1
|
Bourdier S, Fisch AS, Alp KM, Das R, Mertins P, Tinhofer I. High Ano1 expression as key driver of resistance to radiation and cisplatin in HPV-negative head and neck squamous cell carcinoma. Sci Rep 2025; 15:1555. [PMID: 39789065 PMCID: PMC11718065 DOI: 10.1038/s41598-025-85214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Human papilloma virus-negative head and neck squamous cell carcinoma (HNSCC) frequently harbors 11q13 amplifications. Among the oncogenes at this locus, CCND1 and ANO1 are linked to poor prognosis; however, their individual roles in treatment resistance remain unclear. The impact of Cyclin D1 and Ano1 overexpression on survival was analyzed using the TCGA HNSCC dataset and a Charité cohort treated with cisplatin (CDDP)-based radiochemotherapy. High Ano1 expression was primarily associated with poor overall survival in both datasets. The effects of CCND1 and ANO1 knockdown (KD) on radio- and drug sensitivity, along with changes in global protein expression, cell viability, growth, and DNA repair, were studied in an 11q13-amplified HNSCC cell line model of primary cisplatin resistance. Unique pathway alterations- VEGF in CCND1 KD and the Rho GTPase cycle in ANO1 KD- were observed, along with shared changes like DNA damage and cell cycle dysregulation. Silencing CCND1 or ANO1 increased CDDP sensitivity, while only ANO1 silencing increased radiosensitivity. Copanlisib and afatinib were identified as promising candidates for combination therapy of 11q13-amplified HNSCC tumors. We demonstrated a predominant role for Ano1 in treatment resistance in Cyclin D1highAno1high HNSCC tumors and identified novel potential treatment combinations for this high-risk patient group.
Collapse
Affiliation(s)
- Solenne Bourdier
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anne-Sophie Fisch
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Keziban Merve Alp
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Ridhima Das
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK) Partner Site Berlin, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Zhu Z, Tang G, Shi M, Fang M, Zhang X, Xu H. Identification of the Oncogenic Role of the Circ_0001326/miR-577/VDAC1 Cascade in Prostate Cancer. J Biochem Mol Toxicol 2024; 38:e70034. [PMID: 39555732 DOI: 10.1002/jbt.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer death among men worldwide. Circular RNAs (circRNAs) have been implicated in the pathogenesis of PCa. However, the precise action of circ_0001326 in PCa malignant progression is still unknown. The levels of circ_0001326, miR-577 and voltage dependent anion channel 1 (VDAC1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell proliferation, colony formation, apoptosis, migration and invasion were evaluated by the Cell Counting Kit-8 (CCK-8), EdU staining, colony formation, flow cytometry, wound-healing and transwell assays, respectively. Targeted relationships among circ_0001326, miR-577 and VDAC1 were confirmed by dual-luciferase reporter assays. Xenograft experiments were performed to detect the role of circ_0001326 in tumor growth. Our data revealed that circ_0001326 was overexpressed in PCa tissues and cells. Circ_0001326 depletion repressed PCa cell proliferation, migration, and invasion and enhanced apoptosis in vitro, as well as hampered tumor growth in vivo. Mechanistically, circ_0001326 directly targeted miR-577, and VDAC1 was directly targeted and suppressed by miR-577. Moreover, the effects of circ_0001326 knockdown on PCa cell functional behaviors were mediated by miR-577. VDAC1 silencing phenocopied miR-577 overexpression in regulating PCa cell functional behaviors in vitro. Furthermore, circ_0001326 regulated VDAC1 expression through sponging miR-577. Our findings showed that circ_0001326 regulated PCa cell functional behaviors at least partly through targeting the miR-577/VDAC1 axis.
Collapse
Affiliation(s)
- Zhirong Zhu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Guiliang Tang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Mengqi Shi
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Mengjie Fang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiaolong Zhang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Huali Xu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
3
|
Alves D, Neves A, Vecchi L, Souza T, Vaz E, Mota S, Nicolau-Junior N, Goulart L, Araújo T. Rho GTPase activating protein 21-mediated regulation of prostate cancer associated 3 gene in prostate cancer cell. Braz J Med Biol Res 2024; 57:e13190. [PMID: 38896642 PMCID: PMC11186590 DOI: 10.1590/1414-431x2024e13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
The overexpression of the prostate cancer antigen 3 (PCA3) gene is well-defined as a marker for prostate cancer (PCa) diagnosis. Although widely used in clinical research, PCA3 molecular mechanisms remain unknown. Herein we used phage display technology to identify putative molecules that bind to the promoter region of PCA3 gene and regulate its expression. The most frequent peptide PCA3p1 (80%) was similar to the Rho GTPase activating protein 21 (ARHGAP21) and its binding affinity was confirmed using Phage Bead ELISA. We showed that ARHGAP21 silencing in LNCaP prostate cancer cells decreased PCA3 and androgen receptor (AR) transcriptional levels and increased prune homolog 2 (PRUNE2) coding gene expression, indicating effective involvement of ARHGAP21 in androgen-dependent tumor pathway. Chromatin immunoprecipitation assay confirmed the interaction between PCA3 promoter region and ARHGAP21. This is the first study that described the role of ARHGAP21 in regulating the PCA3 gene under the androgenic pathway, standing out as a new mechanism of gene regulatory control during prostatic oncogenesis.
Collapse
Affiliation(s)
- D.A. Alves
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - A.F. Neves
- Laboratório de Biologia Molecular, Universidade Federal de Catalão, Catalão, GO, Brasil
| | - L. Vecchi
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - T.A. Souza
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - E.R. Vaz
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - S.T.S. Mota
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - N. Nicolau-Junior
- Laboratório de Modelagem Molecular, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - L.R. Goulart
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - T.G. Araújo
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| |
Collapse
|
4
|
Park SH, Lee Y, Jeon H, Park J, Kim J, Kang M, Namkung W. Anticancer Effect of Hemin through ANO1 Inhibition in Human Prostate Cancer Cells. Int J Mol Sci 2024; 25:6032. [PMID: 38892219 PMCID: PMC11172662 DOI: 10.3390/ijms25116032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Anoctamin1 (ANO1), a calcium-activated chloride channel, is overexpressed in a variety of cancer cells, including prostate cancer, and is involved in cancer cell proliferation, migration, and invasion. Inhibition of ANO1 in these cancer cells exhibits anticancer effects. In this study, we conducted a screening to identify novel ANO1 inhibitors with anticancer effects using PC-3 human prostate carcinoma cells. Screening of 2978 approved and investigational drugs revealed that hemin is a novel ANO1 inhibitor with an IC50 value of 0.45 μM. Notably, hemin had no significant effect on intracellular calcium signaling and cystic fibrosis transmembrane conductance regulator (CFTR), a cyclic AMP (cAMP)-regulated chloride channel, and it showed a weak inhibitory effect on ANO2 at 3 μM, a concentration that completely inhibits ANO1. Interestingly, hemin also significantly decreased ANO1 protein levels and strongly inhibited the cell proliferation and migration of PC-3 cells in an ANO1-dependent manner. Furthermore, it strongly induced caspase-3 activation, PARP degradation, and apoptosis in PC-3 cells. These findings suggest that hemin possesses anticancer properties via ANO1 inhibition and could be considered for development as a novel treatment for prostate cancer.
Collapse
Affiliation(s)
- So-Hyeon Park
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (S.-H.P.); (Y.L.); (H.J.); (J.P.)
| | - Yechan Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (S.-H.P.); (Y.L.); (H.J.); (J.P.)
| | - Hyejin Jeon
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (S.-H.P.); (Y.L.); (H.J.); (J.P.)
| | - Junghwan Park
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (S.-H.P.); (Y.L.); (H.J.); (J.P.)
| | - Jieun Kim
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (J.K.); (M.K.)
| | - Mincheol Kang
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (J.K.); (M.K.)
| | - Wan Namkung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (S.-H.P.); (Y.L.); (H.J.); (J.P.)
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; (J.K.); (M.K.)
| |
Collapse
|
5
|
Li X, Wang Y, Zhang L, Yao S, Liu Q, Jin H, Tuo B. The role of anoctamin 1 in liver disease. J Cell Mol Med 2024; 28:e18320. [PMID: 38685684 PMCID: PMC11058335 DOI: 10.1111/jcmm.18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
6
|
Li H, Wang Z, Liang H, Liu X, Liu H, Zhuang Z, Hou J. Depletion of PHLDB2 Suppresses Epithelial-Mesenchymal Transition and Enhances Anti-Tumor Immunity in Head and Neck Squamous Cell Carcinoma. Biomolecules 2024; 14:232. [PMID: 38397469 PMCID: PMC10886581 DOI: 10.3390/biom14020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The role of Pleckstrin homology-like domain family B member 2 (PHLDB2) in the regulation of cell migration has been extensively studied. However, the exploration of PHLDB2 in head and neck squamous cell carcinoma (HNSCC) is still limited in terms of expression, function, and therapeutic potential. In this study, we discovered an upregulation of PHLDB2 expression in HNSCC tissues which was correlated with a negative prognosis in patients with HNSCC. Additionally, we determined that a high level of expression of PHLDB2 is crucial for maintaining cell migration through the regulation of the epithelial-mesenchymal transition (EMT). Furthermore, we demonstrated that the ablation of PHLDB2 in tumor cells inhibited tumorigenicity in a C3H syngeneic tumor-bearing mouse model. Mechanistically, PHLDB2 was found to be involved in the regulation of T cell anti-tumor immunity, primarily by enhancing the activation and infiltration of CD8+ T cells. In light of these findings, PHLDB2 emerges as a promising biomarker and therapeutic target for interventions in HNSCC.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Ziyi Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Huiting Liang
- Department of Stomatology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China;
| | - Xiaoyong Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Haichao Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zehang Zhuang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; (H.L.); (Z.W.); (X.L.); (H.L.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
7
|
Wang X, Hao A, Song G, Elena V, Sun Y, Zhang H, Zhan Y, An H, Chen Y. Inhibitory effect of daidzein on the calcium-activated chloride channel TMEM16A and its anti-lung adenocarcinoma activity. Int J Biol Macromol 2023; 253:127261. [PMID: 37802433 DOI: 10.1016/j.ijbiomac.2023.127261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
TMEM16A is highly expressed in a variety of tumor cells and is involved in the growth and metastasis of malignancies. It has been established that down-regulation of TMEM16A expression or functional activity can inhibit tumor cells growth. However, there is a lack of targeted inhibitors with high efficiency and low toxicity. Here, we identified a novel inhibitor daidzein from dozens of natural product molecules. Whole-cell patch clamp data indicated that daidzein inhibits TMEM16A channel in a dose-dependent manner, with IC50 of 1.39 ± 0.59 μM. Western blot result showed that daidzein can also reduce the expression of TMEM16A protein in LA795 cells. These results indicated that the inhibitory effects of daidzein exert on TMEM16A in two ways, both inhibiting TMEM16A current and decreasing its protein expression. In addition, the putative binding sites of daidzein on TMEM16A are G608, G628, and K839 through molecular docking. Moreover, daidzein concentration-dependently reduced cell viability and cell migration, causing G1/S cell cycle arrest in vitro. It was also confirmed that daidzein can effectively inhibit the growth of LA795 lung adenocarcinoma cells implanted nude mice in vivo. In conclusion, daidzein can be used as a lead compound for the development of therapeutic drugs for lung adenocarcinoma.
