1
|
Mrunalini B, Dev A, Kushwaha AC, Sardoiwala MN, Karmakar S. Encapsulation of 4-oxo- N-(4-hydroxyphenyl) retinamide in human serum albumin nanoparticles promotes EZH2 degradation in preclinical neuroblastoma models. NANOSCALE 2024; 16:16075-16088. [PMID: 39087878 DOI: 10.1039/d4nr00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Neuroblastoma is the most prevalent and aggressive solid tumor that develops extracranially in children between the ages of 0-14 years, which accounts for 8-10% of all childhood malignancies and ∼15% of pediatric cancer-related mortality. The polycomb repressive complex 2 (PRC2) protein, EZH2, is overexpressed in neuroblastoma and mediates histone H3 methylation at lysine 27 (K27) positions through its methyl transferase activity and is a potential epigenetic silencer of many tumor suppressor genes in cancer. Phosphorylation of EZH2 decreases its stability and leads to proteasomal degradation. The 4-oxo-N-(4-hydroxyphenyl) retinamide (4O4HPR) promotes EZH2 degradation via activation of PKC-δ, but its limited solubility and physiological instability limit its application. In the current study, the encapsulation of 4O4HPR in Human Serum Albumin Nanoparticles (HSANPs) enhanced the solubility and physiological stability of the nanoformulation, leading to improved therapeutic efficacy through G2-M cell cycle arrest, depolarization of mitochondrial membrane potential, generation of reactive oxygen species and caspase 3 mediated apoptosis activation. The molecular mechanistic approach of 4O4HPR loaded HSANPs has activated caspase 3, which further cleaves PKC-δ into two fragments wherein the cleaved fragment of PKC-δ possesses the kinase activity that phosphorylates EZH2 and decreases the protein stability leading to its further ubiquitination in SH-SY5Y cells. Co-immunoprecipitation experiments revealed the direct interaction between PKC-δ and EZH2 phosphorylation, followed by ubiquitination. Moreover, 4O4HPR loaded HSANPs demonstrated improved in vivo biodistribution, greater dispersibility, and biocompatibility and exhibited enhanced protein instability and degradation of EZH2 in the neuroblastoma xenograft mouse model.
Collapse
Affiliation(s)
- Boddu Mrunalini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Atul Dev
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | | | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| |
Collapse
|
2
|
Crossay E, Jullian V, Trinel M, Sagnat D, Hamel D, Groppi E, Rolland C, Stigliani JL, Mejia K, Cabanillas BJ, Alric L, Buscail E, El Kalamouni C, Mavingui P, Deraison C, Racaud-Sultan C, Fabre N. Daphnanes diterpenes from the latex of Hura crepitans L. and their PKCζ-dependent anti-proliferative activity on colorectal cancer cells. Bioorg Med Chem 2023; 90:117366. [PMID: 37329676 DOI: 10.1016/j.bmc.2023.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Hura crepitans L. (Euphorbiaceae) is a thorn-covered tree widespread in South America, Africa and Asia which produces an irritating milky latex containing numerous secondary metabolites, notably daphnane-type diterpenes known as Protein Kinase C activators. Fractionation of a dichloromethane extract of the latex led to the isolation of five new daphnane diterpenes (1-5), along with two known analogs (6-7) including huratoxin. Huratoxin (6) and 4',5'-epoxyhuratoxin (4) were found to exhibit significant and selective cell growth inhibition against colorectal cancer cell line Caco-2 and primary colorectal cancer cells cultured as colonoids. The underlying mechanism of 4 and 6 was further investigated revealing the involvement of PKCζ in the cytostatic activity.
Collapse
Affiliation(s)
- Elise Crossay
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | | | - Manon Trinel
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - David Sagnat
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; Toulouse Organoids Platform, Institut de Recherche en Santé Digestive, INSERM, Toulouse, France
| | - Dimitri Hamel
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Emie Groppi
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France
| | | | - Kember Mejia
- Instituto de Investigaciones de la Amazonia Peruana (IIAP), Iquitos, Peru
| | - Billy Joel Cabanillas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Laurent Alric
- Pole Digestif, Centre Hospitalier Universitaire, Toulouse, France
| | - Etienne Buscail
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France; Département de Chirurgie Digestive, Unité de Chirurgie Colorectale, Centre Hospitalier Universitaire, Toulouse, France
| | - Chaker El Kalamouni
- UMR PIMIT, Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, La Réunion, France
| | - Patrick Mavingui
- UMR PIMIT, Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, La Réunion, France
| | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, France
| | | | - Nicolas Fabre
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France.
| |
Collapse
|
3
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
4
|
Trinel M, Le Lamer AC, Jullian V, Jacquemin D, Graton J, Cristofoli V, Crossay E, Yassine M, Rolland C, Vergnolle N, Mejia K, Joel Cabanillas B, Racaud-Sultan C, Fabre N. Daphnanes diterpenes from the latex of Hura crepitans L. And activity against human colorectal cancer cells Caco-2. Bioorg Chem 2020; 103:104132. [PMID: 32768743 DOI: 10.1016/j.bioorg.2020.104132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Hura crepitans (Euphorbiaceae) is a tree from South America that produces an irritant latex used as a fish poison. A bio-guided fractionation of an ethanolic extract of the latex led to the isolation and structural identification of three known daphnane-type diterpenes (1-3) including huratoxin (1), together with two new analogs (4, 5). Compound 1 was found to exhibit significant and selective cell growth inhibition against the colorectal cancer cell line Caco-2, with morphological modifications suggesting formations mimicking the intestinal crypt architecture. The underlying mechanism of 1 was further investigated, in comparison with 12-O-tetradecanoylphorbol-13-acetate (TPA), revealing two different mechanisms.
Collapse
Affiliation(s)
- Manon Trinel
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | | | - Valérie Jullian
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France; Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Denis Jacquemin
- CEISAM, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, Faculté des Sciences et des Techniques, Université de Nantes, France
| | - Jérôme Graton
- CEISAM, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, Faculté des Sciences et des Techniques, Université de Nantes, France
| | | | - Elise Crossay
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - May Yassine
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Kember Mejia
- Instituto de Investigaciones de la Amazonia Peruana (IIAP), Iquitos, Peru
| | - Billy Joel Cabanillas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | - Nicolas Fabre
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| |
Collapse
|
5
|
Chun KH, Cho SJ, Lee JW, Seo JH, Kim KW, Lee SK. Protein kinase C-δ interacts with and phosphorylates ARD1. J Cell Physiol 2020; 236:379-391. [PMID: 32542692 DOI: 10.1002/jcp.29866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/07/2022]
Abstract
Protein kinase C-δ (PKCδ) is a diacylglycerol-dependent, calcium-independent novel PKC isoform that is engaged in various cell signaling pathways, such as cell proliferation, apoptosis, inflammation, and oxidative stress. In this study, we searched for proteins that bind PKCδ using a yeast two-hybrid assay and identified murine arrest-defective 1 (mARD1) as a binding partner. The interaction between PKCδ and mARD1 was confirmed by glutathione S-transferase pull-down and co-immunoprecipitation assays. Furthermore, recombinant PKCδ phosphorylated full-length mARD1 protein. The NetPhos online prediction tool suggested PKCδ phosphorylates Ser80 , Ser108 , and Ser114 residues of mARD1 with the highest probability. Based on these results, we synthesized peptides containing these sites and examined their phosphorylations using recombinant PKCδ. Autoradiography confirmed these sites were efficiently phosphorylated. Consequent mass spectrometry and peptide sequencing in combination with MALDI-TOF MS/MS confirmed that Ser80 and Ser108 were major phosphorylation sites. The alanine mutations of Ser80 and Ser108 abolished the phosphorylation of mARD1 by PKCδ in 293T cells supporting these observations. In addition, kinase assays using various PKC isotypes showed that Ser80 of ARD1 was phosphorylated by PKCβI and PKCζ isotypes with the highest selectivity, while Ser108 and/or Ser114 were phosphorylated by PKCγ with activities comparable to that of the PKCδ isoform. Overall, these results suggest the possibility that PKCδ transduces signals by regulating phosphorylation of ARD1.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seung-Ju Cho
- Division of Drug Safety Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Ji-Won Lee
- Preclinical Studies, GlycoMimetics Inc., Rockville, Maryland
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Kyu-Won Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ki Lee
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
COL1A2 is a TBX3 target that mediates its impact on fibrosarcoma and chondrosarcoma cell migration. Cancer Lett 2019; 459:227-239. [PMID: 31202624 DOI: 10.1016/j.canlet.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
Abstract
The developmentally important T-box transcription factor TBX3, is overexpressed in several cancers and contributes to tumorigenesis as either a tumour promoter or tumour suppressor. For example, TBX3 promotes cell proliferation, migration and invasion of chondrosarcoma cells but inhibits these processes in fibrosarcoma cells. This suggests that the cellular context influences TBX3 oncogenic functions, but the mechanism(s) involved has not been elucidated. COL1A2 encodes type I collagen and, like TBX3, plays important roles during embryogenesis and can act as either oncogene or tumour suppressor. Here we explore the possibility that COL1A2 may be a TBX3 target gene responsible for mediating its opposing oncogenic roles in chondrosarcoma and fibrosarcoma cells. Results from qRT-PCR, western blotting, luciferase reporter and chromatin immunoprecipitation assays show that TBX3 binds and activates the COL1A2 promoter. Furthermore, we show that TBX3 levels are regulated by AKT1 and that pseudo-phosphorylation of TBX3 at an AKT consensus serine site, enhances its ability to activate COL1A2. Importantly, we demonstrate that COL1A2 mediates the pro- and anti-migratory effects of TBX3 in chondrosarcoma and fibrosarcoma cells respectively. Our data reveal that the AKT1/TBX3/COL1A2 axis plays an important role in sarcomagenesis.
