1
|
Loftus SN, Gharaee-Kermani M, Xu B, Moore TM, Hannoudi A, Mallbris MJ, Klein B, Gudjonsson JE, Kahlenberg JM. Interferon alpha promotes caspase-8 dependent ultraviolet light-mediated keratinocyte apoptosis via interferon regulatory factor 1. Front Immunol 2024; 15:1384606. [PMID: 38660315 PMCID: PMC11039837 DOI: 10.3389/fimmu.2024.1384606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Ultraviolet (UV) light is a known trigger of both cutaneous and systemic disease manifestations in lupus patients. Lupus skin has elevated expression of type I interferons (IFNs) that promote increased keratinocyte (KC) death after UV exposure. The mechanisms by which KC cell death is increased by type I IFNs are unknown. Methods Here, we examine the specific cell death pathways that are activated in KCs by type I IFN priming and UVB exposure using a variety of pharmacological and genetic approaches. Mice that overexpress Ifnk in the epidermis were exposed to UVB light and cell death was measured. RNA-sequencing from IFN-treated KCs was analyzed to identify candidate genes for further analysis that could drive enhanced cell death responses after UVB exposure. Results We identify enhanced activation of caspase-8 dependent apoptosis, but not other cell death pathways, in type I IFN and UVB-exposed KCs. In vivo, overexpression of epidermal Ifnk resulted in increased apoptosis in murine skin after UVB treatment. This increase in KC apoptosis was not dependent on known death ligands but rather dependent on type I IFN-upregulation of interferon regulatory factor 1 (IRF1). Discussion These data suggest that enhanced sensitivity to UV light exhibited by lupus patients results from type I IFN priming of KCs that drives IRF1 expression resulting in caspase-8 activation and increased apoptosis after minimal exposures to UVB.
Collapse
Affiliation(s)
- Shannon N. Loftus
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Bin Xu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Tyson M. Moore
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Mischa J. Mallbris
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin Klein
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | | | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Mozooni Z, Golestani N, Bahadorizadeh L, Yarmohammadi R, Jabalameli M, Amiri BS. The role of interferon-gamma and its receptors in gastrointestinal cancers. Pathol Res Pract 2023; 248:154636. [PMID: 37390758 DOI: 10.1016/j.prp.2023.154636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Gastrointestinal malignancies are the most prevalent type of cancer around the world. Even though numerous studies have evaluated gastrointestinal malignancies, the actual underlying mechanism is still unknown. These tumors have a poor prognosis and are frequently discovered at an advanced stage. Globally, there is an increase in the incidence and mortality of gastrointestinal malignancies, including those of the stomach, esophagus, colon, liver, and pancreas. Growth factors and cytokines are signaling molecules that are part of the tumor microenvironment and play a significant role in the development and spread of malignancies. IFN-γ induce its effects by activation of intracellular molecular networks. The main pathway involved in IFN-γ signaling is the JAK/STAT pathway, which regulates the transcription of hundreds of genes and mediates various biological responses. IFN-γ receptor is composed of two IFN-γR1 chains and two IFN-γR2 chains. Binding to IFN-γ, causes the intracellular domains of IFN-γR2 to oligomerize and transphosphorylate with IFN-γR1 which activates downstream signaling components: JAK1 and JAK2. These activated JAKs phosphorylate the receptor, creating binding sites for STAT1. STAT1 is then phosphorylated by JAK, resulting in the formation of STAT1 homodimers (gamma activated factors or GAFs) that translocate to the nucleus and regulate gene expression. The balance between positive and negative regulation of this pathway is crucial for immune responses and tumorigenesis. In this paper, we evaluate the dynamic roles of IFN- γ and its receptors in gastrointestinal cancers and present evidence that inhibiting IFN- γ signaling may be an effective treatment strategy.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leyla Bahadorizadeh
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Reyhaneh Yarmohammadi
- Doctoral Student Carolina University Winston, Salem, NC, USA; Skin and Stem Cell Research Center Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahareh Shateri Amiri
- Department of Internal Medicine, School of Medicine Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Moghbeli M. Molecular mechanisms of microRNA-301a during tumor progression and metastasis. Pathol Res Pract 2023; 247:154538. [PMID: 37209575 DOI: 10.1016/j.prp.2023.154538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cancer is known as one of the leading causes of human deaths globally. Late diagnosis is considered as one of the main reasons for the high mortality rate among cancer patients. Therefore, the introduction of early diagnostic tumor markers can improve the efficiency of therapeutic modalities. MicroRNAs (miRNAs) have a key role in regulation of cell proliferation and apoptosis. MiRNAs deregulation has been frequently reported during tumor progressions. Since, miRNAs have a high stability in body fluids; they can be used as the reliable non-invasive tumor markers. Here, we discussed the role of miR-301a during tumor progressions. MiR-301a mainly functions as an oncogene via the modulation of transcription factors, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. This review paves the way to suggest miR-301a as a non-invasive marker for the early tumor diagnosis. MiR-301a can also be suggested as an effective target in cancer therapy.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Tsai KK, Huang SS, Northey JJ, Liao WY, Hsu CC, Cheng LH, Werner ME, Chuu CP, Chatterjee C, Lakins JN, Weaver VM. Screening of organoids derived from patients with breast cancer implicates the repressor NCOR2 in cytotoxic stress response and antitumor immunity. NATURE CANCER 2022; 3:734-752. [PMID: 35618935 PMCID: PMC9246917 DOI: 10.1038/s43018-022-00375-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/08/2022] [Indexed: 12/31/2022]
Abstract
Resistance to antitumor treatment contributes to patient mortality. Functional proteomic screening of organoids derived from chemotherapy-treated patients with breast cancer identified nuclear receptor corepressor 2 (NCOR2) histone deacetylase as an inhibitor of cytotoxic stress response and antitumor immunity. High NCOR2 in the tumors of patients with breast cancer predicted chemotherapy refractoriness, tumor recurrence and poor prognosis. Molecular studies revealed that NCOR2 inhibits antitumor treatment by regulating histone deacetylase 3 (HDAC3) to repress interferon regulatory factor 1 (IRF-1)-dependent gene expression and interferon (IFN) signaling. Reducing NCOR2 or impeding its epigenetic activity by modifying its interaction with HDAC3 enhanced chemotherapy responsiveness and restored antitumor immunity. An adeno-associated viral NCOR2-HDAC3 competitor potentiated chemotherapy and immune checkpoint therapy in culture and in vivo by permitting transcription of IRF-1-regulated proapoptosis and inflammatory genes to increase IFN-γ signaling. The findings illustrate the utility of patient-derived organoids for drug discovery and suggest that targeting stress and inflammatory-repressor complexes such as NCOR2-HDAC3 could overcome treatment resistance and improve the outcome of patients with cancer.
Collapse
Affiliation(s)
- Kelvin K Tsai
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, USA.
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Shenq-Shyang Huang
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jason J Northey
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, USA
| | - Wen-Ying Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Chi Hsu
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael E Werner
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, USA
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chandrima Chatterjee
- Department of Pathology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathon N Lakins
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, USA
- Department of Pathology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie M Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, USA.