Collapse
Affiliation(s)
- Xuzhao Wang
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Anqi Hao
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Guoqiang Song
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Vorobeva Elena
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Yiming Sun
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Hailin Zhang
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yong Zhan
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yafei Chen
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
8
|
Lazarini M, Assis-Mendonça GR, Machado-Neto JA, Latuf-Filho P, Bezerra SM, Vieira KP, Saad STO. Silencing of ARHGAP21, a Rho GTPase activating protein (RhoGAP), reduces the growth of prostate cancer xenografts in NOD/SCID mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119439. [PMID: 36764390 DOI: 10.1016/j.bbamcr.2023.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Affiliation(s)
- Mariana Lazarini
- Department of Pharmaceutical Sciences, Federal University of Sao Paulo, Diadema, Sao Paulo, Brazil; Hematology and Transfusion Medicine Center, University of Campinas, Campinas, Sao Paulo, Brazil.
| | | | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Paulo Latuf-Filho
- Center for Investigation in Pediatrics (Ciped), Campinas, São Paulo, Brazil
| | | | - Karla Priscila Vieira
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, Sao Paulo, Brazil
| | | |
Collapse
|
9
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
DOG1 as an Immunohistochemical Marker of Acinic Cell Carcinoma: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23179711. [PMID: 36077107 PMCID: PMC9456024 DOI: 10.3390/ijms23179711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
DOG1 is a transmembrane protein originally discovered on gastrointestinal stromal tumors and works as a calcium-activated chloride channel protein. There are a limited number of articles on the potential utility of this antibody in the diagnosis of salivary gland tumors in routine practice. In this study, we aimed to investigate the role of DOG1 as an immunohistochemical marker in patients with salivary acinic cell carcinoma (ACC) through meta-analysis. A literature search was performed of the PubMed, Scopus, and Web of Science databases for English-language studies published from January 2010 to September 2021. The literature search revealed 148 articles, of which 20 were included in the study. The overall rate of DOG1 expression in salivary acinic cell carcinoma was 55% (95% CI = 0.43–0.58). Although ACC is a challenging diagnosis, paying careful attention to the cytomorphological features in conjunction with DOG1 immunostaining can help to reach an accurate diagnosis.
Collapse
|
11
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
12
|
Zhang H, Zhang X, Xu W, Wang J. TMC5 is Highly Expressed in Human Cancers and Corelates to Prognosis and Immune Cell Infiltration: A Comprehensive Bioinformatics Analysis. Front Mol Biosci 2022; 8:810864. [PMID: 35096973 PMCID: PMC8792843 DOI: 10.3389/fmolb.2021.810864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Background: The oncological role of TMC5 in human cancers has only been revealed partially. We performed integrated bioinformatics analysis to provide a thorough and detailed insight of associations between TMC5 and tumorigenesis, cancer progression, and prognosis. Methods: With reference to the accessible online databases, the TMC5 expressions in tumor tissues and corresponding normal tissues, different pathological stages, and various cancer cells were analyzed, while the protein levels of TMC5 in different cancers were also inspected. Meanwhile, the prognostic value of TMC5 expression in multiple cancers as well as in advanced-stage patients was investigated. Furthermore, the mutational data of TMC5 and its correlation with cancer prognosis were assessed. Moreover, the association between the TMC5 level and immune cell infiltration was evaluated. Next, TMC5-related pathway alterations and drug responses were summarized. Finally, the TMC5 based protein network was generated, and relevant enrichment was performed. Results: In our study, the expression level of TMC5 was significantly higher in the tumor tissue than that of the normal tissues in most cancer types. Fluctuations of TMC5 levels were also observed among different pathological stages. In the meantime, the protein level elevated in the tumor tissue in the cancers enrolled. Moreover, the expression of TMC5 was not only prognostic for overall survival (OS) or recurrence free survival (RFS) in various types of cancers but also correlated to OS in patients with more advanced cancers. Additionally, the mutational status of TMC5 is also associated with prognosis in cancer patients. It is worth noting that the TMC5 level was closely related to immune cell infiltrations, especially in ESCA, TGCT, and USC. The TMC5 expression was also identified as an activator for pathways including PI3K/AKT, RAS/MAPK, and TSC/mTOR, proved to be associated with multiple drug responses and assessed to be interactive with the TMEM family. Conclusion: TMC5 might function as a potential marker for cancer survival and immune responses.
Collapse
|
13
|
Zhou Z, Zhang C, Ma Z, Wang H, Tuo B, Cheng X, Liu X, Li T. Pathophysiological role of ion channels and transporters in HER2-positive breast cancer. Cancer Gene Ther 2022; 29:1097-1104. [PMID: 34997219 DOI: 10.1038/s41417-021-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
The incidence of breast cancer (BC) has been increasing each year, and BC is now the most common malignant tumor in women. Among the numerous BC subtypes, HER2-positive BC can be treated with a variety of strategies based on targeting HER2. Although there has been great progress in the treatment of HER2-positive BC, recurrence, metastasis and drug resistance remain considerable challenges. The dysfunction of ion channels and transporters can affect the development and progression of HER2-positive BC, so these entities are expected to be new therapeutic targets. This review summarizes various ion channels and transporters associated with HER2-positive BC and suggests potential targets for the development of new and effective therapies.
Collapse
Affiliation(s)
- Zhengxing Zhou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Chengmin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
14
|
Pinto MC, Botelho HM, Silva IAL, Railean V, Neumann B, Pepperkok R, Schreiber R, Kunzelmann K, Amaral MD. Systems Approaches to Unravel Molecular Function: High-content siRNA Screen Identifies TMEM16A Traffic Regulators as Potential Drug Targets for Cystic Fibrosis. J Mol Biol 2022; 434:167436. [PMID: 34990652 DOI: 10.1016/j.jmb.2021.167436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022]
Abstract
An attractive approach to treat people with Cystic Fibrosis (CF), a life-shortening disease caused by mutant CFTR, is to compensate for the absence of this chloride/bicarbonate channel by activating alternative (non-CFTR) chloride channels. One obvious target for such "mutation-agnostic" therapeutic approach is TMEM16A (anoctamin-1/ANO1), a calcium-activated chloride channel (CaCC) which is also expressed in the airways of people with CF, albeit at low levels. To find novel TMEM16A regulators of both traffic and function, with the main goal of identifying candidate CF drug targets, we performed a fluorescence cell-based high-throughput siRNA microscopy screen for TMEM16A trafficking using a double-tagged construct expressed in human airway cells. About 700 genes were screened (2 siRNAs per gene) of which 262 were identified as candidate TMEM16A modulators (179 siRNAs enhanced and 83 decreased TMEM16A traffic), being G-protein coupled receptors (GPCRs) enriched on the primary hit list. Among the 179 TMEM16A traffic enhancer siRNAs subjected to secondary screening 20 were functionally validated. Further hit validation revealed that siRNAs targeting two GPCRs - ADRA2C and CXCR3 - increased TMEM16A-mediated chloride secretion in human airway cells, while their overexpression strongly diminished calcium-activated chloride currents in the same cell model. The knockdown, and likely also the inhibition, of these two TMEM16A modulators is therefore an attractive potential therapeutic strategy to increase chloride secretion in CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal. https://twitter.com/madalenacfpinto
| | - Hugo M Botelho
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Iris A L Silva
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Violeta Railean
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Beate Neumann
- Cell Biology/Biophysics Unit, and ALMF, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology/Biophysics Unit, and ALMF, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
15
|
Upregulation of TTYH3 promotes epithelial-to-mesenchymal transition through Wnt/β-catenin signaling and inhibits apoptosis in cholangiocarcinoma. Cell Oncol (Dordr) 2021; 44:1351-1361. [PMID: 34796468 DOI: 10.1007/s13402-021-00642-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Cholangiocarcinoma (CCA) is a highly invasive malignant tumor originating from the bile duct epithelium. Tweety homolog 3 (TTYH3) is a member of the family of calcium-activated chloride channels, which have several biological functions. Here, we aimed to investigate the expression and biological function of TTYH3 in CCA. METHODS The mRNA and protein expression levels of TTYH3 were investigated in primary human CCA tissues and normal tissues. The DNA methylation levels of three CpG sites in the TTYH3 promoter region were evaluated using pyrosequencing. The effect of TTYH3 expression on proliferation, apoptosis, migration and invasion were assessed in HUCCT1 and QBC939 cells. Xenograft models were developed to substantiate its role in the development of CCA. Western blot analysis was used to investigate the mechanistic role of TTYH3 in regulating CCA progression. RESULTS We found that TTYH3 was highly expressed both at the mRNA and protein levels in CCA (p = 0.0001) and that the expression levels were significantly related to a poor overall survival of the patients (p = 0.0019). The DNA methylation levels of three CpG sites in the TTYH3 promoter region were significantly lower in CCA tissues compared to normal tissues (p < 0.05). In vitro studies indicated that TTYH3 can promote the proliferation, migration and invasion of the CCA cells. TTYH3 overexpression significantly promoted tumor progression and cellular proliferation in vivo as indicated by Ki-67 expression. In addition, we found that exogenous TTYH3 overexpression induced epithelial-mesenchymal transition (EMT) in CCA as indicated by expression changes in E-cadherin, N-cadherin and vimentin. The EMT process was found to occur through the Wnt/β-catenin signaling pathway, with simultaneous changes in P-GSK3β and β-catenin levels. CONCLUSIONS Our data indicate that DNA hypomethylation-induced overexpression of TTYH3 regulates CCA development and metastasis through the Wnt/β-catenin pathway.