Collapse
|
7
|
Bessa C, Soares J, Raimundo L, Loureiro JB, Gomes C, Reis F, Soares ML, Santos D, Dureja C, Chaudhuri SR, Lopez-Haber C, Kazanietz MG, Gonçalves J, Simões MF, Rijo P, Saraiva L. Discovery of a small-molecule protein kinase Cδ-selective activator with promising application in colon cancer therapy. Cell Death Dis 2018; 9:23. [PMID: 29348560 PMCID: PMC5833815 DOI: 10.1038/s41419-017-0154-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKC) isozymes play major roles in human diseases, including cancer. Yet, the poor understanding of isozymes-specific functions and the limited availability of selective pharmacological modulators of PKC isozymes have limited the clinical translation of PKC-targeting agents. Here, we report the first small-molecule PKCδ-selective activator, the 7α-acetoxy-6β-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), which binds to the PKCδ-C1-domain. Roy-Bz potently inhibited the proliferation of colon cancer cells by inducing a PKCδ-dependent mitochondrial apoptotic pathway involving caspase-3 activation. In HCT116 colon cancer cells, Roy-Bz specifically triggered the translocation of PKCδ but not other phorbol ester responsive PKCs. Roy-Bz caused a marked inhibition in migration of HCT116 cells in a PKCδ-dependent manner. Additionally, the impairment of colonosphere growth and formation, associated with depletion of stemness markers, indicate that Roy-Bz also targets drug-resistant cancer stem cells, preventing tumor dissemination and recurrence. Notably, in xenograft mouse models, Roy-Bz showed a PKCδ-dependent antitumor effect, through anti-proliferative, pro-apoptotic, and anti-angiogenic activities. Besides, Roy-Bz was non-genotoxic, and in vivo it had no apparent toxic side effects. Collectively, our findings reveal a novel promising anticancer drug candidate. Most importantly, Roy-Bz opens the way to a new era on PKC biology and pharmacology, contributing to the potential redefinition of the structural requirements of isozyme-selective agents, and to the re-establishment of PKC isozymes as feasible therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Cláudia Bessa
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joana Soares
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Liliana Raimundo
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joana B Loureiro
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Célia Gomes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, & CNC.IBILI Research Consortium, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, & CNC.IBILI Research Consortium, University of Coimbra, Coimbra, Portugal
| | - Miguel L Soares
- Laboratório de Apoio à Investigação em Medicina Molecular, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Daniel Santos
- REQUIMTE, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Chetna Dureja
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | | | - Cynthia Lopez-Haber
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jorge Gonçalves
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria F Simões
- CBIOS-Centro de Investigação em Biociências e Tecnologias da Saúde, Universidade Lusófona, Lisboa, Portugal.,iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Rijo
- CBIOS-Centro de Investigação em Biociências e Tecnologias da Saúde, Universidade Lusófona, Lisboa, Portugal. .,iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal.
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
8
|
Yen CF, Harischandra DS, Kanthasamy A, Sivasankar S. Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity. SCIENCE ADVANCES 2016; 2:e1600014. [PMID: 27419232 PMCID: PMC4942324 DOI: 10.1126/sciadv.1600014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/27/2016] [Indexed: 05/26/2023]
Abstract
Prion protein (PrP) misfolding and oligomerization are key pathogenic events in prion disease. Copper exposure has been linked to prion pathogenesis; however, its mechanistic basis is unknown. We resolve, with single-molecule precision, the molecular mechanism of Cu(2+)-induced misfolding of PrP under physiological conditions. We also demonstrate that misfolded PrPs serve as seeds for templated formation of aggregates, which mediate inflammation and degeneration of neuronal tissue. Using a single-molecule fluorescence assay, we demonstrate that Cu(2+) induces PrP monomers to misfold before oligomer assembly; the disordered amino-terminal region mediates this structural change. Single-molecule force spectroscopy measurements show that the misfolded monomers have a 900-fold higher binding affinity compared to the native isoform, which promotes their oligomerization. Real-time quaking-induced conversion demonstrates that misfolded PrPs serve as seeds that template amyloid formation. Finally, organotypic slice cultures show that misfolded PrPs mediate inflammation and degeneration of neuronal tissue. Our study establishes a direct link, at the molecular level, between copper exposure and PrP neurotoxicity.
Collapse
Affiliation(s)
- Chi-Fu Yen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - Dilshan S. Harischandra
- Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sanjeevi Sivasankar
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
KILIÇ SÜLOĞLU A, KARACAOĞLU E, SELMANOĞLU G, AKEL H, KARAASLAN İÇ. Evaluation of apoptotic cell death mechanisms induced by hypericin-mediated photodynamic therapy in colon cancer cells. Turk J Biol 2016. [DOI: 10.3906/biy-1504-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
10
|
Wang Y, Luo Z, Pan Y, Wang W, Zhou X, Jeong LS, Chu Y, Liu J, Jia L. Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells. Cancer Biol Ther 2016; 16:420-9. [PMID: 25782162 DOI: 10.1080/15384047.2014.1003003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent studies indicate that post-translational protein neddylation is required for the maintenance of cell viability in several lymphoma cell lines, while inhibition of the neddylation pathway with an NEDD8-activating enzyme (NAE) inhibitor MLN4924 induces apoptosis in lymphoma cells. However, the mechanism by which neddylation inhibition induces apoptosis in lymphoma cells has not been fully elucidated. Moreover, it is unknown whether neddylation inhibition triggers non-apoptotic cell-killing responses, such as cell senescence, in lymphoma cells. Here, we report that MLN4924 specifically inhibited protein neddylation, inactivated cullin-RING E3 ligase (CRL), the best-known neddylation substrate, and induced the accumulation of tumor-suppressive CRL substrates in lymphoma cells. Moreover, MLN4924 potently suppressed the growth of lymphoma cells by inducing G2 cell-cycle arrest, followed by apoptosis or senescence in a cell line-dependent manner. MLN4924-induced apoptosis was mediated by intrinsic apoptotic signaling with substantial up-regulation of pro-apoptotic Bik and Noxa as well as down-regulation of anti-apoptotic XIAP, c-IAP1 and c-IAP2, while senescence induction upon neddylation inhibition seemed dependent on the expression of tumor suppressor p21/p27. Together, these findings expand our understanding on how lymphoma cells respond to neddylation inhibition and support the development of neddylation inhibitors (e.g. MLN4924) for the treatment of lymphoma.