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
A combination approach of pseudotime analysis and mathematical modeling for understanding drug-resistant mechanisms. Sci Rep 2021; 11:18511. [PMID: 34531471 PMCID: PMC8445918 DOI: 10.1038/s41598-021-97887-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer cells acquire drug resistance through the following stages: nonresistant, pre-resistant, and resistant. Although the molecular mechanism of drug resistance is well investigated, the process of drug resistance acquisition remains largely unknown. Here we elucidate the molecular mechanisms underlying the process of drug resistance acquisition by sequential analysis of gene expression patterns in tamoxifen-treated breast cancer cells. Single-cell RNA-sequencing indicates that tamoxifen-resistant cells can be subgrouped into two, one showing altered gene expression related to metabolic regulation and another showing high expression levels of adhesion-related molecules and histone-modifying enzymes. Pseudotime analysis showed a cell transition trajectory to the two resistant subgroups that stem from a shared pre-resistant state. An ordinary differential equation model based on the trajectory fitted well with the experimental results of cell growth. Based on the established model, it was predicted and experimentally validated that inhibition of transition to both resistant subtypes would prevent the appearance of tamoxifen resistance.
Collapse
|
6
|
Investigating the Molecular Processes behind the Cell-Specific Toxicity Response to Titanium Dioxide Nanobelts. Int J Mol Sci 2021; 22:ijms22179432. [PMID: 34502343 PMCID: PMC8431385 DOI: 10.3390/ijms22179432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
Some engineered nanomaterials incite toxicological effects, but the underlying molecular processes are understudied. The varied physicochemical properties cause different initial molecular interactions, complicating toxicological predictions. Gene expression data allow us to study the responses of genes and biological processes. Overrepresentation analysis identifies enriched biological processes using the experimental data but prompts broad results instead of detailed toxicological processes. We demonstrate a targeted filtering approach to compare public gene expression data for low and high exposure on three cell lines to titanium dioxide nanobelts. Our workflow finds cell and concentration-specific changes in affected pathways linked to four Gene Ontology terms (apoptosis, inflammation, DNA damage, and oxidative stress) to select pathways with a clear toxicity focus. We saw more differentially expressed genes at higher exposure, but our analysis identifies clear differences between the cell lines in affected processes. Colorectal adenocarcinoma cells showed resilience to both concentrations. Small airway epithelial cells displayed a cytotoxic response to the high concentration, but not as strongly as monocytic-like cells. The pathway-gene networks highlighted the gene overlap between altered toxicity-related pathways. The automated workflow is flexible and can focus on other biological processes by selecting other GO terms.
Collapse
|
7
|
Interferon regulatory factor 1 (IRF-1) downregulates Checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells. Br J Cancer 2021; 125:101-111. [PMID: 33772151 DOI: 10.1038/s41416-021-01337-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CHK1 is considered an oncogene with overexpression in numerous cancers. However, CHK1 signalling regulation in hepatocellular carcinoma (HCC) remains unclear. METHODS CHEK1 mRNA, protein, pri-miR-195 and miR-195 expression in HCC tissue was determined by qPCR, WB and IF staining assay. Survival analyses in HCC with high- and low-CHEK1 mRNA expression was performed using TCGA database. Relative luciferase activity was investigated in HCC cells transfected with p-CHEK1 3'UTR. Apoptosis was detected by TUNEL assay. NK and CD8+ T cells were analysed by flow cytometry. RESULTS CHK1 is increased in human HCC tumours compared with non-cancerous liver. High CHK1 predicts worse prognosis. IFN-γ suppresses CHK1 via IRF-1 in HCC cells. The molecular mechanism of IRF-1 suppressing CHK1 is post-transcriptional by promoting miR-195 binding to CHEK1 mRNA 3'UTR, which exerts a translational blockade. Upregulated IRF-1 inhibits CHK1, which induces apoptosis of HCC cells. Likewise, CHK1 inhibition augments cellular apoptosis in HCC tumours. This effect may be a result of increased tumour NK cell infiltration. However, IRF-1 expression or CHK1 inhibition also upregulates PD-L1 expression via increased STAT3 phosphorylation. CONCLUSIONS IRF-1 induces miR-195 to suppress CHK1 protein expression. Both increased IRF-1 and decreased CHK1 upregulate cellular apoptosis and PD-L1 expression in HCC.
Collapse
|
8
|
Yan Y, Zheng L, Du Q, Yazdani H, Dong K, Guo Y, Geller DA. Interferon regulatory factor 1(IRF-1) activates anti-tumor immunity via CXCL10/CXCR3 axis in hepatocellular carcinoma (HCC). Cancer Lett 2021; 506:95-106. [PMID: 33689775 DOI: 10.1016/j.canlet.2021.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Interferon regulatory factor 1 (IRF-1) is a tumor suppressor gene in cancer biology with anti-proliferative and pro-apoptotic effect on cancer cells, however mechanisms of IRF-1 regulating tumor microenvironment (TME) in hepatocellular carcinoma (HCC) remain only partially characterized. Here, we investigated that IRF-1 regulates C-X-C motif chemokine 10 (CXCL10) and chemokine receptor 3 (CXCR3) to activate anti-tumor immunity in HCC. We found that IRF-1 mRNA expression was positively correlated with CXCL10 and CXCR3 through qRT-PCR assay in HCC tumors and in analysis of the TCGA database. IRF-1 response elements were identified in the CXCL10 promoter region, and ChIP-qPCR confirmed IRF-1 binding to promote CXCL10 transcription. IRF-2 is a competitive antagonist for IRF-1 mediated transcriptional effects, and overexpression of IRF-2 decreased basal and IFN-γ induced CXCL10 expression. Although IRF-1 upregulated CXCR3 expression in HCC cells, it inhibited proliferation and exerted pro-apoptotic effects, which overcome proliferation partly mediated by activating the CXCL10/CXCR3 autocrine axis. In vitro and in vivo studies showed that IRF-1 increased CD8+ T cells, NK and NKT cells migration, and activated IFN-γ secretion in NK and NKT cells to induce tumor apoptosis through the CXCL10/CXCR3 paracrine axis. Conversely, this effect was markedly abrogated in HCC tumor bearing mice deficient in CXCR3. Therefore, the IRF-1/CXCL10/CXCR3 axis contributes to the anti-tumor microenvironment in HCC.
Collapse
Affiliation(s)
- Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China; Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| | - Leting Zheng
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA; Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiang Du
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA
| | - Hamza Yazdani
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA
| | - Kun Dong
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA
| | - Yarong Guo
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA
| | - David A Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
9
|
Karki R, Sharma BR, Lee E, Banoth B, Malireddi RKS, Samir P, Tuladhar S, Mummareddy H, Burton AR, Vogel P, Kanneganti TD. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight 2020; 5:136720. [PMID: 32554929 DOI: 10.1172/jci.insight.136720] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interferon regulatory factor 1 (IRF1) regulates diverse biological functions, including modulation of cellular responses involved in tumorigenesis. Genetic mutations and altered IRF1 function are associated with several cancers. Although the function of IRF1 in the immunobiology of cancer is emerging, IRF1-specific mechanisms regulating tumorigenesis and tissue homeostasis in vivo are not clear. Here, we found that mice lacking IRF1 were hypersusceptible to colorectal tumorigenesis. IRF1 functions in both the myeloid and epithelial compartments to confer protection against AOM/DSS-induced colorectal tumorigenesis. We further found that IRF1 also prevents tumorigenesis in a spontaneous mouse model of colorectal cancer. The attenuated cell death in the colons of Irf1-/- mice was due to defective pyroptosis, apoptosis, and necroptosis (PANoptosis). IRF1 does not regulate inflammation and the inflammasome in the colon. Overall, our study identified IRF1 as an upstream regulator of PANoptosis to induce cell death during colitis-associated tumorigenesis.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ein Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Balaji Banoth
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shraddha Tuladhar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Harisankeerth Mummareddy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Emory College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
10
|
Dong K, Du Q, Cui X, Wan P, Kaltenmeier C, Luo J, Yan B, Yan Y, Geller DA. MicroRNA-301a (miR-301a) is induced in hepatocellular carcinoma (HCC) and down- regulates the expression of interferon regulatory factor-1. Biochem Biophys Res Commun 2020; 524:273-279. [PMID: 31987500 PMCID: PMC7857543 DOI: 10.1016/j.bbrc.2020.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) tumors evade death in part by downregulating expression of the tumor suppressor gene Interferon regulatory factor-1 (IRF-1). However, the molecular mechanisms accounting for IRF-1 suppression in HCC have not been well described. In this study, we identified a novel microRNA-301a (miR-301a) binding site in the 3'-untranslated region (3'- UTR) of the human IRF-1 gene and hypothesized a functional role for miR-301a in regulating HCC growth. We show that miR-301a is markedly upregulated in primary HCC tumors and HCC cell lines, while IRF-1 is down-regulated in a post-transcriptional manner. MiR-301a regulates basal and inducible IRF-1 expression in HCC cells with an inverse relationship between miR-301a and IRF-1 expression in HCC cells. Chronic hypoxia induces miR-301a in HCC in vitro and decreases IRF-1 expression. Finally, miR-301a inhibition increases apoptosis and decreases HCC cell proliferation. These findings suggest that targeting of IRF-1 by miR-301a contributes to the molecular basis for IRF-1 downregulation in HCC and provides new insight into the regulation of HCC by miRNAs.