Collapse
|
16
|
Koteluk O, Bielicka A, Lemańska Ż, Jóźwiak K, Klawiter W, Mackiewicz A, Kazimierczak U, Kolenda T. The Landscape of Transmembrane Protein Family Members in Head and Neck Cancers: Their Biological Role and Diagnostic Utility. Cancers (Basel) 2021; 13:cancers13194737. [PMID: 34638224 PMCID: PMC8507526 DOI: 10.3390/cancers13194737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transmembrane proteins (TMEM) are a large group of integral membrane proteins whose molecular and biological functions are not fully understood. It is known that some of them are involved in tumor formation and metastasis. Here, we performed a panel of TCGA data analyses to investigate the role of different TMEM genes in head and neck squamous cell carcinoma (HNSCC) and define their potential as biomarkers. Based on changes in the expression levels in HNSCC tumors, we selected four TMEM genes: ANO1, TMEM156, TMEM173, and TMEM213 and associated them with patient survival. We also demonstrated that the expression of those TMEMs highly correlates with the enrichment of genes involved in numerous biological processes, especially metastasis formation and immune response. Thus, we propose ANO1, TMEM156, TMEM173, and TMEM213 as new biomarkers and potential targets for personalized therapy of HNSCC. Abstract Background: Transmembrane proteins (TMEM) constitute a large family of proteins spanning the entirety of the lipid bilayer. However, there is still a lack of knowledge about their function or mechanism of action. In this study, we analyzed the expression of selected TMEM genes in patients with head and neck squamous cell carcinoma (HNSCC) to learn their role in tumor formation and metastasis. Materials and Methods: Using TCGA data, we analyzed the expression levels of different TMEMs in both normal and tumor samples and compared those two groups depending on clinical-pathological parameters. We selected four TMEMs whose expression was highly correlated with patient survival status and subjected them to further analysis. The pathway analysis using REACTOME and the gene set enrichment analysis (GSEA) were performed to evaluate the association of those TMEMs with genes involved in hallmarks of cancer as well as in oncogenic and immune-related pathways. In addition, the fractions of different immune cell subpopulations depending on TMEM expression were estimated in analyzed patients. The results for selected TMEMs were validated using GEO data. All analyses were performed using the R package, Statistica, and Graphpad Prism. Results: We demonstrated that 73% of the analyzed TMEMs were dysregulated in HNSCC and depended on tumor localization, smoking, alcohol consumption, or HPV infection. The expression levels of ANO1, TMEM156, TMEM173, and TMEM213 correlated with patient survival. The four TMEMs were also upregulated in HPV-positive patients. The elevated expression of those TMEMs correlated with the enrichment of genes involved in cancer-related processes, including immune response. Specifically, overexpression of TMEM156 and TMEM173 was associated with immune cell mobilization and better survival rates, while the elevated ANO1 expression was linked with metastasis formation and worse survival. Conclusions: In this work, we performed a panel of in silico analyses to discover the role of TMEMs in head and neck squamous cell carcinoma. We found that ANO1, TMEM156, TMEM173, and TMEM213 correlated with clinical status and immune responses in HNSCC patients, pointing them as biomarkers for a better prognosis and treatment. This is the first study describing such the role of TMEMs in HNSCC. Future clinical trials should confirm the potential of those genes as targets for personalized therapy of HNSCC.
Collapse
Affiliation(s)
- Oliwia Koteluk
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Correspondence: (O.K.); (A.B.)
| | - Antonina Bielicka
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Correspondence: (O.K.); (A.B.)
| | - Żaneta Lemańska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Kacper Jóźwiak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Weronika Klawiter
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
| | - Tomasz Kolenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (Ż.L.); (K.J.); (W.K.); (A.M.); (U.K.); (T.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
17
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
ANO1 regulates the maintenance of stemness in glioblastoma stem cells by stabilizing EGFRvIII. Oncogene 2021; 40:1490-1502. [PMID: 33452454 DOI: 10.1038/s41388-020-01612-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
Glioblastoma multiforme (GBM) or glioblastoma is the most deadly malignant brain tumor in adults. GBM is difficult to treat mainly due to the presence of glioblastoma stem cells (GSCs). Epidermal growth factor receptor variant III (EGFRvIII) has been linked to stemness and malignancy of GSCs; however, the regulatory mechanism of EGFRvIII is largely unknown. Here, we demonstrated that Anoctamin-1 (ANO1), a Ca2+-activated Cl- channel, interacts with EGFRvIII, increases its protein stability, and supports the maintenance of stemness and tumor progression in GSCs. Specifically, shRNA-mediated knockdown and pharmacological inhibition of ANO1 suppressed the self-renewal, invasion activities, and expression of EGFRvIII and related stem cell factors, including NOTCH1, nestin, and SOX2 in GSCs. Conversely, ANO1 overexpression enhanced the above phenomena. Mechanistically, ANO1 protected EGFRvIII from proteasomal degradation by directly binding to it. ANO1 knockdown significantly increased survival in mice and strongly suppressed local invasion of GSCs in an in vivo intracranial mouse model. Collectively, these results suggest that ANO1 plays a crucial role in the maintenance of stemness and invasiveness of GSCs by regulating the expression of EGFRvIII and related signaling molecules, and can be considered a promising therapeutic target for GBM treatment.
Collapse
|
19
|
Marx A, Koopmann L, Höflmayer D, Büscheck F, Hube-Magg C, Steurer S, Eichenauer T, Clauditz TS, Wilczak W, Simon R, Sauter G, Izbicki JR, Huland H, Heinzer H, Graefen M, Haese A, Schlomm T, Bernreuther C, Lebok P, Bonk S. Reduced anoctamin 7 (ANO7) expression is a strong and independent predictor of poor prognosis in prostate cancer. Cancer Biol Med 2021; 18:245-255. [PMID: 33628598 PMCID: PMC7877177 DOI: 10.20892/j.issn.2095-3941.2019.0324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/09/2022] Open
Abstract
Objective Anoctamin 7 (ANO7) is a calcium2+-dependent chloride ion channel protein. Its expression is restricted to prostate epithelial cells. The exact function is unknown. This study aimed to analyze ANO7 expression and its clinical significance in prostate cancer (PCa). Methods ANO7 expression was assessed by immunohistochemistry in 17,747 clinical PCa specimens. Results ANO7 was strongly expressed in normal prostate glandular cells but often less abundant in cancer cells. ANO7 staining was interpretable in 13,594 cancer tissues and considered strong in 34.4%, moderate in 48.7%, weak in 9.3%, and negative in 7.6%. Reduced staining was tightly linked to adverse tumor features [high classical and quantitative Gleason grade, lymph node metastasis, advanced tumor stage, high Ki67 labeling index, positive surgical margin, and early biochemical recurrence (P < 0.0001 each)]. The univariate Cox hazard ratio for prostate-specific antigen (PSA) recurrence after prostatectomy in patients with negative vs. strong ANO7 expression was 2.98 (95% confidence interval 2.61-3.38). The prognostic impact was independent of established pre- or postoperatively available parameters (P < 0.0001). Analysis of annotated molecular data showed that low ANO7 expression was linked to TMPRSS2:ERG fusions (P < 0.0001), elevated androgen receptor expression (P < 0.0001), as well as presence of 9 of 11 chromosomal deletions (P < 0.05 each). A particularly strong association of low ANO7 expression with phosphatase and tensin homolog (PTEN) deletion may indicate a functional relationship with the PTEN/AKT pathway. Conclusions These data identify reduced ANO7 protein expression as a strong and independent predictor of poor prognosis in PCa. ANO7 measurement, either alone or in combination, might provide clinically useful prognostic information in PCa.
