1
|
Liu J, Gao L, Zhou N, Jiang Z, Che S, Deng Y, Zang N, Ren L, Xie X, Xie J, Liu E. p53 suppresses the inflammatory response following respiratory syncytial virus infection by inhibiting TLR2. Virology 2024; 593:110018. [PMID: 38368639 DOI: 10.1016/j.virol.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
-Respiratory syncytial virus (RSV) is a pivotal virus leading to acute lower respiratory tract infections in children under 5 years old. This study aimed to explore the correlation between p53 and Toll-like receptors (TLRs) post RSV infection. p53 levels exhibited a substantial decrease in nasopharyngeal aspirates (NPAs) from infants with RSV infection compared to control group. Manipulating p53 expression had no significant impact on RSV replication or interferon signaling pathway. Suppression of p53 expression led to heightened inflammation following RSV infection in A549 cells or airways of BALB/c mice. while stabilizing p53 expression using Nutlin-3a mitigated the inflammatory response in A549 cells. Additionally, Inhibiting p53 expression significantly increased Toll-like receptor 2 (TLR2) expression in RSV-infected epithelial cells and BALB/c mice. Furthermore, the TLR2 inhibitor, C29, effectively reduced inflammation mediated by p53 in A549 cells. Collectively, our results indicate that p53 modulates the inflammatory response after RSV infection through TLR2.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Leiqiong Gao
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Na Zhou
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhenghong Jiang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Siyi Che
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Luo Ren
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jun Xie
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
2
|
Kelishadi M, Shahsavarani H, Tabarraei A, Shokrgozar MA, Teimoori-Toolabi L, Azadmanesh K. The chicken chorioallantoic membrane model for isolation of CRISPR/cas9-based HSV-1 mutant expressing tumor suppressor p53. PLoS One 2023; 18:e0286231. [PMID: 37862369 PMCID: PMC10588894 DOI: 10.1371/journal.pone.0286231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively target and kill cancer cells while sparing normal ones. Among them, engineered Herpes simplex virus type 1 (HSV-1) has been proposed as a potential treatment for cancer and was moved to phase III clinical trials. Previous studies showed that design of OV therapy combined with p53 gene therapy increases the anti-cancer activities of OVs. Here, the UL39 gene of the ICP34.5 deleted HSV-1 was manipulated with the insertion of the EGFP-p53 expression cassette utilizing CRISPR/ Cas9 editing approach to enhance oncoselectivity and oncotoxicity capabilities. The ΔUL39/Δγ34.5/HSV1-p53 mutant was isolated using the chorioallantoic membrane (CAM) of fertilized chicken eggs as a complementing membrane to support the growth of the viruses with gene deficiencies. Comparing phenotypic features of ΔUL39/Δγ34.5/HSV1-p53-infected cells with the parent Δγ34.5/HSV-1 in vitro revealed that HSV-1-P53 had cytolytic ability in various cell lines from different origin with different p53 expression rates. Altogether, data presented here illustrate the feasibility of exploiting CAM model as a promising strategy for isolating recombinant viruses such as CRISPR/Cas9 mediated HSV-1-P53 mutant with less virus replication in cell lines due to increased cell mortality induced by exogenous p53.
Collapse
Affiliation(s)
- Mishar Kelishadi
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| | - Hosein Shahsavarani
- Faculty of Life Science and Biotechnology, Department of Cell and Molecular Biology, Shahid Beheshti University, Tehran, Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Faculty of Medicine, Department of Virology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Ali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Evaluation of a Novel Oncolytic Adenovirus Silencing SYVN1. Int J Mol Sci 2022; 23:ijms232315430. [PMID: 36499754 PMCID: PMC9737683 DOI: 10.3390/ijms232315430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic adenoviruses are promising new anticancer agents. To realize their full anticancer potential, they are being engineered to express therapeutic payloads. Tumor suppressor p53 function contributes to oncolytic adenovirus activity. Many cancer cells carry an intact TP53 gene but express p53 inhibitors that compromise p53 function. Therefore, we hypothesized that oncolytic adenoviruses could be made more effective by suppressing p53 inhibitors in selected cancer cells. To investigate this concept, we attenuated the expression of the established p53 inhibitor synoviolin (SYVN1) in A549 lung cancer cells by RNA interference. Silencing SYVN1 inhibited p53 degradation, thereby increasing p53 activity, and promoted adenovirus-induced A549 cell death. Based on these observations, we constructed a new oncolytic adenovirus that expresses a short hairpin RNA against SYVN1. This virus killed A549 cells more effectively in vitro and inhibited A549 xenograft tumor growth in vivo. Surprisingly, increased susceptibility to adenovirus-mediated cell killing by SYVN1 silencing was also observed in A549 TP53 knockout cells. Hence, while the mechanism of SYVN1-mediated inhibition of adenovirus replication is not fully understood, our results clearly show that RNA interference technology can be exploited to design more potent oncolytic adenoviruses.
Collapse
|
4
|
GOF Mutant p53 in Cancers: A Therapeutic Challenge. Cancers (Basel) 2022; 14:cancers14205091. [PMID: 36291874 PMCID: PMC9600758 DOI: 10.3390/cancers14205091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In normal cells, p53 is a protein which regulates the cell cycle progression to ensure normal cell division, growth, and development. However, in cancer, changes in the p53 DNA sequence, called genetic mutation, results in the protein either losing its normal function or exhibiting advanced pro-tumorigenic functions that lead to cancer. Importantly, cancers with mutations in the p53 protein often represent ones which are more aggressive and more resistant to chemotherapy. As a result, many studies have and continue to investigate multiple ways to target mutant p53-bearing cancer using targeted therapy, gene therapy, immunotherapy, and combination therapies. Knowledge of these strategies is important in improving the overall therapeutic response of cancers with mutant p53. This review highlights new strategies and discusses the progression of such therapies. Abstract TP53 is mutated in the majority of human cancers. Mutations can lead to loss of p53 expression or expression of mutant versions of the p53 protein. These mutant p53 proteins have oncogenic potential. They can inhibit any remaining WTp53 in a dominant negative manner, or they can acquire new functions that promote tumour growth, invasion, metastasis and chemoresistance. In this review we explore some of the mechanisms that make mutant p53 cells resistant to chemotherapy. As mutant p53 tumours are resistant to many traditional chemotherapies, many have sought to explore new ways of targeting mutant p53 tumours and reinstate chemosensitivity. These approaches include targeting of mutant p53 stability, mutant p53 binding partners and downstream pathways, p53 vaccines, restoration of WTp53 function, and WTp53 gene delivery. The current advances and challenges of these strategies are discussed.