Collapse
Affiliation(s)
- Kun Dong
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiao Cui
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peiqi Wan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Jing Luo
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bing Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yihe Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David A Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Jiang L, Liu JY, Shi Y, Tang B, He T, Liu JJ, Fan JY, Wu B, Xu XH, Zhao YL, Qian F, Cui YH, Yu PW. MTMR2 promotes invasion and metastasis of gastric cancer via inactivating IFNγ/STAT1 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:206. [PMID: 31113461 PMCID: PMC6528261 DOI: 10.1186/s13046-019-1186-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/22/2019] [Indexed: 12/24/2022]
Abstract
Background The aberrant expression of myotubularin-related protein 2 (MTMR2) has been found in some cancers, but little is known about the roles and clinical relevance. The present study aimed to investigate the roles and clinical relevance of MTMR2 as well as the underlying mechanisms in gastric cancer (GC). Methods MTMR2 expression was examined in 295 GC samples by using immunohistochemistry (IHC). The correlation between MTMR2 expression and clinicopathological features and outcomes of the patients was analyzed. The roles of MTMR2 in regulating the invasive and metastatic capabilities of GC cells were observed using gain-and loss-of-function assays both in vitro and in vivo. The pathways involved in MTMR2-regulating invasion and metastasis were selected and identified by using mRNA expression profiling. Functions and underlying mechanisms of MTMR2-mediated invasion and metastasis were further investigated in a series of in vitro studies. Results MTMR2 was highly expressed in human GC tissues compared to adjacent normal tissues and its expression levels were significantly correlated with depth of invasion, lymph node metastasis, and TNM stage. Patients with MTMR2high had significantly shorter lifespan than those with MTMR2low. Cox regression analysis showed that MTMR2 was an independent prognostic indicator for GC patients. Knockdown of MTMR2 significantly reduced migratory and invasive capabilities in vitro and metastases in vivo in GC cells, while overexpressing MTMR2 achieved the opposite results. MTMR2 knockdown and overexpression markedly inhibited and promoted the epithelial-mesenchymal transition (EMT), respectively. MTMR2 mediated EMT through the IFNγ/STAT1/IRF1 pathway to promote GC invasion and metastasis. Phosphorylation of STAT1 and IRF1 was increased by MTMR2 knockdown and decreased by MTMR2 overexpression accompanying with ZEB1 down-regulation and up-regulation, respectively. Silencing IRF1 upregulated ZEB1, which induced EMT and consequently enhanced invasion and metastasis in GC cells. Conclusions Our findings suggest that MTMR2 is an important promoter in GC invasion and metastasis by inactivating IFNγ/STAT1 signaling and may act as a new prognostic indicator and a potential therapeutic target for GC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1186-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Jiang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jun-Yan Liu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yan Shi
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Bo Tang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Tao He
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jia-Jia Liu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jun-Yan Fan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Bin Wu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Xian-Hui Xu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yong-Liang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Feng Qian
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - You-Hong Cui
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China. .,Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Pei-Wu Yu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
12
|
Santosh KM, Nitish K, Gautam K, Tara K, Krishna P. Recombinant human interferon regulatory factor-1 (IRF-1) protein expression and solubilisation study in Escherichia coli. Mol Biol Rep 2018; 45:1367-1374. [DOI: 10.1007/s11033-018-4298-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
|
13
|
Interferon regulatory factor 1 inactivation in human cancer. Biosci Rep 2018; 38:BSR20171672. [PMID: 29599126 PMCID: PMC5938431 DOI: 10.1042/bsr20171672] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/18/2018] [Accepted: 03/28/2018] [Indexed: 11/28/2022] Open
Abstract
Interferon regulatory factors (IRFs) are a group of closely related proteins collectively referred to as the IRF family. Members of this family were originally recognized for their roles in inflammatory responses; however, recent research has suggested that they are also involved in tumor biology. This review focusses on current knowledge of the roles of IRF-1 and IRF-2 in human cancer, with particular attention paid to the impact of IRF-1 inactivation. The different mechanisms underlying IRF-1 inactivation and their implications for human cancers and the potential importance of IRF-1 in immunotherapy are also summarized.
Collapse
|
14
|
Yang MQ, Du Q, Varley PR, Goswami J, Liang Z, Wang R, Li H, Stolz DB, Geller DA. Interferon regulatory factor 1 priming of tumour-derived exosomes enhances the antitumour immune response. Br J Cancer 2018; 118:62-71. [PMID: 29112686 PMCID: PMC5765230 DOI: 10.1038/bjc.2017.389] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/16/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumour-derived exosomes (TEXs) have a potential for application in cancer vaccines. Whether TEXs after induction by interferon regulatory factor 1 (IRF-1) are capable of enhancing the antitumour response remains to be determined. METHODS Exosomes released by tumour cells infected with IRF-1-expressing adenovirus (IRF-1-Exo) or treated with interferon-γ (IFN-Exo) were isolated via ultracentrifugation. The IRF-1 target proteins IL-15Rα and MHC class I (MHC-I) were analysed by western blot. Exosomes along with CpG adjuvant were injected into tumour models to assess the antitumour effects. Tumours were harvested for immunofluorescence staining. Splenocytes from tumour-bearing mice were co-cultured with tumour cells. The IFNγ-positive and granzyme B-positive CD8α+ splenocyte cells were quantified by flow cytometry. RESULTS The IRF-1-Exo or IFN-Exo displayed increased IL-15Rα and MHC-I expression. Injection of IRF-1-Exo or IFN-Exo combined with CpG had improved antitumour effects in mice. This effect may be a result of increased infiltration of tumours by CD4+ and CD8α+ T cells. Antibody-mediated depletion of CD4+ or CD8+ T cells abrogated the antitumour effects. Splenocytes isolated from CpG+IRF-1-Exo-injected Hepa 1-6 tumour mice had increased IFNγ-positive and granzyme B-positive CD8+ cells after co-culturing with Hepa 1-6 cells as compared with MC38 cells. CONCLUSIONS The IRF-1 priming of TEXs enhances antitumour immune response.
