1
|
Tang Y, Fan S, Peng R, Liu H, Su B, Tu D, Wang S, Jin X, Jiang G, Jin S, Zhang C, Cao J, Bai D. TRIM29 reverses lenvatinib resistance in liver cancer cells by ubiquitinating and degrading YBX1 to inhibit the PI3K/AKT pathway. Transl Oncol 2025; 53:102294. [PMID: 39874728 PMCID: PMC11810836 DOI: 10.1016/j.tranon.2025.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Sorafenib and lenvatinib are frontline treatments for advanced hepatocellular carcinoma (HCC). While lenvatinib surpasses sorafenib in efficacy and tolerability, resistance remains a significant clinical challenge. Recent research highlights the potential of TRIM family proteins in modulating lenvatinib resistance in HCC, necessitating a deeper understanding of their specific mechanisms. In this study, we screened TRIM family genes differentially expressed in lenvatinib-resistant cells using the GEO database, verifying their expression through qRT-PCR and identifying TRIM29 as a key target. Clinical samples were analyzed to assess TRIM29 expression, clinical significance, and its correlation with lenvatinib treatment efficacy. Stable TRIM29 overexpression in SK-Hep1 and LM3 cells was confirmed by Western blotting. The impact of TRIM29 on lenvatinib sensitivity in liver cancer cells was evaluated using colony formation assays, CCK8, flow cytometry, and in vivo experiments. Transcriptome sequencing, mass spectrometry, and co-immunoprecipitation (CO-IP) were employed to elucidate TRIM29's regulatory mechanisms. Results from the GEO database indicated significant upregulation of TRIM29, TRIM50, TRIM31, and TRIM9 in HUH7-resistant cells, with qRT-PCR confirming TRIM29 as markedly upregulated. In 112 liver cancer patients clinical samples, TRIM29 expression was significantly higher in patients with stable disease or partial response to lenvatinib compared to those with disease progression. High TRIM29 expression was associated with longer overall survival and recurrence-free periods in HCC patients. Mechanistic studies revealed that TRIM29 enhances lenvatinib sensitivity by degrading YBX1 through ubiquitination, thereby inhibiting the PI3K/AKT signaling pathway and reversing resistance. These findings suggest that TRIM29 is a promising therapeutic target for overcoming lenvatinib resistance in HCC. CONCLUSION: TRIM29 degrades YBX1 through ubiquitination, thereby inhibiting the PI3K/AKT signaling pathway and reversing lenvatinib resistance in HCC. TRIM29 can serve as an independent prognostic indicator of survival and recurrence in HCC patients, and it may provide new avenues for developing innovative treatment strategies for HCC.
Collapse
Affiliation(s)
- Yuhong Tang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Songong Fan
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Rui Peng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Huanxiang Liu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Bingbing Su
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Daoyuan Tu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Shunyi Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Xin Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China
| | - Guoqing Jiang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China
| | - Shengjie Jin
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China
| | - Chi Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China.
| | - Jun Cao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China.
| | - Dousheng Bai
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China.
| |
Collapse
|
2
|
Zhang W, Liu Y, Zhao Z, Zhang Y, Liang Y, Wang W. YBX1: A Multifunctional Protein in Senescence and Immune Regulation. Curr Issues Mol Biol 2024; 46:14058-14079. [PMID: 39727969 PMCID: PMC11726992 DOI: 10.3390/cimb46120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
The Y-box binding protein 1 (YBX1) is a multifunctional protein with a wide range of roles in cell biology. It plays a crucial role in immune modulation, senescence, and disease progression. This review presents a comprehensive analysis of the specific functions and mechanisms of YBX1 in these areas. Initially, YBX1 is shown to be closely associated with cellular senescence and impacts significant biological processes, including cell proliferation, damage repair, and metabolism. This suggests potential applications in the prevention and treatment of senescence-related diseases. Additionally, YBX1 regulates the immune response by controlling the function of immune cells and the expression of immune molecules. It is essential in maintaining immune system homeostasis and impacts the pathological process of various diseases, including tumors. Lastly, the diverse functions of the YBX1 protein make it a promising candidate for the development of innovative therapeutic strategies for diseases. Comprehensive research on its mechanisms could provide novel insights and approaches for the prevention, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Wenze Zhang
- The First College of Clinical Medicine, Lanzhou University, Lanzhou 730000, China;
| | - Ying Liu
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Zhe Zhao
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Yizhi Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Yujuan Liang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Wanxia Wang
- The First College of Clinical Medicine, Lanzhou University, Lanzhou 730000, China;
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Lanzhou 730000, China
| |
Collapse
|
3
|
Kwon JH, Kim SH. YBX1 promotes epithelial-mesenchymal transition in hepatocellular carcinoma via transcriptional regulation of PLRG1. Med Oncol 2024; 41:280. [PMID: 39400789 DOI: 10.1007/s12032-024-02516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Hepatocellular carcinoma (HCC) ranks as the sixth most prevalent cancer worldwide. The epithelial-mesenchymal transition (EMT) is a critical process in cancer progression, contributing to increased malignancy. While Pleiotropic Regulator 1 (PLRG1) is upregulated in HCC and is associated with enhanced cell proliferation, its oncogenic role in EMT remains unclear. In this study, we demonstrate that PLRG1 promotes EMT in HCC cells. Knockdown of PLRG1 in Huh7 cells resulted in decreased expression of the EMT markers N-cadherin and Snail, and impaired cell migration and invasion. Chromatin immunoprecipitation (ChIP) and luciferase assays identified Y-box binding protein 1 (YBX1) as a direct regulator of PLRG1 transcription, binding to its promoter region. Overexpression of YBX1 in SNU-449 cells led to increased PLRG1 expression and subsequent EMT activation, as well as enhanced migration, and invasion. These effects were attenuated by PLRG1 knockdown. Our findings indicate that YBX1 drives EMT in HCC by upregulating PLRG1, offering novel insights into the molecular mechanisms underlying HCC progression.
Collapse
Affiliation(s)
- Jae Hwan Kwon
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Huang Y, Wei X, Tu M, Lu W, Xu J. CircMAN1A2_009 facilitates YBX1 nuclear localization to induce GLO1 activation for cervical adenocarcinoma cell growth. Cancer Sci 2024; 115:3273-3287. [PMID: 39038813 PMCID: PMC11447891 DOI: 10.1111/cas.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
The molecular mechanisms driving the development of cervical adenocarcinoma (CADC) and optimal patient management strategies remain elusive. In this study, we have identified circMAN1A2_009 as an oncogenic circular RNA (circRNA) in CADC. Clinically, circMAN1A2_009 showed significant upregulation in CADC tissues, with an impressive area under the curve value of 0.8075 for detecting CADC. Functional studies, involving both gain-of-function and loss-of-function experiments, revealed that circMAN1A2_009 suppressed reactive oxygen species accumulation and apoptosis, and boosted cell viability in CADC cells. Conversely, silencing circMAN1A2_009 reversed these effects. Further mechanistic investigations indicated that circMAN1A2_009 interacted with YBX1, facilitating the phosphorylation levels of YBX1 at serine 102 (p-YBX1S102) and facilitating YBX1 nuclear localization through sequence 245-251. This interaction subsequently increased the activity of the glyoxalase 1 (GLO1) promoter, leading to the activation of GLO1 expression. Consistently, inhibition of either YBX1 or GLO1 mirrored the biological effects of circMAN1A2_009 in CADC cells. Additionally, knockdown of YBX1 or GLO1 partially reversed the oncogenic behaviors induced by circMAN1A2_009. In conclusion, our findings propose circMAN1A2_009 as a potential oncogene and a promising indicator for diagnosing and guiding therapy in CADC patients.
Collapse
Affiliation(s)
- Yongjie Huang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wei
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyan Tu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Nikhil K, Shah K. The significant others of aurora kinase a in cancer: combination is the key. Biomark Res 2024; 12:109. [PMID: 39334449 PMCID: PMC11438406 DOI: 10.1186/s40364-024-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AURKA is predominantly famous as an essential mitotic kinase. Recent findings have also established its critical role in a plethora of other biological processes including ciliogenesis, mitochondrial dynamics, neuronal outgrowth, DNA replication and cell cycle progression. AURKA overexpression in numerous cancers is strongly associated with poor prognosis and survival. Still no AURKA-targeted drug has been approved yet, partially because of the associated collateral toxicity and partly due to its limited efficacy as a single agent in a wide range of tumors. Mechanistically, AURKA overexpression allows it to phosphorylate numerous pathological substrates promoting highly aggressive oncogenic phenotypes. Our review examines the most recent advances in AURKA regulation and focuses on 33 such direct cancer-specific targets of AURKA and their associated oncogenic signaling cascades. One of the common themes that emerge is that AURKA is often involved in a feedback loop with its substrates, which could be the decisive factor causing its sustained upregulation and hyperactivation in cancer cells, an Achilles heel not exploited before. This dynamic interplay between AURKA and its substrates offers potential opportunities for targeted therapeutic interventions. By targeting these substrates, it may be possible to disrupt this feedback loop to effectively reverse AURKA levels, thereby providing a promising avenue for developing safer AURKA-targeted therapeutics. Additionally, exploring the synergistic effects of AURKA inhibition with its other oncogenic and/or tumor-suppressor targets could provide further opportunities for developing effective combination therapies against AURKA-driven cancers, thereby maximizing its potential as a critical drug target.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Kavita Shah
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Yang H, Wu B, Yang Q, Tan T, Shang D, Chen J, Cao C, Xu C. Urolithin C suppresses colorectal cancer progression via the AKT/mTOR pathway. J Nat Med 2024; 78:887-900. [PMID: 38849679 PMCID: PMC11364574 DOI: 10.1007/s11418-024-01821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Urolithin families are gut-microbial metabolites of ellagic acid (EA). Although urolithin A (UA) and urolithin B (UB) were reported to have antiproliferative activities in cancer cells, the role and related mechanisms of urolithin C (UC) in colorectal cancer (CRC) have not yet been clarified. In this study, we assess the antitumor activities of UC in vitro and in vivo and further explore the underlying mechanisms in CRC cell lines. We found that UC inhibited the proliferation and migration of CRC cells, induced apoptosis, and arrested the cell cycle at the G2/M phase in vitro, and UC inhibited tumor growth in a subcutaneous transplantation tumor model in vivo. Mechanically, UC blocked the activation of the AKT/mTOR signaling pathway by decreasing the expression of Y-box binding protein 1(YBX1). The AKT agonist SC79 could reverse the suppression of cell proliferation in UC-treated CRC cells. In conclusion, our research revealed that UC could prevent the progression of CRC by blocking AKT/mTOR signaling, suggesting that it may have potential therapeutic values.
Collapse
Affiliation(s)
- Haochi Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Binghuo Wu
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China
- Yu-Yue Pathology Scientific Research Centre, Chongqing, 400039, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Qi Yang
- Biotherapy Centre, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tian Tan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Shang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China
| | - Jie Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China
| | - Chenhui Cao
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Centre, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610042, China.
| | - Chuan Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China.