Collapse
|
5
|
Kumar A, Grams TR, Bloom DC, Toth Z. Signaling Pathway Reporter Screen with SARS-CoV-2 Proteins Identifies nsp5 as a Repressor of p53 Activity. Viruses 2022; 14:v14051039. [PMID: 35632779 PMCID: PMC9145535 DOI: 10.3390/v14051039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The dysregulation of host signaling pathways plays a critical role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and viral pathogenesis. While a number of viral proteins that can block type I IFN signaling have been identified, a comprehensive analysis of SARS-CoV-2 proteins in the regulation of other signaling pathways that can be critical for viral infection and its pathophysiology is still lacking. Here, we screened the effect of 21 SARS-CoV-2 proteins on 10 different host signaling pathways, namely, Wnt, p53, TGFβ, c-Myc, Hypoxia, Hippo, AP-1, Notch, Oct4/Sox2, and NF-κB, using a luciferase reporter assay. As a result, we identified several SARS-CoV-2 proteins that could act as activators or inhibitors for distinct signaling pathways in the context of overexpression in HEK293T cells. We also provided evidence for p53 being an intrinsic host restriction factor of SARS-CoV-2. We found that the overexpression of p53 is capable of reducing virus production, while the main viral protease nsp5 can repress the transcriptional activity of p53, which depends on the protease function of nsp5. Taken together, our results provide a foundation for future studies, which can explore how the dysregulation of specific signaling pathways by SARS-CoV-2 proteins can control viral infection and pathogenesis.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA;
| | - Tristan R. Grams
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (T.R.G.); (D.C.B.)
| | - David C. Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (T.R.G.); (D.C.B.)
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA;
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
6
|
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021; 22:e53085. [PMID: 34779563 PMCID: PMC8647153 DOI: 10.15252/embr.202153085] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Hamish Campbell
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Catherine J Drummond
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kaisha Murray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Tania Slatter
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Antony W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
BK Polyomavirus Activates HSF1 Stimulating Human Kidney Hek293 Cell Proliferation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9176993. [PMID: 34845419 PMCID: PMC8627348 DOI: 10.1155/2021/9176993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 11/21/2022]
Abstract
Objectives Some DNA viruses, such as BKPyV, are capable of inducing neoplastic transformation in human tissues through still unclear mechanisms. The goal of this study is to investigate the carcinogenic potential of BK polyomavirus (BKPyV) in human embryonic kidney 293 (Hek293) cells, dissecting the molecular mechanism that determines the neoplastic transformation. Materials and Methods BKPyV, isolated from urine samples of infected patients, was used to infect monolayers of Hek293 cells. Subsequently, intracellular redox changes, GSH/GSSH concentration by HPLC, and reactive oxygen/nitrogen species (ROS/RNS) production were monitored. Moreover, to understand the signaling pathway underlying the neoplastic transformation, the redox-sensitive HFS1-Hsp27 molecular axis was examined using the flavonoid quercetin and polishort hairpin RNA technologies. Results The data obtained show that while BKPyV replication is closely linked to the transcription factor p53, the increase in Hek293 cell proliferation is due to the activation of the signaling pathway mediated by HSF1-Hsp27. In fact, its inhibition blocks viral replication and cell growth, respectively. Conclusions The HSF1-Hsp27 signaling pathway is involved in BKPyV infection and cellular replication and its activation, which could be involved in cell transformation.
Collapse
|
8
|
Prusinkiewicz MA, Mymryk JS. Metabolic Control by DNA Tumor Virus-Encoded Proteins. Pathogens 2021; 10:560. [PMID: 34066504 PMCID: PMC8148605 DOI: 10.3390/pathogens10050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses co-opt a multitude of host cell metabolic processes in order to meet the energy and substrate requirements for successful viral replication. However, due to their limited coding capacity, viruses must enact most, if not all, of these metabolic changes by influencing the function of available host cell regulatory proteins. Typically, certain viral proteins, some of which can function as viral oncoproteins, interact with these cellular regulatory proteins directly in order to effect changes in downstream metabolic pathways. This review highlights recent research into how four different DNA tumor viruses, namely human adenovirus, human papillomavirus, Epstein-Barr virus and Kaposi's associated-sarcoma herpesvirus, can influence host cell metabolism through their interactions with either MYC, p53 or the pRb/E2F complex. Interestingly, some of these host cell regulators can be activated or inhibited by the same virus, depending on which viral oncoprotein is interacting with the regulatory protein. This review highlights how MYC, p53 and pRb/E2F regulate host cell metabolism, followed by an outline of how each of these DNA tumor viruses control their activities. Understanding how DNA tumor viruses regulate metabolism through viral oncoproteins could assist in the discovery or repurposing of metabolic inhibitors for antiviral therapy or treatment of virus-dependent cancers.
Collapse
Affiliation(s)
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada;
- Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
9
|
Lee J, Oh GH, Hong JA, Choi S, Choi HJ, Song JJ. Enhanced oncolytic adenoviral production by downregulation of death-domain associated protein and overexpression of precursor terminal protein. Sci Rep 2021; 11:856. [PMID: 33441685 PMCID: PMC7807022 DOI: 10.1038/s41598-020-79998-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Adequate viral replication in tumor cells is the key to improving the anti-cancer effects of oncolytic adenovirus therapy. In this study, we introduced short hairpin RNAs against death-domain associated protein (Daxx), a repressor of adenoviral replication, and precursor terminal protein (pTP), an initiator of adenoviral genome replication, into adenoviral constructs to determine their contributions to viral replication. Both Daxx downregulation and pTP overexpression increased viral production in variety of human cancer cell lines, and the enhanced production of virus progeny resulted in more cell lysis in vitro, and tumor regression in vivo. We confirmed that increased virus production by Daxx silencing, or pTP overexpression, occurred using different mechanisms by analyzing levels of adenoviral protein expression and virus production. Specifically, Daxx downregulation promoted both virus replication and oncolysis in a consecutive manner by optimizing IVa2-based packaging efficiency, while pTP overexpression by increasing both infectious and total virus particles but their contribution to increased viral production may have been damaged to some extent by their another contribution to apoptosis and autophagy. Therefore, introducing both Daxx shRNA and pTP in virotherapy may be a suitable strategy to increase apoptotic tumor-cell death and to overcome poor viral replication, leading to meaningful reductions in tumor growth in vivo.
Collapse
Affiliation(s)
- Jihyun Lee
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Geun-Hyeok Oh
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jeong A Hong
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Soojin Choi
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Pokrovska TD, Jacobus EJ, Puliyadi R, Prevo R, Frost S, Dyer A, Baugh R, Rodriguez-Berriguete G, Fisher K, Granata G, Herbert K, Taverner WK, Champion BR, Higgins GS, Seymour LW, Lei-Rossmann J. External Beam Radiation Therapy and Enadenotucirev: Inhibition of the DDR and Mechanisms of Radiation-Mediated Virus Increase. Cancers (Basel) 2020; 12:E798. [PMID: 32224979 PMCID: PMC7226394 DOI: 10.3390/cancers12040798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022] Open
Abstract
Ionising radiation causes cell death through the induction of DNA damage, particularly double-stranded DNA (dsDNA) breaks. Evidence suggests that adenoviruses inhibit proteins involved in the DNA damage response (DDR) to prevent recognition of double-stranded viral DNA genomes as cellular dsDNA breaks. We hypothesise that combining adenovirus treatment with radiotherapy has the potential for enhancing tumour-specific cytotoxicity through inhibition of the DDR and augmentation of virus production. We show that EnAd, an Ad3/Ad11p chimeric oncolytic adenovirus currently being trialled in colorectal and other cancers, targets the DDR pathway at a number of junctures. Infection is associated with a decrease in irradiation-induced 53BP1 and Rad51 foci formation, and in total DNA ligase IV levels. We also demonstrate a radiation-associated increase in EnAd production in vitro and in a pilot in vivo experiment. Given the current limitations of in vitro techniques in assessing for synergy between these treatments, we adapted the plaque assay to allow monitoring of viral plaque size and growth and utilised the xCELLigence cell adhesion assay to measure cytotoxicity. Our study provides further evidence on the interaction between adenovirus and radiation in vitro and in vivo and suggests these have at least an additive, and possibly a synergistic, impact on cytotoxicity.
