1
|
Hatawsh A, Al-Haddad RH, Okafor UG, Diab LM, Dekanoidze N, Abdulwahab AA, Mohammed OA, Doghish AS, Moussa R, Elimam H. Mitoepigenetics pathways and natural compounds: a dual approach to combatting hepatocellular carcinoma. Med Oncol 2024; 41:302. [PMID: 39465473 DOI: 10.1007/s12032-024-02538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading liver cancer that significantly impacts global life expectancy and remains challenging to treat due to often late diagnoses. Despite advances in treatment, the prognosis is still poor, especially in advanced stages. Studies have pointed out that investigations into the molecular mechanisms underlying HCC, including mitochondrial dysfunction and epigenetic regulators, are potentially important targets for diagnosis and therapy. Mitoepigenetics, or the epigenetic modifications of mitochondrial DNA, have drawn wide attention for their role in HCC progression. Besides, molecular biomarkers such as mitochondrial DNA alterations and non-coding RNAs showed early diagnosis and prognosis potential. Additionally, natural compounds like alkaloids, resveratrol, curcumin, and flavonoids show promise in HCC show promise in modulating mitochondrial and epigenetic pathways involved in cancer-related processes. This review discusses how mitochondrial dysfunction and epigenetic modifications, especially mitoepigenetics, influence HCC and delves into the potential of natural products as new adjuvant treatments against HCC.
Collapse
Affiliation(s)
- Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Roya Hadi Al-Haddad
- Research and Technology Center of Environment, Water and Renewable Energy, Scientific Research Commission, Baghdad, Iraq
| | | | - Lamis M Diab
- Department of Medical Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | | | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Helwan, Cairo, 11795, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sādāt, 32897, Egypt.
| |
Collapse
|
2
|
Cheng Y, Liang X, Bi X, Liu C, Yang Y. Identification ATP5F1D as a Biomarker Linked to Diagnosis, Prognosis, and Immune Infiltration in Endometrial Cancer Based on Data-Independent Acquisition (DIA) Analysis. Biochem Genet 2024; 62:4215-4236. [PMID: 38265620 DOI: 10.1007/s10528-023-10646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
In developed countries, endometrial cancer (EC) is the most prevalent gynecological cancer. ATP5F1D is a subunit of ATP synthase, as well as an important component of the mitochondrial electron transport chain (ETC). ETC plays a compelling role in carcinogenesis. To date, little is known about the role of ATP5F1D in EC. We undertook data-independent acquisition mass spectrometry (DIA-MS) of 20 EC patients, comprising 10 high-grade and 10 low-grade cancer tissues. Biological functions of differentially expressed genes (DEGs) were analyzed by GO and KEGG. The expression level, clinicopathological features, diagnostic potency, prognostic value, RNA modifications, immune characteristics, and therapy response of ATP5F1D were investigated. In total, 77 DEGs were acquired by DIA analysis, which were closely related to regulating immune response and metabolic pathways. Among the five genes (NDUFB8, SLC26A2, RAF1, ATP5F1D, and GSTM5) involving in reactive oxygen species pathway, ATP5F1D showed the most significant differential expression (2.903-fold change). We found ATP5F1D had a high diagnostic value and was associated with a favorable prognosis in EC patients. After analyzing the RNA modifications of ATP5F1D, revealing a negative regulation between them. Additionally, ATP5F1D was closely related to tumor immune infiltration. Our results suggested T-cell dysfunction and TAM-M2 polarization might be the important mechanisms of ATP5F1D to facilitate tumor immune escape. Noticeably, EC patients with ATP5F1D-high expression had better immune treatment responses and were more sensitive to chemotherapy drugs. ATP5F1D can be used as a biomarker for diagnosis, prognosis, and immune infiltration of EC, and offers a crucial reference for personalized treatment of EC patients.
Collapse
Affiliation(s)
- Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Department of Obstetrics and Gynecology, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Xuehan Bi
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
3
|
Glibetic N, Bowman S, Skaggs T, Weichhaus M. The Use of Patient-Derived Organoids in the Study of Molecular Metabolic Adaptation in Breast Cancer. Int J Mol Sci 2024; 25:10503. [PMID: 39408832 PMCID: PMC11477048 DOI: 10.3390/ijms251910503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment (TME), all of which present new opportunities for targeted therapies. However, studying these metabolic networks is challenging in traditional 2D cell cultures, which often fail to replicate the three-dimensional architecture and dynamic interactions of real tumors. To address this, organoid models have emerged as powerful tools. Tumor organoids are 3D cultures, often derived from patient tissue, that more accurately mimic the structural and functional properties of actual tumor tissues in vivo, offering a more realistic model for investigating cancer metabolism. This review explores the unique metabolic adaptations of breast cancer and discusses how organoid models can provide deeper insights into these processes. We evaluate the most advanced tools for studying cancer metabolism in three-dimensional culture models, including optical metabolic imaging (OMI), matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and recent advances in conventional techniques applied to 3D cultures. Finally, we explore the progress made in identifying and targeting potential therapeutic targets in breast cancer metabolism.
Collapse
Affiliation(s)
- Natalija Glibetic
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- The IDeA Networks of Biomedical Research Excellence (INBRE) Program, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
- United Nations CIFAL Honolulu Center, Chaminade University, Honolulu, HI 96816, USA
| | - Scott Bowman
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biochemistry, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Tia Skaggs
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biology, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Michael Weichhaus
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
| |
Collapse
|
4
|
Ito H, Shoji Y, Matsumoto KI, Fukuhara K, Nakanishi I. A Mechanism for Apoptotic Effects of a Planar Catechin Analog on Cancer Cells. Molecules 2024; 29:4467. [PMID: 39339462 PMCID: PMC11433776 DOI: 10.3390/molecules29184467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Catechin is one of the representative antioxidants that shows physiological activities such as an anti-cancer effect. We have developed a chemically modified catechin analog possessing a planar structure, which shows an enhanced radical-scavenging activity as well as inhibitory effects on the proliferation and migration of cancer cells, compared to the parent (+)-catechin. In this study, the mechanism for cancer cell inhibition by the planar catechin was partly elucidated using a gastric cancer cell line. The planar catechin treatment induced an enhanced expression of an apoptotic marker, cleaved caspase-3, in addition to the mitigation of the intracellular accumulation of reactive oxygen species (ROS) and NF-κB expression. Furthermore, γH2AX, a marker of double-strand breaks in DNA, was also induced by the planar catechin treatment in a dose-dependent manner. These findings suggest that the removal of ROS by the planar catechin with a higher antioxidant ability executed NF-κB suppression and/or the planar catechin-injured DNA, leading to the induction of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Hiromu Ito
- Quantum RedOx Chemistry Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Yoshimi Shoji
- Quantum RedOx Chemistry Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| | - Kiyoshi Fukuhara
- Quantum RedOx Chemistry Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
- Division of Organic and Medicinal Chemistry, Showa University School of Pharmacy, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
5
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
6
|
Bastioli G, Piccirillo S, Graciotti L, Carone M, Sprega G, Taoussi O, Preziuso A, Castaldo P. Calcium Deregulation in Neurodegeneration and Neuroinflammation in Parkinson's Disease: Role of Calcium-Storing Organelles and Sodium-Calcium Exchanger. Cells 2024; 13:1301. [PMID: 39120330 PMCID: PMC11311461 DOI: 10.3390/cells13151301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that lacks effective treatment strategies to halt or delay its progression. The homeostasis of Ca2+ ions is crucial for ensuring optimal cellular functions and survival, especially for neuronal cells. In the context of PD, the systems regulating cellular Ca2+ are compromised, leading to Ca2+-dependent synaptic dysfunction, impaired neuronal plasticity, and ultimately, neuronal loss. Recent research efforts directed toward understanding the pathology of PD have yielded significant insights, particularly highlighting the close relationship between Ca2+ dysregulation, neuroinflammation, and neurodegeneration. However, the precise mechanisms driving the selective loss of dopaminergic neurons in PD remain elusive. The disruption of Ca2+ homeostasis is a key factor, engaging various neurodegenerative and neuroinflammatory pathways and affecting intracellular organelles that store Ca2+. Specifically, impaired functioning of mitochondria, lysosomes, and the endoplasmic reticulum (ER) in Ca2+ metabolism is believed to contribute to the disease's pathophysiology. The Na+-Ca2+ exchanger (NCX) is considered an important key regulator of Ca2+ homeostasis in various cell types, including neurons, astrocytes, and microglia. Alterations in NCX activity are associated with neurodegenerative processes in different models of PD. In this review, we will explore the role of Ca2+ dysregulation and neuroinflammation as primary drivers of PD-related neurodegeneration, with an emphasis on the pivotal role of NCX in the pathology of PD. Consequently, NCXs and their interplay with intracellular organelles may emerge as potentially pivotal players in the mechanisms underlying PD neurodegeneration, providing a promising avenue for therapeutic intervention aimed at halting neurodegeneration.
