1
|
Rahmé R, Resnick-Silverman L, Anguiano V, Campbell MJ, Fenaux P, Manfredi JJ. Mutant p53 regulates a distinct gene set by a mode of genome occupancy that is shared with wild type. EMBO Rep 2025; 26:1315-1343. [PMID: 39875582 PMCID: PMC11893899 DOI: 10.1038/s44319-025-00375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression. In contrast to a dominant-negative or inhibitory role, the presence of either mutant p53 or Mdm2 actually enhances the occupancy of wild type p53 on many canonical targets. The C-terminal 19 amino acids of wild type p53 suppress the p53 response allowing for survival at sublethal doses of radiation. Further, the p53 mutant 172H is shown to occupy genes and regulate their expression via non-canonical means that are shared with wild type p53. This results in the heterozygous 172H/+ genotype having an expanded transcriptome compared to wild type p53 + /+.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université de Paris, Paris, France
| | - Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vincent Anguiano
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Pierre Fenaux
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Service Hématologie Seniors, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Voropaeva EN, Orlov YL, Loginova AB, Seregina OB, Maksimov VN, Pospelova TI. Deregulation mechanisms and therapeutic opportunities of p53-responsive microRNAs in diffuse large B-cell lymphoma. PeerJ 2025; 13:e18661. [PMID: 39802185 PMCID: PMC11720970 DOI: 10.7717/peerj.18661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/17/2024] [Indexed: 01/16/2025] Open
Abstract
Here, we have discussed the molecular mechanisms of p53-responsive microRNAs dysregulation in response to genotoxic stress in diffuse large B-cell lymphoma (DLBCL) patients. The role of micro ribonucleic acids (microRNAs) in p53-signaling cellular stress has been studied. MicroRNAs are the small non-coding RNAs, which regulate genes expression at post-transcriptional level. Many of them play a crucial role in carcinogenesis and may act as oncogenes or suppressor of tumor growth. The understanding of the effect of p53-responsive microRNA dysregulation on oncogenesis achieved in recent decades opens wide opportunities for the diagnosis, prediction and of microRNA-based cancer therapy. Development of new bioinformatics tools and databases for microRNA supports DLBCL research. We overview the studies on the role of miRNAs in regulating gene expression associated with tumorigenesis processes, with particular emphasis on their role as tumor growth-suppressing factors. The starting point is a brief description of the classical microRNA biogenesis pathway and the role of p53 in regulating the expression of these molecules. We analyze various molecular mechanisms leading to this dysregulation, including mutations in the TP53 gene, DNA methylation, changes in host-genes expression or microRNA gene copy number, mutations in microRNA and microRNA biogenesis genes.
Collapse
Affiliation(s)
- Elena N. Voropaeva
- Research Institute of Internal and Preventive Medicine - Branch of the Federal State Budget Scientific Institution “The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences”, Novosibirsk, Russia
- Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Yuriy L. Orlov
- The Digital Health Center, I.M Sechenov First Moscow State Medical University, Moscow, Russia
- Agrarian and Technological Institute, Patrice Lumumba Peoples’ Friendship University of Russia, Moscow, Russia
| | - Anastasia B. Loginova
- Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Olga B. Seregina
- Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Vladimir N. Maksimov
- Research Institute of Internal and Preventive Medicine - Branch of the Federal State Budget Scientific Institution “The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences”, Novosibirsk, Russia
- Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Tatiana I. Pospelova
- Novosibirsk State Medical University of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
3
|
Meng W, Yu S, Li Y, Wang H, Feng Y, Sun W, Liu Y, Sun S, Liu H. Mutant p53 achieves function by regulating EGR1 to induce epithelial mesenchymal transition. Tissue Cell 2024; 90:102510. [PMID: 39126833 DOI: 10.1016/j.tice.2024.102510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The epithelial-mesenchymal transition (EMT) plays a crucial role in lung cancer metastasis, rendering it a promising therapeutic target. Research has shown that non-small cell lung cancer (NSCLC) with p53 mutations exhibits an increased tendency for cancer metastasis. However, the exact contribution of the p53-R273H mutation to tumor metastasis remains uncertain in the current literature. Our study established the H1299-p53-R273H cell model successfully by transfecting the p53-R273H plasmid into H1299 cells. We observed that p53-R273H promotes cell proliferation, migration, invasion, and EMT through CCK-8, wound healing, transwell, western blot and immunofluorescence assays. Notably, the expression of EGR1 was increased in H1299-p53-R273H cells. Knocking out EGR1 in these cells hindered the progression of EMT. ChIP-PCR experiments revealed that p53-R273H binds to the EGR1 promoter sequence, thereby regulating its expression. These findings suggest that p53-R273H triggers EMT by activating EGR1, thereby offering a potential therapeutic approach for lung cancer treatment.
Collapse
Affiliation(s)
- Weipei Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Yu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China
| | - Yan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Haichen Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuqing Feng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Wanyue Sun
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Haifeng Liu
- Interventional Center, Jilin Cancer Hospital, No. 1018 Huguang Rd, Chaoyang, Changchun 130012, China.
| |
Collapse
|
4
|
George SA, Kotapalli V, Ramaswamy P, Kumar R, Gowrishankar S, Uppin SG, Bashyam MD. Novel oncogenic transcriptional targets of mutant p53 in esophageal squamous cell carcinoma. J Cell Biochem 2024; 125:e30534. [PMID: 38358025 DOI: 10.1002/jcb.30534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/01/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Missense mutations in the DNA binding domain of p53 are observed frequently in esophageal squamous cell carcinoma (ESCC). Recent studies have revealed the potentially oncogenic transcriptional networks regulated by mutant p53 proteins. However, majority of these studies have focused on common "hotspot" p53 mutations while rarer mutations are poorly characterized. In this study, we report the characterization of rare, "non-hotspot" p53 mutations from ESCC. In vitro tumorigenic assays performed following ectopic-expression of certain "non-hotspot" mutant p53 proteins caused enhancement of oncogenic properties in squamous carcinoma cell lines. Genome-wide transcript profiling of ESCC tumor samples stratified for p53 status, revealed several genes exhibiting elevated transcript levels in tumors harboring mutant p53. Of these, ARF6, C1QBP, and TRIM23 were studied further. Reverse transcription-quantitative PCR (RT-qPCR) performed on RNA isolated from ESCC tumors revealed significant correlation of TP53 transcript levels with those of the three target genes. Ectopic expression of wild-type and several mutant p53 forms followed by RT-qPCR, chromatin affinity-purification (ChAP), and promoter-luciferase assays indicated the exclusive recruitment of p53 mutants-P190T and P278L, to the target genes leading to the activation of expression. Several functional assays following knockdown of the target genes revealed a significant suppression of tumorigenicity in squamous carcinoma cell lines. Rescue experiments confirmed the specificity of the knockdown. The tumorigenic effects of the genes were confirmed in nude mice xenograft assays. This study has therefore identified novel oncogenic targets of "non-hotspot" mutant p53 proteins relevant for ESCC besides validating the functional heterogeneity of the spectrum of tumor-specific p53 mutations.
Collapse
Affiliation(s)
- Sara A George
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Viswakalyan Kotapalli
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Pandilla Ramaswamy
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Raju Kumar
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | | - Murali D Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Sack T, Dhavarasa P, Szames D, O'Brien S, Angers S, Kelley SO. CRISPR Screening in Tandem with Targeted mtDNA Damage Reveals WRNIP1 Essentiality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560559. [PMID: 37873237 PMCID: PMC10592966 DOI: 10.1101/2023.10.03.560559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A major impediment to the characterization of mtDNA repair mechanisms, in comparison to nuclear DNA repair mechanisms, is the difficulty of specifically addressing mitochondrial damage. Using a mitochondria-penetrating peptide, we can deliver DNA-damaging agents directly to mitochondria, bypassing the nuclear compartment. Here, we describe the use of a mtDNA-damaging agent in tandem with CRISPR/Cas9 screening for the genome-wide discovery of factors essential for mtDNA damage response. Using mitochondria-targeted doxorubicin (mtDox) we generate mtDNA double-strand breaks (mtDSBs) specifically in this organelle. Combined with an untargeted Dox screen, we identify genes with significantly greater essentiality during mitochondrial versus nuclear DNA damage. We characterize the essentially of our top hit - WRNIP1 - observed here for the first time to respond to mtDNA damage. We further investigate the mitochondrial role of WRNIP1 in innate immune signaling and nuclear genome maintenance, outlining a model that experimentally supports mitochondrial turnover in response to mtDSBs.