Collapse
Affiliation(s)
- Andreas Marx
- Institute of Pathology, Klinikum Fürth, Fürth 90766, Germany
| | - Lena Koopmann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sarah Bonk
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
20
|
Wang L, Shen S, Xiao H, Ding F, Wang M, Li G, Hu F. ARHGAP24 inhibits cell proliferation and cell cycle progression and induces apoptosis of lung cancer via a STAT6-WWP2-p27 axis. Carcinogenesis 2020; 41:711-721. [PMID: 31430374 PMCID: PMC7197742 DOI: 10.1093/carcin/bgz144] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/18/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Rho GTPase-activating proteins (RhoGAPs) have been reported to be of great importance in the initiation and development of many different cancers. However, their biological roles and regulatory mechanisms in lung cancer development and progression are poorly defined. Real-time PCR or western blotting analysis was used to detect Rho GTPase-activating protein 24 (ARHGAP24), WWP2, p27, p-STAT6 and STAT6 expression levels as well as the activity of RhoA and Rac1 in lung cancer. Cell proliferation, apoptosis and cell cycle were measured by CCK-8 and flow cytometry analysis. Tumor growth of lung cancer cells was measured using a nude mouse xenograft experiment model in vivo. The correlation between WWP2 and p27 was measured by co-immunoprecipitation and ubiquitination analysis. We found that ARHGAP24 expression was lower in lung cancer tissues collected from the The Cancer Genome Atlas and independent hospital database. Overexpression of ARHGAP24 significantly suppressed cell proliferation and the activity of RhoA and Rac1, induced cell apoptosis and arrested cell cycle at the G0–G1 phase. ARHGAP24 overexpression also inhibited tumor growth in nude mice, whereas knockdown of ARHGAP24 significantly promoted cell proliferation and WWP2 expression and inhibited cell cycle arrest at G1 phase through activating STAT6 signaling. ARHGAP24 overexpression inhibited WWP2 overexpression-induced cell proliferation, cell cycle progression and the decreased p27 expression. Moreover, WWP2 was found interacted with p27, and WWP2 overexpression promoted the ubiquitination of p27. In conclusion, our findings suggest that ARHGAP24 inhibits cell proliferation and cell cycle progression and induces cell apoptosis of lung cancer via a STAT6-WWP2-p27 axis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saie Shen
- Department of Anesthesiology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Li
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Pinto MC, Schreiber R, Lerias J, Ousingsawat J, Duarte A, Amaral M, Kunzelmann K. Regulation of TMEM16A by CK2 and Its Role in Cellular Proliferation. Cells 2020; 9:cells9051138. [PMID: 32380794 PMCID: PMC7291285 DOI: 10.3390/cells9051138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/25/2022] Open
Abstract
Casein kinase 2 (CK2) is a highly ubiquitous and conserved serine/threonine kinase that forms a tetramer consisting of a catalytic subunit (CK2α) and a regulatory subunit (CK2β). Despite being ubiquitous, CK2 is commonly found at higher expression levels in cancer cells, where it inhibits apoptosis, and supports cell migration and proliferation. The Ca2+-activated chloride channel TMEM16A shows similar effects in cancer cells: TMEM16A increases cell proliferation and migration and is highly expressed in squamous cell carcinoma of the head and neck (HNSCC) as well as other malignant tumors. A microscopy-based high-throughput screening was performed to identify proteins that regulate TMEM16A. Within this screen, CK2 was found to be required for proper membrane expression of TMEM16A. small interfering (si) RNA-knockdown of CK2 reduced plasma membrane expression of TMEM16A and inhibited TMEM16A whole cell currents in (cystic fibrosis bronchial epithelial) CFBE airway epithelial cells and in the head and neck cancer cell lines Cal33 and BHY. Inhibitors of CK2, such as TBB and the preclinical compound CX4549 (silmitasertib), also blocked membrane expression of TMEM16A and Ca2+-activated whole cell currents. siRNA-knockout of CK2 and its pharmacological inhibition, as well as knockdown or inhibition of TMEM16A by either niclosamide or Ani9, attenuated cell proliferation. Simultaneous inhibition of CK2 and TMEM16A strongly potentiated inhibition of cell proliferation. Although membrane expression of TMEM16A is reduced by inhibition of CK2, our data suggest that the antiproliferative effects by inhibition of CK2 are mostly independent of TMEM16A. Simultaneous inhibition of TMEM16A by niclosamide and inhibition of CK2 by silmitasertib was additive with respect to blocking cell proliferation, while cytotoxicity was reduced when compared to solely blockade of CK2. Therefore, parallel blockade TMEM16A by niclosamide may assist with anticancer therapy by silmitasertib.
Collapse
Affiliation(s)
- Madalena C. Pinto
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, D-93053 Regensburg, Germany; (R.S.); (J.O.)
| | - Joana Lerias
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, D-93053 Regensburg, Germany; (R.S.); (J.O.)
| | - Aires Duarte
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Margarida Amaral
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, D-93053 Regensburg, Germany; (R.S.); (J.O.)
- Correspondence: ; Tel.: +49-941-943-4302; Fax: +49-941-943-4315
| |
Collapse
|
22
|
Lu P, Xu M, Xiong Z, Zhou F, Wang L. Fusobacterium nucleatum prevents apoptosis in colorectal cancer cells via the ANO1 pathway. Cancer Manag Res 2019; 11:9057-9066. [PMID: 31802939 PMCID: PMC6829176 DOI: 10.2147/cmar.s185766] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Objective : Chemotherapy failure derived from drug resistance is the most important reason causing the recurrence in colorectal cancer patients. Therefore, it is necessary to shed light on the mechanism of chemotherapy resistance in colorectal cancer patients. Methods : We looked into the contribution of Fusobacterium nucleatum and ANO1 to chemoresistance in the human colorectal carcinoma cell lines. We silence and overexpress ANO1 in HCT116 and HT29 cells with lentivirus and siRNA knockdown technique in the absence or presence of F. nucleatum, oxaliplatin or 5-fluorouracil (5-FU). ANO1, p-pg, cleaved PARP, cleaved caspase-3, and EGFR expression was measured by Western blot. Cell apoptosis was measured by flow cytometry. Results : We found that F. nucleatum promoted ANO1 expression on colon cancer cells. Moreover, ANO1 prevent colon cancer apoptosis from oxaliplatin and 5-FU. Additionally, knockdown ANO1 expression could block F. nucleatum protective effects and increase the apoptosis effects induced by oxaliplatin and 5-FU. Therefore, F. nucleatum might be biologically involved in the development of colon cancer chemoresistance via ANO1 pathway. Conclusions : Taken together, our findings provide a valuable insight into clinical management and therapy, which may ameliorate colorectal cancer patient outcomes.
Collapse
Affiliation(s)
- Pei Lu
- Department of Clinical Laboratory, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Minyi Xu
- Department of Clinical Laboratory, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Zhongbo Xiong
- Department of Clinical Laboratory, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Fangfang Zhou
- Department of Clinical Laboratory, Shanghai No. 8 People's Hospital, Shanghai, China
| | - Lei Wang
- Department of Clinical Laboratory, Shanghai No. 8 People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Crottès D, Jan LY. The multifaceted role of TMEM16A in cancer. Cell Calcium 2019; 82:102050. [PMID: 31279157 PMCID: PMC6711484 DOI: 10.1016/j.ceca.2019.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
The calcium-activated chloride channel TMEM16A is intimately linked to cancers. Over decades, TMEM16A over-expression and contribution to prognosis have been widely studied for multiple cancers strengthening the idea that TMEM16A could be a valuable biomarker and a promising therapeutic target. Surprisingly, from the survey of the literature, it appears that TMEM16A has been involved in multiple cancer-related functions and a large number of molecular targets of TMEM16A have been proposed. Thus, TMEM16A appears to be an ion channel with a multifaceted role in cancers. In this review, we summarize the latest development regarding TMEM16A contribution to cancers. We will survey TMEM16A contribution in cancer prognosis, the origins of its over-expression in cancer cells, the multiple biological functions and molecular pathways regulated by TMEM16A. Then, we will consider the question regarding the molecular mechanism of TMEM16A in cancers and the possible basis for the multifaceted role of TMEM16A in cancers.
Collapse
Affiliation(s)
- David Crottès
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lily Yeh Jan
- Departments of Physiology, Biochemistry, and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
24
|
Kunzelmann K, Ousingsawat J, Benedetto R, Cabrita I, Schreiber R. Contribution of Anoctamins to Cell Survival and Cell Death. Cancers (Basel) 2019; 11:E382. [PMID: 30893776 PMCID: PMC6468699 DOI: 10.3390/cancers11030382] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Before anoctamins (TMEM16 proteins) were identified as a family of Ca2+-activated chloride channels and phospholipid scramblases, the founding member anoctamin 1 (ANO1, TMEM16A) was known as DOG1, a marker protein for gastrointestinal stromal tumors (GIST). Meanwhile, ANO1 has been examined in more detail, and the role of ANO1 in cell proliferation and the development of different types of malignomas is now well established. While ANO5, ANO7, and ANO9 may also be relevant for growth of cancers, evidence has been provided for a role of ANO6 (TMEM16F) in regulated cell death. The cellular mechanisms by which anoctamins control cell proliferation and cell death, respectively, are just emerging; however, the pronounced effects of anoctamins on intracellular Ca2+ levels are likely to play a significant role. Recent results suggest that some anoctamins control membrane exocytosis by setting Ca2+i levels near the plasma membrane, and/or by controlling the intracellular Cl- concentration. Exocytosis and increased membrane trafficking induced by ANO1 and ANO6 may enhance membrane expression of other chloride channels, such as CFTR and volume activated chloride channels (VRAC). Notably, ANO6-induced phospholipid scrambling with exposure of phosphatidylserine is pivotal for the sheddase function of disintegrin and metalloproteinase (ADAM). This may support cell death and tumorigenic activity of IL-6 by inducing IL-6 trans-signaling. The reported anticancer effects of the anthelminthic drug niclosamide are probably related to the potent inhibitory effect on ANO1, apart from inducing cell cycle arrest through the Let-7d/CDC34 axis. On the contrary, pronounced activation of ANO6 due to a large increase in intracellular calcium, activation of phospholipase A2 or lipid peroxidation, can lead to ferroptotic death of cancer cells. It therefore appears reasonable to search for both inhibitors and potent activators of TMEM16 in order to interfere with cancer growth and metastasis.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Jiraporn Ousingsawat
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Ines Cabrita
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
25
|
Abstract
A transmembrane protein (TMEM) is a type of protein that spans biological membranes. Many of them extend through the lipid bilayer of the plasma membrane but others are located to the membrane of organelles. The TMEM family gathers proteins of mostly unknown functions. Many studies showed that TMEM expression can be down- or up-regulated in tumor tissues compared to adjacent healthy tissues. Indeed, some TMEMs such as TMEM48 or TMEM97 are defined as potential prognostic biomarkers for lung cancer. Furthermore, experimental evidence suggests that TMEM proteins can be described as tumor suppressors or oncogenes. TMEMs, such as TMEM45A and TMEM205, have also been implicated in tumor progression and invasion but also in chemoresistance. Thus, a better characterization of these proteins could help to better understand their implication in cancer and to allow the development of improved therapy strategies in the future. This review gives an overview of the implication of TMEM proteins in cancer.