Collapse
Affiliation(s)
- Yanchun Wang
- a Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology , Shanghai Medical College, Fudan University , Shanghai , PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xue J, Chen Y, Wu Y, Wang Z, Zhou A, Zhang S, Lin K, Aldape K, Majumder S, Lu Z, Huang S. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat Commun 2015; 6:6156. [PMID: 25639486 PMCID: PMC4315364 DOI: 10.1038/ncomms7156] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/15/2014] [Indexed: 01/15/2023] Open
Abstract
Aberrant activation of β-catenin in the nucleus has been implicated in a variety of human cancers but the fate of nuclear β-catenin is unknown. Here we demonstrate that tripartite motif-containing protein 33 (TRIM33), acting as an E3 ubiquitin ligase, reduces the abundance of nuclear β-catenin protein. TRIM33-mediated β-catenin is destabilized and is GSK-3β or β-TrCP independent. TRIM33 interacts with and ubiquitylates nuclear β-catenin. Moreover, protein kinase Cδ, which directly phosphorylates β-catenin at Ser715, is required for the TRIM33–β-catenin interaction. The function of TRIM33 in suppressing tumour cell proliferation and brain tumour development depends on TRIM33-promoted β-catenin degradation. In human glioblastoma specimens, endogenous TRIM33 levels are inversely correlated with β-catenin. In summary, our findings identify TRIM33 as a tumour suppressor that can abolish tumour cell proliferation and tumorigenesis by degrading nuclear β-catenin. This work suggests a new therapeutic strategy against human cancers caused by aberrant activation of β-catenin.
Collapse
Affiliation(s)
- Jianfei Xue
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yaohui Chen
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yamei Wu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhongyong Wang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sicong Zhang
- 1] Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Kangyu Lin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kenneth Aldape
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sadhan Majumder
- 1] Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA [2] Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhimin Lu
- 1] Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA [2] Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Suyun Huang
- 1] Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
13
|
Hagelkruys A, Lagger S, Krahmer J, Leopoldi A, Artaker M, Pusch O, Zezula J, Weissmann S, Xie Y, Schöfer C, Schlederer M, Brosch G, Matthias P, Selfridge J, Lassmann H, Knoblich JA, Seiser C. A single allele of Hdac2 but not Hdac1 is sufficient for normal mouse brain development in the absence of its paralog. Development 2014; 141:604-616. [PMID: 24449838 PMCID: PMC4773893 DOI: 10.1242/dev.100487] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The histone deacetylases HDAC1 and HDAC2 are crucial regulators of chromatin structure and gene expression, thereby controlling important developmental processes. In the mouse brain, HDAC1 and HDAC2 exhibit different developmental stage- and lineage-specific expression patterns. To examine the individual contribution of these deacetylases during brain development, we deleted different combinations of Hdac1 and Hdac2 alleles in neural cells. Ablation of Hdac1 or Hdac2 by Nestin-Cre had no obvious consequences on brain development and architecture owing to compensation by the paralog. By contrast, combined deletion of Hdac1 and Hdac2 resulted in impaired chromatin structure, DNA damage, apoptosis and embryonic lethality. To dissect the individual roles of HDAC1 and HDAC2, we expressed single alleles of either Hdac1 or Hdac2 in the absence of the respective paralog in neural cells. The DNA-damage phenotype observed in double knockout brains was prevented by expression of a single allele of either Hdac1 or Hdac2. Strikingly, Hdac1−/−Hdac2+/− brains showed normal development and no obvious phenotype, whereas Hdac1+/−Hdac2−/− mice displayed impaired brain development and perinatal lethality. Hdac1+/−Hdac2−/− neural precursor cells showed reduced proliferation and premature differentiation mediated by overexpression of protein kinase C, delta, which is a direct target of HDAC2. Importantly, chemical inhibition or knockdown of protein kinase C delta was sufficient to rescue the phenotype of neural progenitor cells in vitro. Our data indicate that HDAC1 and HDAC2 have a common function in maintaining proper chromatin structures and show that HDAC2 has a unique role by controlling the fate of neural progenitors during normal brain development.
Collapse
Affiliation(s)
- Astrid Hagelkruys
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1030, Austria
| | - Sabine Lagger
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1030, Austria
| | - Julia Krahmer
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1030, Austria
| | - Alexandra Leopoldi
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1030, Austria
| | - Matthias Artaker
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1030, Austria
| | - Oliver Pusch
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Jürgen Zezula
- Institute of Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Simon Weissmann
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1030, Austria
| | - Yunli Xie
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria
| | - Christian Schöfer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research (LBICR), Vienna 1090, Austria
| | - Gerald Brosch
- Division of Molecular Biology, Biocenter Innsbruck, Medical University, Innsbruck 6020, Austria
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel 4058, Switzerland
| | - Jim Selfridge
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, UK
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna 1030, Austria
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna 1030, Austria
| |
Collapse
|
14
|
Overexpressed PKCδ downregulates the expression of PKCα in B16F10 melanoma: induction of apoptosis by PKCδ via ceramide generation. PLoS One 2014; 9:e91656. [PMID: 24632809 PMCID: PMC3954766 DOI: 10.1371/journal.pone.0091656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/12/2014] [Indexed: 02/06/2023] Open
Abstract
In the present study, we observed a marked variation in the expression of PKCα and PKCδ isotypes in B16F10 melanoma tumor cells compared to the normal melanocytes. Interestingly, the tumor instructed expression or genetically manipulated overexpression of PKCα isotype resulted in enhanced G1 to S transition. This in turn promoted cellular proliferation by activating PLD1 expression and subsequent AKT phosphorylation, which eventually resulted in suppressed ceramide generation and apoptosis. On the other hand, B16F10 melanoma tumors preferentially blocked the expression of PKCδ isotype, which otherwise could exhibit antagonistic effects on PKCα-PLD1-AKT signaling and rendered B16F10 cells more sensitive to apoptosis via generating ceramide and subsequently triggering caspase pathway. Hence our data suggested a reciprocal PKC signaling operational in B16F10 melanoma cells, which regulates ceramide generation and provide important clues to target melanoma cancer by manipulating the PKCδ-ceramide axis.
Collapse
|
15
|
Gentilin E, Tagliati F, Filieri C, Molè D, Minoia M, Rosaria Ambrosio M, Degli Uberti EC, Zatelli MC. miR-26a plays an important role in cell cycle regulation in ACTH-secreting pituitary adenomas by modulating protein kinase Cδ. Endocrinology 2013; 154:1690-700. [PMID: 23525216 PMCID: PMC3695590 DOI: 10.1210/en.2012-2070] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functional aftermath of microRNA (miRNA) dysregulation in ACTH-secreting pituitary adenomas has not been demonstrated. miRNAs represent diagnostic and prognostic biomarkers as well as putative therapeutic targets; their investigation may shed light on the mechanisms that underpin pituitary adenoma development and progression. Drugs interacting with such pathways may help in achieving disease control also in the settings of ACTH-secreting pituitary adenomas. We investigated the expression of 10 miRNAs among those that were found as most dysregulated in human pituitary adenoma tissues in the settings of a murine ACTH-secreting pituitary adenoma cell line, AtT20/D16v-F2. The selected miRNAs to be submitted to further investigation in AtT20/D16v-F2 cells represent an expression panel including 5 up-regulated and 5 down-regulated miRNAs. Among these, we selected the most dysregulated mouse miRNA and searched for miRNA targets and their biological function. We found that AtT20/D16v-F2 cells have a specific miRNA expression profile and that miR-26a is the most dysregulated miRNA. The latter is overexpressed in human pituitary adenomas and can control viable cell number in the in vitro model without involving caspase 3/7-mediated apoptosis. We demonstrated that protein kinase Cδ (PRKCD) is a direct target of miR-26a and that miR26a inhibition delays the cell cycle in G1 phase. This effect involves down-regulation of cyclin E and cyclin A expression via PRKCD modulation. miR-26a and related pathways, such as PRKCD, play an important role in cell cycle control of ACTH pituitary cells, opening new therapeutic possibilities for the treatment of persistent/recurrent Cushing's disease.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Via Savonarola 9, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hernández-Maqueda JG, Luna-Ulloa LB, Santoyo-Ramos P, Castañeda-Patlán MC, Robles-Flores M. Protein kinase C delta negatively modulates canonical Wnt pathway and cell proliferation in colon tumor cell lines. PLoS One 2013; 8:e58540. [PMID: 23520519 PMCID: PMC3592802 DOI: 10.1371/journal.pone.0058540] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/07/2013] [Indexed: 01/17/2023] Open
Abstract
The tumor suppressor Adenomatous Polyposis coli (APC) gene is mutated or lost in most colon cancers. Alterations in Protein kinase C (PKC) isozyme expression and aberrant regulation also comprise early events in intestinal carcinomas. Here we show that PKCδ expression levels are decreased in colon tumor cell lines with respect to non-malignant cells. Reciprocal co-immunoprecipitation and immunofluorescence studies revealed that PKCδ interacts specifically with both full-length (from non-malignant cells) and truncated APC protein (from cancerous cells) at the cytoplasm and at the cell nucleus. Selective inhibition of PKCδ in cancer SW480 cells, which do not possess a functional β-catenin destruction complex, did not affect β-catenin-mediated transcriptional activity. However, in human colon carcinoma RKO cells, which have a normal β-catenin destruction complex, negatively affected β-catenin-mediated transcriptional activity, cell proliferation, and the expression of Wnt target genes C-MYC and CYCLIN D1. These negative effects were confirmed by siRNA-mediated knockdown of PKCδ and by the expression of a dominant negative form of PKCδ in RKO cells. Remarkably, the PKCδ stably depleted cells exhibited augmented tumorigenic activity in grafted mice. We show that PKCδ functions in a mechanism that involves regulation of β-catenin degradation, because PKCδ inhibition induces β-catenin stabilization at the cytoplasm and its nuclear presence at the C-MYC enhancer even without Wnt3a stimulation. In addition, expression of a dominant form of PKCδ diminished APC phosphorylation in intact cells, suggesting that PKCδ may modulate canonical Wnt activation negatively through APC phosphorylation.