Collapse
|
6
|
Rasouli M, Khakshournia S, Vakili O, Dastghaib S, Seghatoleslam A, Shafiee SM. The crosstalk between ubiquitin-conjugating enzyme E2Q1 and p53 in colorectal cancer: An in vitro analysis. Med Oncol 2023; 40:199. [PMID: 37294480 DOI: 10.1007/s12032-023-02039-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
Colorectal cancer (CRC) is a prevalent gastrointestinal neoplasm that ranks fourth in terms of cancer-related deaths worldwide. In the process of CRC progression, multiple ubiquitin-conjugating enzymes (E2s) are involved; UBE2Q1 is one of those newly identified E2s that is markedly expressed in human colorectal tumors. Since p53 is a well-known tumor suppressor and defined as a key factor to be targeted by the ubiquitin-proteasome system, we hypothesized that UBE2Q1 might contribute to CRC progression through the modulation of p53. Using the lipofection method, the cultured SW480 and LS180 cells were transfected with the UBE2Q1 ORF-containing pCMV6-AN-GFP vector. Then, quantitative RT-PCR was used to assay the mRNA expression levels of p53's target genes, i.e., Mdm2, Bcl2, and Cyclin E. Moreover, Western blot analysis was performed to confirm the cellular overexpression of UBE2Q1 and assess the protein levels of p53, pre- and post-transfection. The expression of p53's target genes were cell line-dependent except for Mdm2 that was consistent with the findings of p53. The results of Western blotting demonstrated that the protein levels of p53 were greatly lower in UBE2Q1-transfected SW480 cells compared to the control SW480 cells. However, the reduced levels of p53 protein were not remarkable in the transfected LS180 cells compared to the control cells. The suppression of p53 is believed to be the result of UBE2Q1-dependent ubiquitination and its subsequent proteasomal degradation. Furthermore, the ubiquitination of p53 can act as a signal for degradation-independent functions, such as nuclear export and suppressing the p53's transcriptional activities. In this context, the decreased Mdm2 levels can moderate the proteasome-independent mono-ubiquitination of p53. The ubiquitinated p53 modulates the transcriptional levels of target genes. Therefore, the up-modulation of UBE2Q1 may influence the transcriptional activities depending on p53, and thereby contributes to CRC progression through regulating the p53.
Collapse
Affiliation(s)
- Maryam Rasouli
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Khakshournia
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71348-14336, Iran
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71348-14336, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Seghatoleslam
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71348-14336, Iran.
| |
Collapse
|
7
|
Saini H, Choudhary M, Sharma H, Chowdhury S, Mukherjee S, Chowdhury R. Chloroquine induces transitory attenuation of proliferation of human lung cancer cells through regulation of mutant P53 and YAP. Mol Biol Rep 2023; 50:1045-1058. [PMID: 36385665 DOI: 10.1007/s11033-022-08072-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Non-small cell lung carcinoma (NSCLC) is the most common cause of cancer-associated deaths worldwide. Though recent development in targeted therapy has improved NSCLC prognosis, yet there is an unmet need to identify novel causative factors and appropriate therapeutic regimen against NSCLCs. METHODS AND RESULTS In this study, we identify key molecular factors de-regulated in NSCLCs. Analyze their expression by real-time PCR and immunoblot; map their localization by immuno-fluorescence microscopy. We further propose an FDA approved drug, chloroquine (CQ) that affects the function of the molecular factors and hence can be repurposed as a therapeutic strategy against NSCLCs. Available NSCLC mutation data reflects a high probabilistic chance of patients harboring a p53 mutation, especially a gain of function (GOF)-R273H mutation. The GOF-P53 mutation enables the P53 protein to potentially interact with non-canonical protein partners facilitating oncogenesis. In this context, analysis of existing transcriptomic data from R273H-P53 expressing cells shows a concomitant up-regulation of Yes-associated protein (YAP) transcriptional targets and its protein partner TEAD1 in NSCLCs, suggesting a possible link between R273H-P53 and YAP. We therefore explored the inter-dependence of R273H-P53 and YAP in NSCLC cells. They were found to co-operatively regulate NSCLC proliferation. Genetic or pharmacological inhibition of YAP and GOF-P53 resulted in sensitization of NSCLC cells. Further analysis of pathways controlled by GOF-P53 and YAP showed that they positively regulate the cellular homeostatic process- autophagy to mediate survival. We hence postulated that a modulation of autophagy might be a potent strategy to curb proliferation. In accordance to above, autophagy inhibition, especially with the FDA-approved drug- chloroquine (CQ) resulted in cytoplasmic accumulation and reduced transcriptional activity of GOF-P53 and YAP, leading to growth arrest of NSCLC cells. CONCLUSION Our study highlights the importance of GOF-P53 and YAP in NSCLC proliferation and proposes autophagy inhibition as an efficient strategy to attenuate NSCLC tumorigenesis.
Collapse
Affiliation(s)
- Heena Saini
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Mahima Choudhary
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Harshita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
8
|
Yang Y, Tan S, Han Y, Huang L, Yang R, Hu Z, Tao Y, Oyang L, Lin J, Peng Q, Jiang X, Xu X, Xia L, Peng M, Wu N, Tang Y, Li X, Liao Q, Zhou Y. The role of tripartite motif-containing 28 in cancer progression and its therapeutic potentials. Front Oncol 2023; 13:1100134. [PMID: 36756159 PMCID: PMC9899900 DOI: 10.3389/fonc.2023.1100134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Tripartite motif-containing 28 (TRIM28) belongs to tripartite motif (TRIM) family. TRIM28 not only binds and degrades its downstream target, but also acts as a transcription co-factor to inhibit gene expression. More and more studies have shown that TRIM28 plays a vital role in tumor genesis and progression. Here, we reviewed the role of TRIM28 in tumor proliferation, migration, invasion and cell death. Moreover, we also summarized the important role of TRIM28 in tumor stemness sustainability and immune regulation. Because of the importance of TRIM28 in tumors, TIRM28 may be a candidate target for anti-tumor therapy and play an important role in tumor diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lisheng Huang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Ruiqian Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Zifan Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Yi Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Yujuan Zhou, ; Qianjin Liao, ; Xiaoling Li,
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, Hunan, China,*Correspondence: Yujuan Zhou, ; Qianjin Liao, ; Xiaoling Li,
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, Hunan, China,*Correspondence: Yujuan Zhou, ; Qianjin Liao, ; Xiaoling Li,
| |
Collapse
|
9
|
Brown K, Jenkins LMM, Crooks DR, Surman DR, Mazur SJ, Xu Y, Arimilli BS, Yang Y, Lane AN, Fan TWM, Schrump DS, Linehan WM, Ripley RT, Appella E. Targeting mutant p53-R248W reactivates WT p53 function and alters the onco-metabolic profile. Front Oncol 2023; 12:1094210. [PMID: 36713582 PMCID: PMC9874945 DOI: 10.3389/fonc.2022.1094210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
TP53 is the most commonly mutated gene in cancer, and gain-of-function mutations have wide-ranging effects. Efforts to reactivate wild-type p53 function and inhibit mutant functions have been complicated by the variety of TP53 mutations. Identified from a screen, the NSC59984 compound has been shown to restore activity to mutant p53 in colorectal cancer cells. Here, we investigated its effects on esophageal adenocarcinoma cells with specific p53 hot-spot mutations. NSC59984 treatment of cells reactivated p53 transcriptional regulation, inducing mitochondrial intrinsic apoptosis. Analysis of its effects on cellular metabolism demonstrated increased utilization of the pentose phosphate pathway and inhibition of glycolysis at the fructose-1,6-bisphosphate to fructose 6-phosphate junction. Furthermore, treatment of cells with NSC59984 increased reactive oxygen species production and decreased glutathione levels; these effects were enhanced by the addition of buthionine sulfoximine and inhibited by N-acetyl cysteine. We found that the effects of NSC59984 were substantially greater in cells harboring the p53 R248W mutation. Overall, these findings demonstrate p53-dependent effects of NSC59984 on cellular metabolism, with increased activity in cells harboring the p53 R248W mutation. This research highlights the importance of defining the mutational status of a particular cancer to create a patient-centric strategy for the treatment of p53-driven cancers.
Collapse
Affiliation(s)
- Kate Brown
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States,*Correspondence: Kate Brown,
| | - Lisa M. Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel R. Crooks
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Deborah R. Surman
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sharlyn J. Mazur
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuan Xu
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bhargav S. Arimilli
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, UK, Lexington, KY, United States
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, UK, Lexington, KY, United States
| | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - R. Taylor Ripley
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
10
|
Aguilar A, Wang S. Therapeutic Strategies to Activate p53. Pharmaceuticals (Basel) 2022; 16:24. [PMID: 36678521 PMCID: PMC9866379 DOI: 10.3390/ph16010024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The p53 protein has appropriately been named the "guardian of the genome". In almost all human cancers, the powerful tumor suppressor function of p53 is compromised by a variety of mechanisms, including mutations with either loss of function or gain of function and inhibition by its negative regulators MDM2 and/or MDMX. We review herein the progress made on different therapeutic strategies for targeting p53.
