341 Mugar Building, Boston, Massachusetts 02115, and AstraZeneca R&D Boston, PLC, 35 Gatehouse Drive, Waltham, Massachusetts 02451
| | - William S. Hancock
- Barnett Institute, Northeastern University, 341 Mugar Building, Boston, Massachusetts 02115, and AstraZeneca R&D Boston, PLC, 35 Gatehouse Drive, Waltham, Massachusetts 02451
| | - Maureen Hattersley
- Barnett Institute, Northeastern University, 341 Mugar Building, Boston, Massachusetts 02115, and AstraZeneca R&D Boston, PLC, 35 Gatehouse Drive, Waltham, Massachusetts 02451
| | - Jeff H. Hanke
- Barnett Institute, Northeastern University, 341 Mugar Building, Boston, Massachusetts 02115, and AstraZeneca R&D Boston, PLC, 35 Gatehouse Drive, Waltham, Massachusetts 02451
| |
Collapse
|
43
|
Stratford AL, Habibi G, Astanehe A, Jiang H, Hu K, Park E, Shadeo A, Buys TPH, Lam W, Pugh T, Marra M, Nielsen TO, Klinge U, Mertens PR, Aparicio S, Dunn SE. Epidermal growth factor receptor (EGFR) is transcriptionally induced by the Y-box binding protein-1 (YB-1) and can be inhibited with Iressa in basal-like breast cancer, providing a potential target for therapy. Breast Cancer Res 2008; 9:R61. [PMID: 17875215 PMCID: PMC2242657 DOI: 10.1186/bcr1767] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/09/2007] [Accepted: 09/17/2007] [Indexed: 02/05/2023] Open
Abstract
Introduction Basal-like breast cancers (BLBCs) are very aggressive, and present serious clinical challenges as there are currently no targeted therapies available. We determined the regulatory role of Y-box binding protein-1 (YB-1) on epidermal growth factor receptor (EGFR) overexpression in BLBC, and the therapeutic potential of inhibiting EGFR. We pursued this in light of our recent work showing that YB-1 induces the expression of EGFR, a new BLBC marker. Methods Primary tumour tissues were evaluated for YB1 protein expression by immunostaining tissue microarrays, while copy number changes were assessed by comparative genomic hybridization (CGH). The ability of YB-1 to regulate EGFR was evaluated using luciferase reporter, chromatin immunoprecipitation (ChIP) and gel shift assays. The impact of Iressa on monolayer cell growth was measured using an ArrayScan VTI high-throughput analyser to count cell number, and colony formation in soft agar was used to measure anchorage-independent growth. Results YB-1 (27/37 or 73% of cases, P = 3.899 × 10-4) and EGFR (20/37 or 57.1% of cases, P = 9.206 × 10-12) are expressed in most cases of BLBC. However, they are not typically amplified in primary BLBC, suggesting overexpression owing to transcriptional activation. In support of this, we demonstrate that YB-1 promotes EGFR reporter activity. YB-1 specifically binds the EGFR promoter at two different YB-1-responsive elements (YREs) located at -940 and -968 using ChIP and gel shift assays in a manner that is dependent on the phosphorylation of S102 on YB-1. Inhibiting EGFR with Iressa suppressed the growth of SUM149 cells by ~40% in monolayer, independent of mutations in the receptor. More importantly anchorage-independent growth of BLBC cell lines was inhibited with combinations of Iressa and YB-1 suppression. Conclusion We have identified for the first time a causal link for the expression of EGFR in BLBC through the induction by YB-1 where it binds specifically to two distinguished YREs. Finally, inhibition of EGFR in combination with suppression of YB-1 presents a potential opportunity for therapy in BLBC.
Collapse
Affiliation(s)
- Anna L Stratford
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Golareh Habibi
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arezoo Astanehe
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Helen Jiang
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaiji Hu
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eugene Park
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashleen Shadeo
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Timon PH Buys
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan Lam
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Trevor Pugh
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marco Marra
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre of the Prostate Research Centre, Vancouver General Hospital and British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Uwe Klinge
- Department of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Peter R Mertens
- Departments of Nephrology and Clinical Immunology, University Hospital Aachen, RWTH Aachen, Germany
| | - Samuel Aparicio
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Sandra E Dunn
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Expression of HER2 and Estrogen Receptor α Depends upon Nuclear Localization of Y-Box Binding Protein-1 in Human Breast Cancers. Cancer Res 2008; 68:1504-12. [DOI: 10.1158/0008-5472.can-07-2362] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Braithwaite AW, Del Sal G, Lu X. Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ 2007; 13:984-93. [PMID: 16575404 DOI: 10.1038/sj.cdd.4401924] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Four sets of p53-binding proteins are discussed in this review. These are the E2F family, the ASPP family, Y-box-binding protein YB1, and the prolyl isomerase Pin1. Each appears to play a role in the decision by p53 to induce an arrest of cell proliferation or apoptosis and they may also be independent markers of cancer. Their activities appear to be linked with the cell cycle and they may also interact with each other. In this review, the properties of each protein class are discussed as well as how they affect p53 functions. A model is proposed as to how their activities might be coordinated.