Collapse
Affiliation(s)
- Guendalina Bastioli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Marianna Carone
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zürich, Switzerland
| | - Giorgia Sprega
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Omayema Taoussi
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| |
Collapse
|
7
|
Shiba-Ishii A, Isagawa T, Shiozawa T, Mato N, Nakagawa T, Takada Y, Hirai K, Hong J, Saitoh A, Takeda N, Niki T, Murakami Y, Matsubara D. Novel therapeutic strategies targeting bypass pathways and mitochondrial dysfunction to combat resistance to RET inhibitors in NSCLC. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167249. [PMID: 38768929 DOI: 10.1016/j.bbadis.2024.167249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
RET fusion is an oncogenic driver in 1-2 % of patients with non-small cell lung cancer (NSCLC). Although RET-positive tumors have been treated with multikinase inhibitors such as vandetanib or RET-selective inhibitors, ultimately resistance to them develops. Here we established vandetanib resistance (VR) clones from LC-2/ad cells harboring CCDC6-RET fusion and explored the molecular mechanism of the resistance. Each VR clone had a distinct phenotype, implying they had acquired resistance via different mechanisms. Consistently, whole exome-seq and RNA-seq revealed that the VR clones had unique mutational signatures and expression profiles, and shared only a few common remarkable events. AXL and IGF-1R were activated as bypass pathway in different VR clones, and sensitive to a combination of RET and AXL inhibitors or IGF-1R inhibitors, respectively. SMARCA4 loss was also found in a particular VR clone and 55 % of post-TKI lung tumor tissues, being correlated with higher sensitivity to SMARCA4/SMARCA2 dual inhibition and shorter PFS after subsequent treatments. Finally, we detected an increased number of damaged mitochondria in one VR clone, which conferred sensitivity to mitochondrial electron transfer chain inhibitors. Increased mitochondria were also observed in post-TKI biopsy specimens in 13/20 cases of NSCLC, suggesting a potential strategy targeting mitochondria to treat resistant tumors. Our data propose new promising therapeutic options to combat resistance to RET inhibitors in NSCLC.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Proto-Oncogene Proteins c-ret/antagonists & inhibitors
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mitochondria/metabolism
- Mitochondria/drug effects
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Cell Line, Tumor
- Quinazolines/pharmacology
- Quinazolines/therapeutic use
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/antagonists & inhibitors
- Signal Transduction/drug effects
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/antagonists & inhibitors
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA Helicases/antagonists & inhibitors
- Cytoskeletal Proteins
Collapse
Affiliation(s)
- Aya Shiba-Ishii
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takayuki Isagawa
- Center for Data Science, Jichi Medical University, Tochigi, Japan
| | - Toshihiro Shiozawa
- Department of Respiratory Medicine, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoko Mato
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Ibaraki, Japan
| | - Tomoki Nakagawa
- Department of Pathology, University of Tsukuba Hospital, Ibaraki, Japan
| | - Yurika Takada
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kanon Hirai
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jeongmin Hong
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Anri Saitoh
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Toshiro Niki
- Department of Pathology, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
9
|
Feng F, He S, Li X, He J, Luo L. Mitochondria-mediated Ferroptosis in Diseases Therapy: From Molecular Mechanisms to Implications. Aging Dis 2024; 15:714-738. [PMID: 37548939 PMCID: PMC10917537 DOI: 10.14336/ad.2023.0717] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Ferroptosis, a type of cell death involving iron and lipid peroxidation, has been found to be closely associated with the development of many diseases. Mitochondria are vital components of eukaryotic cells, serving important functions in energy production, cellular metabolism, and apoptosis regulation. Presently, the precise relationship between mitochondria and ferroptosis remains unclear. In this study, we aim to systematically elucidate the mechanisms via which mitochondria regulate ferroptosis from multiple perspectives to provide novel insights into mitochondrial functions in ferroptosis. Additionally, we present a comprehensive overview of how mitochondria contribute to ferroptosis in different conditions, including cancer, cardiovascular disease, inflammatory disease, mitochondrial DNA depletion syndrome, and novel coronavirus pneumonia. Gaining a comprehensive understanding of the involvement of mitochondria in ferroptosis could lead to more effective approaches for both basic cell biology studies and medical treatments.
Collapse
Affiliation(s)
- Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China.
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
10
|
Nguyen SV, Levintov L, Planalp RP, Vashisth H. Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane. Bioconjug Chem 2024; 35:371-380. [PMID: 38404183 PMCID: PMC10961729 DOI: 10.1021/acs.bioconjchem.3c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
The Szeto-Schiller (SS) peptides are a subclass of cell-penetrating peptides that can specifically target mitochondria and mediate conditions caused by mitochondrial dysfunction. In this work, we constructed an iron-chelating SS peptide and studied its interaction with a mitochondrial-mimicking membrane using atomistic molecular dynamics (MD) simulations. We report that the peptide/membrane interaction is thermodynamically favorable, and the localization of the peptide to the membrane is driven by electrostatic interactions between the cationic residues and the anionic phospholipid headgroups. The insertion of the peptide into the membrane is driven by hydrophobic interactions between the aromatic side chains in the peptide and the lipid acyl tails. We also probed the translocation of the peptide across the membrane by applying nonequilibrium steered MD simulations and resolved the translocation pathway, free energy profile, and metastable states. We explored four distinct orientations of the peptide along the translocation pathway and found that one orientation was energetically more favorable than the other orientations. We tested a significantly slower pulling velocity on the most thermodynamically favorable system and compared metastable states during peptide translocation. We found that the peptide can optimize hydrophobic interactions with the membrane by having aromatic side chains interacting with the lipid acyl tails instead of forming π-π interactions with each other. The mechanistic insights emerging from our work will potentially facilitate improved peptide design with enhanced activity.
Collapse
Affiliation(s)
- Son V. Nguyen
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Lev Levintov
- Department
of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Roy P. Planalp
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department
of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
- Department
of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
11
|
Zhang B, Sun R, Bai R, Sun Z, Liu R, Li W, Yao L, Sun H, Tang Y. G-quadruplex in mitochondria as a possible biomarker for mitophagy detection. Int J Biol Macromol 2024; 259:129337. [PMID: 38218296 DOI: 10.1016/j.ijbiomac.2024.129337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Mitochondrial autophagy (mitophagy) is a key physiological process that maintains the homeostasis of mitochondrial quality and quantity. Monitoring mitophagy is of great significance for detecting cellular abnormalities and developing therapeutic drugs. However, there are still very few biomarkers specifically developed for monitoring mitophagy. Here, we propose for the first time that mitochondrial G-quadruplex may serve as a biomarker for mitophagy detection, and develope a fluorescent light-up probe AMTC to monitor mitophagy in live cells. During mitophagy, AMTC fluorescence is significantly enhanced, but once mitophagy is inhibited, its fluorescence immediately decreases. The fluorescence behavior of AMTC implicates an increase in the formation of mitochondrial G-quadruplex during mitophagy. This inference has also been supported by the other two G-quadruplex probes. Taken together, this work provides a new possible biomarker and detection tool for the study of mitophagy.
Collapse
Affiliation(s)
- Boyang Zhang
- Beijing Institute of Graphic Communication, Beijing 102600, PR China
| | - Ranran Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ruiyang Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhicheng Sun
- Beijing Institute of Graphic Communication, Beijing 102600, PR China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, PR China.
| | - Wenchao Li
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China.
| | - Li Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
12
|
Robledo-Cadena DX, Pacheco-Velazquez SC, Vargas-Navarro JL, Padilla-Flores JA, Moreno-Sanchez R, Rodríguez-Enríquez S. Mitochondrial Proteins as Metabolic Biomarkers and Sites for Therapeutic Intervention in Primary and Metastatic Cancers. Mini Rev Med Chem 2024; 24:1187-1202. [PMID: 39004839 DOI: 10.2174/0113895575254320231030051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 07/16/2024]
Abstract
Accelerated aerobic glycolysis is one of the main metabolic alterations in cancer, associated with malignancy and tumor growth. Although glycolysis is one of the most studied properties of tumor cells, recent studies demonstrate that oxidative phosphorylation (OxPhos) is the main ATP provider for the growth and development of cancer. In this last regard, the levels of mRNA and protein of OxPhos enzymes and transporters (including glutaminolysis, acetate and ketone bodies catabolism, free fatty acid β-oxidation, Krebs Cycle, respiratory chain, phosphorylating system- ATP synthase, ATP/ADP translocator, Pi carrier) are altered in tumors and cancer cells in comparison to healthy tissues and organs, and non-cancer cells. Both energy metabolism pathways are tightly regulated by transcriptional factors, oncogenes, and tumor-suppressor genes, all of which dictate their protein levels depending on the micro-environmental conditions and the type of cancer cell, favoring cancer cell adaptation and growth. In the present review paper, variation in the mRNA and protein levels as well as in the enzyme/ transporter activities of the OxPhos machinery is analyzed. An integral omics approach to mitochondrial energy metabolism pathways may allow for identifying their use as suitable, reliable biomarkers for early detection of cancer development and metastasis, and for envisioned novel, alternative therapies.