Collapse
Affiliation(s)
- Mu-qing Yang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
- Department of General Surgery, Tenth People’s Hospital affiliated to Tongji University, Shanghai 200072, China
| | - Qiang Du
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Patrick R Varley
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Julie Goswami
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Zhihai Liang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Ronghua Wang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Hui Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David A Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| |
Collapse
|
15
|
Zhen J, Yuan J, Fu Y, Zhu R, Wang M, Chang H, Zhao Y, Wang D, Lu Z. IL-22 promotes Fas expression in oligodendrocytes and inhibits FOXP3 expression in T cells by activating the NF-κB pathway in multiple sclerosis. Mol Immunol 2017; 82:84-93. [PMID: 28038358 DOI: 10.1016/j.molimm.2016.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Multiple sclerosis (MS) is characterized by an increase in interleukin-22 and Fas, and a decrease in FOXP3, among other factors. In this study, we examined patients with MS and healthy control subjects and used the experimental autoimmune encephalomyelitis (EAE) animal model to identify the effects of IL-22 on oligodendrocytes and T cells in MS development. In MS, the expression of Fas in oligodendrocytes and IL-22 in CD4+CCR4+CCR6+CCR10+ T cells was enhanced. Ikaros and FOXP3 were both decreased in T cells. Depending on exogenous IL-22, Fas increased the phosphorylation of mitogen- and stress-activated protein kinase 1 and activated the nuclear factor-κB pathway in oligodendrocytes, leading to an increase in Fas and oligodendrocyte apoptosis. IL-22 decreased FOXP3 expression by activating NF-κB, and it further inhibited PTEN and Ikaros expression. Tregs reversed the functions of IL-22. Taken together, these findings help to elucidate the mechanisms of IL-22 in MS development.
Collapse
Affiliation(s)
- Jin Zhen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, PR China
| | - Jun Yuan
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Yongwang Fu
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Runxiu Zhu
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Meiling Wang
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Hong Chang
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Yan Zhao
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Dong Wang
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010000, Inner Mongolia, PR China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
16
|
Kursunel MA, Esendagli G. The untold story of IFN-γ in cancer biology. Cytokine Growth Factor Rev 2016; 31:73-81. [DOI: 10.1016/j.cytogfr.2016.07.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
|
17
|
Yan Y, Liang Z, Du Q, Yang M, Geller DA. MicroRNA-23a downregulates the expression of interferon regulatory factor-1 in hepatocellular carcinoma cells. Oncol Rep 2016; 36:633-40. [PMID: 27279136 PMCID: PMC4933546 DOI: 10.3892/or.2016.4864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
Interferon regulatory factor-1 (IRF-1) is a tumor-suppressor gene induced by interferon-γ (IFNγ) and plays an important role in the cell death of hepatocellular carcinoma (HCC). HCC tumors evade death in part by downregulating IRF-1 expression, yet the molecular mechanisms accounting for IRF-1 suppression in HCC have not yet been characterized. Previous studies have shown that microRNA-23a (miR-23a) can suppress apoptosis by targeting IRF-1. Therefore, we hypothesized that miR-23a promotes HCC growth by downregulating IRF-1. For the in vivo studies, 7 cases of resected HCC and adjacent liver samples were analyzed. For the in vitro studies, IRF-1 mRNA and protein were examined in HepG2 and Huh-7 HCC cells after IFNγ stimulation by real-time PCR and western blotting, respectively. To determine the role of miR-23a in regulating IRF-1, HepG2 cells were transfected with an miR-23a mimic or inhibitor, and IRF-1 expression was examined. Binding of miR-23a was assessed by cloning the 528-bp human IRF-1 3'-untranslated region (3'UTR) into luciferase reporter plasmid pMIR-IRF-1-3'UTR. The results showed that IRF-1 mRNA expression was downregulated in the human HCC tumor tissues compared to that in the adjacent background liver tissues. IFNγ-induced IRF-1 protein was less in the HepG2 tumor cells compared to that in the primary human hepatocytes. miR-23a expression was inversely correlated with IRF-1, and addition of the miR-23a inhibitor increased basal IRF-1 mRNA and protein. Likewise, the miR-23a mimic downregulated IFNγ-induced IRF-1 protein expression, while the miR-23a inhibitor increased IRF-1. Furthermore, the miR-23a mimic repressed IRF-1-3'UTR reporter activity, while the miR-23a inhibitor increased the reporter activity. These results demonstrated that IRF-1 expression is downregulated in human HCC tumors compared to that noted in the background liver. miR-23a downregulates the expression of IRF-1 in HCC cells, and the IRF-1 3'UTR has an miR‑23a binding site that binds miR-23a and decreases reporter activity. These findings suggest that the targeting of IRF-1 by miR-23a may be the molecular basis for IRF-1 downregulation in HCC and provide new insight into the regulation of HCC by miRNAs.
Collapse
Affiliation(s)
- Yihe Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of General Surgery
| | - Zhihai Liang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Muqing Yang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Armstrong MJ, Stang MT, Liu Y, Yan J, Pizzoferrato E, Yim JH. IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition. Cancer Biol Ther 2016; 16:1029-41. [PMID: 26011589 DOI: 10.1080/15384047.2015.1046646] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway.
Collapse
Key Words
- Ad, adenovirus
- Cdk, cyclin-dependent kinase
- DISC, death-inducing signaling complex
- DMEM, Dulbecco's Modified Eagle's Medium
- DR, death receptor
- EGFP, enhanced green fluorescent protein
- ER, estrogen receptor
- FADD, fas-associated death domain
- FBS, Fetal Bovine Serum
- FITC, fluorescein isothiocyanate
- FLICE, fas-associated death domain protein interleukin-1 β-converting enzyme
- IAP
- IFN-β, interferon-β
- IFN-γ, interferon-gamma
- IKK, IκB, kinase complex
- IRF-1
- IRF-1, interferon regulatory factor-1
- IκB, Inhibitory kappaB
- MOI, multiplicity of infection
- MTT, methylthiazoltetrazolium
- NEMO, NF-κB essential modulator
- NF-κB
- NF-κB, nuclear factor of kappa Beta
- RIP1, receptor interacting protein 1
- SCID, severe combined immunodeficiency
- STAT, signal transducer and activator of transcription
- Smac/DIABLO, Second mitochondria-derived activator of caspase/Direct IAP-binding protein with low pI
- TNF-α, tumor necrosis factor-α
- TNFR, tumor necrosis factor receptor
- TRADD, TNF receptor associated protein with a death domain
- TRAF2, tumor necrosis factor receptor-associated factor 2
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- XIAP, X-linked inhibitor of apoptosis protein
- apoptosis
- breast cancer
- cFLIP, cellular FLICE inhibitory protein
- cIAP1, c-inhibitor of apoptosis
- p53
- siRNA, small interfering RNA
- tumor suppressor
- β-gal, β-galactosidase
Collapse
Affiliation(s)
- Michaele J Armstrong
- a Department of Surgery; University of Pittsburgh School of Medicine ; Pittsburgh , PA , USA
| | | | | | | | | | | |
Collapse
|
19
|
Lin CF, Chien SY, Chen CL, Hsieh CY, Tseng PC, Wang YC. IFN-γ Induces Mimic Extracellular Trap Cell Death in Lung Epithelial Cells Through Autophagy-Regulated DNA Damage. J Interferon Cytokine Res 2015; 36:100-12. [PMID: 26540174 DOI: 10.1089/jir.2015.0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Treatment of interferon-γ (IFN-γ) causes cell growth inhibition and cytotoxicity in lung epithelial malignancies. Regarding the induction of autophagy related to IFN-γ signaling, this study investigated the link between autophagy and IFN-γ cytotoxicity. In A549 human lung cancer cells, IFN-γ treatment induced concurrent apoptotic and nonapoptotic events. Unexpectedly, the nonapoptotic cells present mimic extracellular trap cell death (ETosis), which was regulated by caspase-3 and by autophagy induction through immunity-related GTPase family M protein 1 and activating transcription factor 6. Furthermore, IFN-γ signaling controlled mimic ETosis through a mechanism involving an autophagy- and Fas-associated protein with death domain-controlled caspase-8/-3 activation. Following caspase-mediated lamin degradation, IFN-γ caused DNA damage-associated ataxia telangiectasia and Rad3-related protein (ATR)/ataxia telangiectasia mutated (ATM)-regulated mimic ETosis. Upon ATR/ATM signaling, peptidyl arginine deiminase 4 (PAD4)-mediated histone 3 citrullination promoted mimic ETosis. Such IFN-γ-induced effects were defective in PC14PE6/AS2 human lung cancer cells, which were unsusceptible to IFN-γ-induced autophagy. Due to autophagy-based caspase cascade activation, IFN-γ triggers unconventional caspase-mediated DNA damage, followed by ATR/ATM-regulated PAD4-mediated histone citrullination during mimic ETosis in lung epithelial malignancy.