Collapse
Affiliation(s)
- A W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
46
|
To K, Zhao Y, Jiang H, Hu K, Wang M, Wu J, Lee C, Yokom DW, Stratford AL, Klinge U, Mertens PR, Chen CS, Bally M, Yapp D, Dunn SE. The Phosphoinositide-Dependent Kinase-1 Inhibitor 2-Amino-N-[4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-acetamide (OSU-03012) Prevents Y-Box Binding Protein-1 from Inducing Epidermal Growth Factor Receptor. Mol Pharmacol 2007; 72:641-52. [PMID: 17595327 DOI: 10.1124/mol.107.036111] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is integral to basal-like and human epidermal growth factor receptor-2 (Her-2)-overexpressing breast cancers. Such tumors are associated with poor prognosis, the majority of which express high levels of EGFR. We reported that EGFR expression is induced by the oncogenic transcription factor Y-box binding protein-1 (YB-1) that occurs in a manner dependent on phosphorylation by Akt. Herein, we questioned whether blocking Akt with 2-amino-N-[4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-acetamide (OSU-03012), a phosphoinositide-dependent protein kinase-1 (PDK-1) small-molecule inhibitor, could prevent YB-1 from binding to the EGFR promoter. MDA-MB-468 and SUM 149 are basal-like breast cancer (BLBC) cells that were used for our studies because they express high levels of activated PDK-1, YB-1, and EGFR compared with the immortalized breast epithelial cell line 184htrt. In these cell lines, YB-1 preferentially bound to the -1 kilobase of the EGFR promoter, whereas this did not occur in the 184htrt cells based on chromatin immunoprecipitation. When the cells were exposed to OSU-03012 for 6 h, YB-1/EGFR promoter binding was significantly attenuated. To further confirm this observation, gel-shift assays showed that the drug inhibits YB-1/EGFR promoter binding. The inhibitory effect of OSU-03012 on EGFR was also observed at the mRNA and protein levels. OSU-03012 ultimately inhibited the growth of BLBC in monolayer and soft agar coordinate with the induction of apoptosis using an Array-Scan VTI high-content screening system. Furthermore, OSU-03012 inhibited the expression of EGFR by 48% in tumor xenografts derived from MDA-MB-435/Her-2 cells. This correlated with loss of YB-1 binding to the EGFR promoter. Hence, we find that OSU-03012 inhibits YB-1 resulting in a loss of EGFR expression in vitro and in vivo.
Collapse
Affiliation(s)
- K To
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Faury D, Nantel A, Dunn SE, Guiot MC, Haque T, Hauser P, Garami M, Bognár L, Hanzély Z, Liberski PP, Lopez-Aguilar E, Valera ET, Tone LG, Carret AS, Del Maestro RF, Gleave M, Montes JL, Pietsch T, Albrecht S, Jabado N. Molecular Profiling Identifies Prognostic Subgroups of Pediatric Glioblastoma and Shows Increased YB-1 Expression in Tumors. J Clin Oncol 2007; 25:1196-208. [PMID: 17401009 DOI: 10.1200/jco.2006.07.8626] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Pediatric glioblastoma (pGBM) is a rare, but devastating brain tumor. In contrast to GBM in adults (aGBM), little is known about the mechanisms underlying its development. Our aim is to gain insight into the molecular pathways of pGBM. Materials and Methods Thirty-two pGBM and seven aGBM samples were investigated using biochemical and transcriptional profiling. Ras and Akt pathway activation was assessed through the phosphorylation of downstream effectors, and gene expression profiles were generated using the University Health Network Human 19K cDNA arrays. Results were validated using real-time polymerase chain reaction and immunohistochemistry and compared with existing data sets on aGBM. Results There are at least two subsets of pGBM. One subset, associated with Ras and Akt pathway activation, has very poor prognosis and exhibits increased expression of genes related to proliferation and to a neural stem-cell phenotype, similar to findings in aggressive aGBM. This subset was still molecularly distinguishable from aGBM after unsupervised and supervised analysis of expression profiles. A second subset, with better prognosis, is not associated with activation of Akt and Ras pathways, may originate from astroglial progenitors, and does not express gene signatures and markers shown to be associated with long-term survival in aGBM. Both subsets of pGBM show overexpression of Y-box-protein-1 that may help drive oncogenesis in this tumor. Conclusion Our work, the first study of gene expression profiles in pGBM, provides valuable insight into active pathways and targets in a cancer with minimal survival, and suggests that these tumors cannot be understood exclusively through studies of aGBM.