Collapse
|
26
|
Rosa LRO, Soares GM, Silveira LR, Boschero AC, Barbosa-Sampaio HCL. ARHGAP21 as a master regulator of multiple cellular processes. J Cell Physiol 2018; 233:8477-8481. [PMID: 29856495 DOI: 10.1002/jcp.26829] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/30/2018] [Indexed: 01/17/2023]
Abstract
The cellular cytoskeleton is involved with multiple biological processes and is tightly regulated by multiple proteins and effectors. Among these, the RhoGTPases family is one of the most important players. RhoGTPAses are, in turn, regulated by many other elements. In the past decade, one of those regulators, the RhoGAP Rho GTPase Activating Protein 21 (ARHGAP21), has been overlooked, despite being implied as having an important role on many of those processes. In this paper, we aimed to review the available literature regarding ARHGAP21 to highlight its importance and the mechanisms of action that have been found so far for this still unknown protein involved with cell adhesion, migration, Golgi regulation, cell trafficking, and even insulin secretion.
Collapse
Affiliation(s)
- Lucas R O Rosa
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela M Soares
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonardo R Silveira
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Helena C L Barbosa-Sampaio
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
27
|
Vallejo-Benítez A, Rodríguez-Zarco E, Carrasco SP, Pereira-Gallardo S, Brugal Molina J, García-Escudero A, Robles Frías A, Marcilla D, González-Cámpora R. Expression of dog1 in low-grade fibromyxoid sarcoma: A study of 19 cases and review of the literature. Ann Diagn Pathol 2017; 30:8-11. [DOI: 10.1016/j.anndiagpath.2017.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/30/2022]
|
28
|
Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, Xiao Q. Cell-specific mechanisms of TMEM16A Ca 2+-activated chloride channel in cancer. Mol Cancer 2017; 16:152. [PMID: 28893247 PMCID: PMC5594453 DOI: 10.1186/s12943-017-0720-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
TMEM16A (known as anoctamin 1) Ca2+-activated chloride channel is overexpressed in many tumors. TMEM16A overexpression can be caused by gene amplification in many tumors harboring 11q13 amplification. TMEM16A expression is also controlled in many cancer cells via transcriptional regulation, epigenetic regulation and microRNAs. In addition, TMEM16A activates different signaling pathways in different cancers, e.g. the EGFR and CAMKII signaling in breast cancer, the p38 and ERK1/2 signaling in hepatoma, the Ras-Raf-MEK-ERK1/2 signaling in head and neck squamous cell carcinoma and bladder cancer, and the NFκB signaling in glioma. Furthermore, TMEM16A overexpression has been reported to promote, inhibit, or produce no effects on cell proliferation and migration in different cancer cells. Since TMEM16A exerts different roles in different cancer cells via activation of distinct signaling pathways, we try to develop the idea that TMEM16A regulates cancer cell proliferation and migration in a cell-dependent mechanism. The cell-specific role of TMEM16A may depend on the cellular environment that is predetermined by TMEM16A overexpression mechanisms specific for a particular cancer type. TMEM16A may exert its cell-specific role via its associated protein networks, phosphorylation by different kinases, and involvement of different signaling pathways. In addition, we discuss the role of TMEM16A channel activity in cancer, and its clinical use as a prognostic and predictive marker in different cancers. This review highlights the cell-type specific mechanisms of TMEM16A in cancer, and envisions the promising use of TMEM16A inhibitors as a potential treatment for TMEM16A-overexpressing cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Liang Zou
- Department of Anesthesiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| |
Collapse
|
29
|
Chang Z, Cai C, Han D, Gao Y, Li Q, Feng L, Zhang W, Zheng J, Jin J, Zhang H, Wei Q. Anoctamin5 regulates cell migration and invasion in thyroid cancer. Int J Oncol 2017; 51:1311-1319. [PMID: 28902351 DOI: 10.3892/ijo.2017.4113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/25/2017] [Indexed: 11/05/2022] Open
Abstract
Anoctamin/TMEM16 family members have recently been identified as novel calcium-activated chloride channels, and dysregulation of many family members participates in tumorigenesis and progression. However, the exact role of anoctamin5 (ANO5), one member of this family, in thyroid cancer is still not clarified. In this study, we firstly found that the expression levels of ANO5 was significantly downregulated in thyroid cancer compared to adjacent normal tissue by mining the public GEO database. Subsequently, we further demonstrated that the expression levels of ANO5 was significantly downregulated in 69.5% (57/82) clinical thyroid cancer tissues using real-time PCR assay. Moreover, western blot assay also showed that ANO5 was downregulated in papillary thyroid cancer and follicular thyroid cancer compared to adjacent noncancerous tissues. Furthermore, some biological and functional in vitro experiments proved that ANO5 knockdown promotes thyroid cancer cell migration and invasion but overexpression of ANO5 inhibits these phenotypes. By analyzing gene set enrichment, we found that lower ANO5 expression was positively associated with JAK/STAT3 signaling pathway. Collectively downregulation of ANO5 promotes thyroid cancer cell migration and invasion by affecting JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Chunmiao Cai
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Dongyan Han
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Qianyu Li
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Lijin Feng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Wei Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Jiaoying Jin
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
30
|
Integrative computational analysis of transcriptional and epigenetic alterations implicates DTX1 as a putative tumor suppressor gene in HNSCC. Oncotarget 2017; 8:15349-15363. [PMID: 28146432 PMCID: PMC5362490 DOI: 10.18632/oncotarget.14856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/16/2017] [Indexed: 01/23/2023] Open
Abstract
Over a half million new cases of Head and Neck Squamous Cell Carcinoma (HNSCC) are diagnosed annually worldwide, however, 5 year overall survival is only 50% for HNSCC patients. Recently, high throughput technologies have accelerated the genome-wide characterization of HNSCC. However, comprehensive pipelines with statistical algorithms that account for HNSCC biology and perform independent confirmatory and functional validation of candidates are needed to identify the most biologically relevant genes. We applied outlier statistics to high throughput gene expression data, and identified 76 top-scoring candidates with significant differential expression in tumors compared to normal tissues. We identified 15 epigenetically regulated candidates by focusing on a subset of the genes with a negative correlation between gene expression and promoter methylation. Differential expression and methylation of 3 selected candidates (BANK1, BIN2, and DTX1) were confirmed in an independent HNSCC cohorts from Johns Hopkins and TCGA (The Cancer Genome Atlas). We further performed functional evaluation of NOTCH regulator, DTX1, which was downregulated by promoter hypermethylation in tumors, and demonstrated that decreased expression of DTX1 in HNSCC tumors maybe associated with NOTCH pathway activation and increased migration potential.
Collapse
|
31
|
Teng JP, Yang ZY, Zhu YM, Ni D, Zhu ZJ, Li XQ. The roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells. Oncol Lett 2017; 14:4613-4618. [PMID: 28943961 PMCID: PMC5592856 DOI: 10.3892/ol.2017.6729] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is a leading cause of cancer-related mortalities worldwide. In the present study, a comparison of To determine the roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells expression levels between normal lung tissues and lung cancer tissues were compared using immunoblotting, and CCK-8 and Transwell assays. Lung cancer tissues had a decreased ARHGAP10 mRNA expression level compared to the adjacent normal tissues. The ectopic expression of ARHGAP10 significantly suppressed the migration, invasion and proliferation of lung cancer cells. Gene set enrichment analysis revealed that metastasis and Wnt signaling pathways were negatively correlated with ARHGAP10 expression. Immunoblotting analysis revealed that ARHGAP10 overexpression inhibited metastasis [matrix metalloproteinase (MMP)-2, MMP-9 and VEGF] and the expression of Wnt pathway-related proteins (β-catenin and c-Myc). Moreover, the stimulation effects of lithium chloride, a GSK3β inhibitor, on the accumulation of β-catenin were notably suppressed by ARHGAP10 overexpression. Collectively, ARHGAP10 acts to suppress tumor within lung cancer by affecting metastasis and Wnt signaling pathways. The results therefore suggest that ARHGAP10 is a potentially attractive target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ji-Ping Teng
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Department of Thoracic and Cardiovascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhi-Ying Yang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yu-Ming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, P.R. China
| | - Da Ni
- Department of Thoracic and Cardiovascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhi-Jun Zhu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
32
|
Wu H, Wang H, Guan S, Zhang J, Chen Q, Wang X, Ma K, Zhao P, Zhao H, Yao W, Jin F, Xiao Q, Wei M. Cell-specific regulation of proliferation by Ano1/TMEM16A in breast cancer with different ER, PR, and HER2 status. Oncotarget 2017; 8:84996-85013. [PMID: 29156699 PMCID: PMC5689589 DOI: 10.18632/oncotarget.18662] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/23/2017] [Indexed: 11/25/2022] Open
Abstract
The calcium-activated chloride channel Ano1 (TMEM16A) is overexpressed in many tumors. However, conflicting data exist regarding the role of Ano1 in cell proliferation. Here, we performed immunohistochemistry to investigate the expression of Ano1 and Ki67 in 403 patients with breast cancer, and analyzed the association between the expression of Ano1 and Ki67 in breast cancer subtypes categorized according to estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Ano1 expression was negatively correlated with Ki67 expression. Ano1 overexpression more frequently occurred in ER-positive or HER2-negative patients with the low expression of Ki67. Ano1 overexpression was associated with longer overall survival (OS) in breast cancer with the low expression of Ki67, especially in ER-positive, PR-positive, and HER2-negative breast cancer. Multivariate Cox regression analysis showed that Ano1 overexpression was a prognostic factor for longer overall survival in ER-positive, PR-positive, or HER2-negative patients with the low expression of Ki67. Furthermore, Ano1 promoted cell proliferation in ER-positive, PR-positive, and HER2-negative MCF7 cells, but inhibited cell proliferation in ER-negative, PR-negative, and HER2-negative MDA-MB-435S cells. Our findings suggest that Ano1 may differentially regulate cell proliferation in a subtype of breast cancer defined by ER, PR, and HER2. Combined expression of Ano1 and Ki67 may be used for predicting clinical outcomes of breast cancer patients with different subtypes of ER, PR, and HER2.