Collapse
Affiliation(s)
- Diana Xochiquetzal Robledo-Cadena
- Departamento de Bioquímica. Instituto Nacional de Cardiología. Juan Badiano No. 1. Col. Sección XVI. 14080. Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, México City, 04510, México
| | - Silvia Cecilia Pacheco-Velazquez
- Departamento de Bioquímica. Instituto Nacional de Cardiología. Juan Badiano No. 1. Col. Sección XVI. 14080. Ciudad de México, México
| | - Jorge Luis Vargas-Navarro
- Laboratorio de Control Metabólico. Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, México
| | - Joaquín Alberto Padilla-Flores
- Laboratorio de Control Metabólico. Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, México
| | - Rafael Moreno-Sanchez
- Laboratorio de Control Metabólico. Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, México
| | - Sara Rodríguez-Enríquez
- Laboratorio de Control Metabólico, Carrera de Medicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, México
| |
Collapse
|
13
|
Gehlot P, Vyas VK. A Patent Review of Human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors as Anticancer Agents and their Other Therapeutic Applications (1999-2022). Recent Pat Anticancer Drug Discov 2024; 19:280-297. [PMID: 37070439 DOI: 10.2174/1574892818666230417094939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/19/2023]
Abstract
Highly proliferating cells, such as cancer cells, are in high demand of pyrimidine nucleotides for their proliferation, accomplished by de novo pyrimidine biosynthesis. The human dihydroorotate dehydrogenase (hDHODH) enzyme plays a vital role in the rate-limiting step of de novo pyrimidine biosynthesis. As a recognised therapeutic target, hDHODH plays a significant role in cancer and other illness. In the past two decades, small molecules as inhibitors hDHODH enzyme have drawn much attention as anticancer agents, and their role in rheumatoid arthritis (RA), and multiple sclerosis (MS). In this patent review, we have compiled patented hDHODH inhibitors published between 1999 and 2022 and discussed the development of hDHODH inhibitors as anticancer agents. Therapeutic potential of small molecules as hDHODH inhibitors for the treatment of various diseases, such as cancer, is very well recognised. Human DHODH inhibitors can rapidly cause intracellular uridine monophosphate (UMP) depletion to produce starvation of pyrimidine bases. Normal cells can better endure a brief period of starvation without the side effects of conventional cytotoxic medication and resume synthesis of nucleic acid and other cellular functions after inhibition of de novo pathway using an alternative salvage pathway. Highly proliferative cells such as cancer cells do not endure starvation because they are in high demand of nucleotides for cell differentiation, which is fulfilled by de novo pyrimidine biosynthesis. In addition, hDHODH inhibitors produce their desired activity at lower doses rather than a cytotoxic dose of other anticancer agents. Thus, inhibition of de novo pyrimidine biosynthesis will create new prospects for the development of novel targeted anticancer agents, which ongoing preclinical and clinical experiments define. Our work brings together a comprehensive patent review of the role of hDHODH in cancer, as well as various patents related to the hDHODH inhibitors and their anticancer and other therapeutic potential. This compiled work on patented DHODH inhibitors will guide researchers in pursuing the most promising drug discovery strategies against the hDHODH enzyme as anticancer agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| |
Collapse
|
14
|
Zhao C, Chen L, Jin Z, Liu H, Ma C, Zhou H, Xu L, Zhou S, Shi Y, Li W, Chen Y, Dou C, Wang X. Knockdown of MRPL35 promotes cell apoptosis and inhibits cell proliferation in non-small-cell lung cancer. BMC Pulm Med 2023; 23:507. [PMID: 38093266 PMCID: PMC10720070 DOI: 10.1186/s12890-023-02677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/26/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a major pathological type of lung cancer. However, its pathogenesis remains largely unclear. MRPL35 is a regulatory subunit of the mitoribosome, which can regulate the assembly of cytochrome c oxidases and plays an important role in the occurrence of NSCLC. METHODS The expression of MRPL35 in NSCLC was detected by tissue microarray and immunohistochemistry. H1299 cells were infected with lentivirus to knockdown MRPL35, and the cells were subjected to crystal violet staining to assess the results of colony formation assays. A549 cells were infected by lentiviral particles-expressing shMRPL35 or shControl, and then subcutaneously injected into nude mice. Tumorigenesis in mice was detected by in vivo imaging. The potential pathway of MRPL35 in NSCLC was assessed by Western blotting. RESULTS MRPL35 was over-expressed in NSCLC tissue compared to para-cancerous and normal tissues. Knockdown of MRPL35 suppressed cell proliferation and decreased NSCLC progression both in vitro and in vivo. The possible molecular mechanisms were also clarified, which indicated that MRPL35 could be involved in cell apoptosis and proliferation by modulating the expression levels of CDK1, BIRC5, CHEK1, STMN1 and MCM2. Knockdown of MRPL35 activated p53 signaling pathway and inhibited cell cycle regulation. CONCLUSIONS The oncogenic role of MRPL35 in NSCLC was potentially mediated through the cell cycle regulatory genes such as BIRC5, STMN1, CDK1, CHEK1 and MCM2, as well as activation of P53 signaling pathway.
Collapse
Affiliation(s)
- Chengling Zhao
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Lei Chen
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Zhixin Jin
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Haitao Liu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Chao Ma
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Hangtian Zhou
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Lingling Xu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Sihui Zhou
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Yan Shi
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Wei Li
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Yuqing Chen
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China
| | - Chengli Dou
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China.
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
- Clinical Research Center for Respiratory Disease (Tumor) in Anhui Province, Bengbu, 233004, China.
- Molecular Diagnosis Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| |
Collapse
|
15
|
Guo Y, Yan S, Zhang W. Translatomics to explore dynamic differences in immunocytes in the tumor microenvironment. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102037. [PMID: 37808922 PMCID: PMC10551571 DOI: 10.1016/j.omtn.2023.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein is an essential component of all living organisms and is primarily responsible for life activities; furthermore, its synthesis depends on a highly complex and accurate translation system. For proteins, the regulation at the translation level exceeds the sum of that during transcription, mRNA degradation, and protein degradation. Therefore, it is necessary to study regulation at the translation level. Imbalance in the translation process may change the cellular landscape, which not only leads to the occurrence, maintenance, progression, invasion, and metastasis of cancer but also affects the function of immune cells and changes the tumor microenvironment. Detailed analysis of transcriptional and protein atlases is needed to better understand how gene translation occurs. However, a more rigorous direct correlation between mRNA and protein levels is needed, which somewhat limits further studies. Translatomics is a technique for capturing and sequencing ribosome-related mRNAs that can effectively identify translation changes caused by ribosome stagnation and local translation abnormalities during cancer occurrence to further understand the changes in the translation landscape of cancer cells themselves and immune cells in the tumor microenvironment, which can provide new strategies and directions for tumor treatment.
Collapse
Affiliation(s)
- Yilin Guo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shiqi Yan
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
16
|
Perales-Linares R, Leli NM, Mohei H, Beghi S, Rivera OD, Kostopoulos N, Giglio A, George SS, Uribe-Herranz M, Costabile F, Pierini S, Pustylnikov S, Skoufos G, Barash Y, Hatzigeorgiou AG, Koumenis C, Maity A, Lotze MT, Facciabene A. Parkin Deficiency Suppresses Antigen Presentation to Promote Tumor Immune Evasion and Immunotherapy Resistance. Cancer Res 2023; 83:3562-3576. [PMID: 37578274 PMCID: PMC10618737 DOI: 10.1158/0008-5472.can-22-2499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Parkin is an E3 ubiquitin ligase, which plays a key role in the development of Parkinson disease. Parkin defects also occur in numerous cancers, and a growing body of evidence indicates that Parkin functions as a tumor suppressor that impedes a number of cellular processes involved in tumorigenesis. Here, we generated murine and human models that closely mimic the advanced-stage tumors where Parkin deficiencies are found to provide deeper insights into the tumor suppressive functions of Parkin. Loss of Parkin expression led to aggressive tumor growth, which was associated with poor tumor antigen presentation and limited antitumor CD8+ T-cell infiltration and activation. The effect of Parkin deficiency on tumor growth was lost following depletion of CD8+ T cells. In line with previous findings, Parkin deficiency was linked with mitochondria-associated metabolic stress, PTEN degradation, and enhanced Akt activation. Increased Akt signaling led to dysregulation of antigen presentation, and treatment with the Akt inhibitor MK2206-2HCl restored antigen presentation in Parkin-deficient tumors. Analysis of data from patients with clear cell renal cell carcinoma indicated that Parkin expression was downregulated in tumors and that low expression correlated with reduced overall survival. Furthermore, low Parkin expression correlated with reduced patient response to immunotherapy. Overall, these results identify a role for Parkin deficiency in promoting tumor immune evasion that may explain the poor prognosis associated with loss of Parkin across multiple types of cancer. SIGNIFICANCE Parkin prevents immune evasion by regulating tumor antigen processing and presentation through the PTEN/Akt network, which has important implications for immunotherapy treatments in patients with Parkin-deficient tumors.
Collapse
Affiliation(s)
- Renzo Perales-Linares
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hesham Mohei
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Silvia Beghi
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Osvaldo D. Rivera
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nektarios Kostopoulos
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrea Giglio
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Subin S. George
- Penn Bioinformatics Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Francesca Costabile
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Stefano Pierini
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sergei Pustylnikov
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Giorgos Skoufos
- Department of Computer Science and Biomedical Informatics, University of Thessaly - Hellenic Pasteur Institute, Athens, Greece
| | - Yoseph Barash
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Artemis G. Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly - Hellenic Pasteur Institute, Athens, Greece
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Nikitjuka A, Krims-Davis K, Kaņepe-Lapsa I, Ozola M, Žalubovskis R. May 1,2-Dithiolane-4-carboxylic Acid and Its Derivatives Serve as a Specific Thioredoxin Reductase 1 Inhibitor? Molecules 2023; 28:6647. [PMID: 37764424 PMCID: PMC10535816 DOI: 10.3390/molecules28186647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Thioredoxin reductase is an essential enzyme that plays a crucial role in maintaining cellular redox homeostasis by catalyzing the reduction of thioredoxin, which is involved in several vital cellular processes. The overexpression of TrxR is often associated with cancer development. A series of 1,2-dithiolane-4-carboxylic acid analogs were obtained to verify the selectivity of 1,2-dithiolane moiety toward TrxR. Asparagusic acid analogs and their bioisoters remain inactive toward TrxR, which proves the inability of the 1,2-dithiolane moiety to serve as a pharmacophore during the interaction with TrxR. It was found that the Michael acceptor functionality-containing analogs exhibit higher inhibitory effects against TrxR compared to other compounds of the series. The most potent representatives exhibited micromolar TrxR1 inhibition activity (IC50 varied from 5.3 to 186.0 μM) and were further examined with in vitro cell-based assays to assess the cytotoxic effects on various cancer cell lines and cell death mechanisms.