Collapse
Affiliation(s)
- Angelo Aguilar
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Immunoglobulin superfamily 9 (IGSF9) is trans-activated by p53, inhibits breast cancer metastasis via FAK. Oncogene 2022; 41:4658-4672. [PMID: 36088502 PMCID: PMC9546770 DOI: 10.1038/s41388-022-02459-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
AbstractMetastasis of breast cancer represents the major reason for its poor prognosis, leading to high mortality. In breast cancer, a tumor suppressor gene TP53 is commonly mutated. TP53 mutation leads to an altered expression of various genes, an event that is associated with aggressive tumor and is a strong independent marker for survival. In this study, we identified a novel p53 target gene, immunoglobulin superfamily 9 (IGSF9). IGSF9 is generally down-regulated in breast cancer tissues. Loss of IGSF9 is associated with frequent metastasis and poor prognosis of breast cancer patients. Wild-type p53, but not R175H mutant, trans-activates the transcription of IGSF9 via binding to its promoter (−137 to −131 bp), inhibits epithelial-mesenchymal transition (EMT), consequently the inhibition of breast cancer cells migration and invasion. IGSF9 interacts with focal adhesion kinase (FAK) and inhibits FAK/AKT signaling activity. PND1186, FAK inhibitor, inhibits breast cancer metastasis induced by IGSF9 knockdown in vitro and in vivo. Taken together, IGSF9 is trans-activated by p53 and inhibits breast cancer metastasis by modulating FAK/AKT signaling pathway. IGSF9 could serve as a prognostic marker and potential therapeutic target for breast cancer.
Collapse
|
12
|
Li–Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment. Cancers (Basel) 2022; 14:cancers14153664. [PMID: 35954327 PMCID: PMC9367397 DOI: 10.3390/cancers14153664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Li–Fraumeni Syndrome (LFS) is a rare tumor predisposition syndrome in which the tumor suppressor TP53 gene is mutated in the germ cell population. LFS patients develop a broad spectrum of cancers in their lifetime. The risk to develop these tumors is not decreased by any type of treatment and if the analysis of the TP53 mutational status in the family members was not possible, tumors are often diagnosed in already advanced stages. This review aims to report the evidence for novel mechanisms of tumor onset related to germline TP53 mutations and possible treatments. Abstract Li–Fraumeni syndrome (LFS) is a rare familial tumor predisposition syndrome with autosomal dominant inheritance, involving germline mutations of the TP53 tumor suppressor gene. The most frequent tumors that arise in patients under the age of 45 are osteosarcomas, soft-tissue sarcomas, breast tumors in young women, leukemias/lymphomas, brain tumors, and tumors of the adrenal cortex. To date, no other gene mutations have been associated with LFS. The diagnosis is usually confirmed by genetic testing for the identification of TP53 mutations; therefore, these mutations are considered the biomarkers associated with the tumor spectrum of LFS. Here, we aim to review novel molecular mechanisms involved in the oncogenic functions of mutant p53 in LFS and to discuss recent new diagnostic and therapeutic approaches exploiting TP53 mutations as biomarkers and druggable targets.
Collapse
|
13
|
Hassin O, Nataraj NB, Shreberk-Shaked M, Aylon Y, Yaeger R, Fontemaggi G, Mukherjee S, Maddalena M, Avioz A, Iancu O, Mallel G, Gershoni A, Grosheva I, Feldmesser E, Ben-Dor S, Golani O, Hendel A, Blandino G, Kelsen D, Yarden Y, Oren M. Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients. Nat Commun 2022; 13:2800. [PMID: 35589715 PMCID: PMC9120190 DOI: 10.1038/s41467-022-30481-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the differential impact of distinct TP53 mutations on disease features may make TP53 mutational information more actionable, holding potential for better precision-based medicine.
Collapse
Affiliation(s)
- Ori Hassin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martino Maddalena
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Avioz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Anat Gershoni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Grosheva
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - David Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Yuan K, Lan J, Xu L, Feng X, Liao H, Xie K, Wu H, Zeng Y. Long noncoding RNA TLNC1 promotes the growth and metastasis of liver cancer via inhibition of p53 signaling. Mol Cancer 2022; 21:105. [PMID: 35477447 PMCID: PMC9044722 DOI: 10.1186/s12943-022-01578-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in cancer development and progression. However, their biological roles and function mechanisms in liver cancer remain largely unknown. Methods RNA-seq was performed with clinical hepatoma tissues and paired adjacent normal liver tissues to identify differentially expressed lncRNAs. qPCR was utilized to examine the expression levels of lncRNAs. We studied the function of TLNC1 in cell growth and metastasis of hepatoma with both cell and mouse models. RNA-seq, RNA pull-down coupled with mass spectrometry, RNA immunoprecipitation, dual luciferase reporter assay, and surface plasmon resonance analysis were used to analyze the functional mechanism of TLNC1. Results Based on the intersection of our own RNA-seq, TCGA RNA-seq, and TCGA survival analysis data, TLNC1 was identified as a potential tumorigenic lncRNA of liver cancer. TLNC1 significantly enhanced the growth and metastasis of hepatoma cells both in vitro and in vivo. TLNC1 exerted its tumorigenic function through interaction with TPR and inducing the TPR-mediated transportation of p53 from nucleus to cytoplasm, thus repressing the transcription of p53 target genes and finally contributing to the progression of liver cancer. Conclusions TLNC1 is a promising prognostic factor of liver cancer, and the TLNC1-TPR-p53 axis can serve as a potential therapeutic target for hepatoma treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01578-w.
Collapse
Affiliation(s)
- Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiang Lan
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xu
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuping Feng
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotian Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Kunlin Xie
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Hong Wu
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China. .,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China. .,Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Ferrero A, Borghese M, Restaino S, Puppo A, Vizzielli G, Biglia N. Predicting Response to Anthracyclines in Ovarian Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4260. [PMID: 35409939 PMCID: PMC8998349 DOI: 10.3390/ijerph19074260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
(1) Background: Anthracyclines are intriguing drugs, representing one of the cornerstones of both first and subsequent-lines of chemotherapy in ovarian cancer (OC). Their efficacy and mechanisms of action are related to the hot topics of OC clinical research, such as BRCA status and immunotherapy. Prediction of response to anthracyclines is challenging and no markers can predict certain therapeutic success. The current narrative review provides a summary of the clinical and biological mechanisms involved in the response to anthracyclines. (2) Methods: A MEDLINE search of the literature was performed, focusing on papers published in the last two decades. (3) Results and Conclusions: BRCA mutated tumors seem to show a higher response to anthracyclines compared to sporadic tumors and the severity of hand-foot syndrome and mucositis may be a predictive marker of PLD efficacy. CA125 can be a misleading marker of clinical response during treatment with anthracyclines, the response of which also appears to depend on OC histology. Immunochemistry, in particular HER-2 expression, could be of some help in predicting the response to such drugs, and high levels of mutated p53 appear after exposure to anthracyclines and impair their antitumor effect. Finally, organoids from OC are promising for drug testing and prediction of response to chemotherapy.
Collapse
Affiliation(s)
- Annamaria Ferrero
- Academic Department of Gynaecology and Obstetrics, Mauriziano Hospital, 10128 Torino, Italy;
| | - Martina Borghese
- Department of Gynecology and Obstetrics, Santa Croce and Carle Hospital, 12100 Cuneo, Italy; (M.B.); (A.P.)
| | - Stefano Restaino
- Obstetrics and Gynecology Unit, Department of Obstetrics, Gynecology and Pediatrics, Department of Medical Area DAME, Udine University Hospital, 33100 Udine, Italy;
| | - Andrea Puppo
- Department of Gynecology and Obstetrics, Santa Croce and Carle Hospital, 12100 Cuneo, Italy; (M.B.); (A.P.)
| | - Giuseppe Vizzielli
- Clinic of Obstetrics and Gynaecology, Department of Medical Area (DAME), University of Udine, “Santa Maria della Misericordia” Hospital, Azienda Sanitaria Ospedaliera Friuli Centrale, 33100 Udine, Italy;
| | - Nicoletta Biglia
- Academic Department of Gynaecology and Obstetrics, Mauriziano Hospital, 10128 Torino, Italy;
| |
Collapse
|
16
|
Kumari S, Sharma V, Tiwari R, Maurya JP, Subudhi BB, Senapati D. Therapeutic potential of p53 reactivation in prostate cancer: Strategies and opportunities. Eur J Pharmacol 2022; 919:174807. [DOI: 10.1016/j.ejphar.2022.174807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/25/2022]
|
17
|
Butera G, Manfredi M, Fiore A, Brandi J, Pacchiana R, De Giorgis V, Barberis E, Vanella V, Galasso M, Scupoli MT, Marengo E, Cecconi D, Donadelli M. Tumor Suppressor Role of Wild-Type P53-Dependent Secretome and Its Proteomic Identification in PDAC. Biomolecules 2022; 12:305. [PMID: 35204804 PMCID: PMC8869417 DOI: 10.3390/biom12020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Virginia Vanella
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
- Department of Medicine, Section of Hematology, University of Verona, 37134 Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, 37134 Verona, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| |
Collapse
|
18
|
Genetic Events Inhibiting Apoptosis in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092167. [PMID: 33946435 PMCID: PMC8125500 DOI: 10.3390/cancers13092167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Despite the genetic heterogeneity of the disease, most patients are initially treated with a combination of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), but relapse occurs in ~50% of patients. One of the hallmarks of DLBCL is the occurrence of genetic events that inhibit apoptosis, which contributes to disease development and resistance to therapy. These events can affect the intrinsic or extrinsic apoptotic pathways, or their modulators. Understanding the factors that contribute to inhibition of apoptosis in DLBCL is crucial in order to be able to develop targeted therapies and improve outcomes, particularly in relapsed and refractory DLBCL (rrDLBCL). This review provides a description of the genetic events inhibiting apoptosis in DLBCL, their contribution to lymphomagenesis and chemoresistance, and their implication for the future of DLBCL therapy. Abstract Diffuse large B cell lymphoma (DLBCL) is curable with chemoimmunotherapy in ~65% of patients. One of the hallmarks of the pathogenesis and resistance to therapy in DLBCL is inhibition of apoptosis, which allows malignant cells to survive and acquire further alterations. Inhibition of apoptosis can be the result of genetic events inhibiting the intrinsic or extrinsic apoptotic pathways, as well as their modulators, such as the inhibitor of apoptosis proteins, P53, and components of the NF-kB pathway. Mechanisms of dysregulation include upregulation of anti-apoptotic proteins and downregulation of pro-apoptotic proteins via point mutations, amplifications, deletions, translocations, and influences of other proteins. Understanding the factors contributing to resistance to apoptosis in DLBCL is crucial in order to be able to develop targeted therapies that could improve outcomes by restoring apoptosis in malignant cells. This review describes the genetic events inhibiting apoptosis in DLBCL, provides a perspective of their interactions in lymphomagenesis, and discusses their implication for the future of DLBCL therapy.