Collapse
Affiliation(s)
- Tzveta D. Pokrovska
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (T.D.P.); (E.J.J.); (S.F.); (A.D.); (R.B.); (K.F.); (W.K.T.); (J.L.-R.)
| | - Egon J. Jacobus
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (T.D.P.); (E.J.J.); (S.F.); (A.D.); (R.B.); (K.F.); (W.K.T.); (J.L.-R.)
| | - Rathi Puliyadi
- Tumour Radiosensitivity Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (R.P.); (R.P.); (G.R.-B.); (G.G.); (K.H.); (G.S.H.)
| | - Remko Prevo
- Tumour Radiosensitivity Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (R.P.); (R.P.); (G.R.-B.); (G.G.); (K.H.); (G.S.H.)
| | - Sally Frost
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (T.D.P.); (E.J.J.); (S.F.); (A.D.); (R.B.); (K.F.); (W.K.T.); (J.L.-R.)
| | - Arthur Dyer
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (T.D.P.); (E.J.J.); (S.F.); (A.D.); (R.B.); (K.F.); (W.K.T.); (J.L.-R.)
| | - Richard Baugh
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (T.D.P.); (E.J.J.); (S.F.); (A.D.); (R.B.); (K.F.); (W.K.T.); (J.L.-R.)
| | - Gonzalo Rodriguez-Berriguete
- Tumour Radiosensitivity Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (R.P.); (R.P.); (G.R.-B.); (G.G.); (K.H.); (G.S.H.)
| | - Kerry Fisher
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (T.D.P.); (E.J.J.); (S.F.); (A.D.); (R.B.); (K.F.); (W.K.T.); (J.L.-R.)
- PsiOxus Therapeutics Ltd., Abingdon OX14 3YS, UK;
| | - Giovanna Granata
- Tumour Radiosensitivity Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (R.P.); (R.P.); (G.R.-B.); (G.G.); (K.H.); (G.S.H.)
| | - Katharine Herbert
- Tumour Radiosensitivity Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (R.P.); (R.P.); (G.R.-B.); (G.G.); (K.H.); (G.S.H.)
| | - William K. Taverner
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (T.D.P.); (E.J.J.); (S.F.); (A.D.); (R.B.); (K.F.); (W.K.T.); (J.L.-R.)
| | | | - Geoff S. Higgins
- Tumour Radiosensitivity Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (R.P.); (R.P.); (G.R.-B.); (G.G.); (K.H.); (G.S.H.)
| | - Len W. Seymour
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (T.D.P.); (E.J.J.); (S.F.); (A.D.); (R.B.); (K.F.); (W.K.T.); (J.L.-R.)
| | - Janet Lei-Rossmann
- Anticancer Viruses and Cancer Vaccines Research Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (T.D.P.); (E.J.J.); (S.F.); (A.D.); (R.B.); (K.F.); (W.K.T.); (J.L.-R.)
| |
Collapse
|
11
|
Xiang Y, Jia P, Liu W, Yi M, Jia K. Comparative transcriptome analysis reveals the role of p53 signalling pathway during red-spotted grouper nervous necrosis virus infection in Lateolabrax japonicus brain cells. JOURNAL OF FISH DISEASES 2019; 42:585-595. [PMID: 30659619 PMCID: PMC7166548 DOI: 10.1111/jfd.12960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 05/10/2023]
Abstract
Nervous necrosis virus (NNV) is one of the fish pathogens that have caused mass mortalities of many marine and freshwater fishes in the world. To better comprehend the molecular immune mechanism of sea perch (Lateolabrax japonicus) against NNV infection, the comparative transcriptome analysis of red-spotted grouper nervous necrosis virus (RGNNV)-infected or mock-infected L. japonicus brain (LJB) cells was performed via RNA sequencing technology. Here, 1,969 up-regulated genes and 9,858 down-regulated genes, which were widely implicated in immune response pathways, were identified. Furthermore, we confirmed that p53 signalling pathway was repressed at 48 hr post-RGNNV infection, as indicated by up-regulation of Mdm2 and down-regulation of p53 and its downstream target genes, including Bax, Casp8 and CytC. Overexpression of L. japonicus p53 (Ljp53) significantly inhibited RGNNV replication and up-regulated the expression of apoptosis-related genes, whereas the down-regulation caused by pifithrin-α led to the opposite effect, suggesting Ljp53 might promote cell apoptosis to repress virus replication. Luciferase assay indicated that Ljp53 could enhance the promoter activities of zebrafish interferon (IFN)1, indicating that Ljp53 could exert its anti-RGNNV activities by enforcing the type I IFN response. This study revealed the potential antiviral role of p53 during NNV infection.
Collapse
Affiliation(s)
- Yangxi Xiang
- School of Marine SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai)ZhuhaiGuangdongChina
- Zhuhai Key Laboratory of Marine Bioresources and EnvironmentSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Peng Jia
- School of Marine SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai)ZhuhaiGuangdongChina
- Zhuhai Key Laboratory of Marine Bioresources and EnvironmentSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wei Liu
- School of Marine SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai)ZhuhaiGuangdongChina
- Zhuhai Key Laboratory of Marine Bioresources and EnvironmentSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Meisheng Yi
- School of Marine SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai)ZhuhaiGuangdongChina
- Zhuhai Key Laboratory of Marine Bioresources and EnvironmentSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Kuntong Jia
- School of Marine SciencesSun Yat‐sen UniversityGuangzhouGuangdongChina
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai)ZhuhaiGuangdongChina
- Zhuhai Key Laboratory of Marine Bioresources and EnvironmentSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
12
|
Li S, Lu LF, Liu SB, Zhang C, Li ZC, Zhou XY, Zhang YA. Spring viraemia of carp virus modulates p53 expression using two distinct mechanisms. PLoS Pathog 2019; 15:e1007695. [PMID: 30925159 PMCID: PMC6457570 DOI: 10.1371/journal.ppat.1007695] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/10/2019] [Accepted: 03/11/2019] [Indexed: 01/20/2023] Open
Abstract
p53, which regulates cell-cycle arrest and apoptosis, is a crucial target for viruses to release cells from cell-cycle checkpoints or to protect cells from apoptosis for their own benefit. Viral evasion mechanisms of aquatic viruses remain mysterious. Here, we report the spring viremia of carp virus (SVCV) degrading and stabilizing p53 in the ubiquitin-proteasome pathway by the N and P proteins, respectively. Early in an SVCV infection, significant induction was observed in the S phase and p53 was decreased in the protein level. Further experiments demonstrated that p53 interacted with SVCV N protein and was degraded by suppressing the K63-linked ubiquitination. However, the increase of p53 was observed late in the infection and experiments suggested that p53 was bound to SVCV P protein and stabilized by enhancing the K63-linked ubiquitination. Finally, lysine residue 358 was the key site for p53 K63-linked ubiquitination by the N and P proteins. Thus, our findings suggest that fish p53 is modulated by SVCV N and P protein in two distinct mechanisms, which uncovers the strategy for the subversion of p53-mediated host innate immune responses by aquatic viruses.