Collapse
Affiliation(s)
- José G. Hernández-Maqueda
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Bernardo Luna-Ulloa
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Paula Santoyo-Ramos
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - M. Cristina Castañeda-Patlán
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Robles-Flores
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- * E-mail:
| |
Collapse
|
17
|
Black AR, Black JD. Protein kinase C signaling and cell cycle regulation. Front Immunol 2013; 3:423. [PMID: 23335926 PMCID: PMC3547298 DOI: 10.3389/fimmu.2012.00423] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s) and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in T cells.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
18
|
Napione L, Strasly M, Meda C, Mitola S, Alvaro M, Doronzo G, Marchiò S, Giraudo E, Primo L, Arese M, Bussolino F. IL-12-dependent innate immunity arrests endothelial cells in G0-G1 phase by a p21(Cip1/Waf1)-mediated mechanism. Angiogenesis 2012; 15:713-25. [PMID: 22797886 DOI: 10.1007/s10456-012-9286-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 06/25/2012] [Indexed: 11/28/2022]
Abstract
Innate immunity may activate paracrine circuits able to entail vascular system in the onset and progression of several chronic degenerative diseases. In particular, interleukin (IL)-12 triggers a genetic program in lymphomononuclear cells characterized by the production of interferon-γ and specific chemokines resulting in an angiostatic activity. The aim of this study is to identify molecules involved in the regulation of cell cycle in endothelial cells co-cultured with IL-12-stimulated lymphomonuclear cells. By using a transwell mediated co-culture system we demonstrated that IL-12-stimulated lymphomonuclear cells induce an arrest of endothelial cells cycle in G1, which is mainly mediated by the up-regulation of p21(Cip1/Waf1), an inhibitor of cyclin kinases. This effect requires the activation of STAT1, PKCδ and p38 MAPK, while p53 is ineffective. In accordance, siRNA-dependent silencing of these molecules in endothelial cells inhibited the increase of p21(Cip1/Waf1) and the modification in cell cycle promoted by IL-12-stimulated lymphomonuclear cells. These results indicate that the angiostatic action of IL-12-stimulated lymphomononuclear cells may lie in the capability to arrest endothelial cells in G1 phase through a mechanisms mainly based on the specific up-regulation of p21(Cip1/Waf1) induced by the combined activity of STAT1, PKCδ and p38 MAPK.
Collapse
Affiliation(s)
- Lucia Napione
- Department of Oncological Sciences, Institute for Cancer Research and Treatment, University of Torino, 10060, Candiolo, Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mustafi R, Dougherty U, Shah H, Dehghan H, Gliksberg A, Wu J, Zhu H, Joseph L, Hart J, Dive C, Fichera A, Threadgill D, Bissonnette M. Both stromal cell and colonocyte epidermal growth factor receptors control HCT116 colon cancer cell growth in tumor xenografts. Carcinogenesis 2012; 33:1930-9. [PMID: 22791816 DOI: 10.1093/carcin/bgs231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colon cancer growth requires growth-promoting interactions between malignant colonocytes and stromal cells. Epidermal growth factor receptors (EGFR) are expressed on colonocytes and many stromal cells. Furthermore, EGFR is required for efficient tumorigenesis in experimental colon cancer models. To dissect the cell-specific role of EGFR, we manipulated receptor function on stromal cells and cancer cells. To assess the role of stromal EGFR, HCT116 human colon cancer cells were implanted into immunodeficient mice expressing dominant negative (DN) Egfr(Velvet/+) or Egfr(+/+). To assess the role of cancer cell EGFR, HCT116 transfectants expressing inducible DN-Egfr were implanted into immunodeficient mice. To dissect EGFR signals in vitro, we examined colon cancer cells in monoculture or in cocultures with fibroblasts for EGFR transactivation and prostaglandin synthase 2 (PTGS2) induction. EGFR signals were determined by blotting, immunostaining and real-time PCR. Tumor xenografts in Egfr(Velvet/+) mice were significantly smaller than tumors in Egfr(+/+) mice, with decreased proliferation (Ki67) and increased apoptosis (cleaved caspase-3) in cancer cells and decreased stromal blood vessels. Mouse stromal transforming growth factor alpha (TGFA), amphiregulin (AREG), PTGS2 and Il1b and interleukin-1 receptor 1 (Il1r1) transcripts and cancer cell beta catenin (CTNNB1) and cyclin D1 (CCND1) were significantly lower in tumors obtained from Egfr(Velvet/+) mice. DN-EGFR HCT116 transfectants also formed significantly smaller tumors with reduced mouse Areg, Ptgs2, Il1b and Il1r1 transcripts. Coculture increased Caco-2 phospho-active ERBB (pERBB2), whereas DN-EGFR in Caco-2 cells suppressed fibroblast PTGS2 and prostaglandin E2 (PGE2). In monoculture, interleukin 1 beta (IL1B) transactivated EGFR in HCT116 cells. Stromal cell and colonocyte EGFRs are required for robust EGFR signals and efficient tumor growth, which involve EGFR-interleukin-1 crosstalk.
Collapse
Affiliation(s)
- Reba Mustafi
- Department of Paterson Institute, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The microRNA miR-519 robustly inhibits cell proliferation, in turn triggering senescence and decreasing tumor growth. However, the molecular mediators of miR-519-elicited growth inhibition are unknown. Here, we systematically investigated the influence of miR-519 on gene expression profiles leading to growth cessation in HeLa human cervical carcinoma cells. By analyzing miR-519-triggered changes in protein and mRNA expression patterns and by identifying mRNAs associated with biotinylated miR-519, we uncovered two prominent subsets of miR-519-regulated mRNAs. One subset of miR-519 target mRNAs encoded DNA maintenance proteins (including DUT1, EXO1, RPA2, and POLE4); miR-519 repressed their expression and increased DNA damage, in turn raising the levels of the cyclin-dependent kinase (cdk) inhibitor p21. The other subset of miR-519 target mRNAs encoded proteins that control intracellular calcium levels (notably, ATP2C1 and ORAI1); their downregulation by miR-519 aberrantly elevated levels of cytosolic [Ca(2+)] storage in HeLa cells, similarly increasing p21 levels in a manner dependent on the Ca(2+)-activated kinases CaMKII and GSK3β. The rises in levels of DNA damage, the Ca(2+) concentration, and p21 levels stimulated an autophagic phenotype in HeLa and other human carcinoma cell lines. As a consequence, ATP levels increased, and the level of activity of the AMP-activated protein kinase (AMPK) declined, further contributing to the elevation in the abundance of p21. Our results indicate that miR-519 promotes DNA damage, alters Ca(2+) homeostasis, and enhances energy production; together, these processes elevate the expression level of p21, promoting growth inhibition and cell survival.