Collapse
Affiliation(s)
- Chiou-Feng Lin
- 1 Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan .,2 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University , Taipei, Taiwan
| | - Shun-Yi Chien
- 3 Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Chia-Ling Chen
- 4 Translational Research Center, Taipei Medical University , Taipei, Taiwan
| | - Chia-Yuan Hsieh
- 5 Institute of Clinical Medicine, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Po-Chun Tseng
- 5 Institute of Clinical Medicine, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Yu-Chih Wang
- 1 Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan .,2 Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University , Taipei, Taiwan
| |
Collapse
|
20
|
Schwartz-Roberts JL, Cook KL, Chen C, Shajahan-Haq AN, Axelrod M, Wärri A, Riggins RB, Jin L, Haddad BR, Kallakury BV, Baumann WT, Clarke R. Interferon regulatory factor-1 signaling regulates the switch between autophagy and apoptosis to determine breast cancer cell fate. Cancer Res 2015; 75:1046-55. [PMID: 25576084 PMCID: PMC4359953 DOI: 10.1158/0008-5472.can-14-1851] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interferon regulatory factor-1 (IRF1) is a tumor suppressor that regulates cell fate in several cell types. Here, we report an inverse correlation in expression of nuclear IRF1 and the autophagy regulator ATG7 in human breast cancer cells that directly affects their cell fate. In mice harboring mutant Atg7, nuclear IRF1 was increased in mammary tumors, spleen, and kidney. Mechanistic investigations identified ATG7 and the cell death modulator beclin-1 (BECN1) as negative regulators of IRF1. Silencing ATG7 or BECN1 caused estrogen receptor-α to exit the nucleus at the time when IRF1 nuclear localization occurred. Conversely, silencing IRF1 promoted autophagy by increasing BECN1 and blunting IGF1 receptor and mTOR survival signaling. Loss of IRF1 promoted resistance to antiestrogens, whereas combined silencing of ATG7 and IRF1 restored sensitivity to these agents. Using a mathematical model to prompt signaling hypotheses, we developed evidence that ATG7 silencing could resensitize IRF1-attenuated cells to apoptosis through mechanisms that involve other estrogen-regulated genes. Overall, our work shows how inhibiting the autophagy proteins ATG7 and BECN1 can regulate IRF1-dependent and -independent signaling pathways in ways that engender a new therapeutic strategy to attack breast cancer.
Collapse
Affiliation(s)
- Jessica L Schwartz-Roberts
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Katherine L Cook
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Chun Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Ayesha N Shajahan-Haq
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Margaret Axelrod
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Anni Wärri
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Rebecca B Riggins
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Lu Jin
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Bassem R Haddad
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Bhaskar V Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC
| | - William T Baumann
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Robert Clarke
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC.
| |
Collapse
|
21
|
Kung HC, Evensen Ø, Hong JR, Kuo CY, Tso CH, Ngou FH, Lu MW, Wu JL. Interferon regulatory factor-1 (IRF-1) is involved in the induction of phosphatidylserine receptor (PSR) in response to dsRNA virus infection and contributes to apoptotic cell clearance in CHSE-214 cell. Int J Mol Sci 2014; 15:19281-306. [PMID: 25342322 PMCID: PMC4227274 DOI: 10.3390/ijms151019281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022] Open
Abstract
The phosphatidylserine receptor (PSR) recognizes a surface marker on apoptotic cells and initiates engulfment. This receptor is important for effective apoptotic cell clearance and maintains normal tissue homeostasis and regulation of the immune response. However, the regulation of PSR expression remains poorly understood. In this study, we determined that interferon regulatory factor-1 (IRF-1) was dramatically upregulated upon viral infection in the fish cell. We observed apoptosis in virus-infected cells and found that both PSR and IRF-1 increased simultaneously. Based on a bioinformatics promoter assay, IRF-1 binding sites were identified in the PSR promoter. Compared to normal viral infection, we found that PSR expression was delayed, viral replication was increased and virus-induced apoptosis was inhibited following IRF-1 suppression with morpholino oligonucleotides. A luciferase assay to analyze promoter activity revealed a decreasing trend after the deletion of the IRF-1 binding site on PSR promoter. The results of this study indicated that infectious pancreatic necrosis virus (IPNV) infection induced both the apoptotic and interferon (IFN) pathways, and IRF-1 was involved in regulating PSR expression to induce anti-viral effects. Therefore, this work suggests that PSR expression in salmonid cells during IPNV infection is activated when IRF-1 binds the PSR promoter. This is the first report to show the potential role of IRF-1 in triggering the induction of apoptotic cell clearance-related genes during viral infection and demonstrates the extensive crosstalk between the apoptotic and innate immune response pathways.
Collapse
Affiliation(s)
- Hsin-Chia Kung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11574, Taiwan.
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo 0454, Norway.
| | - Jiann-Ruey Hong
- Institute of Biotechnology, National Cheng-Kung University, Tainan 70101, Taiwan.
| | - Chia-Yu Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Chun-Hsi Tso
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Fang-Huar Ngou
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ming-Wei Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11574, Taiwan.