Collapse
Affiliation(s)
- Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shu-Bo Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
13
|
Brachtlova T, van Beusechem VW. Unleashing the Full Potential of Oncolytic Adenoviruses against Cancer by Applying RNA Interference: The Force Awakens. Cells 2018; 7:cells7120228. [PMID: 30477117 PMCID: PMC6315459 DOI: 10.3390/cells7120228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Oncolytic virus therapy of cancer is an actively pursued field of research. Viruses that were once considered as pathogens threatening the wellbeing of humans and animals alike are with every passing decade more prominently regarded as vehicles for genetic and oncolytic therapies. Oncolytic viruses kill cancer cells, sparing healthy tissues, and provoke an anticancer immune response. Among these viruses, recombinant adenoviruses are particularly attractive agents for oncolytic immunotherapy of cancer. Different approaches are currently examined to maximize their therapeutic effect. Here, knowledge of virus–host interactions may lead the way. In this regard, viral and host microRNAs are of particular interest. In addition, cellular factors inhibiting viral replication or dampening immune responses are being discovered. Therefore, applying RNA interference is an attractive approach to strengthen the anticancer efficacy of oncolytic viruses gaining attention in recent years. RNA interference can be used to fortify the virus’ cancer cell-killing and immune-stimulating properties and to suppress cellular pathways to cripple the tumor. In this review, we discuss different ways of how RNA interference may be utilized to increase the efficacy of oncolytic adenoviruses, to reveal their full potential.
Collapse
Affiliation(s)
- Tereza Brachtlova
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands.
| | - Victor W van Beusechem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Rovira-Rigau M, Raimondi G, Marín MÁ, Gironella M, Alemany R, Fillat C. Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Mol Ther 2018; 27:230-243. [PMID: 30341009 DOI: 10.1016/j.ymthe.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses are designed for cancer treatment. Cell-virus interactions are key determinants for successful viral replication. Therefore, the extensive reprogramming of gene expression that occurs in tumor cells might create a hurdle for viral propagation. We used a replication-based approach of a microRNA (miRNA) adenoviral library encoding up to 243 human miRNAs as a bioselection strategy to identify miRNAs that facilitate adenoviral oncolytic activity in pancreatic ductal adenocarcinoma. We identify two miRNAs, miR-99b and miR-485, that function as enhancers of adenoviral oncolysis by improving the intra- and extracellular yield of mature virions. An increased adenoviral activity is the consequence of enhanced E1A and late viral protein expression, which is probably mediated by the downregulation of the transcriptional repressors ELF4, MDM2, and KLF8, which we identify as miR-99b or miR-485 target genes. Arming the oncolytic adenovirus ICOVIR15 with miR-99b or miR-485 enhances its fitness and its antitumoral activity. Our results demonstrate the potential of this strategy to improve oncolytic adenovirus potency, and they highlight miR-99b and miR-485 as sensitizers of adenoviral replication.
Collapse
Affiliation(s)
- Maria Rovira-Rigau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Giulia Raimondi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Miguel Ángel Marín
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Meritxell Gironella
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 08036 Barcelona, Spain
| | - Ramon Alemany
- Institut Català d'Oncologia-IDIBELL, 08907 L'Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain; Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona (UB), 08036 Barcelona, Spain.
| |
Collapse
|
15
|
Adenovirus 5 E1A-Mediated Suppression of p53 via FUBP1. J Virol 2018; 92:JVI.00439-18. [PMID: 29743362 DOI: 10.1128/jvi.00439-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
Far-upstream element (FUSE) binding protein 1 (FUBP1) was originally identified as a regulator of the oncogene c-Myc via binding to the FUSE within the c-Myc promoter and activating the expression of the gene. Recent studies have identified FUBP1 as a regulator of transcription, translation, and splicing via its DNA and RNA binding activities. Here we report the identification of FUBP1 as a novel binding partner of E1A. FUBP1 binds directly to E1A via the N terminus (residues 1 to 82) and conserved region 3 (residues 139 to 204) of adenovirus 5 E1A. The depletion of FUBP1 via short interfering RNAs (siRNA) reduces virus growth and drives the upregulation of the cellular stress response by activating the expression of p53-regulated genes. During infection, FUBP1 is relocalized within the nucleus, and it is recruited to viral promoters together with E1A while at the same time being lost from the FUSE upstream of the c-Myc promoter. The depletion of FUBP1 affects viral and cellular gene expression. Importantly, in FUBP1-depleted cells, p53-responsive genes are upregulated, p53 occupancy on target promoters is enhanced, and histone H3 lysine 9 is hyperacetylated. This is likely due to the loss of the FUBP1-mediated suppression of p53 DNA binding. We also observed that E1A stabilizes the FUBP1-p53 complex, preventing p53 promoter binding. Together, our results identify, for the first time, FUBP1 as a novel E1A binding protein that participates in aspects of viral replication and is involved in the E1A-mediated suppression of p53 function.IMPORTANCE Viral infection triggers innate cellular defense mechanisms that have evolved to block virus replication. To overcome this, viruses have counterevolved mechanisms that ensure that cellular defenses are either disarmed or not activated to guarantee successful replication. One of the key regulators of cellular stress is the tumor suppressor p53 that responds to a variety of cellular stress stimuli and safeguards the integrity of the genome. During infection, many viruses target the p53 pathway in order to deactivate it. Here we report that human adenovirus 5 coopts the cellular protein FUBP1 to prevent the activation of the p53 stress response pathway that would block viral replication. This finding adds to our understanding of p53 deactivation by adenovirus and highlights its importance in infection and innate immunity.
Collapse
|
16
|
Cheng PH, Wechman SL, McMasters KM, Zhou HS. Oncolytic Replication of E1b-Deleted Adenoviruses. Viruses 2015; 7:5767-79. [PMID: 26561828 PMCID: PMC4664978 DOI: 10.3390/v7112905] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/30/2023] Open
Abstract
Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads) are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viral mRNA export, and cell cycle disruption.