Collapse
|
21
|
Zhao KN, Masci PP, Lavin MF. Disruption of spectrin-like cytoskeleton in differentiating keratinocytes by PKCδ activation is associated with phosphorylated adducin. PLoS One 2011; 6:e28267. [PMID: 22163289 PMCID: PMC3233558 DOI: 10.1371/journal.pone.0028267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 11/04/2011] [Indexed: 02/01/2023] Open
Abstract
Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
22
|
Luna-Ulloa LB, Hernández-Maqueda JG, Castañeda-Patlán MC, Robles-Flores M. Protein kinase C in Wnt signaling: implications in cancer initiation and progression. IUBMB Life 2011; 63:915-21. [PMID: 21905203 DOI: 10.1002/iub.559] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/14/2011] [Indexed: 11/07/2022]
Abstract
Although it is well known that Wnt and protein kinase C (PKC) signaling pathways are both involved in carcinogenesis and tumor progression, their synergistic contribution to these processes or the crosstalk between them has just recently been approached. The Wnt and PKC signaling are involved in many cellular functions including proliferation, differentiation, survival, apoptosis, cytoskeletal remodeling, and cell motility. Canonical Wnt signaling has been well characterized as one of the most important contributors to tumorigenesis, and it has been implicated in many types of solid tumors. PKC is one of the key targets of noncanonical Wnt signaling, particularly in the Wnt/Ca(2+) pathway. Recently, data have implicated components of noncanonical Wnt/Ca(2+) and Wnt/planar cell polarity signaling in directly promoting the invasiveness and malignant progression of diverse forms of human cancer. But, unlike the canonical pathway, defining the roles of noncanonical Wnt signaling in human cancer is in its infancy. In this review, we provide a concise description of the current knowledge of the interaction between PKC and Wnt pathways and discuss the role of this crosstalk in cancer initiation and progression.
Collapse
Affiliation(s)
- Luis Bernardo Luna-Ulloa
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico D.F, 04510, Mexico
| | | | | | | |
Collapse
|
23
|
Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells. Arch Toxicol 2011; 85:1529-40. [DOI: 10.1007/s00204-011-0714-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 05/02/2011] [Indexed: 01/27/2023]
|
24
|
Kim YR, Byun HS, Jeon J, Choi BL, Park KA, Won M, Zhang T, Shin S, Lee H, Oh J, Hur GM. Apoptosis Signal-Regulating Kinase1 is Inducible by Protein Kinase Cδ and Contributes to Phorbol Ester-Mediated G1 Phase Arrest Through Persistent JNK Activation. Cell Biochem Biophys 2011; 61:199-207. [DOI: 10.1007/s12013-011-9189-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Caino MC, von Burstin VA, Lopez-Haber C, Kazanietz MG. Differential regulation of gene expression by protein kinase C isozymes as determined by genome-wide expression analysis. J Biol Chem 2011; 286:11254-64. [PMID: 21252239 DOI: 10.1074/jbc.m110.194332] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Protein kinase C (PKC) isozymes are key signal transducers involved in normal physiology and disease and have been widely implicated in cancer progression. Despite our extensive knowledge of the signaling pathways regulated by PKC isozymes and their effectors, there is essentially no information on how individual members of the PKC family regulate gene transcription. Here, we report the first PKC isozyme-specific analysis of global gene expression by microarray using RNAi depletion of diacylglycerol/phorbol ester-regulated PKCs. A thorough analysis of this microarray data revealed unique patterns of gene expression controlled by PKCα, PKCδ, and PKCε, which are remarkably different in cells growing in serum or in response to phorbol ester stimulation. PKCδ is the most relevant isoform in controlling the induction of genes by phorbol ester stimulation, whereas PKCε predominantly regulates gene expression in serum. We also established that two PKCδ-regulated genes, FOSL1 and BCL2A1, mediate the apoptotic effect of phorbol esters or the chemotherapeutic agent etoposide in prostate cancer cells. Our studies offer a unique opportunity for establishing novel transcriptional effectors for PKC isozymes and may have significant functional and therapeutic implications.
Collapse
Affiliation(s)
- M Cecilia Caino
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
26
|
Wang X, Ramirez A, Budunova I. Overexpression of connexin26 in the basal keratinocytes reduces sensitivity to tumor promoter TPA. Exp Dermatol 2009; 19:633-40. [DOI: 10.1111/j.1600-0625.2009.01013.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Chen CJ, Nguyen T, Shively JE. Role of calpain-9 and PKC-delta in the apoptotic mechanism of lumen formation in CEACAM1 transfected breast epithelial cells. Exp Cell Res 2009; 316:638-48. [PMID: 19909740 DOI: 10.1016/j.yexcr.2009.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/30/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
CEACAM1-4S (carcinoembryonic antigen-related cell adhesion molecule 1) is a type I membrane protein with a short (12-amino acid) cytoplasmic tail. Wild type CEACAM1-4S-transfected MCF7 cells form glands with lumena when grown in 3D culture, while null mutations of two putative phosphorylation sites (T457A and S459A) in the cytoplasmic domain fail to undergo lumen formation. When gene chip analysis was performed on mRNA isolated from both wild type and T457A,S459A mutated CEACAM1-4S-transfected MCF7 cells grown in 3D culture, calpain-9 (CAPN9) was identified out of over 400 genes with a >2 log 2 difference as a potential inducer of lumen formation. Inhibition of CAPN9 expression in MCF7/CEACAM1-4S cells by RNAi or by calpeptin or PD150606 inhibited lumen formation. Transfection of CAPN9 into wild type MCF7 cells restores lumen formation demonstrating that calpain-9 may play a critical role in lumen formation. Additionally, we demonstrate that the apoptosis related kinase, PKC-delta, is activated by proteolytic cleavage during lumen formation exclusively in wild type CEACAM1-4S-transfected MCF7 cells grown in 3D culture and that lumen formation is inhibited by either RNAi to PKC-delta or by the PKC-delta inhibitor rottlerin.
Collapse
Affiliation(s)
- Charng-Jui Chen
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
28
|
Lee SLO, Hong SW, Shin JS, Kim JS, Ko SG, Hong NJ, Kim DJ, Lee WJ, Jin DH, Lee MS. p34SEI-1 inhibits doxorubicin-induced senescence through a pathway mediated by protein kinase C-delta and c-Jun-NH2-kinase 1 activation in human breast cancer MCF7 cells. Mol Cancer Res 2009; 7:1845-53. [PMID: 19903772 DOI: 10.1158/1541-7786.mcr-09-0086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we describe a novel function of the p34(SEI-1) protein, which is both an oncogenic protein and a positive regulator of the cell cycle. The p34(SEI-1) protein was found to inhibit doxorubicin-induced senescence. We investigated the molecular mechanisms of the inhibitory effect of p34(SEI-1) on senescence. First, we found that the activation of protein kinase C-delta (PKC-delta), which is cleaved into a 38 kDa active form from a 78 kDa pro-form, induced after doxorubicin treatment, was inhibited by p34(SEI-1). Furthermore, p34(SEI-1) induced the ubiquitination of PKC-delta. Yet, there is no interaction between p34(SEI-1) and PKC-delta. We also found that the phosphorylation of c-Jun-NH(2)-kinase 1 (JNK1) induced after doxorubicin treatment was suppressed by p34(SEI-1), but not in JNK2. Consistently, pharmacologic or genetic inactivation of either PKC-delta or JNK1 was found to inhibit doxorubicin-induced senescence. In addition, the genetic inactivation of PKC-delta by PKC-delta small interfering RNA resulted in an inhibition of JNK1 activation, but PKC-delta expression was not inactivated by JNK1 small interfering RNA, implying that the activation of JNK1 could be dependently induced by PKC-delta. Therefore, p34(SEI-1) inhibits senescence by inducing PKC-delta ubiquitination and preventing PKC-delta-dependent phosphorylation of JNK1.
Collapse
Affiliation(s)
- Sae Lo Oom Lee
- Research Center for Women's Diseases, Division of Biological Sciences, Sookmyung Women's University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wouters MM, Roeder JL, Tharayil VS, Stanich JE, Strege PR, Lei S, Bardsley MR, Ordog T, Gibbons SJ, Farrugia G. Protein kinase C{gamma} mediates regulation of proliferation by the serotonin 5-hydroxytryptamine receptor 2B. J Biol Chem 2009; 284:21177-84. [PMID: 19531484 DOI: 10.1074/jbc.m109.015859] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the 5-hydroxytryptamine receptor 2B (5-HT(2B)), a G(q/11) protein-coupled receptor, results in proliferation of various cell types. The 5-HT(2B) receptor is also expressed on the pacemaker cells of the gastrointestinal tract, the interstitial cells of Cajal (ICC), where activation triggers ICC proliferation. The goal of this study was to characterize the mitogenic signal transduction cascade activated by the 5-HT(2B) receptor. All of the experiments were performed on mouse small intestine primary cell cultures. Activation of the 5-HT(2B) receptor by its agonist BW723C86 induced proliferation of ICC. Inhibition of phosphatidylinositol 3-kinase by LY294002 decreased base-line proliferation but had no effect on 5-HT(2B) receptor-mediated proliferation. Proliferation of ICC through the 5-HT(2B) receptor was inhibited by the phospholipase C inhibitor U73122 and by the inositol 1,4,5-trisphosphate receptor inhibitor Xestospongin C. Calphostin C, the alpha, beta, gamma, and micro protein kinase C (PKC) inhibitor Gö6976, and the alpha, beta, gamma, delta, and zeta PKC inhibitor Gö6983 inhibited 5-HT(2B) receptor-mediated proliferation, indicating the involvement of PKC alpha, beta, or gamma. Of all the PKC isoforms blocked by Gö6976, PKCgamma and micro mRNAs were found by single-cell PCR to be expressed in ICC. 5-HT(2B) receptor activation in primary cell cultures obtained from PKCgamma(-/-) mice did not result in a proliferative response, further indicating the requirement for PKCgamma in the proliferative response to 5-HT(2B) receptor activation. The data demonstrate that the 5-HT(2B) receptor-induced proliferative response of ICC is through phospholipase C, [Ca(2+)](i), and PKCgamma, implicating this PKC isoform in the regulation of cellular proliferation.