Collapse
Affiliation(s)
- Anna Nikitjuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (K.K.-D.); (I.K.-L.); (M.O.)
| | - Kristaps Krims-Davis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (K.K.-D.); (I.K.-L.); (M.O.)
| | - Iveta Kaņepe-Lapsa
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (K.K.-D.); (I.K.-L.); (M.O.)
| | - Melita Ozola
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (K.K.-D.); (I.K.-L.); (M.O.)
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (K.K.-D.); (I.K.-L.); (M.O.)
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, LV-1048 Riga, Latvia
| |
Collapse
|
18
|
Behnam B, Taghizadeh-Hesary F. Mitochondrial Metabolism: A New Dimension of Personalized Oncology. Cancers (Basel) 2023; 15:4058. [PMID: 37627086 PMCID: PMC10452105 DOI: 10.3390/cancers15164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Energy is needed by cancer cells to stay alive and communicate with their surroundings. The primary organelles for cellular metabolism and energy synthesis are mitochondria. Researchers recently proved that cancer cells can steal immune cells' mitochondria using nanoscale tubes. This finding demonstrates the dependence of cancer cells on normal cells for their living and function. It also denotes the importance of mitochondria in cancer cells' biology. Emerging evidence has demonstrated how mitochondria are essential for cancer cells to survive in the harsh tumor microenvironments, evade the immune system, obtain more aggressive features, and resist treatments. For instance, functional mitochondria can improve cancer resistance against radiotherapy by scavenging the released reactive oxygen species. Therefore, targeting mitochondria can potentially enhance oncological outcomes, according to this notion. The tumors' responses to anticancer treatments vary, ranging from a complete response to even cancer progression during treatment. Therefore, personalized cancer treatment is of crucial importance. So far, personalized cancer treatment has been based on genomic analysis. Evidence shows that tumors with high mitochondrial content are more resistant to treatment. This paper illustrates how mitochondrial metabolism can participate in cancer resistance to chemotherapy, immunotherapy, and radiotherapy. Pretreatment evaluation of mitochondrial metabolism can provide additional information to genomic analysis and can help to improve personalized oncological treatments. This article outlines the importance of mitochondrial metabolism in cancer biology and personalized treatments.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
| |
Collapse
|
19
|
Qiu X, Li Y, Zhang Z. Crosstalk between oxidative phosphorylation and immune escape in cancer: a new concept of therapeutic targets selection. Cell Oncol (Dordr) 2023; 46:847-865. [PMID: 37040057 DOI: 10.1007/s13402-023-00801-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Cancer is increasingly recognized as a metabolic disease, with evidence suggesting that oxidative phosphorylation (OXPHOS) plays a significant role in the progression of numerous cancer cells. OXPHOS not only provides sufficient energy for tumor tissue survival but also regulates conditions for tumor proliferation, invasion, and metastasis. Alterations in OXPHOS can also impair the immune function of immune cells in the tumor microenvironment, leading to immune evasion. Therefore, investigating the relationship between OXPHOS and immune escape is crucial in cancer-related research. This review aims to summarize the effects of transcriptional, mitochondrial genetic, metabolic regulation, and mitochondrial dynamics on OXPHOS in different cancers. Additionally, it highlights the role of OXPHOS in immune escape by affecting various immune cells. Finally, it concludes with an overview of recent advances in antitumor strategies targeting both immune and metabolic processes and proposes promising therapeutic targets by analyzing the limitations of current targeted drugs. CONCLUSIONS The metabolic shift towards OXPHOS contributes significantly to tumor proliferation, progression, metastasis, immune escape, and poor prognosis. A thorough investigation of concrete mechanisms of OXPHOS regulation in different types of tumors and the combination usage of OXPHOS-targeted drugs with existing immunotherapies could potentially uncover new therapeutic targets for future antitumor therapies.
Collapse
Affiliation(s)
- Xutong Qiu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yi Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
- Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Picca A, Guerra F, Calvani R, Coelho-Júnior HJ, Leeuwenburgh C, Bucci C, Marzetti E. The contribution of mitochondrial DNA alterations to aging, cancer, and neurodegeneration. Exp Gerontol 2023; 178:112203. [PMID: 37172915 DOI: 10.1016/j.exger.2023.112203] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Mitochondrial DNA (mtDNA) is as a double-stranded molecule existing in hundreds to thousands copies in cells depending on cell metabolism and exposure to endogenous and/or environmental stressors. The coordination of mtDNA replication and transcription regulates the pace of mitochondrial biogenesis to guarantee the minimum number of organelles per cell. mtDNA inheritance follows a maternal lineage, although bi-parental inheritance has been reported in some species and in the case of mitochondrial diseases in humans. mtDNA mutations (e.g., point mutations, deletions, copy number variations) have been identified in the setting of several human diseases. For instance, sporadic and inherited rare disorders involving the nervous system as well higher risk of developing cancer and neurodegenerative conditions, including Parkinson's and Alzheimer's disease, have been associated with polymorphic mtDNA variants. An accrual of mtDNA mutations has also been identified in several tissues and organs, including heart and muscle, of old experimental animals and humans, which may contribute to the development of aging phenotypes. The role played by mtDNA homeostasis and mtDNA quality control pathways in human health is actively investigated for the possibility of developing targeted therapeutics for a wide range of conditions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
21
|
Kapsetaki SE, Fortunato A, Compton Z, Rupp SM, Nour Z, Riggs-Davis S, Stephenson D, Duke EG, Boddy AM, Harrison TM, Maley CC, Aktipis A. Is chimerism associated with cancer across the tree of life? PLoS One 2023; 18:e0287901. [PMID: 37384647 PMCID: PMC10309991 DOI: 10.1371/journal.pone.0287901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Chimerism is a widespread phenomenon across the tree of life. It is defined as a multicellular organism composed of cells from other genetically distinct entities. This ability to 'tolerate' non-self cells may be linked to susceptibility to diseases like cancer. Here we test whether chimerism is associated with cancers across obligately multicellular organisms in the tree of life. We classified 12 obligately multicellular taxa from lowest to highest chimerism levels based on the existing literature on the presence of chimerism in these species. We then tested for associations of chimerism with tumour invasiveness, neoplasia (benign or malignant) prevalence and malignancy prevalence in 11 terrestrial mammalian species. We found that taxa with higher levels of chimerism have higher tumour invasiveness, though there was no association between malignancy or neoplasia and chimerism among mammals. This suggests that there may be an important biological relationship between chimerism and susceptibility to tissue invasion by cancerous cells. Studying chimerism might help us identify mechanisms underlying invasive cancers and also could provide insights into the detection and management of emerging transmissible cancers.
Collapse
Affiliation(s)
- Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Angelo Fortunato
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Shawn M. Rupp
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Zaid Nour
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Skyelyn Riggs-Davis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Dylan Stephenson
- Department of Psychology, Arizona State University, Tempe, AZ, United States of America
| | - Elizabeth G. Duke
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, United States of America
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Anthropology, University of California, Santa Barbara, CA, United States of America
| | - Tara M. Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, United States of America
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Psychology, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
22
|
Casas-Benito A, Martínez-Herrero S, Martínez A. Succinate-Directed Approaches for Warburg Effect-Targeted Cancer Management, an Alternative to Current Treatments? Cancers (Basel) 2023; 15:2862. [PMID: 37345199 DOI: 10.3390/cancers15102862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Approximately a century ago, Otto Warburg discovered that cancer cells use a fermentative rather than oxidative metabolism even though the former is more inefficient in terms of energy production per molecule of glucose. Cancer cells increase the use of this fermentative metabolism even in the presence of oxygen, and this process is called aerobic glycolysis or the Warburg effect. This alternative metabolism is mainly characterized by higher glycolytic rates, which allow cancer cells to obtain higher amounts of total ATP, and the production of lactate, but there are also an activation of protumoral signaling pathways and the generation of molecules that favor cancer progression. One of these molecules is succinate, a Krebs cycle intermediate whose concentration is increased in cancer and which is considered an oncometabolite. Several protumoral actions have been associated to succinate and its role in several cancer types has been already described. Despite playing a major role in metabolism and cancer, so far, the potential of succinate as a target in cancer prevention and treatment has remained mostly unexplored, as most previous Warburg-directed anticancer strategies have focused on other intermediates. In this review, we aim to summarize succinate's protumoral functions and discuss the use of succinate expression regulators as a potential cancer therapy strategy.
Collapse
Affiliation(s)
- Adrian Casas-Benito
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Sonia Martínez-Herrero
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
23
|
Ding H, Zhao Y, Jiang Z, Zhou D, Zhu R. Analysis of Mitochondrial Transfer RNA Mutations in Breast Cancer. Balkan J Med Genet 2023; 25:15-22. [PMID: 37265965 PMCID: PMC10230833 DOI: 10.2478/bjmg-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Damage of mitochondrial functions caused by mitochondrial DNA (mtDNA) pathogenic mutations had long been proposed to be involved in breast carcinogenesis. However, the detailed pathological mechanism remained deeply undetermined. In this case-control study, we screened the frequencies of mitochondrial tRNA (mt-tRNA) mutations in 80 breast cancer tissues and matched normal adjacent tissues. PCR and Sanger sequence revealed five possible pathogenic mutations: tRNAVal G1606A, tRNAIle A4300G, tRNASer(UCN) T7505C, tRNAGlu A14693G and tRNAThr G15927A. We noticed that these mutations resided at extremely conserved positions of tRNAs and would affect tRNAs transcription or modifications. Furthermore, functional analysis suggested that patients with these mt-tRNA mutations exhibited much lower levels of mtDNA copy number and ATP, as compared with controls (p<0.05). Therefore, it can be speculated that these mutations may impair mitochondrial protein synthesis and oxidative phosphorylation (OXPHOS) complexes, which caused mitochondrial dysfunctions that were involved in the breast carcinogenesis. Taken together, our data indicated that mutations in mt-tRNA were the important contributors to breast cancer, and mutational analyses of mt-tRNA genes were critical for prevention of breast cancer.