Collapse
Affiliation(s)
- Pei-Hsin Cheng
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stephen L Wechman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Kelly M McMasters
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Heshan Sam Zhou
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
17
|
Dong W, van Ginkel JWH, Au KY, Alemany R, Meulenberg JJM, van Beusechem VW. ORCA-010, a novel potency-enhanced oncolytic adenovirus, exerts strong antitumor activity in preclinical models. Hum Gene Ther 2014; 25:897-904. [PMID: 25093639 DOI: 10.1089/hum.2013.229] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Improving the antitumor potency of current oncolytic adenoviruses represents one of the major challenges in development of these viruses for clinical use. We have generated an oncolytic adenovirus carrying the safety-enhancing E1AΔ24 deletion, the potency-enhancing T1 mutation, and the infectivity-enhancing fiber RGD modification. The results of in vitro cytotoxicity assays on 15 human cancer cell lines derived from different tumor types demonstrated that ORCA-010 is more potent than Ad5-Δ24RGD or ONYX-015. As ORCA-010 will initially be developed for the treatment of prostate cancer, selectivity experiments were performed using primary human prostate cells. ORCA-010 killed cancer cells more effectively than these primary human cells. In both primary prostate fibroblasts and epithelial cells, ORCA-010 was as safe as Ad5-Δ24RGD. Evaluation of ORCA-010 in in vivo xenograft tumor models in nude mice showed that ORCA-010 significantly inhibited growth of prostate, lung, and ovarian tumors and conferred prolonged survival of tumor-bearing animals. Furthermore, we observed a substantial increase in infectious viral particles in tumors injected with ORCA-010. The number of infectious viral particles increased after treatment and infectious particles remained present up to at least 4 weeks posttreatment. Intratumoral virus replication was associated with substantial necrosis and fibrosis. In conclusion, ORCA-010 is more potent than earlier generation oncolytic adenoviruses, without demonstrating increased toxicity. ORCA-010 exerted strong in vivo antitumor activity and is therefore a suitable candidate for clinical evaluation.
Collapse
Affiliation(s)
- Wenliang Dong
- 1 ORCA Therapeutics B.V. , 1081 HZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
During adenovirus infection, the emphasis of gene expression switches from early genes to late genes in a highly regulated manner. Two gene products, L4-22K and L4-33K, contribute to this switch by activating the major late transcription unit (MLTU) and regulating the splicing of its transcript. L4-22K and L4-33K expression is driven initially by a recently described L4 promoter (L4P) embedded within the MLTU that is activated by early and intermediate viral factors: E1A, E4 Orf3, and IVa2. Here we show that this promoter is also significantly activated by the cellular stress response regulator, p53. Exogenous expression of p53 activated L4P in reporter assays, while depletion of endogenous p53 inhibited the induction of L4P by viral activators. Chromatin immunoprecipitation studies showed that p53 associates with L4P and that during adenovirus type 5 (Ad5) infection, this association peaks at 12 h postinfection, coinciding with the phase of the infectious cycle when L4P is active, and is then lost as MLP activation commences. p53 activation of L4P is significant during Ad5 infection, since depletion of p53 prior to infection of either immortalized or normal cells led to severely reduced late gene expression. The association of p53 with L4P is transient due to the action of products of L4P activity (L4-22K/33K), which establish a negative feedback loop that ensures the transient activity of L4P at the start of the late phase and contributes to an efficient switch from early- to late-phase virus gene expression.
Collapse
|
19
|
Kofman AV, Letson C, Dupart E, Bao Y, Newcomb WW, Schiff D, Brown J, Abounader R. The p53-microRNA-34a axis regulates cellular entry receptors for tumor-associated human herpes viruses. Med Hypotheses 2013; 81:62-7. [PMID: 23643704 DOI: 10.1016/j.mehy.2013.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
A growing number of reports indicate the frequent presence of DNA sequences and gene products of human cytomegalovirus in various tumors as compared to adjacent normal tissues, the brain tumors being studied most intensely. The mechanisms underlying the tropism of human cytomegalovirus to the tumor cells or to the cells of tumor origin, as well as the role of the host's genetic background in virus-associated oncogenesis are not well understood. It is also not clear why cytomegalovirus can be detected in many but not in all tumor specimens. Our in silico prediction results indicate that microRNA-34a may be involved in replication of some human DNA viruses by targeting and downregulating the genes encoding a diverse group of proteins, such as platelet-derived growth factor receptor-alpha, complement component receptor 2, herpes simplex virus entry mediators A, B, and C, and CD46. Notably, while their functions vary, these surface molecules have one feature in common: they serve as cellular entry receptors for human DNA viruses (cytomegalovirus, Epstein-Barr virus, human herpes virus 6, herpes simplex viruses 1 and 2, and adenoviruses) that are either proven or suspected to be linked with malignancies. MicroRNA-34a is strictly dependent on its transcriptional activator tumor suppressor protein p53, and both p53 and microRNA-34a are frequently mutated or downregulated in various cancers. We hypothesize that p53-microRNA-34a axis may alter susceptibility of cells to infection with some viruses that are detected in tumors and either proven or suspected to be associated with tumor initiation and progression.
Collapse
Affiliation(s)
- Alexander V Kofman
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
The p53 protein does not facilitate adenovirus type 5 replication in normal human cells. J Virol 2013; 87:6044-6. [PMID: 23487462 DOI: 10.1128/jvi.00129-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although several adenovirus type 5 (Ad5) proteins prevent deleterious consequences of activation of p53, it has been reported that viral replication proceeds more efficiently when human tumor cells produce wild-type compared to mutant p53. We have now exploited RNA interference and lentiviral vectors to achieve essentially complete knockdown of p53 in normal human cells: no effects on the kinetics or efficiency of viral gene expression or production of infectious particles were observed.
Collapse
|
21
|
Bian T, Gibbs JD, Örvell C, Imani F. Respiratory syncytial virus matrix protein induces lung epithelial cell cycle arrest through a p53 dependent pathway. PLoS One 2012; 7:e38052. [PMID: 22662266 PMCID: PMC3360651 DOI: 10.1371/journal.pone.0038052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/02/2012] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of viral respiratory infections in children. Our previous study showed that the RSV infection induced lung epithelial cell cycle arrest, which enhanced virus replication. To address the mechanism of RSV-induced cell cycle arrest, we examined the contribution of RSV-matrix (RSV-M) protein. In this report, we show that in both the A549 cell line and primary human bronchial epithelial (PHBE) cells, transfection with RSV-M protein caused the cells to proliferate at a slower rate than in control cells. The cell cycle analysis showed that RSV-M protein induced G1 phase arrest in A549 cells, and G1 and G2/M phase arrest in PHBE cells. Interestingly, RSV-M expression induced p53 and p21 accumulation and decreased phosphorylation of retinoblastoma protein (Rb). Further, induction of cell cycle arrest by RSV-M was not observed in a p53-deficient epithelial cell line (H1299). However, cell cycle arrest was restored after transfection of p53 cDNA into H1299 cells. Taken together, these results indicate that RSV-M protein regulates lung epithelial cell cycle through a p53-dependent pathway, which enhances RSV replication.