Collapse
Affiliation(s)
- Mira M Wouters
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ghoul A, Serova M, Astorgues-Xerri L, Bieche I, Bousquet G, Varna M, Vidaud M, Phillips E, Weill S, Benhadji KA, Lokiec F, Cvitkovic E, Faivre S, Raymond E. Epithelial-to-mesenchymal transition and resistance to ingenol 3-angelate, a novel protein kinase C modulator, in colon cancer cells. Cancer Res 2009; 69:4260-9. [PMID: 19417139 DOI: 10.1158/0008-5472.can-08-2837] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acquired resistance to protein kinase C (PKC) modulators may explain the failure of clinical trials in patients with cancer. Herein, we established a human colon cancer cell line resistant to PEP005, a drug that inhibits PKCalpha and activates PKCdelta. Colo205-R cells, selected by stepwise exposure to PEP005, were >300-fold more resistant to PEP005 than parental Colo205-S cells and were cross-resistant to phorbol 12-myristate 13-acetate, bryostatin, bistratene A, and staurosporine. No PKCalpha or PKCdelta mutation was detected in Colo205-S and Colo205-R cells. Changes in Colo205-R cells were reminiscent of the epithelial-to-mesenchymal transition (EMT) phenotype. Accordingly, Colo205-R cells were more invasive than Colo205-S in Matrigel assays and in mouse xenografts. We also found an increased mRNA expression of several EMT genes, such as those encoding for transforming growth factor-beta and vimentin, along with a decreased mRNA expression of genes involved in epithelial differentiation, such as CDH1 (E-cadherin), CLDN4 (claudin 4), S100A4, and MUC1, in Colo205-R compared with Colo205-S cells in vitro and in vivo. Interestingly, high expression of ET-1 was shown in Colo205-R cells and correlated with low sensitivity to PEP005 and staurosporine in a panel of 10 human cancer cell lines. Inhibition of the ET-1 receptor ETR-A with bosentan restored the antiproliferative effects of PEP005 in Colo205-R cells and decreased the invasive properties of this cell line. Exogenous exposure to ET-1 and silencing ET-1 expression using small interfering RNA modulated cell signaling in Colo205-S and Colo205-R. In summary, acquired resistance to PEP005 was associated with expression of EMT markers and activates the ET-1/ETR-A cell signaling.
Collapse
Affiliation(s)
- Aïda Ghoul
- Institut National de la Sante et de la Recherche Medicale U728, RayLab, and Department of Medical Oncology, Beaujon and Saint-Louis University Hospital (AP-HP-Paris 7 Diderot), Clichy, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
PKCalpha tumor suppression in the intestine is associated with transcriptional and translational inhibition of cyclin D1. Exp Cell Res 2009; 315:1415-28. [PMID: 19232344 DOI: 10.1016/j.yexcr.2009.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 12/19/2008] [Accepted: 02/02/2009] [Indexed: 02/06/2023]
Abstract
Alterations in PKC isozyme expression and aberrant induction of cyclin D1 are early events in intestinal tumorigenesis. Previous studies have identified cyclin D1 as a major target in the antiproliferative effects of PKCalpha in non-transformed intestinal cells; however, a link between PKC signaling and cyclin D1 in colon cancer remained to be established. The current study further characterized PKC isozyme expression in intestinal neoplasms and explored the consequences of restoring PKCalpha or PKCdelta in a panel of colon carcinoma cell lines. Consistent with patterns of PKC expression in primary tumors, PKCalpha and delta levels were generally reduced in colon carcinoma cell lines, PKCbetaII was elevated and PKCepsilon showed variable expression, thus establishing the suitability of these models for analysis of PKC signaling. While colon cancer cells were insensitive to the effects of PKC agonists on cyclin D1 levels, restoration of PKCalpha downregulated cyclin D1 by two independent mechanisms. PKCalpha expression consistently (a) reduced steady-state levels of cyclin D1 by a novel transcriptional mechanism not previously seen in non-transformed cells, and (b) re-established the ability of PKC agonists to activate the translational repressor 4E-BP1 and inhibit cyclin D1 translation. In contrast, PKCdelta had modest and variable effects on cyclin D1 steady-state levels and failed to restore responsiveness to PKC agonists. Notably, PKCalpha expression blocked anchorage-independent growth in colon cancer cells via a mechanism partially dependent on cyclin D1 deficiency, while PKCdelta had only minor effects. Loss of PKCalpha and effects of its re-expression were independent of the status of the APC/beta-catenin signaling pathway or known genetic alterations, indicating that they are a general characteristic of colon tumors. Thus, PKCalpha is a potent negative regulator of cyclin D1 expression and anchorage-independent cell growth in colon tumor cells, findings that offer important perspectives on the frequent loss of this isozyme during intestinal carcinogenesis.
Collapse
|
32
|
Afrasiabi E, Ahlgren J, Bergelin N, Törnquist K. Phorbol 12-myristate 13-acetate inhibits FRO anaplastic human thyroid cancer cell proliferation by inducing cell cycle arrest in G1/S phase: evidence for an effect mediated by PKCdelta. Mol Cell Endocrinol 2008; 292:26-35. [PMID: 18541361 DOI: 10.1016/j.mce.2008.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 01/06/2023]
Abstract
Phorbol 12-myristate 13-acetate (PMA) is known to affect a variety of cellular processes, including cell proliferation, differentiation, and migration. PMA has been shown to promote antiproliferative and antimigratory effects in many types of cancer cells. Our findings show that PMA induced a strong antiproliferative effect in two anaplastic (FRO and ARO) and one follicular (ML-1) thyroid cancer cell lines, and increased the fraction of FRO cells in G1 phase of the cell cycle. The fractions in the S and G2 phases were decreased. Moreover, PMA evoked a significant increase in the levels of the cell cycle regulators p21Waf1/Cip1 and p27Kip1. The levels of cyclin D3 and the cyclin-dependent kinases cdk4 and cdk6 decreased, as did the phosphorylation of the Rb-protein. PMA did not induce apoptosis. PMA stimulated the translocation of protein kinase C (PKC) alpha, betaI and delta isoforms to the cell membrane. PKCdelta small interfering RNA attenuated the PMA-induced antiproliferative effect and prevented the upregulation of p21Waf1/Cip1 and p27Kip1. Prolonged stimulation with PMA decreased the phosphorylation of mitogen-activated protein (MAP) kinase. PMA also decreased the phosphorylation of Akt and evoked a biphasic change in the phosphorylation of the forkhead box class-O protein (FOXO): an increase in phosphorylation, followed by a dephosphorylation. In addition, PMA inhibited FRO, ARO and ML-1 cell migration toward serum. The inactive phorbol ester analog 4alpha-phorbol and the diacylglycerol analog 1,2-dioctanoyl-sn-glycerol were without an effect on proliferation and migration. The results indicate that PMA is an effective inhibitor of thyroid cancer cell proliferation and migration by a mechanism involving PKC-MAP kinase/Akt and FOXO signaling.