| |
Collapse
|
22
|
Jiang DS, Li L, Huang L, Gong J, Xia H, Liu X, Wan N, Wei X, Zhu X, Chen Y, Chen X, Zhang XD, Li H. Interferon Regulatory Factor 1 Is Required for Cardiac Remodeling in Response to Pressure Overload. Hypertension 2014; 64:77-86. [PMID: 24732887 DOI: 10.1161/hypertensionaha.114.03229] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interferon regulatory factor 1 (IRF1), a critical member of the IRF family, was previously shown to be associated with the immune system and to be involved in apoptosis and tumor suppression. However, the role of IRF1 in pressure overload–induced cardiac remodeling has remained unclear. Using genetic approaches, we established a central role for the IRF1 transcription factor in the regulation of cardiac remodeling both in vivo and in vitro, and we determined the mechanism underlying this process. The expression level of IRF1 was remarkably altered in both failing human hearts and hypertrophic murine hearts. Transgenic mice with cardiac-specific IRF1 overexpression exacerbated aortic banding–induced cardiac hypertrophy, ventricular dilation, fibrosis, and dysfunction, whereas IRF1-deficient (knockout) mice exhibited a significant reduction in the hypertrophic response. Similar results were observed in a global IRF1-knockout rat model. Mechanistically, the prohypertrophic effects elicited by IRF1 in response to pathological stimuli were associated with the direct activation of inducible nitric oxide synthase (iNOS). Furthermore, we identified 1 IRF1-binding site in the promoter region of the iNOS gene, which was essential for its transcription. To examine the IRF1-iNOS axis in vivo, we generated IRF1-transgenic/iNOS-knockout mice. IRF1 exerted profoundly detrimental effects in these mice; however, these effects were nullified by iNOS ablation. These data suggest the IRF1–iNOS axis as a crucial regulator of cardiac remodeling and that IRF1 could be a potent therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Ding-Sheng Jiang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Liangpeng Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Ling Huang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Jun Gong
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Hao Xia
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Xiaoxiong Liu
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Nian Wan
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Xiang Wei
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Xuehai Zhu
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Yingjie Chen
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Xin Chen
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Xiao-Dong Zhang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., L.H., H.X., X.L., N.W., H.L.); Cardiovascular Research Institute (D.-S.J., L.H., H.X., X.L., N.W., H.L.) and College of Life Sciences (J.G., X.-D.Z.), Wuhan University, Wuhan, China; Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., X.C.); Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji Medical
| |
Collapse
|
23
|
Liu X, Ru J, Zhang J, Zhu LH, Liu M, Li X, Tang H. miR-23a targets interferon regulatory factor 1 and modulates cellular proliferation and paclitaxel-induced apoptosis in gastric adenocarcinoma cells. PLoS One 2013; 8:e64707. [PMID: 23785404 PMCID: PMC3677940 DOI: 10.1371/journal.pone.0064707] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/17/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are a class of non-coding RNAs that function as key regulators of gene expression at the post-transcriptional level. In our previous research, we found that miR-23a was significantly up-regulated in human gastric adenocarcinoma cells. In the current study, we demonstrate that miR-23a suppresses paclitaxel-induced apoptosis and promotes the cell proliferation and colony formation ability of gastric adenocarcinoma cells. We have identified tumor suppressor interferon regulator factor 1 (IRF1) as a direct target gene of miR-23a. We performed a fluorescent reporter assay to confirm that miR-23a bound to the IRF1 mRNA 3′UTR directly and specifically. The ectopic expression of IRF1 markedly promoted paclitaxel-induced apoptosis and inhibited cell viability and colony formation ability, whereas the knockdown of IRF1 had the opposite effects. The restoration of IRF1 expression counteracted the effects of miR-23a on the paclitaxel-induced apoptosis and cell proliferation of gastric adenocarcinoma cells. Quantitative real-time PCR showed that miR-23a is frequently up-regulated in gastric adenocarcinoma tissues, whereas IRF1 is down-regulated in cancer tissues. Altogether, these results indicate that miR-23a suppresses paclitaxel-induced apoptosis and promotes cell viability and the colony formation ability of gastric adenocarcinoma cells by targeting IRF1 at the post-transcriptional level.
Collapse
Affiliation(s)
- Xue Liu
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Ru
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jian Zhang
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li-hua Zhu
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pathogen Biology and Immunology, College of Basic Medicine, Hebei United University, Tangshan, Hebei Province, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- * E-mail:
| |
Collapse
|
24
|
Camicia R, Bachmann SB, Winkler HC, Beer M, Tinguely M, Haralambieva E, Hassa PO. BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNγ-STAT1-IRF1-53 axes in diffuse large B-cell lymphoma. J Cell Sci 2013; 126:1969-80. [DOI: 10.1242/jcs.118174] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The B-aggressive lymphoma-1 protein and ADP-ribosyltransferase BAL1/ARTD9 has been recently identified as a novel risk-related gene product in aggressive diffuse large B-cell lymphoma (DLBCL). BAL1 is constitutively expressed in a subset of high-risk DLBCL with an active host inflammatory response and suggested to be associated with interferon related gene expression. Here we identify BAL1 as a novel oncogenic survival factor in DLBCL and show that constitutive overexpression of BAL1 in DLBCL tightly associates with intrinsic interferon-gamma (IFNγ) signaling and constitutive activity of signal transducer and activator of transcription (STAT)-1. Remarkably, BAL1 stimulates the phosphorylation of both STAT1 isoforms STAT1α and STAT1β, on Y701 and thereby promoting the nuclear accumulation of the antagonistically acting and transcriptionally repressive isoform STAT1β. Moreover, BAL1 physically interacts with both isoforms of STAT1, STAT1α and STAT1β through its macro domains in an ADP-ribosylation dependent manner. BAL1 directly inhibits together with STAT1β the expression of tumor suppressor and interferon response factor (IRF)-1. Conversely, BAL1 enhances the expression of the proto-oncogenes IRF2 and B-cell CLL/lymphoma (BCL)-6 in DLBCL. Our results show the first time that BAL1 represses the anti-proliferative and pro-apoptotic IFNγ-STAT1-IRF1-53 axes and mediates proliferation, survival and chemo-resistance in DLBCL. As a consequence constitutive IFNγ-STAT1 signaling does not lead to apoptosis but rather to chemo-resistance in DLBCL overexpressing BAL1. Our results suggest that BAL1 may induce an oncogenic switch in STAT1 from a tumor suppressor to an oncogene in high-risk DLBCL.
Collapse
|
25
|
Patel J, Balabanov R. Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. Int J Mol Sci 2012; 13:10647-10659. [PMID: 22949885 PMCID: PMC3431883 DOI: 10.3390/ijms130810647] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 11/16/2022] Open
Abstract
New evidence has emerged over the last decade indicating that oligodendrocyte injury in multiple sclerosis (MS) is not a single unified phenomenon but rather a spectrum of processes ranging from massive immune destruction to a subtle cell death in the absence of significant inflammation. Experimentally, protection of oligodendrocytes against inflammatory injury results in protection against experimental autoimmune encephalitis, the animal model of multiple sclerosis. In this review, we will discuss the molecular mechanisms regulating oligodendrocyte injury and inflammatory demyelination. We draw attention to the injurious role of IFN-γ signaling in oligodendrocytes and the pro-inflammatory effect of their death. In conclusion, studying the molecular mechanisms of oligodendrocyte injury is likely to provide new perspective on the pathogenesis of MS and a rationale for cell protective therapies.
Collapse
Affiliation(s)
| | - Roumen Balabanov
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-312-942-8011; Fax: +1-312-942-5523
| |
Collapse
|
26
|
Splenocyte apoptosis and autophagy is mediated by interferon regulatory factor 1 during murine endotoxemia. Shock 2012; 37:511-7. [PMID: 22266972 DOI: 10.1097/shk.0b013e318249cfa2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sepsis-induced lymphocyte and dendritic cell apoptosis contributes to immunosuppression, which results in an inability to eradicate the primary infection as well as a propensity to acquire new, secondary infections. Another cellular process, autophagy, is also activated in immune cells and plays a protective role. In the present study, we demonstrate that interferon regulatory factor 1 (IRF-1) regulates both immune cell apoptosis and autophagy in a murine endotoxemia model. Interferon regulatory factor 1 is activated at an early phase through a Toll-like receptor 4-dependent, myeloid differentiation primary response gene 88-independent manner in splenocytes. Furthermore, IRF-1 knockout (KO) mice are protected from a lethal endotoxemia model. This protection is associated with decreased apoptosis and increased autophagy in splenocytes. Interferon regulatory factor 1 KO mice experience decreased apoptotic cell loss, especially in CD4⁺ T lymphocytes and myeloid antigen-presenting cells. Meanwhile, IRF-1 KO mice demonstrate increased autophagy and improved mitochondrial integrity. This increased autophagy in KO mice is attributable, at least in part, to deactivation of mammalian target of rapamycin/P70S6 signaling--a main negative regulator of autophagy. Therefore, we propose a novel role for IRF-1 in regulating both apoptosis and autophagy in splenocytes in the setting of endotoxemia with IRF-1 promoting apoptosis and inhibiting autophagy.