Collapse
Affiliation(s)
- Tao Bian
- Laboratory of Respiratory Biology, National Institute of Environmental Human Science, Durham, North Carolina, United States of America
| | - John D. Gibbs
- Global Vaccines, Inc., Durham, North Carolina, United States of America
| | - Claes Örvell
- Huddinge University Hospital, Department of Clinical Virology, Karolinska Institute, Stockholm, Sweden
| | - Farhad Imani
- ViraSource Laboratories, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Pang R, Tao JY, Zhang SL, Chen KL, Zhao L, Yue X, Wang YF, Ye P, Zhu Y, Wu JG. Ethanol Extract from Ampelopsis sinica Root Exerts Anti-Hepatitis B Virus Activity via Inhibition of p53 Pathway In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:939205. [PMID: 21738555 PMCID: PMC3130517 DOI: 10.1093/ecam/neq011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/31/2010] [Indexed: 12/22/2022]
Abstract
Ampelopsis sinica root is widely used in Chinese folk medicine for treating liver disorders caused by the hepatitis B virus (HBV). The present study was performed in order to investigate the anti-HBV activity and mechanisms of the ethanol extract from A. sinica root (EASR) in vitro. The antiviral activity of EASR was examined by detecting the levels of HBsAg, HBeAg and extracellular HBV DNAs in stable HBV-producing human hepatoblastoma HepG2 2.2.15 cells. We found that EASR effectively suppressed the secretion of HBsAg and HBeAg from HepG2 2.2.15 cells in a dose-dependent manner, and it also suppressed the amount of extracellular HBV DNA. After EASR treatment, the percentage of apoptotic cells was found to be significantly higher than that of control by flow cytometric analysis. A luciferase reporter gene assay was used to determine the effects of EASR on the activities of HBV promoters and intracellular signaling pathways. The results showed that EASR selectively inhibited the activities of HBV promoters (Cp, S1p and Fp) and the p53 signaling pathway in HepG2 cells significantly. These data indicate that EASR exerts anti-HBV effects via inhibition of HBV promoters and the p53-associated signaling pathway, which helps to elucidate the mechanism underlying the potential therapeutic value of EASR.
Collapse
Affiliation(s)
- Ran Pang
- Department of Hepatology and Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Serotype-specific inactivation of the cellular DNA damage response during adenovirus infection. J Virol 2010; 85:2201-11. [PMID: 21159879 DOI: 10.1128/jvi.01748-10] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus type 5 (Ad5) inactivates the host cell DNA damage response by facilitating the degradation of Mre11, DNA ligase IV, and p53. In the case of p53, this is achieved through polyubiquitylation by Ad5E1B55K and Ad5E4orf6, which recruit a Cul5-based E3 ubiquitin ligase. Recent evidence indicates that this paradigm does not apply to other adenovirus serotypes, since Ad12, but not Ad5, causes the degradation of TOPBP1 through the action of E4orf6 alone and a Cul2-based E3 ubiquitin ligase. We now have extended these studies to adenovirus groups A to E. While infection by Ad4, Ad5, and Ad12 (groups E, C, and A, respectively) cause the degradation of Mre11, DNA ligase IV, and p53, infection with Ad3, Ad7, Ad9, and Ad11 (groups B1, B1, D, and B2, respectively) only affects DNA ligase IV levels. Indeed, Ad3, Ad7, and Ad11 cause the marked accumulation of p53. Despite this, MDM2 levels were very low following infection with all of the viruses examined here, regardless of whether they increase p53 expression. In addition, we found that only Ad12 causes the degradation of TOPBP1, and, like Ad5, Ad4 recruits a Cul5-based E3 ubiquitin ligase to degrade p53. Surprisingly, Mre11 and DNA ligase IV degradation do not appear to be significantly affected in Ad4-, Ad5-, or Ad12-infected cells depleted of Cul2 or Cul5, indicating that E1B55K and E4orf6 recruit multiple ubiquitin ligases to target cellular proteins. Finally, although Mre11 is not degraded by Ad3, Ad7, Ad9, and Ad11, no viral DNA concatemers could be detected. We suggest that group B and D adenoviruses have evolved mechanisms based on the loss of DNA ligase IV and perhaps other unknown molecules to disable the host cell DNA damage response to promote viral replication.
Collapse
|
24
|
Combinatory cytotoxic effects produced by E1B-55kDa-deleted adenoviruses and chemotherapeutic agents are dependent on the agents in esophageal carcinoma. Cancer Gene Ther 2010; 17:803-13. [PMID: 20689571 PMCID: PMC2963731 DOI: 10.1038/cgt.2010.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We examined possible combinatory antitumor effects of replication-competent type 5 adenoviruses (Ad) lacking E1B-55kDa molecules (Ad-delE1B55) and chemotherapeutic agents in nine human esophageal carcinoma cells. Ad-delE1B55 produced cytotoxic effects on all the carcinoma cells and the cytotoxicity is not directly linked with the p53 status of the tumors or with the infectivity to respective tumors. A combinatory treatment with Ad-delE1B55 and an anticancer agent, 5-fluorouracil (5-FU), mitomycin C or etoposide, produced greater cytotoxic effects than that with either the Ad or the agent. Administration of 5-FU could minimally inhibit the viral replication and a simultaneous treatment with the Ad and 5-FU achieved better cytotoxicity than sequential treatments. We also confirmed the antitumor effects by the combination of Ad-delE1B55 with 5-FU in vivo. Cisplatin, however, did not achieve the combinatory effects in most of the cells tested. These data indicate that the Ad-delE1B55 produce combinatory antitumor effects with a chemotherapeutic agent irrespective of the administration schedule, but the effects depend on an agent in esophageal carcinoma.
Collapse
|
25
|
Kim M, Williamson CT, Prudhomme J, Bebb DG, Riabowol K, Lee PWK, Lees-Miller SP, Mori Y, Rahman MM, McFadden G, Johnston RN. The viral tropism of two distinct oncolytic viruses, reovirus and myxoma virus, is modulated by cellular tumor suppressor gene status. Oncogene 2010; 29:3990-6. [PMID: 20473328 DOI: 10.1038/onc.2010.137] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Replication-competent oncolytic viruses hold great potential for the clinical treatment of many cancers. Importantly, many oncolytic virus candidates, such as reovirus and myxoma virus, preferentially infect cancer cells bearing abnormal cellular signaling pathways. Reovirus and myxoma virus are highly responsive to activated Ras and Akt signaling pathways, respectively, for their specificity for viral oncolysis. However, considering the complexity of cancer cell populations, it is possible that other tumor-specific signaling pathways may also contribute to viral discrimination between normal versus cancer cells. Because carcinogenesis is a multistep process involving the accumulation of both oncogene activations and the inactivation of tumor suppressor genes, we speculated that not only oncogenes but also tumor suppressor genes may have an important role in determining the tropism of these viruses for cancer cells. It has been previously shown that many cellular tumor suppressor genes, such as p53, ATM and Rb, are important for maintaining genomic stability; dysfunction of these tumor suppressors may disrupt intact cellular antiviral activity due to the accumulation of genomic instability or due to interference with apoptotic signaling. Therefore, we speculated that cells with dysfunctional tumor suppressors may display enhanced susceptibility to challenge with these oncolytic viruses, as previously seen with adenovirus. We report here that both reovirus and myxoma virus preferentially infect cancer cells bearing dysfunctional or deleted p53, ATM and Rb tumor suppressor genes compared to cells retaining normal counterparts of these genes. Thus, oncolysis by these viruses may be influenced by both oncogenic activation and tumor suppressor status.