Collapse
Affiliation(s)
- Emad Afrasiabi
- Department of Biology, Abo Akademi University, BioCity, Artillerigatan 6, 20520 Turku, Finland
| | | | | | | |
Collapse
|
33
|
Ali AS, Ali S, El-Rayes BF, Philip PA, Sarkar FH. Exploitation of protein kinase C: a useful target for cancer therapy. Cancer Treat Rev 2008; 35:1-8. [PMID: 18778896 DOI: 10.1016/j.ctrv.2008.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 12/11/2022]
Abstract
Protein kinase C is a family of serine/threonine kinases. The PKC family is made up of at least 12 isozymes, which have a role in cell proliferation, differentiation, angiogenesis, and apoptosis. Activation of PKC isozyme is dependent on tyrosine-kinase receptors and G-protein-coupled receptors. PKC isozymes regulate multiple signaling pathways including PI3-K/Akt, MAPK, and GSK-3beta. PKC isozymes have variable roles in tumor biology which in part depend on the cell type and intracellular localization. PKC isozymes are commonly dysregulated in the cancer of the prostate, breast, colon, pancreatic, liver, and kidney. Currently, several classes of PKC inhibitors are being evaluated in clinical trials and several challenges in targeting PKC isozymes have been recently identified. In conclusion, PKC remains a promising target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Ashhar S Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
34
|
Granado-Serrano AB, Angeles Martín M, Bravo L, Goya L, Ramos S. Time-course regulation of quercetin on cell survival/proliferation pathways in human hepatoma cells. Mol Nutr Food Res 2008; 52:457-64. [PMID: 18324708 DOI: 10.1002/mnfr.200700203] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. This study was aimed at investigating the time-course regulation effect of quercetin on survival/proliferation pathways in a human hepatoma cell line (HepG2). Quercetin induced a significant time-dependent inactivation of the major survival signaling proteins, i. e., phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (AKT), extracellular regulated kinase (ERK), protein kinase C-alpha (PKC-alpha), in concert with a time-dependent activation of key death-related signals: c-jun amino-terminal kinase (JNK) and PKC-delta. These data suggest that quercetin exerts a tight regulation of survival/proliferation pathways that requires the integration of different signals and persists over time, being the balance of these regulatory signals what determines the fate of HepG2 cells.
Collapse
Affiliation(s)
- Ana Belén Granado-Serrano
- Department of Metabolism and Nutrition, Instituto del Frío, Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, Madrid, Spain
| | | | | | | | | |
Collapse
|
35
|
Ou WB, Zhu MJ, Demetri GD, Fletcher CDM, Fletcher JA. Protein kinase C-theta regulates KIT expression and proliferation in gastrointestinal stromal tumors. Oncogene 2008; 27:5624-34. [PMID: 18521081 DOI: 10.1038/onc.2008.177] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oncogenic KIT or PDGFRA receptor tyrosine kinase mutations are compelling therapeutic targets in gastrointestinal stromal tumors (GISTs), and the KIT/PDGFRA kinase inhibitor, imatinib, is standard of care for patients with metastatic GIST. However, most of these patients eventually develop clinical resistance to imatinib and other KIT/PDGFRA kinase inhibitors and there is an urgent need to identify novel therapeutic strategies. We reported previously that protein kinase C-theta (PKCtheta) is activated in GIST, irrespective of KIT or PDGFRA mutational status, and is expressed at levels unprecedented in other mesenchymal tumors, therefore serving as a diagnostic marker of GIST. Herein, we characterize biological functions of PKCtheta in imatinib-sensitive and imatinib-resistant GISTs, showing that lentivirus-mediated PKCtheta knockdown is accompanied by inhibition of KIT expression in three KIT+/PKCtheta+ GIST cell lines, but not in a comparator KIT+/PKCtheta- Ewing's sarcoma cell line. PKCtheta knockdown in the KIT+ GISTs was associated with inhibition of the phosphatidylinositol-3-kinase/AKT signaling pathway, upregulation of the cyclin-dependent kinase inhibitors p21 and p27, antiproliferative effects due to G(1) arrest and induction of apoptosis, comparable to the effects seen after direct knockdown of KIT expression by KIT short-hairpin RNA. These novel findings highlight that PKCtheta warrants clinical evaluation as a potential therapeutic target in GISTs, including those cases containing mutations that confer resistance to KIT/PDGFRA kinase inhibitors.
Collapse
Affiliation(s)
- W-b Ou
- 1Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
G protein-coupled receptor (GPCR) agonists, including neurotransmitters, hormones, chemokines, and bioactive lipids, act as potent cellular growth factors and have been implicated in a variety of normal and abnormal processes, including development, inflammation, and malignant transformation. Typically, the binding of an agonistic ligand to its cognate GPCR triggers the activation of multiple signal transduction pathways that act in a synergistic and combinatorial fashion to relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the activity of phospholipases C, D, and A2 leading to the synthesis of lipid-derived second messengers, Ca2+ fluxes and subsequent activation of protein phosphorylation cascades, including PKC/PKD, Raf/MEK/ERK, and Akt/mTOR/p70S6K is an important early response to mitogenic GPCR agonists. The EGF receptor (EGFR) tyrosine kinase has emerged as a transducer in the signaling by GPCRs, a process termed transactivation. GPCR signal transduction also induces striking morphological changes and rapid tyrosine phosphorylation of multiple cellular proteins, including the non-receptor tyrosine kinases Src, focal adhesion kinase (FAK), and the adaptor proteins CAS and paxillin. The pathways stimulated by GPCRs are extensively interconnected by synergistic and antagonistic crosstalks that play a critical role in signal transmission, integration, and dissemination. The purpose of this article is to review recent advances in defining the pathways that play a role in transducing mitogenic responses induced by GPCR agonists.
Collapse
Affiliation(s)
- Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1786, USA.
| |
Collapse
|
37
|
Welman A, Griffiths JR, Whetton AD, Dive C. Protein kinase C delta is phosphorylated on five novel Ser/Thr sites following inducible overexpression in human colorectal cancer cells. Protein Sci 2007; 16:2711-5. [PMID: 17965192 DOI: 10.1110/ps.072874607] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phosphorylation plays an important role in regulation of protein kinase C delta (PKCdelta). To date, three Ser/Thr residues (Thr 505, Ser 643, and Ser 662) and nine tyrosine residues (Tyr 52, Tyr 64, Tyr 155, Tyr 187, Tyr 311, Tyr 332, Tyr 512, Tyr 523, and Tyr 565) have been defined as regulatory phosphorylation sites for this protein (rat PKCdelta numbering). We combined doxycycline-regulated inducible gene expression technology with a hypothesis-driven mass spectrometry approach to study PKCdelta phosphorylation pattern in colorectal cancer cells. We report identification of five novel Ser/Thr phosphorylation sites: Thr 50, Thr 141, Ser 304, Thr 451, and Ser 506 (human PKCdelta numbering) following overexpression of PKCdelta in HCT116 human colon carcinoma cells grown in standard tissue culture conditions. Identification of potential novel phosphorylation sites will affect further functional studies of this protein, and may introduce additional complexity to PKCdelta signaling.
Collapse
Affiliation(s)
- Arkadiusz Welman
- Cancer Research UK, Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom.
| | | | | | | |
Collapse
|
38
|
Dong P, Tada M, Hamada JI, Nakamura A, Moriuchi T, Sakuragi N. p53 dominant-negative mutant R273H promotes invasion and migration of human endometrial cancer HHUA cells. Clin Exp Metastasis 2007; 24:471-83. [PMID: 17636407 DOI: 10.1007/s10585-007-9084-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
Dominant negative (DN) mutations of tumor suppressor p53 (TP53) are clinically associated with cancer progression and metastasis of endometrial malignancy. To investigate the DN effect on tumor migration and invasion, we generated cells that stably co-expressed wild-type (wt) and R273H DN mutant TP53 (273H cells), and wt and R213Q recessive mutant TP53 (213Q cells), by transfection in endometrial cancer cells HHUA that expressed wt p53. R273H, but not R213Q, repressed wt p53-stimulated transcription of p21, Bax, and MDM2. 273H cells also showed markedly increased in vitro invasion and migration potentials, and displayed reduced Maspin, PAI-1, and KAI1 mRNA expressions as compared with 213Q and wt cells. The induction of wt p53 function by use of Adriamycin resulted in the inhibition of the invasion/migration capacity in association with the up-regulation of p53 target genes to a far greater degree in 213Q and wt cells than in 273H cells. R273H expression in p53-null cancer cell SK-OV-3 and Saos-2 did not significantly affect cell invasion and migration activities. Taken together, these results suggest that transdominance of R273H mutant over wt p53 rather than a gain-of-function promotes tumor metastasis by increasing invasion and migration in HHUA cells.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Gynecology, Hokkaido University Graduate School of Medicine and School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Yoshida K, Obata S, Ono M, Esaki M, Maejima T, Sawada H. TPA-induced multinucleation of a mesenchymal stem cell-like clone is mediated primarily by karyokinesis without cytokinesis, although cell-cell fusion also occurs. Eur J Cell Biol 2007; 86:461-71. [PMID: 17599648 DOI: 10.1016/j.ejcb.2007.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 04/03/2007] [Accepted: 04/13/2007] [Indexed: 10/23/2022] Open
Abstract
The 5F9A cell, which is a mesenchymal stem cell-like clone established from rat bone marrow substrate adherent cells, can differentiate into adipocytes and osteoblasts in vitro under the appropriate conditions. Multinucleated cells could be also induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) in 5F9A cells. This effect was mediated by protein kinase C. Possible mechanisms of multinucleation by TPA were hypothesized to be either karyokinesis without cytokinesis or cell-cell fusion. By observation using time-lapse phase-contrast microscopy, we determined that the multinucleated cells were generated mainly by karyokinesis without cytokinesis. Cell fusion was studied using time-lapse photography, and confocal laser scanning microscopy using two differentially labeled cells. These techniques demonstrated that multinucleated 5F9A cells could be produced by cell fusion, albeit at a low frequency. We conclude that multinucleated 5F9A cells are formed primarily by karyokinesis without cytokinesis, although some cells are also formed by cell-cell fusion.