Collapse
|
19
|
Nannapaneni S, Griffith CC, Magliocca KR, Chen W, Lyu X, Chen Z, Wang D, Wang X, Shin DM, Chen ZG, Saba NF. Co-expression of fibroblast growth factor receptor 3 with mutant p53, and its association with worse outcome in oropharyngeal squamous cell carcinoma. PLoS One 2021; 16:e0247498. [PMID: 33626078 PMCID: PMC7904228 DOI: 10.1371/journal.pone.0247498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor receptor 3 (FGFR3) is expressed in squamous cell carcinoma of the head and neck (SCCHN) including oropharyngeal squamous cell carcinoma (OPSCC) and is a potential therapeutic target. However, information on its correlation with other relevant cancer related proteins stratified by p16 status and its prognostic significance in OPSCC is limited. We examined FGFR3 expression and its correlation with clinical characteristics, p16 status, and mutant p53 (mp53) among 220 retrospectively collected OPSCC cases and 40 prospectively collected SCCHN cases, including a majority of OPSCC. Correlations of FGFR3 Weighted Index (WI) with p16 status and mp53 WI as well as its association with disease-free survival (DFS) and overall survival (OS) were evaluated. FGFR3 expression was detected in 61% and 70% of cases in cohorts 1 and 2, respectively. FGFR3 level was significantly higher in p16-negative tumors in both cohorts (p<0.001 and 0.006). FGFR3 expression was highly correlated with mp53 expression in both p16 + and p16- OPSCC (p<0.0001 and p = 0.0006, respectively). In cohort 1, univariate analysis showed that FGFR3 was associated with DFS but not OS. Kaplan-Meier analysis showed that higher FGFR3 and mp53 level correlated with worse DFS (p = 0.025) and OS (p = 0.009). As expected, p16 positive status was associated with improved OS and DFS (p<0.001 for both). Our results suggest that high FGFR3 expression is associated with p16 negative status and mp53 expression in OPSCC and correlates with a worse clinical outcome. The biological relationship between FGFR3 and mp53 in OPSCC deserves further investigation.
Collapse
Affiliation(s)
- Sreenivas Nannapaneni
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia, United States of America
| | | | - Kelly R. Magliocca
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Wanqi Chen
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - Xueying Lyu
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - Zhengjia Chen
- Department of Epidemiology & Biostatistics, University of Illinois Cancer Center, Chicago, Illinois, United States of America
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Zhuo G. Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (NFS); (ZGC)
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (NFS); (ZGC)
| |
Collapse
|
20
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
21
|
Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer 2021; 124:102-114. [PMID: 33204027 PMCID: PMC7784720 DOI: 10.1038/s41416-020-01149-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.
Collapse
Affiliation(s)
- Nikita M Novikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Y Zolotaryova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| |
Collapse
|
22
|
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry 2021; 26:280-295. [PMID: 32382138 DOI: 10.1038/s41380-020-0760-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Several epidemiological studies show an inverse association between cancer and Alzheimer's disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and "healthy", while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer's disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.
| |
Collapse
|
23
|
Integrative p53, micro-RNA and Cathepsin Protease Co-Regulatory Expression Networks in Cancer. Cancers (Basel) 2020; 12:cancers12113454. [PMID: 33233599 PMCID: PMC7699684 DOI: 10.3390/cancers12113454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the transcriptional regulation of cathepsin protease genes by micro-RNAs that are connected to p53 activation. While it has been demonstrated that the p53 protein can directly regulate some cathepsin genes and the expression of their upstream regulatory micro-RNAs, very little is known about what input the p53 isoform proteins may have in regulating this relationship. Herein, we draw attention to this important regulatory aspect in the context of describing mechanisms that are being established for the micro-RNA regulation of cathepsin protease genes and their collective use in diagnostic or prognostic assays. Abstract As the direct regulatory role of p53 and some of its isoform proteins are becoming established in modulating gene expression in cancer research, another aspect of this mode of gene regulation that has captured significant interest over the years is the mechanistic interplay between p53 and micro-RNA transcriptional regulation. The input of this into modulating gene expression for some of the cathepsin family members has been viewed as carrying noticeable importance based on their biological effects during normal cellular homeostasis and cancer progression. While this area is still in its infancy in relation to general cathepsin gene regulation, we review the current p53-regulated micro-RNAs that are generating significant interest through their regulation of cathepsin proteases, thereby strengthening the link between activated p53 forms and cathepsin gene regulation. Additionally, we extend our understanding of this developing relationship to how such micro-RNAs are being utilized as diagnostic or prognostic tools and highlight their future uses in conjunction with cathepsin gene expression as potential biomarkers within a clinical setting.
Collapse
|
24
|
Elsherbini AM, Sheweita SA, Sultan AS. Pterostilbene as a Phytochemical Compound Induces Signaling Pathways Involved in the Apoptosis and Death of Mutant P53-Breast Cancer Cell Lines. Nutr Cancer 2020; 73:1976-1984. [PMID: 32900227 DOI: 10.1080/01635581.2020.1817513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Pterostilbene is a natural nonflavonoid polyphenolic compound. It shows a remarkable range of biological activities, including antiproliferative, antiinflammatory, and antioxidant activity. However, the mechanism of action of PT in breast cancer cells containing mutant p53 protein has not been fully elucidated. Therefore, the present study was aimed at investigating the influence of PT on signaling pathways involved in the apoptosis of mutant p53-breast cancer cell lines. Immunocytochemistry and Western Immunoblotting techniques were used in this study. The present data showed that the viabilities and the proliferations of MDA-MB-231 and T-47D decreased significantly (P < 0.001) after treatment with different concentrations of PT. In addition, the morphological characteristics of both cell lines were changed after treatment with PT. Decreased protein expression of mutant p53 (R280 K, L194F) in MDA-MB-231 and T-47D breast cancer cell lines has also been achieved. In addition, overexpression of pro-apoptotic (Bax) protein, caspase-3 activity and histone release were increased after treatment of both cell lines with different PT concentrations. Furthermore, the protein expressions of cyclin D1, mTOR, and oncogenic β-catenin were significantly downregulated after treatment of both cell lines with PT. In conclusion, downregulations of protein expression of mutant p53, cyclin D1, mTOR, and β-catenin were increased after both cell lines had been treated with pterostilbene. PT could point to a promising use against the development and the progression of breast cancer as a natural therapeutic agent.
Collapse
Affiliation(s)
- Asmaa M Elsherbini
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
- Department of Clinical Biochemistry, King Khalid University, Abha, Saudi Arabia
| | - Ahmed S Sultan
- Department of Biochemistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
25
|
Khadge S, Sharp JG, Thiele GM, McGuire TR, Talmadge JE. Fatty Acid Mediators in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1259:125-153. [PMID: 32578175 DOI: 10.1007/978-3-030-43093-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with cancer frequently overexpress inflammatory cytokines with an associated neutrophilia both of which may be downregulated by diets with high omega-3 polyunsaturated fatty acids (ω-3 PUFA). The anti-inflammatory activity of dietary ω-3 PUFA has been suggested to have anticancer properties and to improve survival of cancer patients. Currently, the majority of dietary research efforts do not differentiate between obesity and dietary fatty acid consumption as mediators of inflammatory cell expansion and tumor microenvironmental infiltration, initiation, and progression. In this chapter, we discuss the relationships between dietary lipids, inflammation, neoplasia and strategies to regulate these relationships. We posit that dietary composition, notably the ratio of ω-3 vs. ω-6 PUFA, regulates tumor initiation and progression and the frequency and sites of metastasis that, together, impact overall survival (OS). We focus on three broad topics: first, the role of dietary lipids in chronic inflammation and tumor initiation, progression, and regression; second, lipid mediators linking inflammation and cancer; and third, dietary lipid regulation of murine and human tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Saraswoti Khadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Vanderbilt University, Nashville, TN, USA
| | - John Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - James E Talmadge
- Department of Pathology and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
26
|
Structural characterization of a heteropolysaccharide from fruit of Chaenomelese speciosa (Sweet) Nakai and its antitumor activity. Carbohydr Polym 2020; 236:116065. [DOI: 10.1016/j.carbpol.2020.116065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/08/2023]
|
27
|
Di Agostino S. The Impact of Mutant p53 in the Non-Coding RNA World. Biomolecules 2020; 10:biom10030472. [PMID: 32204575 PMCID: PMC7175150 DOI: 10.3390/biom10030472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), micro RNAs (miRNAs), and extracellular RNAs (exRNAs) are new groups of RNAs with regulation activities that have low or no protein-coding ability. Emerging evidence suggests that deregulated expression of these non-coding RNAs is associated with the induction and progression of diverse tumors throughout epigenetic, transcriptional, and post-transcriptional modifications. A consistent number of non-coding RNAs (ncRNAs) has been shown to be regulated by p53, the most important tumor suppressor of the cells frequently mutated in human cancer. It has been shown that some mutant p53 proteins are associated with the loss of tumor suppressor activity and the acquisition of new oncogenic functions named gain-of-function activities. In this review, we highlight recent lines of evidence suggesting that mutant p53 is involved in the expression of specific ncRNAs to gain oncogenic functions through the creation of a complex network of pathways that influence each other.