Collapse
|
27
|
Zhang L, Cardinal JS, Bahar R, Evankovich J, Huang H, Nace G, Billiar TR, Rosengart MR, Pan P, Tsung A. Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Mol Med 2012; 18:201-8. [PMID: 22105605 DOI: 10.2119/molmed.2011.00282] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/03/2011] [Indexed: 11/06/2022] Open
Abstract
The pathogenesis of sepsis is complex and, unfortunately, poorly understood. The cellular process of autophagy is believed to play a protective role in sepsis; however, the mechanisms responsible for its regulation in this setting are ill defined. In the present study, interferon regulatory factor 1 (IRF-1) was found to regulate the autophagic response in lipopolysaccharide (LPS)-stimulated macrophages. In vivo, tissue macrophages obtained from LPS-stimulated IRF-1 knockout (KO) mice demonstrated increased autophagy and decreased apoptosis compared to those isolated from IRF-1 wild-type (WT) mice. In vitro, LPS-stimulated peritoneal macrophages obtained from IRF-1 KO mice experienced increased autophagy and decreased apoptosis. IRF-1 mediates the inhibition of autophagy by modulating the activation of the mammalian target of rapamycin (mTOR). LPS induced the activation of mTOR in WT peritoneal macrophages, but not in IRF-1 KO macrophages. In contrast, overexpression of IRF-1 alone increased the activation of mTOR and consequently decreased autophagic flux. Furthermore, the inhibitory effects of IRF-1 mTOR activity were mediated by nitric oxide (NO). Therefore, we propose a novel role for IRF-1 and NO in the regulation of macrophage autophagy during LPS stimulation in which IRF-1/NO inhibits autophagy through mTOR activation.
Collapse
Affiliation(s)
- Lemeng Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu L, Qiu W, Wang H, Li Y, Zhou J, Xia M, Shan K, Pang R, Zhou Y, Zhao D, Wang Y. Sublytic C5b-9 complexes induce apoptosis of glomerular mesangial cells in rats with Thy-1 nephritis through role of interferon regulatory factor-1-dependent caspase 8 activation. J Biol Chem 2012; 287:16410-23. [PMID: 22427665 DOI: 10.1074/jbc.m111.319566] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The apoptosis of glomerular mesangial cells (GMC) in rat Thy-1 nephritis (Thy-1N), a model of human mesangioproliferative glomerulonephritis, is accompanied by sublytic C5b-9 deposition, but the mechanism of sublytic C5b-9-mediated GMC apoptosis has not been elucidated. In the present study, the gene expression profiles both in the GMC stimulated by sublytic C5b-9 and the rat renal tissue of Thy-1N were detected using microarrays. Among the co-up-regulated genes, the up-regulation of interferon regulatory factor-1 (IRF-1) was further confirmed. Increased caspase 8 and caspase 3 expression and caspase 8 promoter activity in the GMC were also identified. Meanwhile, overexpression or knockdown of IRF-1 not only enhanced or inhibited GMC apoptosis and caspase 8 and 3 induction but also increased or decreased caspase 8 promoter activity, respectively. The element of IRF-1 binding to the caspase 8 promoter was first revealed. Furthermore, silencing IRF-1 or repressing the activation of caspases 8 and 3 significantly reduced GMC apoptosis, including other pathologic changes of Thy-1N. These novel findings indicate that GMC apoptosis of Thy-1N is associated with the IRF-1-activated caspase 8 pathway.
Collapse
Affiliation(s)
- Lisha Liu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li P, Du Q, Cao Z, Guo Z, Evankovich J, Yan W, Chang Y, Shao L, Stolz DB, Tsung A, Geller DA. Interferon-γ induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Lett 2012; 314:213-22. [PMID: 22056812 PMCID: PMC3487386 DOI: 10.1016/j.canlet.2011.09.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/04/2011] [Accepted: 09/25/2011] [Indexed: 12/19/2022]
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic cytokine with immunomodulatory, anti-viral, and anti-proliferative effects. In this study, we examined the effects of IFN-γ on autophagy and cell growth in human hepatocellular carcinoma (HCC) cells. IFN-γ inhibited cell growth of Huh7 cells with non-apoptotic cell death. IFN-γ induced autophagosome formation and conversion/turnover of microtubule associated protein 1 light chain 3 (LC3) protein. Furthermore, overexpression of IRF-1 also induced autophagy in Huh7 cells. Silencing IRF-1 expression with target small hairpin RNA blocked autophagy induced by IFN-γ. Silencing of the autophagy signals Beclin-1 or Atg5 attenuated the inhibitory effect of IFN-γ on Huh7 cells with decreased cell death. Additionally, IFN-γ activated autophagy in freshly cultured human HCC cells. Together, these findings show that IFN-γ induces autophagy through IRF-1 signaling pathway and the induction of autophagy contributes to the growth-inhibitory effect of IFN-γ with cell death in human liver cancer cells.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zongxian Cao
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Zhong Guo
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - John Evankovich
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wei Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ying Chang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lifang Shao
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna Beer Stolz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
30
|
Armstrong MJ, Stang MT, Liu Y, Gao J, Ren B, Zuckerbraun BS, Mahidhara RS, Xing Q, Pizzoferrato E, Yim JH. Interferon Regulatory Factor 1 (IRF-1) induces p21(WAF1/CIP1) dependent cell cycle arrest and p21(WAF1/CIP1) independent modulation of survivin in cancer cells. Cancer Lett 2011; 319:56-65. [PMID: 22200613 DOI: 10.1016/j.canlet.2011.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/16/2011] [Indexed: 01/21/2023]
Abstract
We have shown that the ectopic expression of Interferon Regulatory Factor 1 (IRF-1) results in human cancer cell death accompanied by the down-regulation of the Inhibitor of Apoptosis Protein (IAP) survivin and the induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). In this report, we investigated the direct role of p21 in the suppression of survivin. We show that IRF-1 down-regulates cyclin B1, cdc-2, cyclin E, E2F1, Cdk2, Cdk4, and results in p21-mediated G1 cell cycle arrest. Interestingly, while p21 directly mediates G1 cell cycle arrest, IRF-1 or other IRF-1 signaling pathways may directly regulate survivin in human cancer cells.