Collapse
Affiliation(s)
- M Kim
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rivas C, Aaronson SA, Munoz-Fontela C. Dual Role of p53 in Innate Antiviral Immunity. Viruses 2010; 2:298-313. [PMID: 21994612 PMCID: PMC3185551 DOI: 10.3390/v2010298] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/11/2010] [Accepted: 01/19/2010] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor p53 is widely known as 'the guardian of the genome' due to its ability to prevent the emergence of transformed cells by the induction of cell cycle arrest and apoptosis. However, recent studies indicate that p53 is also a direct transcriptional target of type I interferons (IFNs) and thus, it is activated by these cytokines upon viral infection. p53 has been shown to contribute to virus-induced apoptosis, therefore dampening the ability of a wide range of viruses to replicate and spread. Interestingly, recent studies also indicate that several IFN-inducible genes such as interferon regulatory factor 9 (IRF9), IRF5, IFN-stimulated gene 15 (ISG15) and toll-like receptor 3 (TLR3) are in fact, p53 direct transcriptional targets. These findings indicate that p53 may play a key role in antiviral innate immunity by both inducing apoptosis in response to viral infection, and enforcing the type I IFN response, and provide a new insight into the evolutionary reasons why many viruses encode p53 antagonistic proteins.
Collapse
Affiliation(s)
- Carmen Rivas
- Centro Nacional de Biotecnologia, CSIC, Darwin 3, Campus Universidad Autónoma, Madrid 28049, Spain; E-Mail: (C.R.)
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1130, New York, NY 10029, USA; E-Mail: (S.A.A.)
| | - Cesar Munoz-Fontela
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1130, New York, NY 10029, USA; E-Mail: (S.A.A.)
| |
Collapse
|
27
|
Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J Virol 2009; 83:4000-12. [PMID: 19211739 DOI: 10.1128/jvi.02417-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
28
|
Ma G, Shimada H, Hiroshima K, Tada Y, Suzuki N, Tagawa M. Gene medicine for cancer treatment: commercially available medicine and accumulated clinical data in China. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:115-22. [PMID: 19920899 PMCID: PMC2761194 DOI: 10.2147/dddt.s3535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Loss of p53 function compromises genetic homeostasis, which induces deregulated DNA replication, damages DNA, and subsequently results in increased resistance to anticancer agents. Pharmacological approaches using recombinant adenoviruses (Ad) have been developed to restore the p53 functions. Another approach for gene medicine is to modify Ad replication in a tumor-specific manner, which induces tumor cell death without damaging normal tissues in the vicinity. The Ad-derived gene medicines, Ad expressing the wild-type p53 gene and replication-competent Ad defective of the E1B-55kDa gene, have been tested for their clinical feasibility and became commercially available in China. These agents demonstrated their antitumor activities as a monotherapy and in combination with conventional chemotherapeutic agents. In this article, we summarize the outcomes of clinical trials in China, most of which have been published in domestic Chinese journals, and discuss potential directions of cancer gene therapy with these agents.
Collapse
Affiliation(s)
- Guangyu Ma
- Division of Pathology, Chiba Cancer Center Research Institute, 666-1 Nitona, Chuo-ku, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Somberg M, Rush M, Fay J, Ryan F, Lambkin H, Akusjärvi G, Schwartz S. Adenovirus E4orf4 induces HPV-16 late L1 mRNA production. Virology 2008; 383:279-90. [PMID: 19026433 DOI: 10.1016/j.virol.2008.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/29/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
The adenovirus E4orf4 protein regulates the switch from early to late gene expression during the adenoviral replication cycle. Here we report that overexpression of adenovirus E4orf4 induces human papillomavirus type 16 (HPV-16) late gene expression from subgenomic expression plasmids. E4orf4 specifically overcomes the negative effects of two splicing silencers at the two late HPV-16 splice sites SD3632 and SA5639. This results in the production of HPV-16 spliced L1 mRNAs. We show that the interaction of E4orf4 with protein phosphatase 2A (PP2A) is necessary for induction of HPV-16 late gene expression. Also an E4orf4 mutant that fails to bind the cellular splicing factor ASF/SF2 fails to induce L1 mRNA production. Collectively, these results suggest that dephosphorylation of SR proteins by E4orf4 activates HPV-16 late gene expression. Indeed, a mutant ASF/SF2 protein in which the RS-domain had been deleted could itself induce HPV-16 late gene expression, whereas wild type ASF/SF2 could not.
Collapse
Affiliation(s)
- Monika Somberg
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Hong M, Li W, Wang L, Jiang L, Liu L, Zhao H, Li Q. Identification of a novel transcriptional repressor (HEPIS) that interacts with nsp-10 of SARS coronavirus. Viral Immunol 2008; 21:153-62. [PMID: 18433331 DOI: 10.1089/vim.2007.0108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel gene was previously isolated from a cDNA library of human embryo lung tissue by its encoded protein, which interacts with non-structural protein 10 (nsp-10) of the severe acute respiratory syndrome coronavirus (SARS-CoV). The protein was named human embryo lung cellular protein interacting with SARS-CoV nsp-10 (HEPIS), and it is composed of 147 amino acids with several CK II phosphorylation sites. In the present study, we demonstrated that HEPIS was capable of suppressing chloramphenicol acetyltransferase (CAT) gene expression controlled by different enhancerelements in a transcription assay. HEPIS interacted specifically with the HSP70 TATA sequence, and not with various other enhancer elements in a binding test. Furthermore, we co-immunoprecipitated HEPIS with BTF3, a component of the RNA pol II initiation complex, and observed reduced proliferation of HeLa cells transfected with the HEPIS gene. Taken together, our results suggest that HEPIS may function as a potential transcriptional repressor.
Collapse
Affiliation(s)
- Min Hong
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Cardoso FM, Kato SEM, Huang W, Flint SJ, Gonzalez RA. An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells. Virology 2008; 378:339-46. [PMID: 18632130 DOI: 10.1016/j.virol.2008.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/03/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
It is well established that the human subgroup C adenovirus type 5 (Ad5) E1B 55 kDa protein can regulate the activity and concentration of the cellular tumor suppressor, p53. However, the contribution(s) of these functions of the E1B protein to viral reproduction remains unclear. To investigate this issue, we examined properties of p53 in normal human cells infected by E1B mutant viruses that display defective entry into the late phase or viral late mRNA export. The steady-state concentrations of p53 were significantly higher in cells infected by the E1B 55 kDa null mutant Hr6 or three mutants carrying small insertions in the E1B 55 kDa protein coding sequence than in Ad5-infected cells. Nevertheless, none of the mutants induced apoptosis in infected cells. Rather, the localization of p53 to E1B containing nuclear sites observed during infection by Ad5 was prevented by mutations that impair interaction of the E1B protein with p53 and/or with the E4 Orf6 protein. These results indicate that the E1B protein fulfills an early function that correlates efficient entry into the late phase with the localization of E1B and p53 in the nucleus of Ad5-infected normal human cells.