- Yu-Yue Pathology Scientific Research Centre, Chongqing, 400039, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
7
|
Ning F, Du L, Li J, Wu T, Zhou J, Chen Z, Hu X, Zhang Y, Luan X, Xin H, Yuan C, Zhang X. The deubiquitinase USP5 promotes cholangiocarcinoma progression by stabilizing YBX1. Life Sci 2024; 348:122674. [PMID: 38692507 DOI: 10.1016/j.lfs.2024.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
AIMS Ubiquitin specific peptidase 5 (USP5), a member of deubiquitinating enzymes, has garnered significant attention for its crucial role in cancer progression. This study aims to explore the role of USP5 and its potential molecular mechanisms in cholangiocarcinoma (CCA). MAIN METHODS To explore the effect of USP5 on CCA, gain-of-function and loss-of-function assays were conducted in human CCA cell lines RBE and HCCC9810. The CCK8, colony-forming assay, EDU, flow cytometry, transwell assay and xenografts were used to assess cell proliferation, migration and tumorigenesis. Western blot and immunohistochemistry were performed to measure the expression of related proteins. Immunoprecipitation and immunofluorescence were applied to identify the interaction between USP5 and Y box-binding protein 1 (YBX1). Ubiquitination assays and cycloheximide chase assays were carried out to confirm the effect of USP5 on YBX1. KEY FINDINGS We found USP5 is highly expressed in CCA tissues, and upregulated USP5 is required for the cancer progression. Knockdown of USP5 inhibited cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, along with suppressed xenograft tumor growth and metastasis in vivo. Mechanistically, USP5 could interact with YBX1 and stabilize YBX1 by deubiquitination in CCA cells. Additionally, silencing of USP5 hindered the phosphorylation of YBX1 at serine 102 and its subsequent translocation to the nucleus. Notably, the effect induced by USP5 overexpression in CCA cells was reversed by YBX1 silencing. SIGNIFICANCE Our findings reveal that USP5 is required for cell proliferation, migration and EMT in CCA by stabilizing YBX1, suggesting USP5-YBX1 axis as a promising therapeutic target for CCA.
Collapse
Affiliation(s)
- Fengling Ning
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Ling Du
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jiayang Li
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Tiangang Wu
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jiacheng Zhou
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Zihui Chen
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Xuetao Hu
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Yuai Zhang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| | - Chunyan Yuan
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China.
| |
Collapse
|
8
|
Yao B, Xing M, Zeng X, Zhang M, Zheng Q, Wang Z, Peng B, Qu S, Li L, Jin Y, Li H, Yuan H, Zhao Q, Ma C. KMT2D-mediated H3K4me1 recruits YBX1 to facilitate triple-negative breast cancer progression through epigenetic activation of c-Myc. Clin Transl Med 2024; 14:e1753. [PMID: 38967349 PMCID: PMC11225074 DOI: 10.1002/ctm2.1753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Lysine methyltransferase 2D (KMT2D) mediates mono-methylation of histone H3 lysine 4 (H3K4me1) in mammals. H3K4me1 mark is involved in establishing an active chromatin structure to promote gene transcription. However, the precise molecular mechanism underlying the KMT2D-mediated H3K4me1 mark modulates gene expression in triple-negative breast cancer (TNBC) progression is unresolved. METHODS AND RESULTS We recognized Y-box-binding protein 1 (YBX1) as a "reader" of the H3K4me1 mark, and a point mutation of YBX1 (E121A) disrupted this interaction. We found that KMT2D and YBX1 cooperatively promoted cell growth and metastasis of TNBC cells in vitro and in vivo. The expression levels of KMT2D and YBX1 were both upregulated in tumour tissues and correlated with poor prognosis for breast cancer patients. Combined analyses of ChIP-seq and RNA-seq data indicated that YBX1 was co-localized with KMT2D-mediated H3K4me1 in the promoter regions of c-Myc and SENP1, thereby activating their expressions in TNBC cells. Moreover, we demonstrated that YBX1 activated the expressions of c-Myc and SENP1 in a KMT2D-dependent manner. CONCLUSION Our results suggest that KMT2D-mediated H3K4me1 recruits YBX1 to facilitate TNBC progression through epigenetic activation of c-Myc and SENP1. These results together unveil a crucial interplay between histone mark and gene regulation in TNBC progression, thus providing novel insights into targeting the KMT2D-H3K4me1-YBX1 axis for TNBC treatment. HIGHLIGHTS YBX1 is a KMT2D-mediated H3K4me1-binding effector protein and mutation of YBX1 (E121A) disrupts its binding to H3K4me1. KMT2D and YBX1 cooperatively promote TNBC proliferation and metastasis by activating c-Myc and SENP1 expression in vitro and in vivo. YBX1 is colocalized with H3K4me1 in the c-Myc and SENP1 promoter regions in TNBC cells and increased YBX1 expression predicts a poor prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Bing Yao
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical MedicineNanjing Medical UniversityTaizhouChina
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
| | - Mengying Xing
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Xiangwei Zeng
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingChina
| | - Ming Zhang
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Que Zheng
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Zhi Wang
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingChina
| | - Bo Peng
- MOE Key Laboratory of Protein SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureTsinghua‐Peking Joint Center for Life SciencesDepartment of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijingChina
| | - Shuang Qu
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Lingyun Li
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Yucui Jin
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
| | - Haitao Li
- MOE Key Laboratory of Protein SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureTsinghua‐Peking Joint Center for Life SciencesDepartment of Basic Medical SciencesSchool of MedicineTsinghua UniversityBeijingChina
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingChina
| | - Changyan Ma
- Department of Medical GeneticsNanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical UniversityNanjingChina
| |
Collapse
|
9
|
Zhou X, Zhang K, Wang C, Teng Y, Yu P, Cai W, Gao W, Li M, Ding Y, Sun P, Chen F, Wang Y, Ma J, Maeshige N, Ma X, Li Q, Liang X, Zhang Y, Su D. Isthmin-1 promotes growth and progression of colorectal cancer through the interaction with EGFR and YBX-1. Cancer Lett 2024; 590:216868. [PMID: 38593920 DOI: 10.1016/j.canlet.2024.216868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
While previous studies have indicated the involvement of Isthmin 1 (ISM1), a secreted protein, in cancer development, the precise mechanisms have remained elusive. In this study, we unveiled that ISM1 is significantly overexpressed in both the blood and tissue samples of colorectal cancer (CRC) patients, correlating with their poor prognosis. Functional experiments demonstrated that enforced ISM1 expression significantly enhances CRC proliferation, migration, invasion and tumor growth. Notably, our investigation reveals an interaction of ISM1 with epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase (RTK) family of CRC cells. The binding of ISM1 triggered EGFR activation and initiate downstream signaling pathways. Meanwhile, intracellular ISM1 interacted with Y-box binding protein 1 (YBX1), enhancing its transcriptional regulation on EGFR. Furthermore, our research uncovered the regulation of ISM1 expression by the hypoxia-inducible transcription factor HIF-1α in CRC cells. Mechanistically, we identified HIF-1α as a direct regulator of ISM1, binding to a hypoxia response element on its promoter. This novel mechanism illuminated potential therapeutic targets, offering insights into restraining HIF-1α/ISM1/EGFR-driven CRC progression and metastasis.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Kaini Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Wang
- Digestive Endoscopy Department and General Surgery Department, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, Nanjing, 211166, China
| | - Yunfei Teng
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Peihong Yu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Nanjing, 211166, China
| | - Wei Cai
- Department of Plastic Surgery, The Secondary Affiliated Hospital of Nanjing, Medical University, Nanjing, 211166, China
| | - Wenjie Gao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Min Li
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Ding
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Yipin Wang
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Juan Ma
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 654-0142, 7-10-2 Tomogaoka, Kobe, Hyogo, Japan
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 654-0142, 7-10-2 Tomogaoka, Kobe, Hyogo, Japan
| | - Qingguo Li
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China.
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
El Bakkouri Y, Chidiac R, Delisle C, Corriveau J, Cagnone G, Gaonac'h-Lovejoy V, Chin A, Lécuyer É, Angers S, Joyal JS, Topisirovic I, Hulea L, Dubrac A, Gratton JP. ZO-1 interacts with YB-1 in endothelial cells to regulate stress granule formation during angiogenesis. Nat Commun 2024; 15:4405. [PMID: 38782923 PMCID: PMC11116412 DOI: 10.1038/s41467-024-48852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.
Collapse
Affiliation(s)
- Yassine El Bakkouri
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Rony Chidiac
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chantal Delisle
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jeanne Corriveau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gael Cagnone
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Vanda Gaonac'h-Lovejoy
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
| | - Éric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Jean-Sébastien Joyal
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada and Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Laura Hulea
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Quebec, Canada and Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Alexandre Dubrac
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
- Centre d'Innovation Biomédicale (CIB), Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
11
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
12
|
Rana R, Manoharan J, Elwakiel A, Zimmermann S, Lindquist JA, Gupta D, Al-Dabet MM, Gadi I, Fallmann J, Singh K, Gupta A, Biemann R, Brandt S, Alo B, Kluge P, Garde R, Lamers C, Shahzad K, Künze G, Kohli S, Mertens PR, Isermann B. Glomerular-tubular crosstalk via cold shock Y-box binding protein-1 in the kidney. Kidney Int 2024; 105:65-83. [PMID: 37774921 DOI: 10.1016/j.kint.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Glomerular-tubular crosstalk within the kidney has been proposed, but the paracrine signals enabling this remain largely unknown. The cold-shock protein Y-box binding protein 1 (YBX1) is known to regulate inflammation and kidney diseases but its role in podocytes remains undetermined. Therefore, we analyzed mice with podocyte specific Ybx1 deletion (Ybx1ΔPod). Albuminuria was increased in unchallenged Ybx1ΔPod mice, which surprisingly was associated with reduced glomerular, but enhanced tubular damage. Tubular toll-like receptor 4 (TLR4) expression, node-like receptor protein 3 (NLRP3) inflammasome activation and kidney inflammatory cell infiltrates were all increased in Ybx1ΔPod mice. In vitro, extracellular YBX1 inhibited NLRP3 inflammasome activation in tubular cells. Co-immunoprecipitation, immunohistochemical analyses, microscale cell-free thermophoresis assays, and blunting of the YBX1-mediated TLR4-inhibition by a unique YBX1-derived decapeptide suggests a direct interaction of YBX1 and TLR4. Since YBX1 can be secreted upon post-translational acetylation, we hypothesized that YBX1 secreted from podocytes can inhibit TLR4 signaling in tubular cells. Indeed, mice expressing a non-secreted YBX1 variant specifically in podocytes (Ybx1PodK2A mice) phenocopied Ybx1ΔPod mice, demonstrating a tubular-protective effect of YBX1 secreted from podocytes. Lipopolysaccharide-induced tubular injury was aggravated in Ybx1ΔPod and Ybx1PodK2A mice, indicating a pathophysiological relevance of this glomerular-tubular crosstalk. Thus, our data show that YBX1 is physiologically secreted from podocytes, thereby negatively modulating sterile inflammation in the tubular compartment, apparently by binding to and inhibiting tubular TLR4 signaling. Hence, we have uncovered an YBX1-dependent molecular mechanism of glomerular-tubular crosstalk.