Collapse
|
28
|
Farooqi K, Ghazvini M, Pride LD, Mazzella L, White D, Pramanik A, Bargonetti J, Moore CW. A Protein in the Yeast Saccharomyces cerevisiae Presents DNA Binding Homology to the p53 Checkpoint Protein and Tumor Suppressor. Biomolecules 2020; 10:E417. [PMID: 32156076 PMCID: PMC7175211 DOI: 10.3390/biom10030417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Saccharomyces cerevisiae does not contain a p53 homolog. Utilizing this yeast as an in vivo test tube model, our aim was to investigate if a yeast protein would show p53 DNA binding homology. Electrophoretic mobility shift analyses revealed the formation of specific DNA-protein complexes consisting of S. cerevisiae nuclear protein(s) and oligonucleotides containing p53 DNA binding sites. A S. cerevisiae p53 binding site factor (Scp53BSF) bound to a p53 synthetic DNA-consensus sequence (SCS) and a p53 binding-site sequence from the MDM2 oncogene. The complexes were of comparable size. Like mammalian p53, the affinity of Scp53BSF for the SCS oligonucleotide was higher than for the MDM2 oligonucleotide. Binding of Scp53BSF to the SCS and MDM2 oligonucleotides was strongly competed by unlabeled oligonucleotides containing mammalian p53 sites, but very little by a mutated site oligonucleotide. Importantly, Scp53BSF-DNA binding activity was significantly induced in extracts from cells with DNA damage. This resulted in dose-dependent coordinated activation of transcription when using p53-binding site reporter constructs. An ancient p53-like DNA binding protein may have been found, and activation of DNA-associated factors to p53 response elements may have functions not yet determined.
Collapse
Affiliation(s)
- Kanwal Farooqi
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
| | - Marjan Ghazvini
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
| | - Leah D. Pride
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
- City University of New York Graduate Center, Programs in Biochemistry and Biology, 365 Fifth Ave, New York, NY 10016, USA; (D.W.); (J.B.)
| | - Louis Mazzella
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
| | - David White
- City University of New York Graduate Center, Programs in Biochemistry and Biology, 365 Fifth Ave, New York, NY 10016, USA; (D.W.); (J.B.)
- Department of Biology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | - Ajay Pramanik
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
| | - Jill Bargonetti
- City University of New York Graduate Center, Programs in Biochemistry and Biology, 365 Fifth Ave, New York, NY 10016, USA; (D.W.); (J.B.)
- Department of Biology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | - Carol Wood Moore
- Department of Molecular, Cellular and Biomedical Studies, City University of New York School of Medicine and B.S.-M.D. Program, Harris Hall, 160 Convent Avenue, New York, NY 10031, USA; (K.F.); (M.G.); (L.D.P.); (L.M.); (A.P.)
- City University of New York Graduate Center, Programs in Biochemistry and Biology, 365 Fifth Ave, New York, NY 10016, USA; (D.W.); (J.B.)
| |
Collapse
|
29
|
Genome-Wide Small RNA Sequencing Identifies MicroRNAs Deregulated in Non-Small Cell Lung Carcinoma Harboring Gain-of-Function Mutant p53. Genes (Basel) 2019; 10:genes10110852. [PMID: 31661871 PMCID: PMC6895929 DOI: 10.3390/genes10110852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in the TP53 gene are one of the most frequent events in cancers. Certain missense mutant p53 proteins gain oncogenic functions (gain-of-functions) and drive tumorigenesis. Apart from the coding genes, a few non-coding microRNAs (miRNAs) are implicated in mediating mutant p53-driven cancer phenotypes. Here, we identified miRNAs in mutant p53R273H bearing non-small cell lung carcinoma (NSCLC) cells while using small RNA deep sequencing. Differentially regulated miRNAs were validated in the TCGA lung adenocarcinoma patients with p53 mutations and, subsequently, we identified specific miRNA signatures that are associated with lymph node metastasis and poor survival of the patients. Pathway analyses with integrated miRNA-mRNA expressions further revealed potential regulatory molecular networks in mutant p53 cancer cells. A possible contribution of putative mutant p53-regulated miRNAs in epithelial-to-mesenchymal transition (EMT) is also predicted. Most importantly, we identified a novel miRNA from the unmapped sequencing reads through a systematic computational approach. The newly identified miRNA promotes proliferation, colony-forming ability, and migration of NSCLC cells. Overall, the present study provides an altered miRNA expression profile that might be useful in biomarker discovery for non-small cell lung cancers with TP53 mutations and discovers a hitherto unknown miRNA with oncogenic potential.
Collapse
|
30
|
Singh S, Kumar M, Kumar S, Sen S, Upadhyay P, Bhattacharjee S, M N, Tomar VS, Roy S, Dutt A, Kundu TK. The cancer-associated, gain-of-function TP53 variant P152Lp53 activates multiple signaling pathways implicated in tumorigenesis. J Biol Chem 2019; 294:14081-14095. [PMID: 31366730 PMCID: PMC6755804 DOI: 10.1074/jbc.ra118.007265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/21/2019] [Indexed: 02/05/2023] Open
Abstract
TP53 is the most frequently mutated tumor suppressor gene in many cancers, yet biochemical characterization of several of its reported mutations with probable biological significance have not been accomplished enough. Specifically, missense mutations in TP53 can contribute to tumorigenesis through gain-of-function of biochemical and biological properties that stimulate tumor growth. Here, we identified a relatively rare mutation leading to a proline to leucine substitution (P152L) in TP53 at the very end of its DNA-binding domain (DBD) in a sample from an Indian oral cancer patient. Although the P152Lp53 DBD alone bound to DNA, the full-length protein completely lacked binding ability at its cognate DNA motifs. Interestingly, P152Lp53 could efficiently tetramerize, and the mutation had only a limited impact on the structure and stability of full-length p53. Significantly, when we expressed this variant in a TP53-null cell line, it induced cell motility, proliferation, and invasion compared with a vector-only control. Also, enhanced tumorigenic potential was observed when P152Lp53-expressing cells were xenografted into nude mice. Investigating the effects of P152Lp53 expression on cellular pathways, we found that it is associated with up-regulation of several pathways, including cell-cell and cell-extracellular matrix signaling, epidermal growth factor receptor signaling, and Rho-GTPase signaling, commonly active in tumorigenesis and metastasis. Taken together, our findings provide a detailed account of the biochemical and cellular alterations associated with the cancer-associated P152Lp53 variant and establish it as a gain-of-function TP53 variant.
Collapse
Affiliation(s)
- Siddharth Singh
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Manoj Kumar
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | | | - Shrinka Sen
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Pawan Upadhyay
- Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Sayan Bhattacharjee
- Department of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Naveen M
- BioCOS Life Sciences Pvt. Ltd., Bengaluru, India
| | - Vivek Singh Tomar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Amit Dutt
- Integrated Cancer Genomics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| |
Collapse
|
31
|
Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells. Apoptosis 2019; 23:314-328. [PMID: 29721785 DOI: 10.1007/s10495-018-1456-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prodigiosin, a secondary metabolite isolated from marine Vibrio sp., has antimicrobial and anticancer properties. This study investigated the cell death mechanism of prodigiosin in glioblastoma. Glioblastoma multiforme (GBM) is an aggressive primary cancer of the central nervous system. Despite treatment, or standard therapy, the median survival of glioblastoma patients is about 14.6 month. The results of the present study clearly showed that prodigiosin significantly reduced the cell viability and neurosphere formation ability of U87MG and GBM8401 human glioblastoma cell lines. Moreover, prodigiosin with fluorescence signals was detected in the endoplasmic reticulum and found to induce excessive levels of autophagy. These findings were confirmed by observation of LC3 puncta formation and acridine orange staining. Furthermore, prodigiosin caused cell death by activating the JNK pathway and decreasing the AKT/mTOR pathway in glioblastoma cells. Moreover, we found that the autophagy inhibitor 3-methyladenine reversed prodigiosin induced autophagic cell death. These findings of this study suggest that prodigiosin induces autophagic cell death and apoptosis in glioblastoma cells.