Collapse
Affiliation(s)
- H.J. Ding
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Y.P. Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Z.C. Jiang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - D.T. Zhou
- Department of Pharmacy, The First People’s Hospital of Kaili, Kaili, China
| | - R. Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
25
|
Sun X, Ye G, Mai Y, Shu Y, Wang L, Zhang J. Parkin exerts the tumor-suppressive effect through targeting mitochondria. Med Res Rev 2023. [PMID: 36916678 DOI: 10.1002/med.21938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 12/10/2022] [Accepted: 02/26/2023] [Indexed: 03/16/2023]
Abstract
The role of PARKIN in Parkinson's disease is well established but its role in cancer has recently emerged. PARKIN serves as a tumor suppressor in many cancers and loses the tumor-suppressive function due to loss of heterozygosity and DNA copy number. But how PARKIN protects against cancer is poorly understood. Through the analysis of PARKIN substrates and their association with mitochondria, this viewpoint discussed that PARKIN exerts its anti-cancer activity through targeting mitochondria. Mitochondria function as a convergence point for many signaling pathways and biological processes, including apoptosis, cell cycle, mitophagy, energy metabolism, oxidative stress, calcium homeostasis, inflammation, and so forth. PARKIN participates in these processes through regulating its mitochondrial targets. Conversely, these mitochondrial substrates also influence the function of PARKIN under different cellular circumstances. We believe that future studies in this area may lead to novel therapeutic targets and strategies for cancer therapy.
Collapse
Affiliation(s)
- Xin Sun
- Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Guiqin Ye
- Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Hangzhou Medical College, Hangzhou, China
| | - Yuanyuan Mai
- Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.,Hangzhou Medical College, Hangzhou, China
| | - Yuhan Shu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Lei Wang
- Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jianbin Zhang
- Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
26
|
Yan Z, Yuan Q, He Y, Peng F, Liu Y, Zhang H, Ji X, He X, Zhao Q, Xing J, Guo X. Mitochondrial DNA haplogroup M7: A predictor of poor prognosis for colorectal cancer patients in Chinese population. Cancer Sci 2023; 114:1056-1066. [PMID: 36382493 PMCID: PMC9986060 DOI: 10.1111/cas.15654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Haplogroups and single-nucleotide polymorphisms (SNP) of mitochondrial DNA (mtDNA) were associated with the prognosis of many types of cancer patients. However, whether mtDNA haplogroups contribute to clinical outcomes of colorectal cancer (CRC) in Chinese population remains to be determined. In this study, mtDNA of tissue samples from 445 CRC patients from Northwestern China was sequenced to evaluate the association between haplogroup and prognosis. The mtDNA sequencing data of 1015 CRC patients from Southern China were collected for validation. We found patients with mtDNA haplogroup M7 had a significantly higher death risk when compared with patients with other haplogroups in both Northwestern (Hazard ratio [HR] = 3.093, 95% CI = 1.768-5.411, p < 0.001) and Southern (HR = 1.607, 95% CI = 1.050-2.459, p = 0.029) China. Then, a haplogroup M7-based mtSNP classifier was selected by using LASSO Cox regression analysis. A nomogram comprising the mtSNP classifier and clinicopathological variables was developed to predict the prognosis of CRC patients (area under the curve [AUC] 0.735, 95% CI = 0.679-0.791). Furthermore, patients with high- and low-risk scores calculated by the haplogroup M7-based mtSNP classifier exhibited significantly different overall survival (OS) and recurrence-free survival (RFS) (all p < 0.001). Finally, RNA-seq and immunohistochemical analyses indicated the poor prognosis of patients with haplogroup M7 may be related to mitochondrial dysfunction and immune abnormalities in CRC tissues. In conclusion, the haplogroup M7 and haplogroup M7-based mtSNP classifier seems to be a practical and reliable prognostic predictor for CRC patients, which provides a potential tool of clinical decision-making for patients with haplogroup M7 in Chinese population.
Collapse
Affiliation(s)
- Zeyu Yan
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.,Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qing Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yiwei He
- Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Fan Peng
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Huanqin Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Xiaoying Ji
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qi Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jinliang Xing
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Xu Guo
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Dharaskar SP, Amere Subbarao S. The mitochondrial chaperone TRAP-1 regulates the glutamine metabolism in tumor cells. Mitochondrion 2023; 69:159-170. [PMID: 36828164 DOI: 10.1016/j.mito.2023.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Understanding cancer cell metabolism always provides information on hidden dimensions of tumor adaptations. Warburg's theory that cancer cells opt for aerobic glycolysis over the mitochondrial oxidative phosphorylation (OXPHOS) system is widely accepted. However, the hypothesis does not explain the mitochondrion's role in these cells. Here, we demonstrate that intact mitochondria are used for anaplerotic functions and ATP production by utilizing glutamine with the help of mitochondrial chaperone TRAP-1 (Tumor Necrosis Factor Receptor-associated Protein 1). TRAP-1 otherwise promotes aerobic glycolysis by lowering the mitochondrial OXPHOS in the presence of glucose. Here, we show that TRAP-1 maintains mitochondrial integrity and augments glutamine metabolism upon glucose deprivation to meet the cellular energy demand. The enhanced PER and ECAR correlating with increased ATP production suggest that glutamine fuels mitochondria in the presence of TRAP-1. We also found that TRAP1-dependent glutamine utilization involves the HIF2α-SLC1A5-GLS axis and is independent of hypoxia. Subsequently, we show that the metastatic potential of tumor cells is linked with glucose utilization, whereas the proliferative potential is linked with both glucose and glutamine utilization. Our findings establish that TRAP-1 contributes to enhanced glutamine utilization through the HIF2α-SLC1A5-GLS axis. Our results endow that TRAP-1 inhibitors can be potential drug candidates to combat tumor metabolism. Therefore, their use, either alone or in combination with existing chemotherapeutic agents, may target tumor metabolism and improve anticancer treatment response.
Collapse
Affiliation(s)
- Shrikant Purushottam Dharaskar
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India; Academy of Scientific & Innovative Research (AcSIR), Government of India, Ghaziabad 201002, Uttar Pradesh, India
| | - Sreedhar Amere Subbarao
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India; Academy of Scientific & Innovative Research (AcSIR), Government of India, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
28
|
Padinharayil H, Rai V, George A. Mitochondrial Metabolism in Pancreatic Ductal Adenocarcinoma: From Mechanism-Based Perspectives to Therapy. Cancers (Basel) 2023; 15:1070. [PMID: 36831413 PMCID: PMC9954550 DOI: 10.3390/cancers15041070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourteenth most common malignancy, is a major contributor to cancer-related death with the utmost case fatality rate among all malignancies. Functional mitochondria, regardless of their complex ecosystem relative to normal cells, are essential in PDAC progression. Tumor cells' potential to produce ATP as energy, despite retaining the redox potential optimum, and allocating materials for biosynthetic activities that are crucial for cell growth, survival, and proliferation, are assisted by mitochondria. The polyclonal tumor cells with different metabolic profiles may add to carcinogenesis through inter-metabolic coupling. Cancer cells frequently possess alterations in the mitochondrial genome, although they do not hinder metabolism; alternatively, they change bioenergetics. This can further impart retrograde signaling, educate cell signaling, epigenetic modifications, chromatin structures, and transcription machinery, and ultimately satisfy cancer cellular and nuclear demands. To maximize the tumor microenvironment (TME), tumor cells remodel nearby stromal cells and extracellular matrix. These changes initiate polyclonality, which is crucial for growth, stress response, and metastasis. Here, we evaluate all the intrinsic and extrinsic pathways drawn by mitochondria in carcinogenesis, emphasizing the perspectives of mitochondrial metabolism in PDAC progression and treatment.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| |
Collapse
|
29
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Ruisoto P, Navarro-Jiménez E, Ramos-Campo DJ, Tornero-Aguilera JF. Metabolic Health, Mitochondrial Fitness, Physical Activity, and Cancer. Cancers (Basel) 2023; 15:814. [PMID: 36765772 PMCID: PMC9913323 DOI: 10.3390/cancers15030814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer continues to be a significant global health issue. Traditional genetic-based approaches to understanding and treating cancer have had limited success. Researchers are increasingly exploring the impact of the environment, specifically inflammation and metabolism, on cancer development. Examining the role of mitochondria in this context is crucial for understanding the connections between metabolic health, physical activity, and cancer. This study aimed to review the literature on this topic through a comprehensive narrative review of various databases including MedLine (PubMed), Cochrane (Wiley), Embase, PsychINFO, and CinAhl. The review highlighted the importance of mitochondrial function in overall health and in regulating key events in cancer development, such as apoptosis. The concept of "mitochondrial fitness" emphasizes the crucial role of mitochondria in cell metabolism, particularly their oxidative functions, and how proper function can prevent replication errors and regulate apoptosis. Engaging in high-energy-demanding movement, such as exercise, is a powerful intervention for improving mitochondrial function and increasing resistance to environmental stressors. These findings support the significance of considering the role of the environment, specifically inflammation and metabolism, in cancer development and treatment. Further research is required to fully understand the mechanisms by which physical activity improves mitochondrial function and potentially reduces the risk of cancer.