Collapse
Affiliation(s)
- Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Amman, Jordan
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Bekas Alo
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Paul Kluge
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Ravindra Garde
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Christina Lamers
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Georg Künze
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
13
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
15
|
Quan C, Wu Z, Xiong J, Li M, Fu Y, Su J, Wang Y, Ning L, Zhang D, Xie N. Upregulated PARP1 confers breast cancer resistance to CDK4/6 inhibitors via YB-1 phosphorylation. Exp Hematol Oncol 2023; 12:100. [PMID: 38037159 PMCID: PMC10687910 DOI: 10.1186/s40164-023-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Cyclic-dependent kinase (CDK) 4/6 kinases, as the critical drivers of the cell cycle, are involved in the tumor progression of various malignancies. Pharmacologic inhibitors of CDK4/6 have shown significant clinical prospects in treating hormone receptor-positive and human epidermal growth factor receptor-negative (HR + /HER2-) breast cancer (BC) patients. However, acquired resistance to CDK4/6 inhibitors (CDK4/6i), as a common issue, has developed rapidly. It is of great significance that the identification of novel therapeutic targets facilitates overcoming the CDK4/6i resistance. PARP1, an amplified gene for CDK4/6i-resistant patients, was found to be significantly upregulated during the construction of CDK4/6i-resistant strains. Whether PARP1 drives CDK4/6i resistance in breast cancer is worth further study. METHOD PARP1 and p-YB-1 protein levels in breast cancer cells and tissues were quantified using Western blot (WB) analysis, immunohistochemical staining (IHC) and immunofluorescence (IF) assays. Bioinformatics analyses of Gene Expression Profiling Interactive Analysis (GEPIA), Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets were applied to explore the relationship between YB-1/PARP1 protein levels and CDK4/6i IC50. Cell Counting Kit-8 (CCK-8) and crystal violet staining assays were performed to evaluate cell proliferation rates and drug killing effects. Flow cytometry assays were conducted to assess apoptosis rates and the G1/S ratio in the cell cycle. An EdU proliferation assay was used to detect the DNA replication ratio after treatment with PARP1 and YB-1 inhibitors. A ChIP assay was performed to assess the interaction of the transcription factor YB-1 and associated DNA regions. A double fluorescein reporter gene assay was designed to assess the influence of WT/S102A/S102E YB-1 on the promoter region of PARP1. Subcutaneous implantation models were applied for in vivo tumor growth evaluations. RESULTS Here, we reported that PARP1 was amplified in breast cancer cells and CDK4/6i-resistant patients, and knockdown or inhibition of PARP1 reversed drug resistance in cell experiments and animal models. In addition, upregulation of transcription factor YB-1 also occurred in CDK4/6i-resistant breast cancer, and YB-1 inhibition can regulate PARP1 expression. p-YB-1 and PARP1 were upregulated when treated with CDK4/6i based on the WB and IF results, and elevated PARP1 and p-YB-1 were almost simultaneously observed during the construction of MCF7AR-resistant strains. Inhibition of YB-1 or PAPR1 can cause decreased DNA replication, G1/S cycle arrest, and increased apoptosis. We initially confirmed that YB-1 can bind to the promoter region of PARP1 through a ChIP assay. Furthermore, we found that YB-1 phosphorylated at S102 was crucial for PARP1 transcription according to the double fluorescein reporter gene assay. The combination therapy of YB-1 inhibitors and CDK4/6i exerted a synergistic antitumor effect in vitro and in vivo. The clinical data suggested that HR + /HER2- patients with low expression of p-YB-1/PARP1 may be sensitive to CDK4/6i in breast cancer. CONCLUSION These findings indicated that a ''YB-1/PARP1'' loop conferred resistance to CDK4/6 inhibitors. Furthermore, interrupting the loop can enhance tumor killing in the xenograft tumor model, which provides a promising strategy against drug resistance in breast cancer.
Collapse
Affiliation(s)
- Chuntao Quan
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology, Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People's Republic of China
| | - Zhijie Wu
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Juan Xiong
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Manqing Li
- Public Health School of Sun Yat-Sen University, Guangzhou, 510182, People's Republic of China
| | - Yu Fu
- Laboratory Department, Shenzhen Center for Chronic Disease Control, Shenzhen, 518035, People's Republic of China
| | - Jiaying Su
- Laboratory Department, Shenzhen Baoan People's Hospital, Second Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People's Republic of China
| | - Yue Wang
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
- Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Lvwen Ning
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Deju Zhang
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical University, Shenzhen, 518035, People's Republic of China.
| |
Collapse
|
16
|
Khozooei S, Veerappan S, Bonzheim I, Singer S, Gani C, Toulany M. Fisetin overcomes non-targetability of mutated KRAS induced YB-1 signaling in colorectal cancer cells and improves radiosensitivity by blocking repair of radiation-induced DNA double-strand breaks. Radiother Oncol 2023; 188:109867. [PMID: 37634766 DOI: 10.1016/j.radonc.2023.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND AND PURPOSE KRAS is frequently mutated, and the Y-box binding protein 1 (YB-1) is overexpressed in colorectal cancer (CRC). Mutant KRAS (KRASmut) stimulates YB-1 through MAPK/RSK and PI3K/AKT, independent of epidermal growth factor receptor (EGFR). The p21-activated kinase (PAK) family is a switch-site upstream of AKT and RSK. The flavonoid compound fisetin inhibits RSK-mediated YB-1 signaling. We sought the most effective molecular targeting approach that interferes with DNA double strand break (DSB) repair and induces radiosensitivity of CRC cells, independent of KRAS mutation status. MATERIALS AND METHODS KRAS activity and KRAS mutation were analyzed by Ras-GTP assay and NGS. Effect of dual targeting of RSK and AKT (DT), the effect of fisetin as well as targeting PAK by FRAX486 and EGFR by erlotinib on YB-1 activity was tested by Western blotting after irradiation in vitro and ex vivo. Additionally, the effect of DT and FRAX486 on DSB repair pathways was tested in cells expressing reporter constructs for the DSB repair pathways by flow cytometry analysis. Residual DSBs and clonogenicity were examined by γH2AX- and clonogenic assays, respectively. RESULTS Erlotinib neither blocked DSB repair nor inhibited YB-1 phosphorylation under KRAS mutation condition in vitro and ex vivo. DT and FRAX486 effectively inhibited YB-1 phosphorylation independent of KRAS mutation status and diminished homologous recombination (HR) and alternative non-homologous end joining (NHEJ) repair. DT and FRAX486 inhibited DSB repair in CaCo2 but not in isogenic KRASG12V cells. Fisetin inhibited YB-1 phosphorylation, blocked DSB repair and increased radiosensitivity, independent of KRAS mutation status. CONCLUSION Combination of fisetin with radiotherapy may improve CRC radiation response, regardless of KRASmut status.
Collapse
Affiliation(s)
- Shayan Khozooei
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Soundaram Veerappan
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Department of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan Singer
- Department of Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
17
|
Yu J, Li W, Hou GJ, Sun DP, Yang Y, Yuan SX, Dai ZH, Yin HZ, Sun SH, Huang G, Zhou WP, Yang F. Circular RNA cFAM210A, degradable by HBx, inhibits HCC tumorigenesis by suppressing YBX1 transactivation. Exp Mol Med 2023; 55:2390-2401. [PMID: 37907737 PMCID: PMC10689457 DOI: 10.1038/s12276-023-01108-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023] Open
Abstract
Hepatitis B protein x (HBx) has been reported to promote tumorigenesis in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), but the mechanism awaits further investigation. In this study, we found that cFAM210A (a circular RNA derived from the third exon of transcript NM_001098801 of the FAM210A gene; CircBase ID: hsa_circ_0003979) can be silenced by HBx. cFAM210A expression was downregulated and negatively correlated with tumorigenesis in patients with HBV-related HCC. Furthermore, cFAM210A reduced the proliferation, stemness, and tumorigenicity of HCC cells. Mechanistically, HBx increased the N6-methyladenosine (m6A) level of cFAM210A by promoting the expression of RBM15 (an m6A methyltransferase), thus inducing the degradation of cFAM210A via the YTHDF2-HRSP12-RNase P/MRP pathway. cFAM210A bound to YBX1 and inhibited its phosphorylation, suppressing its transactivation function toward MET. These findings suggest the important role of circular RNAs in HBx-induced hepatocarcinogenesis and identify cFAM210A a potential target in the prevention and treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Jian Yu
- The Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Wen Li
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Guo-Jun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Da-Peng Sun
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Sheng-Xian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhi-Hui Dai
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Hao-Zan Yin
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Shu-Han Sun
- The Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Gang Huang
- The Department of General Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, Shanghai, China.
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China.
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China.
| |
Collapse
|
18
|
Lau ESW, Zhu B, Sun MA, Ngai SM, Ge W. Proteomic analysis of zebrafish folliculogenesis identifies YB-1 (Ybx1/ybx1) as a potential gatekeeping molecule controlling early ovarian folliculogenesis. Biol Reprod 2023; 109:482-497. [PMID: 37471641 DOI: 10.1093/biolre/ioad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
As in mammals, ovarian folliculogenesis in teleosts also consists of two phases: the primary growth (PG) and secondary growth (SG) phases, which are analogous to the preantral and antral phases respectively in mammals. In this study, we performed a proteomic analysis on zebrafish follicles undergoing the PG-SG transition aiming to identify factors involved in the event. Numerous proteins showed significant changes, and the most prominent one was Y-box binding protein 1 (YB-1; Ybx1/ybx1), a transcription factor and mRNA-binding protein. YB-1 belongs to the Y-box binding protein family, which also includes the gonad-specific YB-2. Interestingly, phylogenetic analysis showed no YB-2 homolog in zebrafish. Although ybx1 mRNA was expressed in various tissues, its protein Ybx1 was primarily produced in the gonads, similar to YB-2 in other species. In the ovary, Ybx1 protein started to appear in early follicles newly emerged from the germ cell cysts, reached the highest level in late PG oocytes, but decreased precipitously when the follicles entered the SG phase. In PG follicles, Ybx1 might function as a key component of the messenger ribonucleoprotein particles (mRNPs) in association with other RNA-binding proteins. Similar to mammalian YB-1, zebrafish Ybx1 also contains functional signals that determine its intracellular localization. In conclusion, Ybx1 may play dual roles of YB-1 and YB-2 in zebrafish. In the ovary, Ybx1 binds mRNAs to stabilize them while preventing their translation. At PG-SG transition, Ybx1 is removed to release the masked mRNAs for translation into functional proteins, leading to follicle activation.
Collapse
Affiliation(s)
- Esther Shuk-Wa Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Bo Zhu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Ming-An Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Sai Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
19
|
Fu H, Zhang P, Zhao XD, Zhong XY. Interfering with Rac1-activation during neonatal monocyte-macrophage differentiation influences the inflammatory responses of M1 macrophages. Cell Death Dis 2023; 14:619. [PMID: 37735499 PMCID: PMC10514032 DOI: 10.1038/s41419-023-06150-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening, inflammatory disease affecting premature infants with intestinal necrosis, but the mechanism remains unclear. Neonatal macrophages are thought to play an important role in the pathogenesis of NEC through the production of proinflammatory cytokines. Restriction of cytokine expression in macrophages of NEC tissues may be beneficial. In adult macrophages, interfering with Rac1 has been shown to influence the expression of cytokines. Here, we investigated whether interfering with Rac1 in neonatal macrophages affects their inflammatory responses. First, we found that Rac1-activation was upregulated in the macrophages of rats with NEC model induction compared to controls. The M1 macrophages derived from human neonatal monocytes showed greater Rac1-activation than the M2 macrophages derived from the same monocytes. Inhibition of Rac1-activation by NSC23766 potently reduced the production of proinflammatory cytokines in these M1 macrophages. While neonatal monocytes differentiated into M1 macrophages in vitro, NSC23766 significantly altered cell function during the first six days of incubation with GM-CSF rather than during the subsequent stimulation phase. However, the same effect of NSC23766 was not observed in adult macrophages. Using mass spectrometry, Y-box binding protein 1 (YB1) was identified as being downregulated upon inhibition of Rac1-activation in the neonatal macrophages. Moreover, we found that inhibition of Rac1-activation shortens the poly A tail of PABPC1 mRNA, thereby reducing the translation of PABPC1 mRNA. Consequently, the downregulation of PABPC1 resulted in a reduced translation of YB1 mRNA. Furthermore, we found that TLR4 expression was downregulated in neonatal macrophages, while YB1 expression was reduced. Adding resatorvid (TLR4 signaling inhibitor) to the macrophages treated with NSC23766 did not further reduce the cytokine expression. These findings reveal a novel Rac1-mediated pathway to inhibit cytokine expression in neonatal M1 macrophages and suggest potential targets for the prevention or treatment of NEC.
Collapse
Affiliation(s)
- Hang Fu
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, 401147, Chongqing, China.
- Department of Pediatrics, Chongqing Health Center for Women and Children, 401147, Chongqing, China.
- Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, 401147, Chongqing, China.
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, 401147, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Xiao-Dong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China.
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China.
| | - Xiao-Yun Zhong
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, 401147, Chongqing, China.
- Department of Pediatrics, Chongqing Health Center for Women and Children, 401147, Chongqing, China.
- Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, 401147, Chongqing, China.
| |
Collapse
|
20
|
Wang W, Rana PS, Markovic V, Sossey-Alaoui K. The WAVE3/β-catenin oncogenic signaling regulates chemoresistance in triple negative breast cancer. Breast Cancer Res 2023; 25:31. [PMID: 36949468 PMCID: PMC10035207 DOI: 10.1186/s13058-023-01634-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Metastatic breast cancer is responsible for the death of the majority of breast cancer patients. In fact, metastatic BC is the 2nd leading cause of cancer-related deaths in women in the USA and worldwide. Triple negative breast cancer (TNBC), which lacks expression of hormone receptors (ER-α and PR) and ErbB2/HER2, is especially lethal due to its highly metastatic behavior, propensity to recur rapidly, and for its resistance to standard of care therapies, through mechanisms that remain incompletely understood. WAVE3 has been established as a promoter of TNBC development and metastatic progression. In this study, we investigated the molecular mechanisms whereby WAVE3 promotes therapy-resistance and cancer stemness in TNBC, through the regulation of β-catenin stabilization. METHODS The Cancer Genome Atlas dataset was used to assess the expression of WAVE3 and β-catenin in breast cancer tumors. Kaplan-Meier Plotter analysis was used to correlate expression of WAVE3 and β-catenin with breast cancer patients' survival probability. MTT assay was used to quantify cell survival. CRISPR/Cas9-mediated gene editing, 2D and 3D tumorsphere growth and invasion assays, Immunofluorescence, Western blotting, Semi-quantitative and real-time quantitative PCR analyses were applied to study the WAVE3/β-catenin oncogenic signaling in TNBC. Tumor xenograft assays were used to study the role of WAVE3 in mediating chemotherapy resistance of TNBC tumors. RESULTS Genetic inactivation of WAVE3 in combination of chemotherapy resulted in inhibition of 2D growth and 3D tumorsphere formation and invasion of TNBC cells in vitro, as well as tumor growth and metastasis in vivo. In addition, while re-expression of phospho-active WAVE3 in the WAVE3-deficient TNBC cells restored the oncogenic activity of WAVE3, re-expression of phospho-mutant WAVE3 did not. Further studies revealed that dual blocking of WAVE3 expression or phosphorylation in combination with chemotherapy treatment inhibited the activity and expression and stabilization of β-catenin. Most importantly, the combination of WAVE3-deficiency or WAVE3-phospho-deficiency and chemotherapy suppressed the oncogenic behavior of chemoresistant TNBC cells, both in vitro and in vivo. CONCLUSION We identified a novel WAVE3/β-catenin oncogenic signaling axis that modulates chemoresistance of TNBC. This study suggests that a targeted therapeutic strategy against WAVE3 could be effective for the treatment of chemoresistant TNBC tumors.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH, 44109, USA
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Priyanka S Rana
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH, 44109, USA
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Vesna Markovic
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH, 44109, USA.
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
21
|
Bai Y, Gotz C, Chincarini G, Zhao Z, Slaney C, Boath J, Furic L, Angel C, Jane SM, Phillips WA, Stacker SA, Farah CS, Darido C. YBX1 integration of oncogenic PI3K/mTOR signalling regulates the fitness of malignant epithelial cells. Nat Commun 2023; 14:1591. [PMID: 36949044 PMCID: PMC10033729 DOI: 10.1038/s41467-023-37161-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
In heterogeneous head and neck cancer (HNC), subtype-specific treatment regimens are currently missing. An integrated analysis of patient HNC subtypes using single-cell sequencing and proteome profiles reveals an epithelial-mesenchymal transition (EMT) signature within the epithelial cancer-cell population. The EMT signature coincides with PI3K/mTOR inactivation in the mesenchymal subtype. Conversely, the signature is suppressed in epithelial cells of the basal subtype which exhibits hyperactive PI3K/mTOR signalling. We further identify YBX1 phosphorylation, downstream of the PI3K/mTOR pathway, restraining basal-like cancer cell proliferation. In contrast, YBX1 acts as a safeguard against the proliferation-to-invasion switch in mesenchymal-like epithelial cancer cells, and its loss accentuates partial-EMT and in vivo invasion. Interestingly, phospho-YBX1 that is mutually exclusive to partial-EMT, emerges as a prognostic marker for overall patient outcomes. These findings create a unique opportunity to sensitise mesenchymal cancer cells to PI3K/mTOR inhibitors by shifting them towards a basal-like subtype as a promising therapeutic approach against HNC.
Collapse
Affiliation(s)
- Yuchen Bai
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Carolin Gotz
- Department of Oral and Maxillofacial Surgery, Technische Universität München, Fakultät für Medizin, Klinikum rechts der Isar, Ismaningerstraße 22, 81675, Munich, Germany
- Department of Oral and Maxillofacial Surgery, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Ginevra Chincarini
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Zixuan Zhao
- Sun Yat-sen University Cancer Center, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Clare Slaney
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jarryd Boath
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Luc Furic
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Christopher Angel
- Department of Histopathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Steven A Stacker
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research & Education; Fiona Stanley Hospital; Hollywood Private Hospital; Australian Clinical Labs, CQ University, Perth, WA, 6009, Australia
| | - Charbel Darido
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
22
|
Kozaki R, Yasuhiro T, Kato H, Murai J, Hotta S, Ariza Y, Sakai S, Fujikawa R, Yoshida T. Investigation of the anti-tumor mechanism of tirabrutinib, a highly selective Bruton's tyrosine kinase inhibitor, by phosphoproteomics and transcriptomics. PLoS One 2023; 18:e0282166. [PMID: 36897912 PMCID: PMC10004634 DOI: 10.1371/journal.pone.0282166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Tirabrutinib is a highly selective Bruton's tyrosine kinase (BTK) inhibitor used to treat hematological malignancies. We analyzed the anti-tumor mechanism of tirabrutinib using phosphoproteomic and transcriptomic methods. It is important to check the drug's selectivity against off-target proteins to understand the anti-tumor mechanism based on the on-target drug effect. Tirabrutinib's selectivity was evaluated by biochemical kinase profiling assays, peripheral blood mononuclear cell stimulation assays, and the BioMAP system. Next, in vitro and in vivo analyses of the anti-tumor mechanisms were conducted in activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) cells followed by phosphoproteomic and transcriptomic analyses. In vitro kinase assays showed that, compared with ibrutinib, tirabrutinib and other second-generation BTK inhibitors demonstrated a highly selective kinase profile. Data from in vitro cellular systems showed that tirabrutinib selectively affected B-cells. Tirabrutinib inhibited the cell growth of both TMD8 and U-2932 cells in correlation with the inhibition of BTK autophosphorylation. Phosphoproteomic analysis revealed the downregulation of ERK and AKT pathways in TMD8. In the TMD8 subcutaneous xenograft model, tirabrutinib showed a dose-dependent anti-tumor effect. Transcriptomic analysis indicated that IRF4 gene expression signatures had decreased in the tirabrutinib groups. In conclusion, tirabrutinib exerted an anti-tumor effect by regulating multiple BTK downstream signaling proteins, such as NF-κB, AKT, and ERK, in ABC-DLBCL.
Collapse
Affiliation(s)
- Ryohei Kozaki
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
- * E-mail:
| | - Tomoko Yasuhiro
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Hikaru Kato
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Jun Murai
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Shingo Hotta
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Yuko Ariza
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Shunsuke Sakai
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Ryu Fujikawa
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Takao Yoshida
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| |
Collapse
|
23
|
Hong X, Li Q, Li J, Chen K, He Q, Zhao Y, Liang Y, Zhao Y, Qiao H, Liu N, Ma J, Li Y. CircIPO7 Promotes Nasopharyngeal Carcinoma Metastasis and Cisplatin Chemoresistance by Facilitating YBX1 Nuclear Localization. Clin Cancer Res 2022; 28:4521-4535. [PMID: 35917517 DOI: 10.1158/1078-0432.ccr-22-0991] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Cisplatin-based chemotherapy effectively improves the distant-metastasis control in nasopharyngeal carcinoma (NPC), but approximately 30% of patients develop treatment failure due to chemoresistance. However, the underlying mechanisms remain poorly understood. EXPERIMENTAL DESIGN Circular RNA (circRNA) sequencing data were used to identify metastasis-specific circRNAs and the expression of circIPO7 was validated in NPC tissues as well as NPC cell lines by qRT-PCR. The whole transcriptional profile upon circIPO7 knockdown was applied to explore the biological function and regulatory mechanism, which were further confirmed by in vitro and in vivo metastasis/chemosensitivity assays. We also evaluated the value of circIPO7 expression in predicting NPC metastasis and cisplatin chemoresistance by analyzing a cohort of 183 NPC patients. RESULTS In this study, circIPO7, a novel circRNA, is found to be specifically overexpressed in NPC patients with distant metastasis. Knockdown of circIPO7 in NPC cells suppresses their metastasis and increases sensitivity to cisplatin treatment in vitro and in vivo. Mechanistically, circIPO7 binds to Y-box binding protein-1 (YBX1) protein in the cytoplasm and facilitates its phosphorylation at serine 102 (p-YBX1S102) by the kinase AKT, which further promotes YBX1 nuclear translocation and activates FGFR1, TNC, and NTRK1 transcription. Clinically, higher circIPO7 expression indicates unfavorable distant metastasis-free survival in NPC patients given cisplatin-based chemotherapy. CONCLUSIONS Altogether, this study identifies oncogenic circIPO7 as a prognostic marker after cisplatin-based chemotherapy and as a potential therapeutic target for overcoming metastasis and chemoresistance in NPC.
Collapse
Affiliation(s)
- Xiaohong Hong
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qian Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Junyan Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Kailin Chen
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuheng Zhao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yelin Liang
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yin Zhao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Han Qiao
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Na Liu
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yingqin Li
- Sun Yat-sen University Cancer Center, the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Center for Precision Medicine of Sun Yat-sen University, Guangzhou, P.R. China.,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
24
|
Tian Y, Li J, Cheung TC, Tam V, Lau CG, Wang X, Chin YR. Akt3 promotes cancer stemness in triple-negative breast cancer through YB1-Snail/Slug signaling axis. Genes Dis 2022; 10:301-306. [DOI: 10.1016/j.gendis.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
|
25
|
SILAC kinase screen identifies potential MASTL substrates. Sci Rep 2022; 12:10568. [PMID: 35732702 PMCID: PMC9217955 DOI: 10.1038/s41598-022-14933-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Microtubule-associated serine/threonine kinase-like (MASTL) has emerged as a critical regulator of mitosis and as a potential oncogene in a variety of cancer types. To date, Arpp-19/ENSA are the only known substrates of MASTL. However, with the roles of MASTL expanding and increased interest in development of MASTL inhibitors, it has become critical to determine if there are additional substrates and what the optimal consensus motif for MASTL is. Here we utilized a whole cell lysate in vitro kinase screen combined with stable isotope labelling of amino acids in cell culture (SILAC) to identify potential substrates and the residue preference of MASTL. Using the related AGC kinase family members AKT1/2, the kinase screen identified several known and new substrates highly enriched for the validated consensus motif of AKT. Applying this method to MASTL identified 59 phospho-sites on 67 proteins that increased in the presence of active MASTL. Subsequent in vitro kinase assays suggested that MASTL may phosphorylate hnRNPM, YB1 and TUBA1C under certain in vitro conditions. Taken together, these data suggest that MASTL may phosphorylate several additional substrates, providing insight into the ever-increasing biological functions and roles MASTL plays in driving cancer progression and therapy resistance.