Collapse
|
32
|
Aggarwal M, Saxena R, Asif N, Sinclair E, Tan J, Cruz I, Berry D, Kallakury B, Pham Q, Wang TTY, Chung FL. p53 mutant-type in human prostate cancer cells determines the sensitivity to phenethyl isothiocyanate induced growth inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:307. [PMID: 31307507 PMCID: PMC6632191 DOI: 10.1186/s13046-019-1267-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Abstract
Background We reported previously that phenethyl isothiocyanate (PEITC), a dietary compound, can reactivate p53R175H mutant in vitro and in SK-BR-3 (p53R175H) breast xenograft model resulting in tumor inhibition. Because of the diversity of human cancers with p53 mutations, these findings raise important questions whether this mechanism operates in different cancer types with same or different p53 mutations. In this study, we investigated whether PEITC recuses mutant p53 in prostate cancer cells harboring different types of p53 mutants, structural and contact, in vitro and in vivo. Methods Cell proliferation, cell apoptosis and cell cycle arrest assays were performed to examine the effects of PEITC on prostate cancer cell lines with p53 mutation(s), wild-type p53, p53 null or normal prostate cells in vitro. Western blot analysis was used to monitor the expression levels of p53 protein, activation of ATM and upregulation of canonical p53 targets. Immunoprecipitation, subcellular protein fraction and qRT-PCR was performed to determine change in conformation and restoration of transactivation functions/ inhibition of gain-of-function (GOF) activities to p53 mutant(s). Mice xenograft models were established to evaluate the antitumor efficacy of PEITC and PEITC-induced reactivation of p53 mutant(s) in vivo. Immunohistochemistry of xenograft tumor tissues was performed to determine effects of PEITC on expression of Ki67 and mutant p53 in vivo. Results We demonstrated that PEITC inhibits the growth of prostate cancer cells with different “hotspot” p53 mutations (structural and contact), however, preferentially towards structural mutants. PEITC inhibits proliferation and induces apoptosis by rescuing mutant p53 in p53R248W contact (VCaP) and p53R175H structural (LAPC-4) mutant cells with differential potency. We further showed that PEITC inhibits the growth of DU145 cells that co-express p53P223L (structural) and p53V274F (contact) mutants by targeting p53P223L mutant selectively, but not p53V274F. The mutant p53 restored by PEITC induces apoptosis in DU145 cells by activating canonical p53 targets, delaying cells in G1 phase and phosphorylating ATM. Importantly, PEITC reactivated p53R175H and p53P223L/V274F mutants in LAPC-4 and DU145 prostate xenograft models, respectively, resulting in significant tumor inhibition. Conclusion Our studies provide the first evidence that PEITC’s anti-cancer activity is cancer cell type-independent, but p53 mutant-type dependent. Electronic supplementary material The online version of this article (10.1186/s13046-019-1267-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Aggarwal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA.
| | - Rahul Saxena
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington DC, 20007, USA
| | - Nasir Asif
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA
| | - Elizabeth Sinclair
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA
| | - Judy Tan
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington DC, 20007, USA
| | - Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA
| | - Deborah Berry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA
| | - Bhaskar Kallakury
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA
| | - Quynhchi Pham
- Diet, Genomics and Immunology Laboratory, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Thomas T Y Wang
- Diet, Genomics and Immunology Laboratory, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Fung-Lung Chung
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA. .,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington DC, 20007, USA.
| |
Collapse
|
33
|
Traditional Herbal Formula Taeeumjowi-Tang (TJ001) Inhibits p53-Mutant Prostate Cancer Cells Growth by Activating AMPK-Dependent Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2460353. [PMID: 31191706 PMCID: PMC6525874 DOI: 10.1155/2019/2460353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/08/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
Dysregulated lipid metabolism is a prominent feature of prostate cancers (PCas); several enzymes involved in lipid accumulation are highly expressed. Here, we elucidated efficacy of TJ001, a traditional herbal decoction, in inhibiting de novo lipogenesis. TJ001 had significant cytotoxicity against DU145 but not PC3 and LNCaP cells and, similarly, TJ001 markedly AMPK phosphorylation only in DU145 cells. This was accompanied by the downregulation of phosphorylated-acetyl coenzyme A carboxylase (ACC) expression and sterol regulatory element-binding protein 1 (SREBP1) proteolytic cleavage, thereby inhibiting its role as a transcription factor to induce lipid biosynthesis. When Oil Red O staining was performed, it is reflected in the reduction of lipid droplets (LDs). TJ001 also induced G1/S cell cycle arrest via a cell cycle inhibitor (CKI) p21WAF1/CIP1 upregulation. Although p53 proteins remained unchanged, both cyclin E and cyclin D1 were decreased. Moreover, TJ001 suppressed the mammalian target of rapamycin (mTOR) signaling pathway. Generally, the prolonged G1/S phase arrest accompanies apoptosis, but TJ001 failed to work as a trigger apoptosis in DU145 cells. We showed that mutant p53 proteins were required for the survival of DU145 cells. In presence of TJ001, inhibition of endogenous mutant p53 by RNAi led to cell viability reduction and induction of the p-AMPK/AMPK ratio. In addition, it induced apoptotic cell death in DU145 cells. At the cellular level, induction of PARP, caspase-3, and caspase-9 cleavages was observed, and caspase-3 activity was increased in the p53 knockdown cells treated with TJ001. Taken together, we demonstrated that TJ001 inhibited cell growth in DU145 prostate cancer cells as indicated by blocking lipogenesis and induction in G1/S cell cycle arrest. In addition, we may provide an evidence that mutant p53 protein has potential role as an oncogenic action in DU145 cells. Collectively, the combination of mutant p53 targeting and TJ001 treatment resulted in decreased cell growth in DU145 cells.
Collapse
|
34
|
Zhang Y, Wang Z, Huang Y, Ying M, Wang Y, Xiong J, Liu Q, Cao F, Joshi R, Liu Y, Xu D, Zhang M, Yuan K, Zhou N, Koropatnick J, Min W. TdIF1: a putative oncogene in NSCLC tumor progression. Signal Transduct Target Ther 2018; 3:28. [PMID: 30345081 PMCID: PMC6194072 DOI: 10.1038/s41392-018-0030-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022] Open
Abstract
TdT-interacting factor 1 (TdIF1) is a ubiquitously expressed DNA- and protein-binding protein that directly binds to terminal deoxynucleotidyl transferase (TdT) polymerase. Little is known about the functional role of TdIF1 in cancer cellular signaling, nor has it previously been identified as aberrant in any type of cancer. We report here for the first time that TdIF1 is abundantly expressed in clinical lung cancer patients and that high expression of TdIF1 is associated with poor patient prognosis. We further established that TdIF1 is highly expressed in human non-small cell lung cancer (NSCLC) cell lines compared to a normal lung cell line. shRNA-mediated gene silencing of TdIF1 resulted in the suppression of proliferation and anchorage-independent colony formation of the A549 adenocarcinoma cell line. Moreover, when these TdIF1-silenced cells were used to establish a mouse xenograft model of human NSCLC, tumor size was greatly reduced. These data suggest that TdIF1 is a potent regulator of lung tumor development. Several cell cycle-related and tumor growth signaling pathways, including the p53 and HDAC1/2 pathways, were identified as participating in the TdIF1 signaling network by in silico analysis. Microarray, transcriptome and protein-level analyses validated p53 and HDAC1/2 modulation upon TdIF1 downregulation in an NSCLC cellular model. Moreover, several other cell cycle regulators were affected at the transcript level by TdIF1 silencing, including an increase in CDKN1A/p21 transcripts. Taken together, these results indicate that TdIF1 is a bona fide tumor-promoting factor in NSCLC and a potential target for therapy. A protein involved in the immune system also plays a role in the most common type of lung cancer. Weiping Min, of the University of Western Ontario in Canada, and international colleagues found, for the first time, that the protein TdIF1 is significantly upregulated in non-small cell lung cancer (NSCLC) tissues in patients. High expression levels of this protein were correlated with poor prognosis. NSCLC tumor tissues grown in mice where TdIF1 expression was ‘knocked down’ were significantly smaller than in those without TdIF1 knockdown. Further analyses showed the protein was involved in known cell signaling pathways with roles in NSCLC progression. The findings indicate TdIF1 should be further investigated as a biomarker of NSCLC or as a molecular target for its treatment.