Collapse
Affiliation(s)
- Huizhe Wu
- Department of Pharmacology, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P.R. China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P.R. China
| | - Shu Guan
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, P.R. China
| | - Jing Zhang
- Department of Pharmacology, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P.R. China
| | - Qiuchen Chen
- Department of Pharmacology, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P.R. China
| | - Xiaodong Wang
- Department of Pharmacology, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P.R. China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P.R. China
| | - Pengfei Zhao
- Department of Pharmacology, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P.R. China
| | - Haishan Zhao
- Department of Pharmacology, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P.R. China
| | - Weifan Yao
- Department of Pharmacology, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P.R. China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, P.R. China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, P.R. China
| | - Minjie Wei
- Department of Pharmacology, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P.R. China
| |
Collapse
|
33
|
Jiang Y, Yu B, Yang H, Ma T. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea. Front Pharmacol 2016; 7:270. [PMID: 27601995 PMCID: PMC4993765 DOI: 10.3389/fphar.2016.00270] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/10/2016] [Indexed: 01/26/2023] Open
Abstract
Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl(-) current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl(-) currents in mouse colonic epithelia but did not affect cytoplasmic Ca(2+) concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K(+) channel activity without affecting Na(+)/K(+)-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K(+) channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.
Collapse
Affiliation(s)
- Yu Jiang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University Dalian, China
| |
Collapse
|
34
|
Luo N, Guo J, Chen L, Yang W, Qu X, Cheng Z. ARHGAP10, downregulated in ovarian cancer, suppresses tumorigenicity of ovarian cancer cells. Cell Death Dis 2016; 7:e2157. [PMID: 27010858 PMCID: PMC4823924 DOI: 10.1038/cddis.2015.401] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022]
Abstract
Rho GTPase-activating proteins (RhoGAPs) are implicated in the development and progression of ovarian cancer. ARHGAP10 is a member of RhoGAP proteins and inactivates Cdc42 by converting GTP-bound form to GDP-bound form. Here, we aimed to evaluate ARHGAP10 expression profile and functions in ovarian cancer. The decreased expression of ARHGAP10 was found in 77.3% (58/75) of ovarian cancer tissues, compared with their non-tumorous counterparts. Furthermore, overall survival in ovarian cancer patients with higher expression of ARHGAP10 was longer than those with lower expression. Ectopic expression of ARHGAP10 in two ovarian cancer cell lines with lower expression of ARHGAP10 (A2780 and HO-8910) dramatically suppressed cell proliferation in vitro. In nude mice, its stable overexpression significantly inhibited the tumorigenicity of A2780 cells. We further demonstrated that overexpression of ARHGAP10 significantly inhibited cell adhesion, migration and invasion, resulted in cell arrest in G1 phase of cell cycle and a significant increase of apoptosis. Moreover, ARHGAP10 interacted with Cdc42 and overexpression of ARHGAP10 inhibited the activity of Cdc42 in A2780 cells. Gene set enrichment analysis on The Cancer Genome Atlas dataset showed that KEGG cell cycle, replication and base excision repair (BER) pathways were correlatively with the ARHGAP10 expression, which was further confirmed in ovarian cancer cells by western blotting. Hence, ARHGAP10 may serve as a tumor suppressor through inactivating Cdc42, as well as inhibiting cell cycle, replication and BER pathways. Our data suggest an important role of ARHGAP10 in the molecular etiology of cancer and implicate the potential application of ARHGAP10 in cancer therapy.
Collapse
Affiliation(s)
- N Luo
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| | - J Guo
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| | - L Chen
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| | - W Yang
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| | - X Qu
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| | - Z Cheng
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| |
Collapse
|
35
|
Nakazawa MS, Eisinger-Mathason TSK, Sadri N, Ochocki JD, Gade TPF, Amin RK, Simon MC. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun 2016; 7:10539. [PMID: 26837714 PMCID: PMC4742834 DOI: 10.1038/ncomms10539] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
In soft tissue sarcomas (STS), low intratumoural O2 (hypoxia) is a poor prognostic indicator. HIF-1α mediates key transcriptional responses to hypoxia, and promotes STS metastasis; however, the role of the related HIF-2α protein is unknown. Surprisingly, here we show that HIF-2α inhibits high-grade STS cell growth in vivo, as loss of HIF-2α promotes sarcoma proliferation and increases calcium and mTORC1 signalling in undifferentiated pleomorphic sarcoma and dedifferentiated liposarcoma. We find that most human STS have lower levels of EPAS1 (the gene encoding HIF-2α) expression relative to normal tissue. Many cancers, including STS, contain altered epigenetics, and our findings define an epigenetic mechanism whereby EPAS1 is silenced during sarcoma progression. The clinically approved HDAC inhibitor Vorinostat specifically increases HIF-2α, but not HIF-1α, accumulation in multiple STS subtypes. Vorinostat inhibits STS tumour growth, an effect ameliorated by HIF-2α deletion, implicating HIF-2α as a biomarker for Vorinostat efficacy in STS.
Collapse
Affiliation(s)
- Michael S Nakazawa
- Abramson Family Cancer Research Institute, University of Pennsylvania, BRB II/III Room 456, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, University of Pennsylvania, BRB II/III Room 456, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Navid Sadri
- Abramson Family Cancer Research Institute, University of Pennsylvania, BRB II/III Room 456, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joshua D Ochocki
- Abramson Family Cancer Research Institute, University of Pennsylvania, BRB II/III Room 456, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Terence P F Gade
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ruchi K Amin
- Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, BRB II/III Room 456, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Reddy RB, Bhat AR, James BL, Govindan SV, Mathew R, DR R, Hedne N, Illiayaraja J, Kekatpure V, Khora SS, Hicks W, Tata P, Kuriakose MA, Suresh A. Meta-Analyses of Microarray Datasets Identifies ANO1 and FADD as Prognostic Markers of Head and Neck Cancer. PLoS One 2016; 11:e0147409. [PMID: 26808319 PMCID: PMC4726811 DOI: 10.1371/journal.pone.0147409] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/04/2016] [Indexed: 01/18/2023] Open
Abstract
The head and neck squamous cell carcinoma (HNSCC) transcriptome has been profiled extensively, nevertheless, identifying biomarkers that are clinically relevant and thereby with translational benefit, has been a major challenge. The objective of this study was to use a meta-analysis based approach to catalog candidate biomarkers with high potential for clinical application in HNSCC. Data from publically available microarray series (N = 20) profiled using Agilent (4X44K G4112F) and Affymetrix (HGU133A, U133A_2, U133Plus 2) platforms was downloaded and analyzed in a platform/chip-specific manner (GeneSpring software v12.5, Agilent, USA). Principal Component Analysis (PCA) and clustering analysis was carried out iteratively for segregating outliers; 140 normal and 277 tumor samples from 15 series were included in the final analysis. The analyses identified 181 differentially expressed, concordant and statistically significant genes; STRING analysis revealed interactions between 122 of them, with two major gene clusters connected by multiple nodes (MYC, FOS and HSPA4). Validation in the HNSCC-specific database (N = 528) in The Cancer Genome Atlas (TCGA) identified a panel (ECT2, ANO1, TP63, FADD, EXT1, NCBP2) that was altered in 30% of the samples. Validation in treatment naïve (Group I; N = 12) and post treatment (Group II; N = 12) patients identified 8 genes significantly associated with the disease (Area under curve>0.6). Correlation with recurrence/re-recurrence showed ANO1 had highest efficacy (sensitivity: 0.8, specificity: 0.6) to predict failure in Group I. UBE2V2, PLAC8, FADD and TTK showed high sensitivity (1.00) in Group I while UBE2V2 and CRYM were highly sensitive (>0.8) in predicting re-recurrence in Group II. Further, TCGA analysis showed that ANO1 and FADD, located at 11q13, were co-expressed at transcript level and significantly associated with overall and disease-free survival (p<0.05). The meta-analysis approach adopted in this study has identified candidate markers correlated with disease outcome in HNSCC; further validation in a larger cohort of patients will establish their clinical relevance.
Collapse
Affiliation(s)
- Ram Bhupal Reddy
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Division of Medical Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Anupama Rajan Bhat
- Strand Life Sciences, Kirloskar Business Park, Bangalore, Karnataka, India
| | - Bonney Lee James
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | | | - Rohit Mathew
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | - Ravindra DR
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | - Naveen Hedne
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | - Jeyaram Illiayaraja
- Department of Clinical Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | - Vikram Kekatpure
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| | - Samanta S. Khora
- Division of Medical Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - Wesley Hicks
- Department of Head and Neck/Plastic & Reconstructive Surgery, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Mazumdar Shaw Medical Centre-Roswell Park Collaboration Program, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Pramila Tata
- Strand Life Sciences, Kirloskar Business Park, Bangalore, Karnataka, India
| | - Moni A. Kuriakose
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Mazumdar Shaw Medical Centre-Roswell Park Collaboration Program, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Amritha Suresh
- Integrated Head and Neck Oncology Program, Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
- Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, Karnataka, India
| |
Collapse
|
37
|
Deng L, Yang J, Chen H, Ma B, Pan K, Su C, Xu F, Zhang J. Knockdown of TMEM16A suppressed MAPK and inhibited cell proliferation and migration in hepatocellular carcinoma. Onco Targets Ther 2016; 9:325-33. [PMID: 26834491 PMCID: PMC4716773 DOI: 10.2147/ott.s95985] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TMEM16A plays an important role in cell proliferation in various cancers. However, less was known about the expression and role of TMEM16A in hepatocellular carcinoma. We screened the expression of TMEM16A in patients' hepatocellular carcinoma tissues, and also analyzed the biological function of hepatocellular carcinoma cells by knockdown of TMEM16A, as well as the expression of MAPK signaling proteins, including p38, p-p38, ERK1/2, p-ERK1/2, JNK, and p-JNK, and cell cycle regulatory protein cyclin D1 in TMEM16A siRNA-transfected SMMC-7721 cells by Western blot. Our results showed that TMEM16A was overexpressed in hepatocellular carcinoma tissues. Inhibition of TMEM16A suppressed the cell proliferation, migration, and invasion, and cell cycle progression but did not influence the cell apoptosis. TMEM16A siRNA-suppressed cancer cell proliferation and tumor growth were accompanied by a reduction of p38 and ERK1/2 activation and cyclin D1 induction, and were not influenced by other tested MAPK signaling proteins. In addition, inhibition of TMEM16A suppressed tumorigenicity in vivo. TMEM16A is overexpressed in hepatocellular carcinoma, and that inhibition of TMEM16A suppressed MAPK and growth of hepatocellular carcinoma. TMEM16A could be a potentially novel therapeutic target for human cancers, including hepatocellular carcinoma.