Collapse
|
26
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|
27
|
Zhou Y, Li XH, Xue WL, Jin S, Li MY, Zhang CC, Yu B, Zhu L, Liang K, Chen Y, Tao BB, Zhu YZ, Wang MJ, Zhu YC. YB-1 Recruits Drosha to Promote Splicing of pri-miR-192 to Mediate the Proangiogenic Effects of H 2S. Antioxid Redox Signal 2022; 36:760-783. [PMID: 35044231 DOI: 10.1089/ars.2021.0105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: The genes targeted by miRNAs have been well studied. However, little is known about the feedback mechanisms to control the biosynthesis of miRNAs that are essential for the miRNA feedback networks in the cells. In this present study, we aimed at examining how hydrogen sulfide (H2S) promotes angiogenesis by regulating miR-192 biosynthesis. Results: H2S promoted in vitro angiogenesis and angiogenesis in Matrigel plugs embedded in mice by upregulating miR-192. Knockdown of the H2S-generating enzyme cystathionine γ-lyase (CSE) suppressed in vitro angiogenesis, and this suppression was rescued by exogenous H2S donor NaHS. Plakophilin 4 (PKP4) served as a target gene of miR-192. H2S up-regulated miR-192 via the VEGFR2/Akt pathway to promote the splicing of primary miR-192 (pri-miR-192), and it resulted in an increase in both the precursor- and mature forms of miR-192. H2S translocated YB-1 into the nuclei to recruit Drosha to bind with pri-miR-192 and promoted its splicing. NaHS treatment promoted angiogenesis in the hindlimb ischemia mouse model and the skin-wound-healing model in diabetic mice, with upregulated miR-192 and downregulated PKP4 on NaHS treatment. In human atherosclerotic plaques, miR-192 levels were positively correlated with the plasma H2S concentrations. Innovation and Conclusion: Our data reveal a role of YB-1 in recruiting Drosha to splice pri-miR-192 to mediate the proangiogenic effect of H2S. CSE/H2S/YB-1/Drosha/miR-192 is a potential therapeutic target pathway for treating diseases, including organ ischemia and diabetic complications. Antioxid. Redox Signal. 36, 760-783. The Clinical Trial Registration number is 2016-224.
Collapse
Affiliation(s)
- Yu Zhou
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xing-Hui Li
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Shanghai Cao Yang NO.2 High School, Shanghai, China
| | - Wen-Long Xue
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Sheng Jin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Meng-Yao Li
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Cai-Cai Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Physiology, Hainan Medical College, Haikou, China
| | - Bo Yu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Zhu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Liang
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, China
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
28
|
Zhong X, Wang T, Zhang W, Wang M, Xie Y, Dai L, He X, Madhusudhan T, Zeng H, Wang H. ERK/RSK-mediated phosphorylation of Y-box binding protein-1 aggravates diabetic cardiomyopathy by suppressing its interaction with deubiquitinase OTUB1. J Biol Chem 2022; 298:101989. [PMID: 35490780 PMCID: PMC9163515 DOI: 10.1016/j.jbc.2022.101989] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes, but its underlying mechanisms still remain unclear. The multifunctional protein Y-box binding protein-1 (YB-1) plays an important role in cardiac pathogenesis by regulating cardiac apoptosis, cardiac fibrosis, and pathological remodeling, whereas its role in chronic DCM requires further investigation. Here, we report that the phosphorylation of YB-1 at serine102 (S102) was markedly elevated in streptozotocin-induced diabetic mouse hearts and in high glucose-treated cardiomyocytes, whereas total YB-1 protein levels were significantly reduced. Coimmunoprecipitation experiments showed that YB-1 interacts with the deubiquitinase otubain-1, but hyperglycemia-induced phosphorylation of YB-1 at S102 diminished this homeostatic interaction, resulting in ubiquitination and degradation of YB-1. Mechanistically, the high glucose-induced phosphorylation of YB-1 at S102 is dependent on the upstream extracellular signal-regulated kinase (ERK)/Ras/mitogen-activated protein kinase (p90 ribosomal S6 kinase [RSK]) signaling pathway. Accordingly, pharmacological inhibition of the ERK pathway using the upstream kinase inhibitor U0126 ameliorated features of DCM compared with vehicle-treated diabetic mice. We demonstrate that ERK inhibition with U0126 also suppressed the phosphorylation of the downstream RSK and YB-1 (S102), which stabilized the interaction between YB-1 and otubain-1 and thereby preserved YB-1 protein expression in diabetic hearts. Taken together, we propose that targeting the ERK/RSK/YB-1 pathway could be a potential therapeutic approach for treating DCM.
Collapse
Affiliation(s)
- Xiaodan Zhong
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Tao Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, PR China
| | - Wenjun Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Mengwen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Yang Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Lei Dai
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Xingwei He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Hesong Zeng
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China.
| | - Hongjie Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, PR China.
| |
Collapse
|
29
|
Eliseeva IA, Sogorina EM, Smolin EA, Kulakovskiy IV, Lyabin DN. Diverse Regulation of YB-1 and YB-3 Abundance in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S48-S167. [PMID: 35501986 DOI: 10.1134/s000629792214005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | | | - Egor A Smolin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
30
|
Guens GP. YB-1 Protein in Breast Cancer (Scientific and Personal Meetings with Professor Ovchinnikov). BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S86-S47. [PMID: 35501988 DOI: 10.1134/s0006297922140073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
In the article, the author examines the properties of Y-box-binding protein (YB-1) and expression of the YBX-1 gene in various malignant tumors and provides the data from her own prospective study in breast cancer patients. YB-1 is a member of the highly conserved family of cold shock proteins with multiple functions in the cytoplasm and cell nucleus. YB-1 is involved in embryogenesis; it ensures cell proliferation and protects cell from the action of various aggressive environmental factors. In adult organisms, YB-1 is involved in a variety of cellular functions that regulate malignant phenotype in several types of tumors. YB-1 is a molecular marker of tumor progression that can be used in clinical practice as both prognostic factor and a target for anticancer therapy. Our prospective clinical study showed that expression of YB-1 mRNA is an independent prognostic factor, as breast cancer patients expressing YB-1 have a lower disease-free survival rate, regardless of the tumor stage and biological subtype. We recommend determining the level of YB-1 mRNA expression as a prognostic test in breast cancer patients.
Collapse
Affiliation(s)
- Gelena P Guens
- Department of Oncology and Radiation Therapy, Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, 127473, Russia.
| |
Collapse
|
31
|
Sogorina EM, Kim ER, Sorokin AV, Lyabin DN, Ovchinnikov LP, Mordovkina DA, Eliseeva IA. YB-1 Phosphorylation at Serine 209 Inhibits Its Nuclear Translocation. Int J Mol Sci 2021; 23:ijms23010428. [PMID: 35008856 PMCID: PMC8745666 DOI: 10.3390/ijms23010428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
YB-1 is a multifunctional DNA- and RNA-binding protein involved in cell proliferation, differentiation, and migration. YB-1 is a predominantly cytoplasmic protein that is transported to the nucleus in certain conditions, including DNA-damaging stress, transcription inhibition, and viral infection. In tumors, YB-1 nuclear localization correlates with high aggressiveness, multidrug resistance, and a poor prognosis. It is known that posttranslational modifications can regulate the nuclear translocation of YB-1. In particular, well-studied phosphorylation at serine 102 (S102) activates YB-1 nuclear import. Here, we report that Akt kinase phosphorylates YB-1 in vitro at serine 209 (S209), which is located in the vicinity of the YB-1 nuclear localization signal. Using phosphomimetic substitutions, we showed that S209 phosphorylation inhibits YB-1 nuclear translocation and prevents p-S102-mediated YB-1 nuclear import.
Collapse
Affiliation(s)
- Ekaterina M. Sogorina
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Ekaterina R. Kim
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexey V. Sorokin
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dmitry N. Lyabin
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Lev P. Ovchinnikov
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Daria A. Mordovkina
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Correspondence: (D.A.M.); (I.A.E.)
| | - Irina A. Eliseeva
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Correspondence: (D.A.M.); (I.A.E.)
| |
Collapse
|
32
|
YB1 Is a Major Contributor to Health Disparities in Triple Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13246262. [PMID: 34944882 PMCID: PMC8699660 DOI: 10.3390/cancers13246262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Triple negative breast cancer (TNBC) is a devastating disease that affects many women, due to the lack of FDA-approved targeted therapy. In the absence of cell surface receptors ER, PR, and Her2 that can be targeted with hormonal and antibody treatments, cytotoxic chemotherapy remains the major course of treatment, with a dismal response and rapid recurrence due to the acquisition of resistance. TNBC is also twice as more prevalent in African American (AA) when compared to Caucasian American (CA) women. This study investigated the role of the YB1 gene in the disparities in TNBC between AA and CA women. We found that YB1 is highly expressed in TNBC tumors of AA origin when compared to CAs. Increased expression levels and activity of YB1 correlates with poor disease outcomes, resistance to chemotherapy, and the activation of the cancer stem cell (CSC) phenotype, with higher levels in AA than in CA TNBC tumors. More importantly, we found that the targeted inhibition of the expression and activity of YB1 significantly inhibited the oncogenic behavior of AA tumors through sensitization to chemotherapy and inhibition of CSCs. Our study is the first to show that YB1 activity may be a major biological contributor to the health disparities in TNBC, and that development of therapies that specifically target YB1 could reduce these disparities. Abstract Triple negative breast cancer (TNBC) is the most aggressive amongst all breast cancer (BC) subtypes. While TNBC tumors represent less than 20% of all BC subtypes, they are responsible for the most BC-related deaths. More significantly, when considering TNBC incidence across all racial/ethnic groups, TNBC accounts for less than 20% of all BCs. However, in non-Hispanic black women, the incidence rate of TNBC is more than 40%, which may be a contributing factor to the higher BC-related death rate in this population. These disparities remain strong even after accounting for differences in socioeconomic status, healthcare access, and lifestyle factors. Increased evidence now points to biological mechanisms that are intrinsic to the tumor that contribute to disparate TNBC disease burdens. Here, we show that YB1, a multifunction gene, plays a major role in the TNBC disparities between African American (AA) and Caucasian American (CA) women. We show in three independent TNBC tumors cohorts, that YB1 is significantly highly expressed in AA TNBC tumors when compared to CAs, and that increased levels of YB1 correlate with poor survival of AA patients with TNBC. We used a combination of genetic manipulation of YB1 and chemotherapy treatment, both in vitro and in animal models of TNBC to show that YB1 oncogenic activity is more enhanced in TNBC cell lines of AA origin, by increasing their tumorigenic and aggressive behaviors, trough the activation of cancer stem cell phenotype and resistance to chemotherapeutic treatments.
Collapse
|
33
|
Xu F, Huang M, Chen Q, Niu Y, Hu Y, Hu P, Chen D, He C, Huang K, Zeng Z, Tang J, Wang F, Zhao Y, Wang C, Zhao G. LncRNA HIF1A-AS1 Promotes Gemcitabine Resistance of Pancreatic Cancer by Enhancing Glycolysis through Modulating the AKT/YB1/HIF1α Pathway. Cancer Res 2021; 81:5678-5691. [PMID: 34593522 DOI: 10.1158/0008-5472.can-21-0281] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/11/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Gemcitabine (GEM) resistance is a major challenge for chemotherapy of pancreatic cancer. Previous studies have reported on the role of long noncoding RNA (lncRNA) in tumorigenesis of pancreatic cancer, however, the involvement of lncRNA in the development of GEM resistance of pancreatic cancer remains unclear. In the present study, we demonstrated that the antisense RNA1 of HIF1α (HIF1A-AS1) was significantly elevated in the GEM-resistant pancreatic cancer cells. Gain- and lost-of-function experiments validated that HIF1A-AS1 promoted GEM resistance of pancreatic cancer cells both in vitro and vivo. We further revealed that HIF1A-AS1 upregulated HIF1α expression and thus promoted glycolysis to enhance GEM resistance of pancreatic cancer cells. Mechanistically, HIF1A-AS1 facilitated the interaction between serine/threonine kinase AKT and Y-box-binding protein 1 (YB1), which promoted phosphorylation of YB1 (pYB1). Meanwhile, HIF1A-AS1 recruited pYB1 to HIF1α mRNA that consequently promoted translation of HIF1α. Furthermore, HIF1α promoted HIF1A-AS1 transcription by directly binding to the HIF1α response element in the promoter area of HIF1A-AS1 to form a positive feedback. Consistently, both HIF1A-AS1 and HIF1α were upregulated in pancreatic cancer tissues and associated with poor overall survival. Together, our results underline a reciprocal loop of HIF1A-AS1 and HIF1α that contributes to GEM resistance of pancreatic cancer and indicate that HIF1A-AS1 might serve as a novel therapeutic target for GEM resistance of pancreatic cancer. SIGNIFICANCE: These findings show that a reciprocal feedback of HIF1A-AS1 and HIF1α promotes gemcitabine resistance of pancreatic cancer, which provides an applicable therapeutic target.