Collapse
Affiliation(s)
- Yujuan Zhang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,3Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Zhigang Wang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanqing Huang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Muying Ying
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yifan Wang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Juan Xiong
- 5Department of Preventive Medicine, School of Medicine, Shenzhen University, Shenzhen, China
| | - Qi Liu
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Fan Cao
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Rakesh Joshi
- 4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Yanling Liu
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Derong Xu
- 6Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Meng Zhang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Keng Yuan
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Nanjin Zhou
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - James Koropatnick
- 4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Weiping Min
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| |
Collapse
|
35
|
Yadav K, Singh D, Singh MR. Protein biomarker for psoriasis: A systematic review on their role in the pathomechanism, diagnosis, potential targets and treatment of psoriasis. Int J Biol Macromol 2018; 118:1796-1810. [PMID: 30017989 DOI: 10.1016/j.ijbiomac.2018.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Abstract
Psoriasis is defined as a long-lasting multifactorial inflammatory autoimmune skin condition precisely characterized by delimited, erythematic papules with adherent shiny scales. The conditions are led by hyperproliferative responses of epidermis due to hyperactivation and immature keratinocytes production. The psoriatic skin consists of the thickened epidermal layer, in concurrence with inflammatory exudates in the dermis mainly of dendritic cells, neutrophils, T cells, and macrophages, contributing to the distinct manifestation of psoriatic lesions. It consents to multifaceted and discrete pathology due to the genetic and immunological alteration resulting from abnormal expression of various regulatory and structural proteins. These proteins are associated with various cellular and sub-cellular activities. Therefore, the presence of protein in a pathological cellular environment in the psoriatic lesions as well as in serum could be a great avenue for the insight of pathomechanism, anticipation and diagnosis of psoriasis. Research of protein biomarker in psoriasis is yet a developing realm to be explored by both fundamental and clinical researchers. This review is an attempt to assimilate the current discoveries and revelations of different proteins as a biomarker and their importance in pathogenesis, diagnosis, treatment, and anticipation of both the inflammatory and other dermatological aspects of psoriasis.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
36
|
Prevention of oral carcinogenesis in rats by Dracaena cinnabari resin extracts. Clin Oral Investig 2018; 23:2287-2301. [PMID: 30291495 DOI: 10.1007/s00784-018-2685-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES In vivo study was performed to determine the chemopreventive efficacy of the DC resin methanol extract on a 4-nitroquinoline-1-oxide (4NQO) oral cancer animal model. MATERIALS AND METHODS This study involves administration of 4NQO solution for 8 weeks alone (cancer induction) or with Dracaena cinnabari (DC) extract at 100, 500, and 1000 mg/kg. DC extract administration started 1 week before exposure until 1 week after the carcinogen exposure was stopped. All rats were sacrificed after 22 weeks, and histological analysis was performed to assess any incidence of pathological changes. Immunohistochemical expressions of selected tumor marker antibodies were analyzed using an image analyzer computer system, and the expression of selected genes involved in apoptosis and proliferative mechanism related to oral cancer were evaluated using RT2-PCR. RESULTS The incidence of OSCC decreased with the administration of DC extract at 100, 500, and 1000 mg/kg compared to the induced cancer group. The developed tumor was also observed to be smaller when compared to the induced cancer group. The DC 1000 mg/kg group inhibits the expression of Cyclin D1, Ki-67, Bcl-2, and p53 proteins. It was observed that DC 1000 mg/kg induced apoptosis by upregulation of Bax and Casp3 genes and downregulation of Tp53, Bcl-2, Cox-2, Cyclin D1, and EGFR genes when compared to the induced cancer group. CONCLUSIONS The data indicated that systemic administration of the DC resin methanol extract has anticarcinogenic potency on oral carcinogenesis. CLINICAL RELEVANCE Chemoprevention with DC resin methanol extract may significantly reduce morbidity and possibly mortality from OSCC.
Collapse
|
37
|
N��ez-Iglesias M, Novio S, Garc�a-Santiago C, Cartea M, Soengas P, Velasco P, Freire-Garabal M. Effects of 3-butenyl isothiocyanate on phenotypically different prostate cancer cells. Int J Oncol 2018; 53:2213-2223. [DOI: 10.3892/ijo.2018.4545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/27/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- M.j. N��ez-Iglesias
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| | - S. Novio
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| | - C. Garc�a-Santiago
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| | - M.e. Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia, CSIC, 36143 Pontevedra, Spain
| | - P. Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia, CSIC, 36143 Pontevedra, Spain
| | - P. Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia, CSIC, 36143 Pontevedra, Spain
| | - M. Freire-Garabal
- Screening of New Libraries Laboratory, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 A Coru�a, Spain
| |
Collapse
|
38
|
Saraf RS, Datta A, Sima C, Hua J, Lopes R, Bittner M. An in-silico study examining the induction of apoptosis by Cryptotanshinone in metastatic melanoma cell lines. BMC Cancer 2018; 18:855. [PMID: 30157799 PMCID: PMC6116360 DOI: 10.1186/s12885-018-4756-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Metastatic melanoma is an aggressive form of skin cancer that evades various anti-cancer treatments including surgery, radio-,immuno- and chemo-therapy. TRAIL-induced apoptosis is a desirable method to treat melanoma since, unlike other treatments, it does not harm non-cancerous cells. The pro-inflammatory response to melanoma by nF κB and STAT3 pathways makes the cancer cells resist TRAIL-induced apoptosis. We show that due to to its dual action on DR5, a death receptor for TRAIL and on STAT3, Cryptotanshinone can be used to increase sensitivity to TRAIL. METHODS The development of chemoresistance and invasive properties in melanoma cells involves several biological pathways. The key components of these pathways are represented as a Boolean network with multiple inputs and multiple outputs. RESULTS The possible mutations in genes that can lead to cancer are captured by faults in the combinatorial circuit and the model is used to theoretically predict the effectiveness of Cryptotanshinone for inducing apoptosis in melanoma cell lines. This prediction is experimentally validated by showing that Cryptotanshinone can cause enhanced cell death in A375 melanoma cells. CONCLUSION The results presented in this paper facilitate a better understanding of melanoma drug resistance. Furthermore, this framework can be used to detect additional drug intervention points in the pathway that could amplify the action of Cryptotanshinone.
Collapse
Affiliation(s)
- Radhika S. Saraf
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, US
| | - Aniruddha Datta
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, US
| | - Chao Sima
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, US
| | - Jianping Hua
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, US
| | - Rosana Lopes
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, US
| | - Michael Bittner
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, US
- Translational Genomics Research Institute (TGen), Phoenix, US
| |
Collapse
|
39
|
Roepman P, ten Heuvel A, Scheidel KC, Sprong T, Heideman DA, Seldenrijk KA, Herder GJ, Kummer JA. Added Value of 50-Gene Panel Sequencing to Distinguish Multiple Primary Lung Cancers from Pulmonary Metastases. J Mol Diagn 2018; 20:436-445. [DOI: 10.1016/j.jmoldx.2018.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/30/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
|
40
|
Royston KJ, Paul B, Nozell S, Rajbhandari R, Tollefsbol TO. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp Cell Res 2018; 368:67-74. [PMID: 29689276 PMCID: PMC6733260 DOI: 10.1016/j.yexcr.2018.04.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the effects of combinatorial dietary compounds on the regulation of epigenetic mechanisms involved in breast cancer prevention. The human diet consists of a multitude of components, and there is a need to elucidate how certain compounds interact in collaboration. Withaferin A (WA), found in the Indian winter cherry and documented as a DNA methyltransferase (DNMT) inhibitor, and sulforaphane (SFN), a well-known histone deacetylase (HDAC) inhibitor found in cruciferous vegetables, are two epigenetic modifying compounds that have only recently been studied in conjunction. The use of DNMT and HDAC inhibitors to reverse the malignant expression of certain genes in breast cancer has shown considerable promise. Previously, we found that SFN + WA synergistically promote breast cancer cell death. Herein, we determined that these compounds inhibit cell cycle progression from S to G2 phase in MDA-MB-231 and MCF-7 breast cancer. Furthermore, we demonstrate that this unique combination of epigenetic modifying compounds down-regulates the levels of Cyclin D1 and CDK4, and pRB; conversely, the levels of E2F mRNA and tumor suppressor p21 are increased independently of p53. We find these events coincide with an increase in unrestricted histone methylation. We propose SFN + WA-induced breast cancer cell death is attributed, in part, to epigenetic modifications that result in the modulated expression of key genes responsible for the regulation of cancer cell senescence.