Collapse
Affiliation(s)
- Liang Deng
- Department of Hepatobiliary Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jihong Yang
- Department of General Surgery, The Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Hongwu Chen
- Department of Emergency, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bo Ma
- Department of Gastroenterology, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kangming Pan
- Department of Hepatobiliary Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Caikun Su
- Department of Hepatobiliary Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fengfeng Xu
- Department of Hepatobiliary Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jihong Zhang
- Department of Hepatobiliary Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
38
|
Sui Y, Wu F, Lv J, Li H, Li X, Du Z, Sun M, Zheng Y, Yang L, Zhong L, Zhang X, Zhang G. Identification of the Novel TMEM16A Inhibitor Dehydroandrographolide and Its Anticancer Activity on SW620 Cells. PLoS One 2015; 10:e0144715. [PMID: 26657333 PMCID: PMC4686118 DOI: 10.1371/journal.pone.0144715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
TMEM16A, a calcium-activated chloride channel (CaCC), is highly amplified and expressed in human cancers and is involved in the growth and metastasis of some malignancies. Inhibition of TMEM16A represents a novel pharmaceutical approach for the treatment of cancers and metastases. The purpose of this study is to identify a new TMEM16A inhibitor, investigate the effects of this inhibitor on the proliferation and metastasis of TMEM16A-amplified SW620 cells, and to elucidate the underlying molecular mechanism in vitro. We identified a novel small-molecule TMEM16A inhibitor dehydroandrographolide (DP). By using patch clamp electrophysiology, we showed that DP inhibited TMEM16A chloride currents in Fisher rat thyroid (FRT) cells that were transfected stably with human TMEM16A and in TMEM16A-overexpressed SW620 cells but did not alter cystic fibrosis transmembrane conductance regulator (CFTR) chloride currents. Further functional studies showed that DP suppressed the proliferation of SW620 cells in a dose- and time-dependent manner using MTT assays. Moreover, DP significantly inhibited migration and invasion of SW620 cells as detected by wound-healing and transwell assays. Further mechanistic study demonstrated that knockdown of human TMEM16A decreased the inhibitory effect of DP on the proliferation of SW620 cells and that TMEM16A-dependent cells (SW620 and HCT116) were more sensitive to DP than TMEM16A-independent cells (SW480 and HCT8). In addition, we found that treatment of SW620 cells with DP led to a decrease in TMEM16A protein levels but had no effect on TMEM16A mRNA levels. The current work reveals that DP, a novel TMEM16A inhibitor, exerts its anticancer activity on SW620 cells partly through a TMEM16A-dependent mechanism, which may introduce a new targeting approach for an antitumour therapy in TMEM16A-amplified cancers.
Collapse
Affiliation(s)
- Yujie Sui
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Fei Wu
- Department of Gynecology and Obstetrics, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Junfeng Lv
- Department of Radiology, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Hongxia Li
- Department of Dermatology, Jilin University Bethune First Hospital, Changchun, P. R. China
| | - Xin Li
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Zhenwu Du
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Meiyan Sun
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Yuhao Zheng
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Longfei Yang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Lili Zhong
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Xingyi Zhang
- Department of Thoracic Surgery, Jilin University Bethune Second Hospital, Changchun, P. R. China
- * E-mail: (XYZ), (GZZ)
| | - Guizhen Zhang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
- * E-mail: (XYZ), (GZZ)
| |
Collapse
|
39
|
Hoffmann EK, Sørensen BH, Sauter DPR, Lambert IH. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance. Channels (Austin) 2015; 9:380-96. [PMID: 26569161 DOI: 10.1080/19336950.2015.1089007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Volume-regulated channels for anions (VRAC) / organic osmolytes (VSOAC) play essential roles in cell volume regulation and other cellular functions, e.g. proliferation, cell migration and apoptosis. LRRC8A, which belongs to the leucine rich-repeat containing protein family, was recently shown to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g., secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene, encoding for ANO1, maps to a region on chromosome 11 (11q13) that is frequently amplified in cancer cells. Knockdown of ANO1 impairs cell proliferation and cell migration in several cancer cells. Below we summarize the basic biophysical properties of VRAC, VSOAC and ANO1 and their most important cellular functions as well as their role in cancer and drug resistance.
Collapse
Affiliation(s)
- Else K Hoffmann
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Belinda H Sørensen
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Daniel P R Sauter
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| | - Ian H Lambert
- a Department of Biology ; Section for Cell Biology and Physiology; University of Copenhagen ; Copenhagen , Denmark
| |
Collapse
|
40
|
Güler B, Özyılmaz F, Tokuç B, Can N, Taştekin E. Histopathological Features of Gastrointestinal Stromal Tumors and the Contribution of DOG1 Expression to the Diagnosis. Balkan Med J 2015; 32:388-96. [PMID: 26740899 DOI: 10.5152/balkanmedj.2015.15912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 05/09/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GIST) have KIT or platelet-derived growth factor receptor α (PDGFRα) mutations affecting receptor tyrosine kinase activity and do not benefit from classic treatment regimens. AIMS The aim of this study was to review the algorithm that may be followed for the diagnosis and differential diagnosis in GISTs by investigating the histomorphological parameters and expression characteristics of classical immunohistochemical antibodies used in routine tests in addition to DOG1 expression. STUDY DESIGN Diagnostic accuracy study. METHODS We reevaluated the histological and immunohistochemical parameters of 37 GISTs. The standard immunohistochemical diagnosis and differential diagnosis panel antibodies (CD117, PDGFRα, CD34, vimentin, desmin, SMA, S-100, and Ki67) were studied on the tumor sections. We also used the popular marker DOG1 antibody with accepted sensitivity for GISTs in recent years and the PDGFRα immune marker for which the benefit in routine practice is discussed. RESULTS Classification according to progressive disease risk groups of the 37 cases revealed that 54% were in the high risk, 19% in the moderate risk, 16% in the low risk, 8% in the very low risk and 8% in the no risk group. Cytological atypia, necrosis, mucosal invasion and the Ki67 index were found to be related to the progressive disease risk groups of the tumors (p<0.05). Positive immunoreaction was observed with CD117 and PDGFRα in all GISTs in the study (100%). Positivity with the DOG1 antibody was found in 33 (89%) cases. CD34 was positive in 62% (23) of the cases. CONCLUSION The CD117 antibody still plays a key role in GIST diagnosis. However, the use of DOG1 and PDGFRα antibodies combined with CD117 as sensitive markers can be beneficial.
Collapse
Affiliation(s)
- Beril Güler
- Department of Pathology, Bezmialem Vakıf University Faculty of Medicine, İstanbul, Turkey
| | - Filiz Özyılmaz
- Department of Pathology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Burcu Tokuç
- Department of Public Health, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Nuray Can
- Department of Pathology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Ebru Taştekin
- Department of Pathology, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
41
|
Jia L, Liu W, Guan L, Lu M, Wang K. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer. PLoS One 2015; 10:e0136584. [PMID: 26305547 PMCID: PMC4549304 DOI: 10.1371/journal.pone.0136584] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.
Collapse
Affiliation(s)
- Linghan Jia
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Wen Liu
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Lizhao Guan
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Min Lu
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - KeWei Wang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China
| |
Collapse
|
42
|
Hoover H, Li J, Marchese J, Rothwell C, Borawoski J, Jeffery DA, Gaither LA, Finkel N. Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers. J Proteome Res 2015; 14:3670-9. [PMID: 26151158 DOI: 10.1021/acs.jproteome.5b00508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor types can be defined cytologically by their regions of chromosomal amplification, which often results in the high expression of both mRNA and proteins of certain genes contained within the amplicon. An important strategy for defining therapeutically relevant targets in these situations is to ascertain which genes are amplified at the protein level and, concomitantly, are key drivers for tumor growth or maintenance. Furthermore, so-called passenger genes that are amplified with driver genes and a manifest on the cell surface can be attractive targets for an antibody-drug conjugate approach (ADC). We employed a tandem mass spectrometry proteomics approach using tumor cell lines to identify the cell surface proteins whose expression correlates with the 11q13 amplicon. The 11q13 amplicon is one of the most frequently amplified chromosomal regions in human cancer, being present in 45% of head and neck and oral squamous cell carcinoma (OSCC) and 13-21% of breast and liver carcinomas. Using a panel of tumor cell lines with defined 11q13 genomic amplification, we identified the membrane proteins that are differentially expressed in an 11q13 amplified cell line panel using membrane-enriched proteomic profiling. We found that DSG3, CD109, and CD14 were differentially overexpressed in head and neck and breast tumor cells with 11q13 amplification. The level of protein expression of each gene was confirmed by Western blot and FACS analysis. Because proteins with high cell surface expression on selected tumor cells could be potential antibody drug conjugate targets, we tested DSG3 and CD109 in antibody piggyback assays and validated that DSG3 and CD109 expression was sufficient to induce antibody internalization and cell killing in 11q13-amplified cell lines. Our results suggest that proteomic profiling using genetically stratified tumors can identify candidate antibody drug conjugate targets. Data are available via ProteomeXchange with the identifier PXD002486.
Collapse
Affiliation(s)
- Heather Hoover
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Jun Li
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Jason Marchese
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Christopher Rothwell
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Jason Borawoski
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Douglas A Jeffery
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - L Alex Gaither
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Nancy Finkel
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
|
44
|
Anoctamin 1 (TMEM16A) is essential for testosterone-induced prostate hyperplasia. Proc Natl Acad Sci U S A 2015; 112:9722-7. [PMID: 26153424 DOI: 10.1073/pnas.1423827112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is characterized by an enlargement of the prostate, causing lower urinary tract symptoms in elderly men worldwide. However, the molecular mechanism underlying the pathogenesis of BPH is unclear. Anoctamin1 (ANO1) encodes a Ca(2+)-activated chloride channel (CaCC) that mediates various physiological functions. Here, we demonstrate that it is essential for testosterone-induced BPH. ANO1 was highly amplified in dihydrotestosterone (DHT)-treated prostate epithelial cells, whereas the selective knockdown of ANO1 inhibited DHT-induced cell proliferation. Three androgen-response elements were found in the ANO1 promoter region, which is relevant for the DHT-dependent induction of ANO1. Administration of the ANO1 blocker or Ano1 small interfering RNA, inhibited prostate enlargement and reduced histological abnormalities in vivo. We therefore concluded that ANO1 is essential for the development of prostate hyperplasia and is a potential target for the treatment of BPH.