Collapse
Affiliation(s)
- Fengyu Xu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengqi Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingyong Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Niu
- Department of Gastroenterology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi He
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhu Zeng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Tang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Wang C, Zhao N, Sato F, Tanimoto K, Okada H, Liu Y, Bhawal UK. The roles of Y-box-binding protein (YB)-1 and C-X-C motif chemokine ligand 14 (CXCL14) in the progression of prostate cancer via extracellular-signal-regulated kinase (ERK) signaling. Bioengineered 2021; 12:9128-9139. [PMID: 34696665 PMCID: PMC8809965 DOI: 10.1080/21655979.2021.1993537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cold-shock protein Y-box-binding protein (YB)-1 regulates the expression of various chemokines and their receptors at the transcriptional level. Expression of the orphan chemokine CXCL14 is repressed by EGF induced signaling. The possible links between EGF-mediated YB-1 and CXCL14 as well as the functions of critical kinase pathways in the progression of prostate cancer have remained unexplored. Here we examined the correlation between YB-1 and CXCL14, and the ERK/AKT/mTOR pathways in prostate cancer. Knockdown of YB-1 decreased cyclinD1 expression with an upregulation of cleaved-PARP in human prostate cancer cells. EGF treatment upregulated phospho-YB-1 expression in a time-dependent manner, while treatment with an ERK inhibitor completely silenced its expression in prostate cancer cells. EGF treatment stimulates CyclinD1 and YB-1 phosphorylation in an ERK-dependent pathway. Positive and negative regulation of YB-1 and CXCL14 was observed after EGF treatment in prostate cancer cells, respectively. EGF rescues cell cycle and apoptosis via the AKT and ERK pathways. Furthermore, YB-1 silencing induces G1 arrest and apoptosis, while knockdown of CXCL14 facilitates cell growth and inhibits apoptosis in prostate cancer cells. YB-1 and CXCL14 were inversely correlated in prostate cancer cells and tissues. A significant association between poor overall survival and High YB-1 expression was observed in human prostate cancer patients. In conclusion, our data reveal the functional relationship between YB-1 and CXCL14 in EGF mediated ERK signaling, and YB-1 expression is a significant prognostic marker to predict prostate cancer.
Collapse
Affiliation(s)
- Chen Wang
- Department of Histology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Na Zhao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fuyuki Sato
- Pathology Division, Shizuoka Cancer Center, Shizuoka, Japan
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yang Liu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ujjal K Bhawal
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.,Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
35
|
Dittmer J. Nuclear Mechanisms Involved in Endocrine Resistance. Front Oncol 2021; 11:736597. [PMID: 34604071 PMCID: PMC8480308 DOI: 10.3389/fonc.2021.736597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Endocrine therapy is a standard treatment offered to patients with ERα (estrogen receptor α)-positive breast cancer. In endocrine therapy, ERα is either directly targeted by anti-estrogens or indirectly by aromatase inhibitors which cause estrogen deficiency. Resistance to these drugs (endocrine resistance) compromises the efficiency of this treatment and requires additional measures. Endocrine resistance is often caused by deregulation of the PI3K/AKT/mTOR pathway and/or cyclin-dependent kinase 4 and 6 activities allowing inhibitors of these factors to be used clinically to counteract endocrine resistance. The nuclear mechanisms involved in endocrine resistance are beginning to emerge. Exploring these mechanisms may reveal additional druggable targets, which could help to further improve patients' outcome in an endocrine resistance setting. This review intends to summarize our current knowledge on the nuclear mechanisms linked to endocrine resistance.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
36
|
Liu T, Xie XL, Zhou X, Chen SX, Wang YJ, Shi LP, Chen SJ, Wang YJ, Wang SL, Zhang JN, Dou SY, Jiang XY, Cui RL, Jiang HQ. Y-box binding protein 1 augments sorafenib resistance via the PI3K/Akt signaling pathway in hepatocellular carcinoma. World J Gastroenterol 2021; 27:4667-4686. [PMID: 34366628 PMCID: PMC8326262 DOI: 10.3748/wjg.v27.i28.4667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Y-box binding protein 1 (YB-1) is closely correlated with tumors and drug resistance. However, the relationship between YB-1 and sorafenib resistance and the underlying mechanism in HCC remain unknown.
AIM To explore the role and related mechanisms of YB-1 in mediating sorafenib resistance in HCC.
METHODS The protein expression levels of YB-1 were assessed in human HCC tissues and adjacent nontumor tissues. Next, we constructed YB-1 overexpression and knockdown hepatocarcinoma cell lines with lentiviruses and stimulated these cell lines with different concentrations of sorafenib. Then, we detected the proliferation and apoptosis in these cells by terminal deoxynucleotidyl transferase dUTP nick end labeling, flow cytometry and Western blotting assays. We also constructed a xenograft tumor model to explore the effect of YB-1 on the efficacy of sorafenib in vivo. Moreover, we studied and verified the specific molecular mechanism of YB-1 mediating sorafenib resistance in hepatoma cells by digital gene expression sequencing (DGE-seq).
RESULTS YB-1 protein levels were found to be higher in HCC tissues than in corresponding nontumor tissues. YB-1 suppressed the effect of sorafenib on cell proliferation and apoptosis. Consistently, the efficacy of sorafenib in vivo was enhanced after YB-1 was knocked down. Furthermore, KEGG pathway enrichment analysis of DGE-seq demonstrated that the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was essential for the sorafenib resistance induced by YB-1. Subsequently, YB-1 interacted with two key proteins of the PI3K/Akt signaling pathway (Akt1 and PIK3R1) as shown by searching the BioGRID and HitPredict websites. Finally, YB-1 suppressed the inactivation of the PI3K/Akt signaling pathway induced by sorafenib, and the blockade of the PI3K/Akt signaling pathway by LY294002 mitigated YB-1-induced sorafenib resistance.
CONCLUSION Overall, we concluded that YB-1 augments sorafenib resistance through the PI3K/Akt signaling pathway in HCC and suggest that YB-1 is a key drug resistance-related gene, which is of great significance for the application of sorafenib in advanced-stage HCC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xue Zhou
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Sheng-Xiong Chen
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Yi-Jun Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Lin-Ping Shi
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Shu-Jia Chen
- Department of Gastroenterology, Shijiazhuang People’s Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Yong-Juan Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Shu-Ling Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Jiu-Na Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Shi-Ying Dou
- Department of Infectious Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Yu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Ruo-Lin Cui
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Hui-Qing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
37
|
Li S, Xiong Q, Chen M, Wang B, Yang X, Yang M, Wang Q, Cui Z, Ge F. Long noncoding RNA HOTAIR interacts with Y-Box Protein-1 (YBX1) to regulate cell proliferation. Life Sci Alliance 2021; 4:4/9/e202101139. [PMID: 34266873 PMCID: PMC8321693 DOI: 10.26508/lsa.202101139] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The authors determined that HOTAIR specifically bind to YBX1 and promote its nuclear translocation, and then regulating cell proliferation by stimulating the PI3K/Akt and ERK/RSK signaling pathways. HOTAIR is a long noncoding RNA (lncRNA) which serves as an important factor regulating diverse processes linked with cancer development. Here, we used comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) to explore the HOTAIR-protein interactome. We were able to identify 348 proteins interacting with HOTAIR, allowing us to establish a heavily interconnected HOTAIR-protein interaction network. We further developed a novel near-infrared fluorescent protein (iRFP)-trimolecular fluorescence complementation (TriFC) system to assess the interaction between HOTAIR and its interacting proteins. Then, we determined that HOTAIR specifically binds to YBX1, promotes YBX1 nuclear translocation, and stimulates the PI3K/Akt and ERK/RSK signaling pathways. We further demonstrated that HOTAIR exerts its effects on cell proliferation, at least in part, through the regulation of two YBX1 downstream targets phosphoenolpyruvate carboxykinase 2 (PCK2) and platelet derived growth factor receptor β. Our findings revealed a novel mechanism, whereby an lncRNA is able to regulate cell proliferation via altering intracellular protein localization. Moreover, the imaging tools developed herein have excellent potential for future in vivo imaging of lncRNA–protein interaction.
Collapse
Affiliation(s)
- Siting Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Minghai Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xue Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China .,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China .,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Alkrekshi A, Wang W, Rana PS, Markovic V, Sossey-Alaoui K. A comprehensive review of the functions of YB-1 in cancer stemness, metastasis and drug resistance. Cell Signal 2021; 85:110073. [PMID: 34224843 DOI: 10.1016/j.cellsig.2021.110073] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
The Y Box binding protein 1 (YB-1) is a member of the highly conserved Cold Shock Domain protein family with multifunctional properties both in the cytoplasm and inside the nucleus. YB-1 is also involved in various cellular functions, including regulation of transcription, mRNA stability, and splicing. Recent studies have associated YB-1 with the regulation of the malignant phenotypes in several tumor types. In this review article, we provide an in-depth and expansive review of the literature pertaining to the multiple physiological functions of YB-1. We will also review the role of YB-1 in cancer development, progression, metastasis, and drug resistance in various malignancies, with more weight on literature published in the last decade. The methodology included querying databases PubMed, Embase, and Google Scholar for Y box binding protein 1, YB-1, YBX1, and Y-box-1.
Collapse
Affiliation(s)
- Akram Alkrekshi
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Wei Wang
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Priyanka Shailendra Rana
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Vesna Markovic
- MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Khalid Sossey-Alaoui
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
39
|
Liu X, Chen D, Chen H, Wang W, Liu Y, Wang Y, Duan C, Ning Z, Guo X, Otkur W, Liu J, Qi H, Liu X, Lin A, Xia T, Liu H, Piao H. YB1 regulates miR-205/200b-ZEB1 axis by inhibiting microRNA maturation in hepatocellular carcinoma. Cancer Commun (Lond) 2021; 41:576-595. [PMID: 34110104 PMCID: PMC8286141 DOI: 10.1002/cac2.12164] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Y-box binding protein 1 (YB1 or YBX1) plays a critical role in tumorigenesis and cancer progression. However, whether YB1 affects malignant transformation by modulating non-coding RNAs remains largely unknown. This study aimed to investigate the relationship between YB1 and microRNAs and reveal the underlying mechanism by which YB1 impacts on tumor malignancy via miRNAs-mediated regulatory network. METHODS The biological functions of YB1 in hepatocellular carcinoma (HCC) cells were investigated by cell proliferation, wound healing, and transwell invasion assays. The miRNAs dysregulated by YB1 were screened by microarray analysis in HCC cell lines. The regulation of YB1 on miR-205 and miR-200b was determined by quantitative real-time PCR, dual-luciferase reporter assay, RNA immunoprecipitation, and pull-down assay. The relationships of YB1, DGCR8, Dicer, TUT4, and TUT1 were identified by pull-down and coimmunoprecipitation experiments. The cellular co-localization of YB1, DGCR8, and Dicer were detected by immunofluorescent staining. The in vivo effect of YB1 on tumor metastasis was determined by injecting MHCC97H cells transduced with YB1 shRNA or shControl via the tail vein in nude BALB/c mice. The expression levels of epithelial to mesenchymal transition markers were detected by immunoblotting and immunohistochemistry assays. RESULTS YB1 promoted HCC cell migration and tumor metastasis by regulating miR-205/200b-ZEB1 axis partially in a Snail-independent manner. YB1 suppressed miR-205 and miR-200b maturation by interacting with the microprocessors DGCR8 and Dicer as well as TUT4 and TUT1 via the conserved cold shock domain. Subsequently, the downregulation of miR-205 and miR-200b enhanced ZEB1 expression, thus leading to increased cell migration and invasion. Furthermore, statistical analyses on gene expression data from HCC and normal liver tissues showed that YB1 expression was positively associated with ZEB1 expression and remarkably correlated with clinical prognosis. CONCLUSION This study reveals a previously undescribed mechanism by which YB1 promotes cancer progression by regulating the miR-205/200b-ZEB1 axis in HCC cells. Furthermore, these results highlight that YB1 may play biological functions via miRNAs-mediated gene regulation, and it can serve as a potential therapeutic target in human cancers.