Collapse
Affiliation(s)
- Kendra J Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, 175 Campbell Hall, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
| | - Bidisha Paul
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, 175 Campbell Hall, Birmingham, AL 35294, USA
| | - Susan Nozell
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, AL 35233, USA
| | - Rajani Rajbhandari
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, AL 35233, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, 175 Campbell Hall, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA; Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA; Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
41
|
Zeng K, Chen X, Hu X, Liu X, Xu T, Sun H, Pan Y, He B, Wang S. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation. Oncogene 2018; 37:5534-5551. [PMID: 29899406 DOI: 10.1038/s41388-018-0352-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53-/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Kaixuan Zeng
- School of Medicine, Southeast University, Nanjing, 210009, China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaoxiang Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiuxiu Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, 210009, China. .,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
42
|
Ozaki T, Yu M, Yin D, Sun D, Zhu Y, Bu Y, Sang M. Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations. BMC Cancer 2018; 18:309. [PMID: 29558908 PMCID: PMC5861661 DOI: 10.1186/s12885-018-4217-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. Review Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer and osteosarcoma, indicating that, in addition to its pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2. Recently, we have found for the first time that forced depletion of RUNX2 significantly increases GEM sensitivity of p53-null as well as p53-mutated pancreatic cancer cells through the stimulation of p53 family TAp63/TAp73-dependent cell death pathway. Conclusions Together, it is likely that RUNX2 is one of the promising molecular targets for the treatment of the patients with pancreatic cancer regardless of their p53 status. In this review article, we will discuss how to overcome the serious drug-resistant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan.
| | - Meng Yu
- Department of Laboratory Animal of China Medical University, Shenyang, 110001, People's Republic of China
| | - Danjing Yin
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Dan Sun
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuyan Zhu
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Meixiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| |
Collapse
|
43
|
Tan SC. Low penetrance genetic polymorphisms as potential biomarkers for colorectal cancer predisposition. J Gene Med 2018; 20:e3010. [PMID: 29424105 DOI: 10.1002/jgm.3010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is a leading form of cancer in both males and females. Early detection of individuals at risk of colorectal cancer allows proper treatment and management of the disease to be implemented, which can potentially reduce the burden of colorectal cancer incidence, morbidity and mortality. In recent years, the role of genetic susceptibility factors in mediating predisposition to colorectal cancer has become more and more apparent. Identification of high-frequency, low-penetrance genetic polymorphisms associated with the cancer has therefore emerged as an important approach which can potentially aid prediction of colorectal cancer risk. However, the overwhelming amount of genetic epidemiology data generated over the past decades has made it difficult for one to assimilate the information and determine the exact genetic polymorphisms that can potentially be used as biomarkers for colorectal cancer. This review comprehensively consolidates, based primarily on results from meta-analyses, the recent progresses in the search of colorectal cancer-associated genetic polymorphisms, and discusses the possible mechanisms involved.
Collapse
Affiliation(s)
- Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Hampton MB, Vick KA, Skoko JJ, Neumann CA. Peroxiredoxin Involvement in the Initiation and Progression of Human Cancer. Antioxid Redox Signal 2018; 28:591-608. [PMID: 29237274 PMCID: PMC9836708 DOI: 10.1089/ars.2017.7422] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE It has been proposed that cancer cells are heavily dependent on their antioxidant defenses for survival and growth. Peroxiredoxins are a family of abundant thiol-dependent peroxidases that break down hydrogen peroxide, and they have a central role in the maintenance and response of cells to alterations in redox homeostasis. As such, they are potential targets for disrupting tumor growth. Recent Advances: Genetic disruption of peroxiredoxin expression in mice leads to an increased incidence of neoplastic disease, consistent with a role for peroxiredoxins in protecting genomic integrity. In contrast, many human tumors display increased levels of peroxiredoxin expression, suggesting that strengthened antioxidant defenses provide a survival advantage for tumor progression. Peroxiredoxin inhibitors are being developed and explored as therapeutic agents in different cancer models. CRITICAL ISSUES It is important to complement peroxiredoxin knockout and expression studies with an improved understanding of the biological function of the peroxiredoxins. Although current results can be interpreted within the context that peroxiredoxins scavenge hydroperoxides, some peroxiredoxin family members appear to have more complex roles in regulating the response of cells to oxidative stress through protein interactions with constituents of other signaling pathways. FUTURE DIRECTIONS Further mechanistic information is required for understanding the role of oxidative stress in cancer, the function of peroxiredoxins in normal versus cancer cells, and for the design and testing of specific peroxiredoxin inhibitors that display selectivity to malignant cells. Antioxid. Redox Signal. 28, 591-608.
Collapse
Affiliation(s)
- Mark B Hampton
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - Kate A Vick
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - John J Skoko
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Carola A Neumann
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Blandino G, Di Agostino S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:30. [PMID: 29448954 PMCID: PMC5815234 DOI: 10.1186/s13046-018-0705-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
The tumor suppressor p53 plays a critical role to preserve DNA fidelity from diverse insults through the regulation of cell-cycle checkpoints, DNA repair, senescence and apoptosis. The TP53 is the most frequently inactivated gene in human cancers. This leads to the production of mutant p53 proteins that loose wild-type p53 tumor suppression functions and concomitantly acquire new oncogenic properties among which deregulated cell proliferation, increased chemoresistance, disruption of tissue architecture, promotion of migration, invasion and metastasis and several other pro-oncogenic activities. Mouse models show that the genetic reconstitution of the wild type p53 tumor suppression functions rescues tumor growth. This strongly supports the notion that either restoring wt-p53 activity or inhibiting mutant p53 oncogenic activity could provide an efficient strategy to treat human cancers. In this review we briefly summarize recent advances in the study of small molecules and compounds that subvert oncogenic activities of mutant p53 protein into wt-p53 tumor suppressor functions. We highlight inhibitors of signaling pathways aberrantly modulated by oncogenic mutant p53 proteins as promising therapeutic strategies. Finally, we consider the clinical applications of compounds targeting mutant p53 and the use of currently available drugs in the treatment of tumors expressing mutant p53 proteins.
Collapse
Affiliation(s)
- Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
46
|
Wu KH, Ho CT, Chen ZF, Chen LC, Whang-Peng J, Lin TN, Ho YS. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J Food Drug Anal 2018. [DOI: 10.1016/j.jfda.2017.03.009 pmid: 29389559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
47
|
Betancor-Fernández I, Timson DJ, Salido E, Pey AL. Natural (and Unnatural) Small Molecules as Pharmacological Chaperones and Inhibitors in Cancer. Handb Exp Pharmacol 2018; 245:155-190. [PMID: 28993836 DOI: 10.1007/164_2017_55] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mutations causing single amino acid exchanges can dramatically affect protein stability and function, leading to disease. In this chapter, we will focus on several representative cases in which such mutations affect protein stability and function leading to cancer. Mutations in BRAF and p53 have been extensively characterized as paradigms of loss-of-function/gain-of-function mechanisms found in a remarkably large fraction of tumours. Loss of RB1 is strongly associated with cancer progression, although the molecular mechanisms by which missense mutations affect protein function and stability are not well known. Polymorphisms in NQO1 represent a remarkable example of the relationships between intracellular destabilization and inactivation due to dynamic alterations in protein ensembles leading to loss of function. We will review the function of these proteins and their dysfunction in cancer and then describe in some detail the effects of the most relevant cancer-associated single amino exchanges using a translational perspective, from the viewpoints of molecular genetics and pathology, protein biochemistry and biophysics, structural, and cell biology. This will allow us to introduce several representative examples of natural and synthetic small molecules applied and developed to overcome functional, stability, and regulatory alterations due to cancer-associated amino acid exchanges, which hold the promise for using them as potential pharmacological cancer therapies.
Collapse
Affiliation(s)
- Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, Tenerife, 38320, Spain
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, Tenerife, 38320, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, 18071, Spain.
| |
Collapse
|
48
|
Abstract
Crucial, natural protection against tumour onset in humans is orchestrated by the dynamic protein p53. The best-characterised functions of p53 relate to its cellular stress responses. In this review, we explore emerging insights into p53 activities and their functional consequences. We compare p53 in humans and elephants, in search of salient features of cancer protection.
Collapse
Affiliation(s)
- Sue Haupt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ygal Haupt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Department of Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|
49
|
Inflammation and the chemical carcinogen benzo[a]pyrene: Partners in crime. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:12-24. [DOI: 10.1016/j.mrrev.2017.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/02/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
|
50
|
Datta A, Ghatak D, Das S, Banerjee T, Paul A, Butti R, Gorain M, Ghuwalewala S, Roychowdhury A, Alam SK, Das P, Chatterjee R, Dasgupta M, Panda CK, Kundu GC, Roychoudhury S. p53 gain-of-function mutations increase Cdc7-dependent replication initiation. EMBO Rep 2017; 18:2030-2050. [PMID: 28887320 DOI: 10.15252/embr.201643347] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer-associated p53 missense mutants confer gain of function (GOF) and promote tumorigenesis by regulating crucial signaling pathways. However, the role of GOF mutant p53 in regulating DNA replication, a commonly altered pathway in cancer, is less explored. Here, we show that enhanced Cdc7-dependent replication initiation enables mutant p53 to confer oncogenic phenotypes. We demonstrate that mutant p53 cooperates with the oncogenic transcription factor Myb in vivo and transactivates Cdc7 in cancer cells. Moreover, mutant p53 cells exhibit enhanced levels of Dbf4, promoting the activity of Cdc7/Dbf4 complex. Chromatin enrichment of replication initiation factors and subsequent increase in origin firing confirm increased Cdc7-dependent replication initiation in mutant p53 cells. Further, knockdown of CDC7 significantly abrogates mutant p53-driven cancer phenotypes in vitro and in vivo Importantly, high CDC7 expression significantly correlates with p53 mutational status and predicts poor clinical outcome in lung adenocarcinoma patients. Collectively, this study highlights a novel functional interaction between mutant p53 and the DNA replication pathway in cancer cells. We propose that increased Cdc7-dependent replication initiation is a hallmark of p53 gain-of-function mutations.
Collapse
Affiliation(s)
- Arindam Datta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumit Das
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Taraswi Banerjee
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, NIH, Baltimore, MD, USA
| | - Anindita Paul
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Sangeeta Ghuwalewala
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sk Kayum Alam
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India .,Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|