Collapse
Affiliation(s)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n Villaviciosa de Odón, 28670 Madrid, Spain
| | - Pablo Ruisoto
- Department of Health Sciences, Public University of Navarre, 31006 Navarre, Spain
| | | | | | | |
Collapse
|
30
|
Tabebi M, Söderkvist P, Gimm O. Nuclear and mitochondrial DNA alterations in pheochromocytomas and paragangliomas, and their potential treatment. Endocr Relat Cancer 2023; 30:ERC-22-0217. [PMID: 36219865 DOI: 10.1530/erc-22-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Mitochondrial DNA (mtDNA) alterations have been reported in different types of cancers and are suggested to play important roles in cancer development and metastasis. However, there is little information about its involvement in pheochromocytomas and paragangliomas (PCCs/PGLs) formation. PCCs and PGLs are rare endocrine tumors of the chromaffin cells in the adrenal medulla and extra-adrenal paraganglia that can synthesize and secrete catecholamines. Over the last 3 decades, the genetic background of about 60% of PCCs/PGLs involving nuclear DNA alterations has been determined. Recently, a study showed that mitochondrial alterations can be found in around 17% of the remaining PCCs/PGLs. In this review, we summarize recent knowledge regarding both nuclear and mitochondrial alterations and their involvement in PCCs/PGLs. We also provide brief insights into the genetics and the molecular pathways associated with PCCs/PGLs and potential therapeutical targets.
Collapse
Affiliation(s)
- Mouna Tabebi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Peter Söderkvist
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, Linköping University, Linköping, Sweden
| | - Oliver Gimm
- Department of Surgery, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| |
Collapse
|
31
|
de Villiers JG, Theart RP. Predicting mitochondrial fission, fusion and depolarisation event locations from a single z-stack. PLoS One 2023; 18:e0271151. [PMID: 36888628 PMCID: PMC9994753 DOI: 10.1371/journal.pone.0271151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
This paper documents the development of a novel method to predict the occurrence and exact locations of mitochondrial fission, fusion and depolarisation events in three dimensions. This novel implementation of neural networks to predict these events using information encoded only in the morphology of the mitochondria eliminate the need for time-lapse sequences of cells. The ability to predict these morphological mitochondrial events using a single image can not only democratise research but also revolutionise drug trials. The occurrence and location of these events were successfully predicted with a three-dimensional version of the Pix2Pix generative adversarial network (GAN) as well as a three-dimensional adversarial segmentation network called the Vox2Vox GAN. The Pix2Pix GAN predicted the locations of mitochondrial fission, fusion and depolarisation events with accuracies of 35.9%, 33.2% and 4.90%, respectively. Similarly, the Vox2Vox GAN achieved accuracies of 37.1%, 37.3% and 7.43%. The accuracies achieved by the networks in this paper are too low for the immediate implementation of these tools in life science research. They do however indicate that the networks have modelled the mitochondrial dynamics to some degree of accuracy and may therefore still be helpful as an indication of where events might occur if time lapse sequences are not available. The prediction of these morphological mitochondrial events have, to our knowledge, never been achieved before in literature. The results from this paper can be used as a baseline for the results obtained by future work.
Collapse
Affiliation(s)
- James G. de Villiers
- Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Rensu P. Theart
- Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa
- * E-mail:
| |
Collapse
|
32
|
Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, Behl T, Singh T, Sharma S, Saini AK, Dhama K, Varol M, Sethi G. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol 2023; 97:103-120. [PMID: 36443493 DOI: 10.1007/s00204-022-03421-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
ROS include hydroxyl radicals (HO.), superoxide (O2..), and hydrogen peroxide (H2O2). ROS are typically produced under physiological conditions and play crucial roles in living organisms. It is known that ROS, which are created spontaneously by cells through aerobic metabolism in mitochondria, can have either a beneficial or detrimental influence on biological systems. Moderate levels of ROS can cause oxidative damage to proteins, DNA and lipids, which can aid in the pathogenesis of many disorders, including cancer. However, excessive concentrations of ROS can initiate programmed cell death in cancer. Presently, a variety of chemotherapeutic drugs and herbal agents are being investigated to induce ROS-mediated cell death in cancer. Therefore, preserving ROS homeostasis is essential for ensuring normal cell development and survival. On account of a significant association of ROS levels at various concentrations with carcinogenesis in a number of malignancies, further studies are needed to determine the underlying molecular mechanisms and develop the possibilities for intervening in these processes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, PGIMER, Chandigarh, 160012, India
| | | | - Ujjawal Sharma
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.,Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Tejveer Singh
- Translanatal Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Sheetu Sharma
- Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura, 140401, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
33
|
Shimura T, Shiga R, Sasatani M, Kamiya K, Ushiyama A. Melatonin and MitoEbselen-2 Are Radioprotective Agents to Mitochondria. Genes (Basel) 2022; 14:45. [PMID: 36672786 PMCID: PMC9858905 DOI: 10.3390/genes14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are responsible for controlling cell death during the early stages of radiation exposure, but their perturbations are associated with late effects of radiation-related carcinogenesis. Therefore, it is important to protect mitochondria to mitigate the harmful effects of radiation throughout life. The glutathione peroxidase (GPx) enzyme is essential for the maintenance of mitochondrial-derived reactive oxygen species (ROS) levels. However, radiation inactivates the GPx, resulting in metabolic oxidative stress and prolonged cell injury in irradiated normal human fibroblasts. Here, we used the GPx activator N-acetyl-5-methoxy-tryptamine (melatonin) and a mitochondria-targeted mimic of GPx MitoEbselen-2 to stimulate the GPx. A commercial GPx activity assay kit was used to measure the GPx activity. ROS levels were determined by using some ROS indicators. Protein expression associated with the response of mitochondria to radiation was assessed using immunostaining. Concurrent pre-administration or post-administration of melatonin or MitoEbselen-2 with radiation maintained GPx activity and ROS levels and suppressed mitochondrial radiation responses associated with cellular damage and radiation-related carcinogenesis. In conclusion, melatonin and MitoEbselen-2 prevented radiation-induced mitochondrial injury and metabolic oxidative stress by targeting mitochondria. These drugs have the potential to protect against acute radiation injury and late effects of carcinogenesis in a variety of radiation scenarios assuming pre-administration or post-administration.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| | - Rina Shiga
- Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima 734-8553, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima 734-8553, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Japan
| |
Collapse
|
34
|
Enomoto M, Igaki T. Cell-cell interactions that drive tumorigenesis in Drosophila. Fly (Austin) 2022; 16:367-381. [PMID: 36413374 PMCID: PMC9683056 DOI: 10.1080/19336934.2022.2148828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell-cell interactions within tumour microenvironment play crucial roles in tumorigenesis. Genetic mosaic techniques available in Drosophila have provided a powerful platform to study the basic principles of tumour growth and progression via cell-cell communications. This led to the identification of oncogenic cell-cell interactions triggered by endocytic dysregulation, mitochondrial dysfunction, cell polarity defects, or Src activation in Drosophila imaginal epithelia. Such oncogenic cooperations can be caused by interactions among epithelial cells, mesenchymal cells, and immune cells. Moreover, microenvironmental factors such as nutrients, local tissue structures, and endogenous growth signalling activities critically affect tumorigenesis. Dissecting various types of oncogenic cell-cell interactions at the single-cell level in Drosophila will greatly increase our understanding of how tumours progress in living animals.
Collapse
Affiliation(s)
- Masato Enomoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto, Japan,CONTACT Tatsushi Igaki
| |
Collapse
|
35
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
36
|
Bai J, Wu L, Wang X, Wang Y, Shang Z, Jiang E, Shao Z. Roles of Mitochondria in Oral Squamous Cell Carcinoma Therapy: Friend or Foe? Cancers (Basel) 2022; 14:cancers14235723. [PMID: 36497206 PMCID: PMC9738284 DOI: 10.3390/cancers14235723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) therapy is unsatisfactory, and the prevalence of the disease is increasing. The role of mitochondria in OSCC therapy has recently attracted increasing attention, however, many mechanisms remain unclear. Therefore, we elaborate upon relative studies in this review to achieve a better therapeutic effect of OSCC treatment in the future. Interestingly, we found that mitochondria not only contribute to OSCC therapy but also promote resistance, and targeting the mitochondria of OSCC via nanoparticles is a promising way to treat OSCC.
Collapse
Affiliation(s)
- Junqiang Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Luping Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Xinmiao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Yifan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| |
Collapse
|
37
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
38
|
Zunica ERM, Axelrod CL, Kirwan JP. Phytochemical Targeting of Mitochondria for Breast Cancer Chemoprevention, Therapy, and Sensitization. Int J Mol Sci 2022; 23:ijms232214152. [PMID: 36430632 PMCID: PMC9692881 DOI: 10.3390/ijms232214152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a common and deadly disease that causes tremendous physical, emotional, and financial burden on patients and society. Early-stage breast cancer and less aggressive subtypes have promising prognosis for patients, but in aggressive subtypes, and as cancers progress, treatment options and responses diminish, dramatically decreasing survival. Plants are nutritionally rich and biologically diverse organisms containing thousands of metabolites, some of which have chemopreventive, therapeutic, and sensitizing properties, providing a rich source for drug discovery. In this study we review the current landscape of breast cancer with a central focus on the potential role of phytochemicals for treatment, management, and disease prevention. We discuss the relevance of phytochemical targeting of mitochondria for improved anti-breast cancer efficacy. We highlight current applications of phytochemicals and derivative structures that display anti-cancer properties and modulate cancer mitochondria, while describing future applicability and identifying areas of promise.