Collapse
Affiliation(s)
- Damien Faury
- Division of Hemato-Oncology, Department of Pediatrics, Montréal Children's Hospital Research Institute, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang ZQ, Streicher KL, Ray ME, Abrams J, Ethier SP. Multiple Interacting Oncogenes on the 8p11-p12 Amplicon in Human Breast Cancer. Cancer Res 2006; 66:11632-43. [PMID: 17178857 DOI: 10.1158/0008-5472.can-06-2946] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 8p11-p12 genomic region is amplified in 15% of breast cancers and harbors several candidate oncogenes. However, functional evidence for a transforming role for these genes is lacking. We identified 21 genes from this region as potential oncogenes based on statistical association between copy number and expression. We further showed that three of these genes (LSM1, BAG4, and C8orf4) induce transformed phenotypes when overexpressed in MCF-10A cells, and overexpression of these genes in combination influences the growth factor independence phenotype and the ability of the cells to grow under anchorage-independent conditions. Thus, LSM1, BAG4, and C8orf4 are breast cancer oncogenes that can work in combination to influence the transformed phenotype in human mammary epithelial cells.
Collapse
Affiliation(s)
- Zeng Quan Yang
- Breast Cancer Program, University of Michigan School of Medicine, Ann Arbor, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
49
|
Wu J, Lee C, Yokom D, Jiang H, Cheang MCU, Yorida E, Turbin D, Berquin IM, Mertens PR, Iftner T, Gilks CB, Dunn SE. Disruption of the Y-Box Binding Protein-1 Results in Suppression of the Epidermal Growth Factor Receptor and HER-2. Cancer Res 2006; 66:4872-9. [PMID: 16651443 DOI: 10.1158/0008-5472.can-05-3561] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The overexpression of the epidermal growth factor receptor (EGFR) and HER-2 underpin the growth of aggressive breast cancer; still, it is unclear what governs the regulation of these receptors. Our laboratories recently determined that the Y-box binding protein-1 (YB-1), an oncogenic transcription/translation factor, induced breast tumor cell growth in monolayer and in soft agar. Importantly, mutating YB-1 at Ser(102), which resides in the DNA-binding domain, prevented growth induction. We reasoned that the underlying cause for growth attenuation by YB-1(Ser(102)) is through the regulation of EGFR and/or HER-2. The initial link between YB-1 and these receptors was sought by screening primary tumor tissue microarrays. We determined that YB-1 (n = 389 cases) was positively associated with EGFR (P < 0.001, r = 0.213), HER-2 (P = 0.008, r = 0.157), and Ki67 (P < 0.0002, r = 0.219). It was inversely linked to the estrogen receptor (P < 0.001, r = -0.291). Overexpression of YB-1 in a breast cancer cell line increased HER-2 and EGFR. Alternatively, mutation of YB-1 at Ser(102) > Ala(102) prevented the induction of these receptors and rendered the cells less responsive to EGF. The mutant YB-1 protein was also unable to optimally bind to the EGFR and HER-2 promoters based on chromatin immunoprecipitation. Furthermore, knocking down YB-1 with small interfering RNA suppressed the expression of EGFR and HER-2. This was coupled with a decrease in tumor cell growth. In conclusion, YB-1(Ser(102)) is a point of molecular vulnerability for maintaining the expression of EGFR and HER-2. Targeting YB-1 or more specifically YB-1(Ser(102)) are novel approaches to inhibiting the expression of these receptors to ultimately suppress tumor cell growth.
Collapse
Affiliation(s)
- Joyce Wu
- Laboratory for Oncogenomic Research, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Homer C, Knight DA, Hananeia L, Sheard P, Risk J, Lasham A, Royds JA, Braithwaite AW. Y-box factor YB1 controls p53 apoptotic function. Oncogene 2006; 24:8314-25. [PMID: 16158057 DOI: 10.1038/sj.onc.1208998] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nuclear localization and high levels of the Y-box-binding protein YB1 appear to be important indicators of drug resistance and tumor prognosis. YB1 also interacts with the p53 tumor suppressor protein. In this paper, we have continued to explore YB1/p53 interactions. We report that transcriptionally active p53 is required for nuclear localization of YB1. We go on to show that nuclear YB1 regulates p53 function. Our data demonstrate that YB1 inhibits the ability of p53 to cause cell death and to transactivate cell death genes, but does not interfere with the ability of p53 to transactivate the CDKN1A gene, encoding the kinase p21(WAF1/CIP1) required for cell cycle arrest, nor the MDM2 gene. We also show that nuclear YB1 is associated with a failure to increase the level of the Bax protein in normal mammary epithelial cells after stress activation of p53. Together these data suggest that (nuclear) YB1 selectively alters p53 activity, which may in part provide an explanation for the correlation of nuclear YB1 with drug resistance and poor tumor prognosis.
Collapse
Affiliation(s)
- Craig Homer
- Pathology Department, Dunedin School of Medicine, University of Otago, PO Box 913, Dunedin, Otago 9001, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|