Collapse
Affiliation(s)
- F M Cardoso
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México
| | | | | | | | | |
Collapse
|
32
|
Chen YJ, Campbell HG, Wiles AK, Eccles MR, Reddel RR, Braithwaite AW, Royds JA. PAX8 Regulates Telomerase Reverse Transcriptase and Telomerase RNA Component in Glioma. Cancer Res 2008; 68:5724-32. [DOI: 10.1158/0008-5472.can-08-0058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Critical role of p53 in histone deacetylase inhibitor-induced Epstein-Barr virus Zta expression. J Virol 2008; 82:7745-51. [PMID: 18495777 DOI: 10.1128/jvi.02717-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The tumor suppressor gene p53 plays a central role in the maintenance of normal cell growth and genetic integrity, while its impact on the Epstein-Barr virus (EBV) life cycle remains elusive. We found that p53 is important for histone deacetylase inhibitor-induced EBV lytic gene expression in nasopharyngeal carcinoma cells. Restoration of p53 in p53-null, EBV-infected H1299 cells augments the potential for viral lytic cycle initiation. Evidence from reporter assays demonstrated that p53 contributes to the expression of the immediate-early viral Zta gene. Further analysis indicated that the DNA-binding ability of p53 and phosphorylation of Ser392 may be critical. This study provides the first evidence that p53 is involved in the regulation of EBV lytic cycle initiation.
Collapse
|
34
|
Groskreutz DJ, Monick MM, Yarovinsky TO, Powers LS, Quelle DE, Varga SM, Look DC, Hunninghake GW. Respiratory syncytial virus decreases p53 protein to prolong survival of airway epithelial cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:2741-7. [PMID: 17709487 DOI: 10.4049/jimmunol.179.5.2741] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Respiratory syncytial virus (RSV) is a clinically important pathogen. It preferentially infects airway epithelial cells causing bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and life-threatening pneumonia in the immunosuppressed. The p53 protein is a tumor suppressor protein that promotes apoptosis and is tightly regulated for optimal cell growth and survival. A critical negative regulator of p53 is murine double minute 2 (Mdm2), an E3 ubiquitin ligase that targets p53 for proteasome degradation. Mdm2 is activated by phospho-Akt, and we previously showed that RSV activates Akt and delays apoptosis in primary human airway epithelial cells. In this study, we explore further the mechanism by which RSV regulates p53 to delay apoptosis but paradoxically enhance inflammation. We found that RSV activates Mdm2 1-6 h after infection resulting in a decrease in p53 6-24 h after infection. The p53 down-regulation correlates with increased airway epithelial cell longevity. Importantly, inhibition of the PI3K/Akt pathway blocks the activation of Mdm2 by RSV and preserves the p53 response. The effects of RSV infection are antagonized by Nutlin-3, a specific chemical inhibitor that prevents the Mdm2/p53 association. Nutlin-3 treatment increases endogenous p53 expression in RSV infected cells, causing earlier cell death. This same increase in p53 enhances viral replication and limits the inflammatory response as measured by IL-6 protein. These findings reveal that RSV decreases p53 by enhancing Akt/Mdm2-mediated p53 degradation, thereby delaying apoptosis and prolonging survival of airway epithelial cells.
Collapse
Affiliation(s)
- Dayna J Groskreutz
- Division of Pulmonary, Critical Care, and Occupational Medicine, Department of Pharmacology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Casavant NC, Luo MH, Rosenke K, Winegardner T, Zurawska A, Fortunato EA. Potential role for p53 in the permissive life cycle of human cytomegalovirus. J Virol 2006; 80:8390-401. [PMID: 16912290 PMCID: PMC1563868 DOI: 10.1128/jvi.00505-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Infection of primary fibroblasts with human cytomegalovirus (HCMV) causes a rapid stabilization of the cellular protein p53. p53 is a major effector of the cellular damage response, and activation of this transcription factor can lead either to cell cycle arrest or to apoptosis. Viruses employ many tactics to avoid p53-mediated effects. One method HCMV uses to counteract p53 is sequestration into its viral replication centers. In order to determine whether or not HCMV benefits from this sequestration, we infected a p53(-/-) fibroblast line. We find that although these cells are permissive for viral infection, several parameters are substantially altered compared to wild-type (wt) fibroblasts. p53(-/-) cells show delayed and decreased accumulation of infectious viral particles compared to control fibroblasts, with the largest difference of 100-fold at 72 h post infection (p.i.) and peak titers decreased by approximately 10- to 20-fold at 144 h p.i. Viral DNA accumulation is also delayed and somewhat decreased in p53(-/-) cells; however, on average, levels of DNA are not more than fivefold lower than wt at any time p.i. and thus cannot account entirely for the observed differences in titers. In addition, there are delays in the expression of several key viral proteins, including the early replication protein UL44 and some of the late structural proteins, pp28 (UL99) and MCP (UL86). UL44 localization also indicates delayed formation and maturation of the replication centers throughout the course of infection. Localization of the major tegument protein pp65 (UL83) is also altered in these p53(-/-) cells. Partial reconstitution of the p53(-/-) cells with a wt copy of p53 returns all parameters toward wt, while reconstitution with mutant p53 does not. Taken together, our data suggest that wt p53 enhances the ability of HCMV to replicate and produce high concentrations of infectious virions in permissive cells.
Collapse
Affiliation(s)
- N C Casavant
- Department of Microbiology, Molecular Biology and Biochemistry and The Center for Reproductive Biology, University of Idaho, Moscow, 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
36
|
Chen YJ, Hakin-Smith V, Teo M, Xinarianos GE, Jellinek DA, Carroll T, McDowell D, MacFarlane MR, Boet R, Baguley BC, Braithwaite AW, Reddel RR, Royds JA. Association of mutant TP53 with alternative lengthening of telomeres and favorable prognosis in glioma. Cancer Res 2006; 66:6473-6. [PMID: 16818615 DOI: 10.1158/0008-5472.can-06-0910] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The molecular basis for alternative lengthening of telomeres (ALT), a prognostic marker for glioma patients, remains unknown. We examined TP53 status in relation to telomere maintenance mechanism (TMM) in 108 patients with glioblastoma multiforme and two patients with anaplastic astrocytoma from New Zealand and United Kingdom. Tumor samples were analyzed with respect to telomerase activity, telomere length, and ALT-associated promyelocytic leukemia nuclear bodies to determine their TMM. TP53 mutation was analyzed by direct sequencing of coding exons 2 to 11. We found an association between TP53 mutation and ALT mechanism and between wild-type TP53 and telomerase and absence of a known TMM (P < 0.0001). We suggest that TP53 deficiency plays a permissive role in the activation of ALT.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Strath J, Blair GE. Adenovirus subversion of immune surveillance, apoptotic and growth regulatory pathways: a model for tumorigenesis. Acta Microbiol Immunol Hung 2006; 53:145-69. [PMID: 16956126 DOI: 10.1556/amicr.53.2006.2.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adenovirus system provides a novel model for evaluating the roles of multiple factors involved in tumour progression. In common with other DNA tumour viruses, adenovirus employs a variety of strategies to evade immune surveillance and perturbs cellular apoptotic and growth regulatory pathways to ensure efficient replication of progeny virions. Such subversion of cellular networks is also found in tumour cells. The mechanism behind the avoidance of immune surveillance and the extent of cellular network interference achieved by adenovirus is still being uncovered and is predicted to have ramifications for the design of cancer therapeutics.
Collapse
Affiliation(s)
- Janet Strath
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|