Collapse
|
39
|
Mitochondrial Control Region Variants Related to Breast Cancer. Genes (Basel) 2022; 13:genes13111962. [DOI: 10.3390/genes13111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has an important incidence in the worldwide female population. Although alterations in the mitochondrial genome probably play an important role in carcinogenesis, the actual evidence is ambiguous and inconclusive. Our purpose was to explore differences in mitochondrial sequences of cases with breast cancer compared with control samples from different origins. We identified 124 mtDNA sequences associated with breast cancer cases, of which 86 were complete and 38 were partial sequences. Of these 86 complete sequences, 52 belonged to patients with a confirmed diagnosis of breast cancer, and 34 sequences were obtained from healthy mammary tissue of the same patients used as controls. From the mtDNA analysis, two polymorphisms with significant statistical differences were found: m.310del (rs869289246) in 34.6% (27/78) of breast cancer cases and 61.7% (21/34) in the controls; and m.315dup (rs369786048) in 60.2% (47/78) of breast cancer cases and 38.2% (13/34) in the controls. In addition, the variant m.16519T>C (rs3937033) was found in 59% of the control sequences and 52% of the breast cancer sequences with a significant statistical difference. Polymorphic changes are evolutionarily related to the haplogroup H of Indo-European and Euro-Asiatic origins; however, they were found in all non-European breast cancers.
Collapse
|
40
|
Mitochondrial DNA Changes in Genes of Respiratory Complexes III, IV and V Could Be Related to Brain Tumours in Humans. Int J Mol Sci 2022; 23:ijms232012131. [PMID: 36292984 PMCID: PMC9603055 DOI: 10.3390/ijms232012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial DNA changes can contribute to both an increased and decreased likelihood of cancer. This process is complex and not fully understood. Polymorphisms and mutations, especially those of the missense type, can affect mitochondrial functions, particularly if the conservative domain of the protein is concerned. This study aimed to identify the possible relationships between brain gliomas and the occurrence of specific mitochondrial DNA polymorphisms and mutations in respiratory complexes III, IV and V. The investigated material included blood and tumour material collected from 30 Caucasian patients diagnosed with WHO grade II, III or IV glioma. The mitochondrial genetic variants were investigated across the mitochondrial genome using next-generation sequencing (MiSeq/FGx system—Illumina). The study investigated, in silico, the effects of missense mutations on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness. The A14793G (MTCYB), A15758G, (MT-CYB), A15218G (MT-CYB), G7444A (MT-CO1) polymorphisms, and the T15663C (MT-CYB) and G8959A (ATP6) mutations were assessed in silico as harmful alterations that could be involved in oncogenesis. The G8959A (E145K) ATP6 missense mutation has not been described in the literature so far. In light of these results, further research into the role of mtDNA changes in brain tumours should be conducted.
Collapse
|
41
|
Luo J, Shen S, Xia J, Wang J, Gu Z. Mitochondria as the Essence of Yang Qi in the Human Body. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:336-348. [PMID: 36939762 PMCID: PMC9590506 DOI: 10.1007/s43657-022-00060-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
The concept of Yang Qi in Traditional Chinese Medicine (TCM) has many similarities with mitochondria in modern medicine. Both are indispensable to human beings and closely related to life and death. This article discusses the similarities in various aspects between mitochondria and Yang Qi, including body temperature, aging, newborns, circadian rhythm, immunity, and meridian. It is well-known that Yang Qi is vital for human health. Interestingly, decreased mitochondrial function is thought to be key to the development of various diseases. Here, we further explain diseases induced by Yang Qi deficiency, such as cancer, chronic fatigue syndrome, sleep disorder, senile dementia, and metabolic diseases, from the perspective of mitochondrial function. We aim to establish similarities and connections between two important concepts, and hope our essay can stimulate further discussion and investigation on unifying important concepts in western medicine and alternative medicine, especially TCM, and provide unique holistic insights into understanding human health.
Collapse
Affiliation(s)
- Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193 China
| | - Shiwei Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Jingjing Xia
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853 USA
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
42
|
Lee SE, Yi Y, Moon S, Yoon H, Park YS. Impact of Micro- and Nanoplastics on Mitochondria. Metabolites 2022; 12:897. [PMID: 36295799 PMCID: PMC9612075 DOI: 10.3390/metabo12100897] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Mitochondria are highly dynamic cellular organelles that perform crucial functions such as respiration, energy production, metabolism, and cell fate decisions. Mitochondrial damage and dysfunction critically lead to the pathogenesis of various diseases including cancer, diabetes, and neurodegenerative and cardiovascular disorders. Mitochondrial damage in response to environmental contaminant exposure and its association with the pathogenesis of diseases has also been reported. Recently, persistent pollutants, such as micro- and nanoplastics, have become growing global environmental threats with potential health risks. In this review, we discuss the impact of micro- and nanoplastics on mitochondria and review current knowledge in this field.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, #26 Kyungheedae-gil, Dongdaemun-gu, Seoul 02447, Korea
| | - Yoojung Yi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sangji Moon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyunkyung Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, #26 Kyungheedae-gil, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
43
|
Koc EC, Koc FC, Kartal F, Tirona M, Koc H. Role of mitochondrial translation in remodeling of energy metabolism in ER/PR(+) breast cancer. Front Oncol 2022; 12:897207. [PMID: 36119536 PMCID: PMC9472243 DOI: 10.3389/fonc.2022.897207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Remodeling of mitochondrial energy metabolism is essential for the survival of tumor cells in limited nutrient availability and hypoxic conditions. Defects in oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis also cause a switch in energy metabolism from oxidative to aerobic glycolysis contributing to the tumor heterogeneity in cancer. Specifically, the aberrant expressions of mitochondrial translation components such as ribosomal proteins (MRPs) and translation factors have been increasingly associated with many different cancers including breast cancer. The mitochondrial translation is responsible for the synthesis 13 of mitochondrial-encoded OXPHOS subunits of complexes. In this study, we investigated the contribution of mitochondrial translation in the remodeling of oxidative energy metabolism through altered expression of OXPHOS subunits in 26 ER/PR(+) breast tumors. We observed a significant correlation between the changes in the expression of mitochondrial translation-related proteins and OXPHOS subunits in the majority of the ER/PR(+) breast tumors and breast cancer cell lines. The reduced expression of OXPHOS and mitochondrial translation components also correlated well with the changes in epithelial-mesenchymal transition (EMT) markers, E-cadherin (CHD1), and vimentin (VIM) in the ER/PR(+) tumor biopsies. Data mining analysis of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) breast cancer proteome further supported the correlation between the reduced OXPHOS subunit expression and increased EMT and metastatic marker expression in the majority of the ER/PR(+) tumors. Therefore, understanding the role of MRPs in the remodeling of energy metabolism will be essential in the characterization of heterogeneity at the molecular level and serve as diagnostic and prognostic markers in breast cancer.
Collapse
Affiliation(s)
- Emine C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| | - Fatih C. Koc
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Funda Kartal
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Maria Tirona
- Department of Medical Oncology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Hasan Koc
- Department of Pharmaceutical Science, School of Pharmacy, Marshall University, Huntington, WV, United States
- *Correspondence: Emine C. Koc, ; Hasan Koc,
| |
Collapse
|
44
|
Riehl L, Mulaw M, Kneer K, Beer M, Beer A, Barth TF, Benes V, Schulte J, Fischer M, Debatin K, Beltinger C. Targeted parallel DNA sequencing detects circulating tumor-associated variants of the mitochondrial and nuclear genomes in patients with neuroblastoma. Cancer Rep (Hoboken) 2022; 6:e1687. [PMID: 35899825 PMCID: PMC9875664 DOI: 10.1002/cnr2.1687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/21/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The utility for liquid biopsy of tumor-associated circulating single-nucleotide variants, as opposed to mutations, of the mitochondrial (mt) and nuclear genomes in neuroblastoma (NB) is unknown. PROCEDURE Variants of the mt and nuclear genomes from tumor, blood cells, and consecutive plasma samples of five patients with metastatic NB that relapsed or progressed were analyzed. Targeted parallel sequencing results of the mt genome, and of the coding region of 139 nuclear genes and 22 miRNAs implicated in NB, were correlated with clinical imaging and laboratory data. RESULTS All tumors harbored multiple somatic mt and nuclear single nucleotide variants with low allelic frequency, most of them not detected in the circulation. In one patient a tumor-associated mt somatic variant was detected in the plasma before and during progressive disease. In a second patient a circulating nuclear tumor-associated DNA variant heralded clinical relapse. In all patients somatic mt and nuclear variants not evident in the tumor biopsy at time of diagnosis were found circulating at varying timepoints. This suggests either tumor heterogeneity, evolution of tumor variants or a confounding contribution of normal tissues to somatic variants in patient plasma. The number and allelic frequency of the circulating variants did not reflect the clinical course of the tumors. Mutational signatures of mt and nuclear somatic variants differed. They varied between patients and were detected in the circulation without mirroring the patients' course. CONCLUSIONS In this limited cohort of NB patients clinically informative tumor-associated mt and nuclear circulating variants were detected by targeted parallel sequencing in a minority of patients.