Collapse
Affiliation(s)
- Xiumei Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Thoracic SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangLiaoning110042P. R. China
| | - Yawei Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Thoracic SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangLiaoning110042P. R. China
| | - Chao Duan
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Thoracic SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangLiaoning110042P. R. China
| | - Zhen Ning
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityDalianLiaoning116000P. R. China
| | - Xin Guo
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityDalianLiaoning116000P. R. China
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Jing Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Hong‐xu Liu
- Department of Thoracic SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangLiaoning110042P. R. China
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Biochemistry & Molecular BiologySchool of Life SciencesChina Medical UniversityShenyangLiaoning110122P. R. China
| |
Collapse
|
40
|
Shah A, Lindquist JA, Rosendahl L, Schmitz I, Mertens PR. Novel Insights into YB-1 Signaling and Cell Death Decisions. Cancers (Basel) 2021; 13:3306. [PMID: 34282755 PMCID: PMC8269159 DOI: 10.3390/cancers13133306] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
YB-1 belongs to the evolutionarily conserved cold-shock domain protein family of RNA binding proteins. YB-1 is a well-known transcriptional and translational regulator, involved in cell cycle progression, DNA damage repair, RNA splicing, and stress responses. Cell stress occurs in many forms, e.g., radiation, hyperthermia, lipopolysaccharide (LPS) produced by bacteria, and interferons released in response to viral infection. Binding of the latter factors to their receptors induces kinase activation, which results in the phosphorylation of YB-1. These pathways also activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a well-known transcription factor. NF-κB is upregulated following cellular stress and orchestrates inflammatory responses, cell proliferation, and differentiation. Inflammation and cancer are known to share common mechanisms, such as the recruitment of infiltrating macrophages and development of an inflammatory microenvironment. Several recent papers elaborate the role of YB-1 in activating NF-κB and signaling cell survival. Depleting YB-1 may tip the balance from survival to enhanced apoptosis. Therefore, strategies that target YB-1 might be a viable therapeutic option to treat inflammatory diseases and improve tumor therapy.
Collapse
Affiliation(s)
- Aneri Shah
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (L.R.); (P.R.M.)
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (L.R.); (P.R.M.)
| | - Lars Rosendahl
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (L.R.); (P.R.M.)
| | - Ingo Schmitz
- Department of Molecular Immunology, ZKF2, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (A.S.); (L.R.); (P.R.M.)
| |
Collapse
|
41
|
Lettau K, Khozooei S, Kosnopfel C, Zips D, Schittek B, Toulany M. Targeting the Y-box Binding Protein-1 Axis to Overcome Radiochemotherapy Resistance in Solid Tumors. Int J Radiat Oncol Biol Phys 2021; 111:1072-1087. [PMID: 34166770 DOI: 10.1016/j.ijrobp.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Multifunctional Y-box binding protein-1 (YB-1) is highly expressed in different human solid tumors and is involved in various cellular processes. DNA damage is the major mechanism by which radiochemotherapy (RCT) induces cell death. On induction of DNA damage, a multicomponent signal transduction network, known as the DNA damage response, is activated to induce cell cycle arrest and initiate DNA repair, which protects cells against damage. YB-1 regulates nearly all cancer hallmarks described to date by participating in DNA damage response, gene transcription, mRNA splicing, translation, and tumor stemness. YB-1 lacks kinase activity, and p90 ribosomal S6 kinase and AKT are the key kinases within the RAS/mitogen-activated protein kinase and phosphoinositide 3-kinase pathways that directly activate YB-1. Thus, the molecular targeting of ribosomal S6 kinase and AKT is thought to be the most effective strategy for blocking the cellular function of YB-1 in human solid tumors. In this review, after describing the prosurvival effect of YB-1 with a focus on DNA damage repair and cancer cell stemness, clinical evidence will be provided indicating an inverse correlation between YB-1 expression and the treatment outcome of solid tumors after RCT. In the interest of being concise, YB-1 signaling cascades will be briefly discussed and the current literature on YB-1 posttranslational modifications will be summarized. Finally, the current status of targeting the YB-1 axis, especially in combination with RCT, will be highlighted.
Collapse
Affiliation(s)
- Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-Universität, Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
42
|
Lin CL, Ying TH, Yang SF, Chiou HL, Chen YS, Kao SH, Hsieh YH. MTA2 silencing attenuates the metastatic potential of cervical cancer cells by inhibiting AP1-mediated MMP12 expression via the ASK1/MEK3/p38/YB1 axis. Cell Death Dis 2021; 12:451. [PMID: 33958583 PMCID: PMC8102478 DOI: 10.1038/s41419-021-03729-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Metastasis-associated protein 2 (MTA2) is a transcription factor that is highly associated with matrix metalloproteinase 12 (MMP12). Thus, we hypothesized that MTA2 may regulate MMP12 expression and is involved in cervical cancer metastasis. Results showed that MTA2 and MMP12 were highly expressed in cervical cancer cells, and MTA2 knockdown reduced MMP12 expression and inhibited the metastasis of cervical cancer cells in xenograft mice. MMP12 knockdown did not influence the viability of cervical cancer cells but clearly inhibited cell migration and invasion both in vitro and in vivo. MMP12 was highly expressed in cervical tumor tissues and correlated with the poor survival rate of patients with cervical cancer. Further investigations revealed that p38 mitogen-activated protein kinase (p38), mitogen-activated protein kinase kinase 3 (MEK3), and apoptosis signal-regulating kinase 1 (ASK1) were involved in MMP12 downregulation in response to MTA2 knockdown. Results also demonstrated that p38-mediated Y-box binding protein1 (YB1) phosphorylation disrupted the binding of AP1 (c-Fos/c-Jun) to the MMP12 promoter, thereby inhibiting MMP12 expression and the metastatic potential of cervical cancer cells. Collectively, targeting both MTA2 and MMP12 may be a promising strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yong-Syuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
43
|
The long non-coding RNA MIR31HG regulates the senescence associated secretory phenotype. Nat Commun 2021; 12:2459. [PMID: 33911076 PMCID: PMC8080841 DOI: 10.1038/s41467-021-22746-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene-induced senescence provides a barrier against malignant transformation. However, it can also promote cancer through the secretion of a plethora of factors released by senescent cells, called the senescence associated secretory phenotype (SASP). We have previously shown that in proliferating cells, nuclear lncRNA MIR31HG inhibits p16/CDKN2A expression through interaction with polycomb repressor complexes and that during BRAF-induced senescence, MIR31HG is overexpressed and translocates to the cytoplasm. Here, we show that MIR31HG regulates the expression and secretion of a subset of SASP components during BRAF-induced senescence. The SASP secreted from senescent cells depleted for MIR31HG fails to induce paracrine invasion without affecting the growth inhibitory effect. Mechanistically, MIR31HG interacts with YBX1 facilitating its phosphorylation at serine 102 (p-YBX1S102) by the kinase RSK. p-YBX1S102 induces IL1A translation which activates the transcription of the other SASP mRNAs. Our results suggest a dual role for MIR31HG in senescence depending on its localization and points to the lncRNA as a potential therapeutic target in the treatment of senescence-related pathologies. Senescence-associated secretory phenotype (SASP) involves secretion of factors such as pro-inflammatory cytokines. Here the authors show that MIR31HG regulates the expression and secretion of a subset of SASP components that induce paracrine invasion, through interaction with YBX1 and induction of IL1A translation.
Collapse
|
44
|
Y-Box Binding Protein-1 Promotes Epithelial-Mesenchymal Transition in Sorafenib-Resistant Hepatocellular Carcinoma Cells. Int J Mol Sci 2020; 22:ijms22010224. [PMID: 33379356 PMCID: PMC7795419 DOI: 10.3390/ijms22010224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common cancer types worldwide. In cases of advanced-stage disease, sorafenib is considered the treatment of choice. However, resistance to sorafenib remains a major obstacle for effective clinical application. Based on integrated phosphoproteomic and The Cancer Genome Atlas (TCGA) data, we identified a transcription factor, Y-box binding protein-1 (YB-1), with elevated phosphorylation of Ser102 in sorafenib-resistant HuH-7R cells. Phosphoinositide-3-kinase (PI3K) and protein kinase B (AKT) were activated by sorafenib, which, in turn, increased the phosphorylation level of YB-1. In functional analyses, knockdown of YB-1 led to decreased cell migration and invasion in vitro. At the molecular level, inhibition of YB-1 induced suppression of zinc-finger protein SNAI1 (Snail), twist-related protein 1 (Twist1), zinc-finger E-box-binding homeobox 1 (Zeb1), matrix metalloproteinase-2 (MMP-2) and vimentin levels, implying a role of YB-1 in the epithelial-mesenchymal transition (EMT) process in HuH-7R cells. Additionally, YB-1 contributes to morphological alterations resulting from F-actin rearrangement through Cdc42 activation. Mutation analyses revealed that phosphorylation at S102 affects the migratory and invasive potential of HuH-7R cells. Our collective findings suggest that sorafenib promotes YB-1 phosphorylation through effect from the EGFR/PI3K/AKT pathway, leading to significant enhancement of hepatocellular carcinoma (HCC) cell metastasis. Elucidation of the specific mechanisms of action of YB-1 may aid in the development of effective strategies to suppress metastasis and overcome resistance.
Collapse
|
45
|
Motolani A, Martin M, Sun M, Lu T. Phosphorylation of the Regulators, a Complex Facet of NF-κB Signaling in Cancer. Biomolecules 2020; 11:E15. [PMID: 33375283 PMCID: PMC7823564 DOI: 10.3390/biom11010015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor central to inflammation and various malignant diseases in humans. The regulation of NF-κB can be influenced by a myriad of post-translational modifications (PTMs), including phosphorylation, one of the most popular PTM formats in NF-κB signaling. The regulation by phosphorylation modification is not limited to NF-κB subunits, but it also encompasses the diverse regulators of NF-κB signaling. The differential site-specific phosphorylation of NF-κB itself or some NF-κB regulators can result in dysregulated NF-κB signaling, often culminating in events that induce cancer progression and other hyper NF-κB related diseases, such as inflammation, cardiovascular diseases, diabetes, as well as neurodegenerative diseases, etc. In this review, we discuss the regulatory role of phosphorylation in NF-κB signaling and the mechanisms through which they aid cancer progression. Additionally, we highlight some of the known and novel NF-κB regulators that are frequently subjected to phosphorylation. Finally, we provide some future perspectives in terms of drug development to target kinases that regulate NF-κB signaling for cancer therapeutic purposes.
Collapse
Affiliation(s)
- Aishat Motolani
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Matthew Martin
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Mengyao Sun
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
| | - Tao Lu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.M.); (M.M.); (M.S.)