Collapse
Affiliation(s)
- Keiichiro Yoshida
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa-ken 236-0004, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Fichera A, Little N, Dougherty U, Mustafi R, Cerda S, Li YC, Delgado J, Arora A, Campbell LK, Joseph L, Hart J, Noffsinger A, Bissonnette M. A vitamin D analogue inhibits colonic carcinogenesis in the AOM/DSS model. J Surg Res 2007; 142:239-45. [PMID: 17574271 DOI: 10.1016/j.jss.2007.02.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 02/20/2007] [Accepted: 02/26/2007] [Indexed: 02/08/2023]
Abstract
BACKGROUND The azoxymethane (AOM) model recapitulates many features of human colon cancer, lacking an inflammatory component. Dextran sulfate sodium (DSS) induces colitis and promotes AOM-induced colon cancer in mice. Vitamin D analogues are anti-inflammatory and chemopreventive in models of colon cancer. Our aim was to evaluate the anti-inflammatory and chemopreventive efficacy of the vitamin D analogue Ro26-2198 in the AOM/DSS model and in vitro in HCA-7 colon cancer cells. MATERIALS AND METHODS A/J mice received Ro26-2198 (0.01 microg/kg body wt/day x 28 days) or vehicle by mini-osmotic pump. Animals were treated with a single dose of AOM (5 mg/kg body wt) or vehicle 1 week after pump insertion. Mice received 3% DSS or water x 7 days beginning week 3. Animals were sacrificed after 8 weeks and colon segments were fixed in formalin or flash-frozen. Hematoxylin and eosin colonic sections were examined for dysplasia and colonic lysates were assessed for c-Myc, cyclooxygenase 2, and phospho-(active) extracellular signal regulated kinase (ERK) by Western blotting. For in vitro studies, HCA-7 cells were treated with Ro26-2198 followed by interleukin-1beta (IL-1beta). Proliferation was measured by WST-1 assay. RESULTS Ro26-2198 delayed the onset of clinical colitis. Several dysplastic foci were present in the AOM/DSS group; none were found in the Ro26-2198 group. Compared with control, AOM/DSS significantly increased c-Myc (15-fold), cyclooxygenase 2 (COX-2) (2.5-fold), and pERK (10-fold), and Ro26-2198 abolished these increases. In vitro, Ro26-2198 inhibited IL-1beta-induced ERK activation and COX-2 induction and decreased HCA-7 cell proliferation. CONCLUSIONS Ro26-2198 inhibited proliferative (ERK, c-Myc) and pro-inflammatory (COX-2) signals and progression to dysplasia, suggesting chemopreventive efficacy in this model of colitis-associated carcinogenesis.
Collapse
Affiliation(s)
- Alessandro Fichera
- Department of Surgery, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jane EP, Premkumar DR, Pollack IF. Coadministration of Sorafenib with Rottlerin Potently Inhibits Cell Proliferation and Migration in Human Malignant Glioma Cells. J Pharmacol Exp Ther 2006; 319:1070-80. [PMID: 16959960 DOI: 10.1124/jpet.106.108621] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) are activated in the majority of gliomas and contribute to tumor cell growth and survival. Sorafenib (Bay43-9006; Nexavar) is a dual-action Raf and vascular endothelial growth factor receptor inhibitor that blocks receptor phosphorylation and MAPK-mediated signaling and inhibits growth in a number of tumor types. Because our initial studies of this agent in a series of glioma cell lines showed only partial growth inhibition at clinically achievable concentrations, we questioned whether inhibition of PKC signaling using the PKC-delta inhibitor rottlerin might potentiate therapeutic efficacy. Proliferation assays, apoptosis induction studies, and Western immunoblot analysis were conducted in cells treated with sorafenib and rottlerin as single agents or in combination. Sorafenib and rottlerin reduced proliferation in all cell lines when used as single agents, and the combination produced marked potentiation of growth inhibition. Flow-cytometric measurements of cells stained with Annexin V-propidium iodide and immunocytochemical assessment of cytochrome c and apoptosis-inducing factor release demonstrated that addition of rottlerin resulted in significantly higher levels of apoptosis than sorafenib alone. In addition, the combination of sorafenib and rottlerin reduced or completely inhibited the phosphorylation of extracellular signal-regulated kinase and Akt and down-regulated cell cycle regulatory proteins such as cyclin-D1, cyclin-D3, cyclin-dependent kinase (cdk)4, and cdk6 in a dose- and time-dependent manner. Our results clearly indicate that inhibition of PKC-delta signaling enhances the antiproliferative effect of sorafenib in malignant human glioma cell lines and support the examination of combinations of signaling inhibitors in these tumors.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute Brain Tumor Center, Pennsylvania, USA
| | | | | |
Collapse
|
42
|
Mustafi R, Cerda S, Chumsangsri A, Fichera A, Bissonnette M. Protein Kinase-zeta inhibits collagen I-dependent and anchorage-independent growth and enhances apoptosis of human Caco-2 cells. Mol Cancer Res 2006; 4:683-94. [PMID: 16940160 DOI: 10.1158/1541-7786.mcr-06-0057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colonic carcinogenesis is accompanied by abnormalities in multiple signal transduction components, including alterations in protein kinase C (PKC). The expression level of PKC-zeta, an atypical PKC isoform, increases from the crypt base to the luminal surface and parallels crypt cell differentiation in normal colon. In prior studies in the azoxymethane model of colon cancer, we showed that PKC-zeta was down-regulated in rat colonic tumors. In this study, we showed that PKC-zeta is expressed predominantly in colonic epithelial and not stromal cells, and loss of PKC-zeta occurs as early as the adenoma stage in human colonic carcinogenesis. To assess the regulation of growth and differentiation by PKC-zeta, we altered this isoform in human Caco-2 colon cancer cells using stable constitutive or inducible expression vectors, specific peptide inhibitors or small interfering RNA. In ecdysone-regulated transfectants grown on collagen I, ponasterone A significantly induced PKC-zeta expression to 135% of empty vector cells, but did not alter nontargeted PKC isoforms. This up-regulation was accompanied by a 2-fold increase in basal and 4-fold increase in insulin-stimulated PKC-zeta biochemical activity. Furthermore, PKC-zeta up-regulation caused >50% inhibition of cell proliferation on collagen I (P < 0.05). Increased PKC-zeta also significantly enhanced Caco-2 cell differentiation, nearly doubling alkaline phosphatase activity, while inducing a 3-fold increase in the rate of apoptosis (P < 0.05). In contrast, knockdown of this isoform by small interfering RNA or kinase inhibition by myristoylated pseudosubstrate significantly and dose-dependently increased Caco-2 cell growth on collagen I. In transformation assays, constitutively up-regulated wild-type PKC-zeta significantly inhibited Caco-2 cell growth in soft agar, whereas a kinase-dead mutant caused a 3-fold increase in soft agar growth (P < 0.05). Taken together, these studies indicate that PKC-zeta inhibits colon cancer cell growth and enhances differentiation and apoptosis, while inhibiting the transformed phenotype of these cells. The observed down-regulation of this growth-suppressing PKC isoform in colonic carcinogenesis would be predicted to contribute to tumorigenesis.
Collapse
Affiliation(s)
- Reba Mustafi
- Department of Medicine, The University of Chicago Hospitals and Clinics, MC 4076, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|