Collapse
Affiliation(s)
- Lara Riehl
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmUlmGermany
| | - Medhanie Mulaw
- Institute of Experimental Cancer ResearchUniversity Medical Center UlmUlmGermany
| | - Katharina Kneer
- Department of Nuclear MedicineUniversity Medical Center UlmUlmGermany
| | - Meinhard Beer
- Department of Diagnostic and Interventional RadiologyUniversity Medical Center UlmUlmGermany
| | - Ambros Beer
- Department of Nuclear MedicineUniversity Medical Center UlmUlmGermany
| | - Thomas F. Barth
- Department of PathologyUniversity Medical Center UlmUlmGermany
| | - Vladimir Benes
- Genomics Core FacilityEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Johannes Schulte
- Pediatric Oncology and HematologyCharité University MedicineBerlinGermany,German Cancer Research Center (DKFZ)German Cancer Consortium (DKTK)HeidelbergGermany
| | - Matthias Fischer
- Department of Pediatric Oncology and HematologyUniversity Children's Hospital of CologneCologneGermany
| | - Klaus‐Michael Debatin
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmUlmGermany
| | - Christian Beltinger
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmUlmGermany
| |
Collapse
|
45
|
Carbajosa G, Ali AT, Hodgkinson A. Identification of human mitochondrial RNA cleavage sites and candidate RNA processing factors. BMC Biol 2022; 20:168. [PMID: 35869520 PMCID: PMC9308231 DOI: 10.1186/s12915-022-01373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human mitochondrial genome is transcribed as long strands of RNA containing multiple genes, which require post-transcriptional cleavage and processing to release functional gene products that play vital roles in cellular energy production. Despite knowledge implicating mitochondrial post-transcriptional processes in pathologies such as cancer, cardiovascular disease and diabetes, very little is known about the way their function varies on a human population level and what drives changes in these processes to ultimately influence disease risk. Here, we develop a method to detect and quantify mitochondrial RNA cleavage events from standard RNA sequencing data and apply this approach to human whole blood data from > 1000 samples across independent cohorts. RESULTS We detect 54 putative mitochondrial RNA cleavage sites that not only map to known gene boundaries, short RNA ends and RNA modification sites, but also occur at internal gene positions, suggesting novel mitochondrial RNA cleavage junctions. Inferred RNA cleavage rates correlate with mitochondrial-encoded gene expression across individuals, suggesting an impact on downstream processes. Furthermore, by comparing inferred cleavage rates to nuclear genetic variation and gene expression, we implicate multiple genes in modulating mitochondrial RNA cleavage (e.g. MRPP3, TBRG4 and FASTKD5), including a potentially novel role for RPS19 in influencing cleavage rates at a site near to the MTATP6-COX3 junction that we validate using shRNA knock down data. CONCLUSIONS We identify novel cleavage junctions associated with mitochondrial RNA processing, as well as genes newly implicated in these processes, and detect the potential impact of variation in cleavage rates on downstream phenotypes and disease processes. These results highlight the complexity of the mitochondrial transcriptome and point to novel mechanisms through which nuclear-encoded genes can potentially influence key mitochondrial processes.
Collapse
Affiliation(s)
- Guillermo Carbajosa
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Aminah T Ali
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Alan Hodgkinson
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK.
| |
Collapse
|
46
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
47
|
Amor H, Hammadeh ME. A Systematic Review of the Impact of Mitochondrial Variations on Male Infertility. Genes (Basel) 2022; 13:genes13071182. [PMID: 35885965 PMCID: PMC9325252 DOI: 10.3390/genes13071182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
According to current estimates, infertility affects one in four couples trying to conceive. Primary or secondary infertility can be due either to both partners or only to the man or the woman. Up to 15% of infertility cases in men can be attributed to genetic factors that can lead to irreversible partial or complete spermatogenic arrest. The increased use of assisted reproductive technology (ART) has provided not only insights into the causes of male infertility but also afforded a diagnostic tool to detect and manage this condition among couples. Genes control a variety of physiological attributes, such as the hypothalamic–pituitary–gonadal axis, development, and germ cell differentiation. In the era of ART, it is important to understand the genetic basis of infertility so as to provide the most tailored therapy and counseling to couples. Genetic factors involved in male infertility can be chromosome abnormalities or single-gene disorders, mitochondrial DNA (mtDNA) mutations, Y-chromosome deletions, multifactorial disorders, imprinting disorders, or endocrine disorders of genetic origin. In this review, we discuss the role of mitochondria and the mitochondrial genome as an indicator of sperm quality and fertility.
Collapse
|
48
|
Ji X, Guo W, Gu X, Guo S, Zhou K, Su L, Yuan Q, Liu Y, Guo X, Huang Q, Xing J. Mutational profiling of mtDNA control region reveals tumor-specific evolutionary selection involved in mitochondrial dysfunction. EBioMedicine 2022; 80:104058. [PMID: 35594659 PMCID: PMC9121266 DOI: 10.1016/j.ebiom.2022.104058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations alter mitochondrial function in oxidative metabolism and play an important role in tumorigenesis. A series of studies have demonstrated that the mtDNA control region (mtCTR), which is essential for mtDNA replication and transcription, represents a mutational hotspot in human tumors. However, a comprehensive pan-cancer evolutionary pattern analysis of mtCTR mutations is urgently needed. Methods We generated a comprehensive combined dataset containing 10026 mtDNA somatic mutations from 4664 patients, covering 20 tumor types based on public and private next-generation sequencing data. Findings Our results demonstrated a significantly higher and much more variable mutation rate in mtCTR than in the coding region across different tumor types. Moreover, our data showed a remarkable distributional bias of tumor somatic mutations between the hypervariable segment (HVS) and non-HVS, with a significantly higher mutation density and average mutation sites in HVS. Importantly, the tumor-specific mutational pattern between mtCTR HVS and non-HVS was identified, which was classified into three evolutionary selection types (relaxed, moderate, and strict constraint types). Analysis of substitution patterns revealed that the prevalence of CH > TH in non-HVS greatly contributed to the mutational selection pattern of mtCTR across different tumor types. Furthermore, we found that the mutational pattern of mtCTR in the four tumor types was clearly associated with mitochondrial biogenesis, mitochondrial oxidative metabolism, and the overall survival of patients. Interpretation Our results suggest that somatic mutations in mtCTR may be shaped by tumor-specific selective pressure and are involved in tumorigenesis. Fundings National Natural Science Foundation of China [grants 82020108023, 81830070, 81872302], and Autonomous Project of State Key Laboratory of Cancer Biology, China [grants CBSKL2019ZZ06, CBSKL2019ZZ27].
Collapse
|
49
|
Schuster C, Wolpert N, Moustaid-Moussa N, Gollahon LS. Combinatorial Effects of the Natural Products Arctigenin, Chlorogenic Acid, and Cinnamaldehyde Commit Oxidation Assassination on Breast Cancer Cells. Antioxidants (Basel) 2022; 11:591. [PMID: 35326241 PMCID: PMC8945099 DOI: 10.3390/antiox11030591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Major obstacles in current breast cancer treatment efficacy include the ability of breast cancer cells to develop resistance to chemotherapeutic drugs and the off-target cytotoxicity of these drugs on normal cells, leading to debilitating side effects. One major difference between cancer and normal cells is their metabolism, as cancer cells acquire glycolytic and mitochondrial metabolism alterations throughout tumorigenesis. In this study, we sought to exploit this metabolic difference by investigating alternative breast cancer treatment options based on the application of phytochemicals. Herein, we investigated three phytochemicals, namely cinnamaldehyde (CA), chlorogenic acid (CGA), and arctigenin (Arc), regarding their anti-breast-cancer properties. These phytochemicals were administered alone or in combination to MCF-7, MDA-MB-231, and HCC1419 breast cancer or normal MCF-10A and MCF-12F breast cells. Overall, our results indicated that the combination treatments showed stronger inhibitory effects on breast cancer cells versus single treatments. However, only treatments with CA (35 μM), CGA (250 μg/mL), and the combination of CA + CGA (35 μM + 250 μg/mL) showed no significant cytotoxic effects on normal mammary epithelial cells, suggesting that Arc was the driver of normal cell cytotoxicity in all other treatments. CA + CGA and, to a lesser extent, CGA alone effectively induced breast cancer cell death accompanied by decreases in mitochondrial membrane potential, increased mitochondrial superoxide, reduced mitochondrial and glycolytic ATP production, and led to significant changes in cellular and mitochondrial morphology. Altogether, the combination of CA + CGA was determined as the best anti-breast-cancer treatment strategy due to its strong anti-breast-cancer effects without strong adverse effects on normal mammary epithelial cells. This study provides evidence that targeting the mitochondria may be an effective anticancer treatment, and that using phytochemicals or combinations thereof offers new approaches in treating breast cancer that significantly reduce off-target effects on normal cells.
Collapse
Affiliation(s)
- Caroline Schuster
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
| | - Nicholas Wolpert
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
| | - Naima Moustaid-Moussa
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX 79409, USA;
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Lauren S. Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
50
|
Evaluation of the tRNA-Leu (UUR) gene haplotype profile observed in canine mammary gland tumours based on comparative analysis with the MT-TL1 human gene. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aetiology and pathogenesis of many canine tumours are likely to be similar to cancers found in humans. This study aimed to evaluate a plausible link between changes in the tRNA-Leu (UUR) gene and the carcinogenesis process in dogs with mammary gland tumours. The whole mitochondrial DNA (mtDNA) isolated from blood and tumour tissues of 13 dogs with malignant mammary gland tumours was sequenced. The present work is the first report showing that some polymorphisms might occur at the corresponding positions in the human and canine mtDNA genome, which in turn may provoke similar deleterious effects. The homology between the human MT-TL1 and canine tRNA-Leu (UUR) genes was 84%. After resequencing of the whole mitochondrial DNA genome with the use of the NGS technology, two polymorphisms in two haplotypes were identified: m.2683G>A (observed in 18 out of 27 samples) and m.2678_2679insG (27 out of 27 samples). The m.2683G>A polymorphism corresponded to a deleterious change at m.3243A>G, which is linked with MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis, Stroke-like episodes) syndrome and with different types of cancers in humans as well. The comparative analysis of MT-TL1 and tRNA-Leu (UUR) led us to hypothesise that the m.2678_2679insG and m.2683G>A polymorphisms might influence the dog’s condition and might be linked with tumourigenesis, as observed in humans.
Collapse
|