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
46
|
Morgenroth R, Reichardt C, Steffen J, Busse S, Frank R, Heidecke H, Mertens PR. Autoantibody Formation and Mapping of Immunogenic Epitopes against Cold-Shock-Protein YB-1 in Cancer Patients and Healthy Controls. Cancers (Basel) 2020; 12:cancers12123507. [PMID: 33255653 PMCID: PMC7759818 DOI: 10.3390/cancers12123507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Cold shock Y-box binding protein-1 plays a crucial role in cancerous cell transformation and proliferation. Experimental evidence links autoantibody formation with cancer diseases as well as YB 1 protein levels. Hence, we investigated autoantibody formation targeting YB-1 in cancer patients. Using recombinant proteins and specific peptide arrays, we mapped linear epitopes, which localize in the cold shock and C-terminal domain of the protein, in cancer patients that differ from healthy controls. Furthermore, cancer sera containing autoantibodies that target YB-1 extend the half-life of the YB-1 protein. Since extracellular YB-1 serves as a ligand for receptor Notch3 as well as TNFR1, this may contribute to aberrant signaling that promotes tumor development. In the clinical setting, we envision setting up detection assays for the immune response against YB-1, which may aid in screening for cancer. Abstract Cold shock Y-box binding protein-1 participates in cancer cell transformation and mediates invasive cell growth. It is unknown whether an autoimmune response against cancerous human YB-1 with posttranslational protein modifications or processing develops. We performed a systematic analysis for autoantibody formation directed against conformational and linear epitopes within the protein. Full-length and truncated recombinant proteins from prokaryotic and eukaryotic cells were generated. Characterization revealed a pattern of spontaneous protein cleavage, predominantly with the prokaryotic protein. Autoantibodies against prokaryotic, but not eukaryotic full-length and cleaved human YB-1 protein fragments were detected in both, healthy volunteers and cancer patients. A mapping of immunogenic epitopes performed with truncated E. coli-derived GST-hYB-1 proteins yielded distinct residues in the protein N- and C-terminus. A peptide array with consecutive overlapping 15mers revealed six distinct antigenic regions in cancer patients, however to a lesser extent in healthy controls. Finally, a protein cleavage assay was set up with recombinant pro- and eukaryotic-derived tagged hYB-1 proteins. A distinct cleavage pattern developed, that is retarded by sera from cancer patients. Taken together, a specific autoimmune response against hYB-1 protein develops in cancer patients with autoantibodies targeting linear epitopes.
Collapse
Affiliation(s)
- Ronnie Morgenroth
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Str. 40, 39120 Magdeburg, Germany; (R.M.); (C.R.); (J.S.)
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Str. 40, 39120 Magdeburg, Germany; (R.M.); (C.R.); (J.S.)
| | - Johannes Steffen
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Str. 40, 39120 Magdeburg, Germany; (R.M.); (C.R.); (J.S.)
| | - Stefan Busse
- Clinic of Psychiatry and Psychotherapy, Otto-von-Guericke University Magdeburg, Leipziger Str. 40, 39120 Magdeburg, Germany;
| | - Ronald Frank
- AIMS Scientific Products GmbH, Galenusstr. 60, 13187 Berlin, Germany;
| | - Harald Heidecke
- CellTrend GmbH, im Biotechnologiepark 3, 14943 Luckenwalde, Germany;
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Str. 40, 39120 Magdeburg, Germany; (R.M.); (C.R.); (J.S.)
- Correspondence: ; Tel.: +49-391-6713236
| |
Collapse
|
47
|
Y-Box Binding Protein-1: A Neglected Target in Pediatric Brain Tumors? Mol Cancer Res 2020; 19:375-387. [PMID: 33239357 DOI: 10.1158/1541-7786.mcr-20-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
|
48
|
Yuan X, Zhang W, He Y, Yuan J, Song D, Chen H, Qin W, Qian X, Yu H, Guo Z. Proteomic analysis of cisplatin- and oxaliplatin-induced phosphorylation in proteins bound to Pt-DNA adducts. Metallomics 2020; 12:1834-1840. [PMID: 33151228 DOI: 10.1039/d0mt00194e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cisplatin and oxaliplatin are widely used anti-tumour chemotherapeutic agents with different spectra of activity. The therapeutic efficacy of such platinum-based drug is believed to, at least in part, result from formation of Pt-DNA adducts, followed by DNA damage response and ultimately apoptosis. However, it remains unclear whether these DNA lesions caused by cisplatin and oxaliplatin elicit distinct reactions in cellular signaling pathways. Here, a label-free comparative proteomic study was performed to profile the protein phosphorylation patterns using Pt-DNA probes with different ligand identities and geometries. Phosphorylated proteins recognizing different cisplatin- and oxaliplatin-DNA lesions were enriched and analyzed on LC-MS/MS. Proteomic analysis revealed that cisplatin mainly affected proteins involved in mRNA processing, while chromatin organization and rRNA processing are two major biological processes influenced by oxaliplatin. Changes to site-specific phosphorylation levels of two proteins YBX1 and UBF1 were also validated by Western blotting. In particular, platinum drug treatment in colon and liver cancer cell lines down-regulated S484 phosphorylation of UBF1, which is an essential transcription factor responsible for ribosomal DNA transcription activation, implying that inhibition of ribosome biogenesis might be involved in the cytotoxic mechanism of platinum drugs. Collectively, these results directly reflected distinct protein phosphorylation patterns triggered by cisplatin and oxaliplatin, and could also provide valuable resources for future mechanistic studies of platinum-based anti-tumour agents.
Collapse
Affiliation(s)
- Xin Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
McCauley C, Anang V, Cole B, Simmons GE. Potential Links between YB-1 and Fatty Acid Synthesis in Clear Cell Renal Carcinoma. ACTA ACUST UNITED AC 2020; 8. [PMID: 33778158 DOI: 10.18103/mra.v8i10.2273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
According to the National Institutes of Health, clear cell renal cell carcinoma (ccRCC) is the most common type of Renal Cell Carcinoma (RCC), making up approximately 75% of total renal carcinoma cases. Clear cell Renal Cell Carcinoma is characterized by a significant accumulation of lipids in the cytoplasm, which allows light from microscopes to pass through giving them a "clear" phenotype. Many of these lipids are in the form of fatty acids, both free and incorporated into lipid droplets. RCC is typically associated with a poor prognosis due to the lack of specific symptoms. Some symptoms include blood in urine, fever, lump on the side, weight loss, fatigue, to name a few; all of which can be associated with non-specific, non-cancerous, health conditions that contribute to difficult diagnosis. Treatment of RCC has typically been centered around radical nephrectomy as the standard of care, but due to the potentially small size of lesions and the possibility of causing surgically induced chronic kidney disease, treatments have shifted to more cautious, less invasive approaches. These approaches include active surveillance, nephron-sparing surgery, and other minimally invasive techniques like cryotherapy and renal ablation. Although these techniques have had the desired effect of reducing the number of surgeries, there is still considerable potential for renal impairment and the chance that tumors can grow out of control without surgery. With the difficulty that surrounds the treatment of ccRCC and its considerably high mortality rate amongst urological cancers, it is important to look for novel approaches to improve patient outcomes. This review looks at available literature and our data that suggests the lipogenic enzyme stearoyl-CoA desaturase may be more beneficial to patient survival than once thought. As our understanding of the importance of lipids in cell metabolism and longevity matures, it is important to present new perspectives that present a new understanding of ccRCC and the role of lipids in survival mechanisms engaged by transformed cells during cancer progression. In this review, we provide evidence that pharmacological inhibition of lipid desaturation in renal cancer patients is not without risk, and that the presence of unsaturated fatty acids may be a beneficial factor in patient outcomes. Although more direct experimental evidence is needed to make definitive conclusions, it is clear that the work reviewed herein should challenge our current understanding of cancer biology and may inform novel approaches to the diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Carter McCauley
- University of Minnesota Medical School, Duluth, MN, MN 55812, USA
| | - Vasthy Anang
- Clinical and Translational Science Institute PREP Program, University of Minnesota Medical School, Minneapolis, MN, MN 55812, USA
| | - Breanna Cole
- Department of Biology, The College of St. Scholastica, Duluth, MN, 55811, USA
| | - Glenn E Simmons
- University of Minnesota Medical School, Duluth, MN, MN 55812, USA.,Clinical and Translational Science Institute PREP Program, University of Minnesota Medical School, Minneapolis, MN, MN 55812, USA.,Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, MN 55812, USA.,Carcinogenesis and Chemoprevention program, Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
50
|
Tiwari A, Iida M, Kosnopfel C, Abbariki M, Menegakis A, Fehrenbacher B, Maier J, Schaller M, Brucker SY, Wheeler DL, Harari PM, Rothbauer U, Schittek B, Zips D, Toulany M. Blocking Y-Box Binding Protein-1 through Simultaneous Targeting of PI3K and MAPK in Triple Negative Breast Cancers. Cancers (Basel) 2020; 12:cancers12102795. [PMID: 33003386 PMCID: PMC7601769 DOI: 10.3390/cancers12102795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is associated with the high rates of relapse and metastasis and poor survival. YB-1 is overexpressed in TNBC tumor tissues. In the present study, we demonstrated that S102 phosphorylation of YB-1 in TNBC cell lines depend on the mutation status of the components of the MAPK/ERK and PI3K/Akt pathways. Simultaneous targeting of MEK and PI3K was found to be the most effective approach to block YB-1 phosphorylation and to inhibit YB-1 dependent cell proliferation. YBX1 knockout was sufficient to block TNBC tumor growth. Abstract The multifunctional protein Y-box binding protein-1 (YB-1) regulates all the so far described cancer hallmarks including cell proliferation and survival. The MAPK/ERK and PI3K/Akt pathways are also the major pathways involved in cell growth, proliferation, and survival, and are the frequently hyperactivated pathways in human cancers. A gain of function mutation in KRAS mainly leads to the constitutive activation of the MAPK pathway, while the activation of the PI3K/Akt pathway occurs either through the loss of PTEN or a gain of function mutation of the catalytic subunit alpha of PI3K (PIK3CA). In this study, we investigated the underlying signaling pathway involved in YB-1 phosphorylation at serine 102 (S102) in KRAS(G13D)-mutated triple-negative breast cancer (TNBC) MDA-MB-231 cells versus PIK3CA(H1047R)/PTEN(E307K) mutated TNBC MDA-MB-453 cells. Our data demonstrate that S102 phosphorylation of YB-1 in KRAS-mutated cells is mainly dependent on the MAPK/ERK pathway, while in PIK3CA/PTEN-mutated cells, YB-1 S102 phosphorylation is entirely dependent on the PI3K/Akt pathway. Independent of the individual dominant pathway regulating YB-1 phosphorylation, dual targeting of MEK and PI3K efficiently inhibited YB-1 phosphorylation and blocked cell proliferation. This represents functional crosstalk between the two pathways. Our data obtained from the experiments, applying pharmacological inhibitors and genetic approaches, shows that YB-1 is a key player in cell proliferation, clonogenic activity, and tumor growth of TNBC cells through the MAPK and PI3K pathways. Therefore, dual inhibition of these two pathways or single targeting of YB-1 may be an effective strategy to treat TNBC.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany; (A.T.); (D.Z.)
- Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany;
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (M.I.); (M.A.); (D.L.W.); (P.M.H.)
| | - Corinna Kosnopfel
- Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany; (C.K.); (B.F.); (M.S.); (B.S.)
| | - Mahyar Abbariki
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (M.I.); (M.A.); (D.L.W.); (P.M.H.)
| | - Apostolos Menegakis
- Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany;
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany; (C.K.); (B.F.); (M.S.); (B.S.)
| | - Julia Maier
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany; (J.M.); (U.R.)
- Pharmaceutical Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Martin Schaller
- Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany; (C.K.); (B.F.); (M.S.); (B.S.)
| | - Sara Y. Brucker
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany;
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (M.I.); (M.A.); (D.L.W.); (P.M.H.)
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (M.I.); (M.A.); (D.L.W.); (P.M.H.)
| | - Ulrich Rothbauer
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany; (J.M.); (U.R.)
- Pharmaceutical Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Birgit Schittek
- Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany; (C.K.); (B.F.); (M.S.); (B.S.)
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany; (A.T.); (D.Z.)
- Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany;
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany; (A.T.); (D.Z.)
- Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany;
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-7071-29-85832
| |
Collapse
|