Collapse
|
45
|
Wu H, Guan S, Sun M, Yu Z, Zhao L, He M, Zhao H, Yao W, Wang E, Jin F, Xiao Q, Wei M. Ano1/TMEM16A Overexpression Is Associated with Good Prognosis in PR-Positive or HER2-Negative Breast Cancer Patients following Tamoxifen Treatment. PLoS One 2015; 10:e0126128. [PMID: 25961581 PMCID: PMC4427473 DOI: 10.1371/journal.pone.0126128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 03/29/2015] [Indexed: 12/31/2022] Open
Abstract
The calcium-activated chloride channel Ano1 (TMEM16A) is overexpressed in many tumors. Although Ano1 overexpression is found in breast cancer due to 11q13 amplification, it remains unclear whether signaling pathways are involved in Ano1 overexpression during breast cancer tumorigenesis in vivo. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) have been known to contribute to breast cancer progression. It is unclear whether Ano1 is associated with clinical outcomes in breast cancer patients with different ER, PR and HER2 status. In the present study, we investigated the Ano1 expression in 431 patients with invasive ductal breast carcinoma and 46 patients with fibroadenoma, using immunohistochemistry, and analyzed the association between Ano1 expression and clinical characteristics and outcomes of breast cancer patients with different ER, PR, and HER2 status. Ano1 was overexpressed in breast cancer compared with fibroadenoma. Ano1 was significantly more associated with breast cancer with the lower clinical stage (stage I or II), or triple-negative status. Mostly importantly, Ano1 overexpression was associated with good prognosis in patients with the PR-positive or HER2-negative status, and in patients following tamoxifen treatment. Multivariate Cox regression analysis showed that Ano1 overexpression was a prognostic factor for longer overall survival in PR-positive or HER2-negative patients, and a predictive factor for longer overall survival in patients following tamoxifen treatment. Our findings suggest that Ano1 may be a potential marker for good prognosis in PR-positive or HER2-negative patients following tamoxifen treatment. The PR and HER2 status defines a subtype of breast cancer in which Ano1 overexpression is associated with good prognosis following tamoxifen treatment.
Collapse
Affiliation(s)
- Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Shu Guan
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
| | - Enhua Wang
- Institute of Pathology and Pathophysiology, First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning, P. R. China
| | - Feng Jin
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, Liaoning, P. R. China
- * E-mail: (MW); (QX); (FJ)
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
- * E-mail: (MW); (QX); (FJ)
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, P. R. China
- * E-mail: (MW); (QX); (FJ)
| |
Collapse
|
46
|
Hoshino I, Akutsu Y, Murakami K, Akanuma N, Isozaki Y, Maruyama T, Toyozumi T, Matsumoto Y, Suito H, Takahashi M, Sekino N, Komatsu A, Suzuki T, Matsubara H. Histone Demethylase LSD1 Inhibitors Prevent Cell Growth by Regulating Gene Expression in Esophageal Squamous Cell Carcinoma Cells. Ann Surg Oncol 2015; 23:312-20. [PMID: 25791791 DOI: 10.1245/s10434-015-4488-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND The expression of genes can be influenced by the balance of histone acetylation and/or histone demethylation, with an imbalance of these processes possibly observed in many cancers. The histone demethylase LSD1 inhibitor activity is associated with selective transcriptional regulation and alterations in the gene expression. However, the exact mechanisms underlying the antitumor effects of LSD1 inhibitors are not fully understood. METHODS The antitumor effects of NCL1, an LSD1 inhibitor, in esophageal squamous cell cancer (ESCC) cell lines were evaluated. A comprehensive analysis of the changes in the gene expression in ESCC cell lines induced by NCL1 was carried out using a microarray analysis. A loss-of-function assay using a siRNA analysis was performed to examine the oncogenic function of the gene. RESULTS NCL1 strongly inhibited the cell growth of T.Tn and TE2 ESCC cells and induced apoptosis. According to the microarray analysis, 81 genes in the T.Tn cells and 149 genes in the TE2 cells were up- or down-regulated 2-fold or more by NCL1 exposure. Among these genes, 27 were contained in both cell lines and exhibited similar expression patterns. PHLDB2, one of the genes down-regulated by NCL1, was overexpressed in the ESCC tumor tissues. Moreover, a high expression level of PHLDB2 was found to be significantly correlated with poor prognosis. CONCLUSIONS The present observations of the comprehensive analysis of the gene expression levels provide insight into the mechanisms underlying the antitumor effects of LSD1 inhibitors in ESCC patients.
Collapse
Affiliation(s)
- Isamu Hoshino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Akanuma
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuka Isozaki
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuro Maruyama
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobufumi Sekino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aki Komatsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
47
|
Atta IS, Al Qahtani FN. DOG1, alpha-amylase and p63 expression in acinic cell carcinoma of salivary gland; immunohistochemical, clinical and radiological study. Histol Histopathol 2015. [DOI: 10.7243/2055-091x-2-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Sui Y, Sun M, Wu F, Yang L, Di W, Zhang G, Zhong L, Ma Z, Zheng J, Fang X, Ma T. Inhibition of TMEM16A expression suppresses growth and invasion in human colorectal cancer cells. PLoS One 2014; 9:e115443. [PMID: 25541940 PMCID: PMC4277312 DOI: 10.1371/journal.pone.0115443] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/23/2014] [Indexed: 12/12/2022] Open
Abstract
Metastasis leads to poor prognosis in colorectal cancer patients, and there is a growing need for new therapeutic targets. TMEM16A (ANO1, DOG1 or TAOS2) has recently been identified as a calcium-activated chloride channel (CaCC) and is reported to be overexpressed in several malignancies; however, its expression and function in colorectal cancer (CRC) remains unclear. In this study, we found expression of TMEM16A mRNA and protein in high-metastatic-potential SW620, HCT116 and LS174T cells, but not in primary HCT8 and SW480 cells, using RT-PCR, western blotting and immunofluorescence labeling. Patch-clamp recordings detected CaCC currents regulated by intracellular Ca(2+) and voltage in SW620 cells. Knockdown of TMEM16A by short hairpin RNAs (shRNA) resulted in the suppression of growth, migration and invasion of SW620 cells as detected by MTT, wound-healing and transwell assays. Mechanistically, TMEM16A depletion was accompanied by the dysregulation of phospho-MEK, phospho-ERK1/2 and cyclin D1 expression. Flow cytometry analysis showed that SW620 cells were inhibited from the G1 to S phase of the cell cycle in the TMEM16A shRNA group compared with the control group. In conclusion, our results indicate that TMEM16A CaCC is involved in growth, migration and invasion of metastatic CRC cells and provide evidence for TMEM16A as a potential drug target for treating metastatic colorectal carcinoma.
Collapse
Affiliation(s)
- Yujie Sui
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Meiyan Sun
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Fei Wu
- Department of Gynecology and Obstetrics, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Longfei Yang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Weihua Di
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Guizhen Zhang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Lili Zhong
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Zhiming Ma
- Department of General Surgery, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Jinhao Zheng
- Department of General Surgery, Jilin University Bethune Second Hospital, Changchun, P. R. China
| | - Xuedong Fang
- Department of General Surgery, Jilin University Bethune Second Hospital, Changchun, P. R. China
- Department of General Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, P. R. China
- * E-mail: (XDF); (THM)
| | - Tonghui Ma
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Jilin University Bethune Second Hospital, Changchun, P. R. China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P. R. China
- * E-mail: (XDF); (THM)
| |
Collapse
|
49
|
Hope for GWAS: relevant risk genes uncovered from GWAS statistical noise. Int J Mol Sci 2014; 15:17601-21. [PMID: 25268625 PMCID: PMC4227180 DOI: 10.3390/ijms151017601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/01/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023] Open
Abstract
Hundreds of genetic variants have been associated to common diseases through genome-wide association studies (GWAS), yet there are limits to current approaches in detecting true small effect risk variants against a background of false positive findings. Here we addressed the missing heritability problem, aiming to test whether there are indeed risk variants within GWAS statistical noise and to develop a systematic strategy to retrieve these hidden variants. Employing an integrative approach, which combines protein-protein interactions with association data from GWAS for 6 common diseases, we found that associated-genes at less stringent significance levels (p < 0.1) with any of these diseases are functionally connected beyond noise expectation. This functional coherence was used to identify disease-relevant subnetworks, which were shown to be enriched in known genes, outperforming the selection of top GWAS genes. As a proof of principle, we applied this approach to breast cancer, supporting well-known breast cancer genes, while pinpointing novel susceptibility genes for experimental validation. This study reinforces the idea that GWAS are under-analyzed and that missing heritability is rather hidden. It extends the use of protein networks to reveal this missing heritability, thus leveraging the large investment in GWAS that produced so far little tangible gain.
Collapse
|
50
|
Hoffmann EK, Holm NB, Lambert IH. Functions of volume-sensitive and calcium-activated chloride channels. IUBMB Life 2014; 66:257-67. [PMID: 24771413 DOI: 10.1002/iub.1266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/23/2023]
Abstract
The review describes molecular and functional properties of the volume regulated anion channel and Ca(2+)-dependent Cl(-) channels belonging to the anoctamin family with emphasis on physiological importance of these channels in regulation of cell volume, cell migration, cell proliferation, and programmed cell death. Finally, we discuss the role of Cl(-) channels in various diseases.
Collapse
Affiliation(s)
- Else Kay Hoffmann
- Department of Biology, University of Copenhagen, 13 Universitetsparken, Copenhagen Ø, Denmark
| | | | | |
Collapse
|