Collapse
Affiliation(s)
- Michaele J Armstrong
- Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gao J, Wang Y, Xing Q, Yan J, Senthil M, Akmal Y, Kowolik CM, Kang J, Lu DM, Zhao M, Lin Z, Cheng CHK, Yip MLR, Yim JH. Identification of a natural compound by cell-based screening that enhances interferon regulatory factor-1 activity and causes tumor suppression. Mol Cancer Ther 2011; 10:1774-83. [PMID: 21817116 DOI: 10.1158/1535-7163.mct-11-0304] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor interferon regulatory factor-1 (IRF-1) is induced by many tumor-suppressive stimuli and can mediate antiproliferative and proapoptotic effects in cancer cells. Thus, identifying agents that enhance IRF-1 activity may be an effective approach to cancer therapy. A cell-based screening assay was developed to identify extracts and compounds that could enhance IRF-1 activity, using an IRF-1-dependent luciferase reporter cell line. Through this approach, we identified a natural product extract and a known active component of this extract, baicalein, which causes a marked increase in IRF-1-dependent reporter gene expression and IRF-1 protein, with modulation of known IRF-1 targets PUMA and cyclin D1. Baicalein causes suppression of growth in vitro in multiple cancer cell lines in the low micromolar range. IRF-1 plays a role in this growth suppression as shown by significant resistance to growth suppression in a breast cancer cell line stably transfected with short hairpin RNA against IRF-1. Finally, intraperitoneal administration of baicalein by repeated injection causes inhibition of growth in both xenogeneic and syngeneic mouse models of cancer without toxicity to the animals. These findings indicate that identifying enhancers of IRF-1 activity may have utility in anticancer therapies and that cell-based screening for activation of transcription factors can be a useful approach for drug discovery.
Collapse
Affiliation(s)
- Jinbo Gao
- Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schwartz JL, Shajahan AN, Clarke R. The Role of Interferon Regulatory Factor-1 (IRF1) in Overcoming Antiestrogen Resistance in the Treatment of Breast Cancer. Int J Breast Cancer 2011; 2011:912102. [PMID: 22295238 PMCID: PMC3262563 DOI: 10.4061/2011/912102] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/29/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022] Open
Abstract
Resistance to endocrine therapy is common among breast cancer patients with estrogen receptor alpha-positive (ER+) tumors and limits the success of this therapeutic strategy. While the mechanisms that regulate endocrine responsiveness and cell fate are not fully understood, interferon regulatory factor-1 (IRF1) is strongly implicated as a key regulatory node in the underlying signaling network. IRF1 is a tumor suppressor that mediates cell fate by facilitating apoptosis and can do so with or without functional p53. Expression of IRF1 is downregulated in endocrine-resistant breast cancer cells, protecting these cells from IRF1-induced inhibition of proliferation and/or induction of cell death. Nonetheless, when IRF1 expression is induced following IFNγ treatment, antiestrogen sensitivity is restored by a process that includes the inhibition of prosurvival BCL2 family members and caspase activation. These data suggest that a combination of endocrine therapy and compounds that effectively induce IRF1 expression may be useful for the treatment of many ER+ breast cancers. By understanding IRF1 signaling in the context of endocrine responsiveness, we may be able to develop novel therapeutic strategies and better predict how patients will respond to endocrine therapy.
Collapse
Affiliation(s)
- J L Schwartz
- Georgetown University Medical Center, W401 Research Building, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | |
Collapse
|
33
|
Cytoplasmic overexpression of CD95L in esophageal adenocarcinoma cells overcomes resistance to CD95-mediated apoptosis. Neoplasia 2011; 13:198-205. [PMID: 21390183 DOI: 10.1593/neo.101304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/17/2010] [Accepted: 12/30/2010] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The CD95/CD95L pathway plays a critical role in tissue homeostasis and immune system regulation; however, the function of this pathway in malignancy remains poorly understood. We hypothesized that CD95L expression in esophageal adenocarcinoma confers advantages to the neoplasm other than immune privilege. METHODS CD95L expression was characterized in immortalized squamous esophagus (HET-1A) and Barrett esophagus (BAR-T) cells; adenocarcinoma cell lines FLO-1, SEG-1, and BIC-1, and MDA468 (- control); and KFL cells (+ control). Analyses included reverse transcription-polymerase chain reaction, immunoblots of whole cell and secretory vesicle lysates, FACScan analysis, laser scanning confocal microscopy of native proteins and fluorescent constructs, and assessment of apoptosis and ERK1/2 pathways. RESULTS Cleaved, soluble CD95L is expressed at both the RNA and protein levels in these cell lines derived from esophageal adenocarcinoma and other human tissues. CD95L was neither trafficked to the cell membrane nor secreted into the media or within vesicles, rather the protein seems to be sequestered in the cytoplasm. CD95 and CD95L colocalize by immunofluorescence, but an interaction was not proven by immunoprecipitation. Overexpression of CD95L in the adenocarcinoma cell lines induced robust apoptosis and, under conditions of pan-caspase inhibition, resulted in activation of ERK signaling. CONCLUSIONS CD95L localization in EA cells is inconsistent with the conference of immune privilege and is more consistent with a function that promotes tumor growth through alternative CD95 signaling. Reduced cell surface expression of CD95 affects cell sensitivity to extracellular apoptotic signals more significantly than alterations in downstream modulators of apoptosis.
Collapse
|
34
|
Inhibition of cellular FLICE-like inhibitory protein abolishes insensitivity to interferon-α and death receptor stimulation in resistant variants of the human U937 cell line. Apoptosis 2011; 16:783-94. [DOI: 10.1007/s10495-011-0606-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
ElBakry O, Ahmad MO, Swamy MNS. Identification of differentially expressed genes for time-course microarray data based on modified RM ANOVA. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011; 9:451-466. [PMID: 21464508 DOI: 10.1109/tcbb.2011.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The regulation of gene expression is a dynamic process, hence it is of vital interest to identify and characterize changes in gene expression over time. We present here a general statistical method for detecting changes in microarray expression over time within a single biological group and is based on repeated measures (RM) ANOVA. In this method, unlike the classical F-statistic, statistical significance is determined taking into account the time dependency of the microarray data. A correction factor for this RM F-statistic is introduced leading to a higher sensitivity as well as high specificity. We investigate the two approaches that exist in the literature for calculating the p-values using resampling techniques of gene-wise p-values and pooled p-values. It is shown that the pooled p-values method compared to the method of the gene-wise p-values is more powerful, and computationally less expensive, and hence is applied along with the introduced correction factor to various synthetic data sets and a real data set. These results show that the proposed technique outperforms the current methods. The real data set results are consistent with the existing knowledge concerning the presence of the genes. The algorithms presented are implemented in R and are freely available upon request.
Collapse
|
36
|
Ning Y, Riggins RB, Mulla JE, Chung H, Zwart A, Clarke R. IFNgamma restores breast cancer sensitivity to fulvestrant by regulating STAT1, IFN regulatory factor 1, NF-kappaB, BCL2 family members, and signaling to caspase-dependent apoptosis. Mol Cancer Ther 2010; 9:1274-85. [PMID: 20457620 DOI: 10.1158/1535-7163.mct-09-1169] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antiestrogens are effective therapies for the management of many estrogen receptor-alpha (ER)-positive breast cancers. Nonetheless, both de novo and acquired resistance occur and remain major problems in the clinical setting. IFNgamma is an inflammatory cytokine that induces the expression and function of IFN regulatory factor 1 (IRF1), a tumor suppressor gene that can increase antiestrogen responsiveness. We show that IFNgamma, but not IFNalpha, IFNbeta, or fulvestrant (ICI; ICI 182,780; Faslodex), induces IRF1 expression in antiestrogen-resistant MCF7/LCC9 and LY2 cells. Moreover, IFNgamma restores the responsiveness of these cells to fulvestrant. Increased IRF1 activation suppresses NF-kappaB p65 (RELA) activity, inhibits the expression of prosurvival (BCL2, BCL-W), and induces the expression of proapoptotic members (BAK, mitochondrial BAX) of the BCL2 family. This molecular signaling is associated with the activation of signal transducer and activator of transcription 1 and leads to increased mitochondrial membrane permeability; activation of caspase-7 (CASP7), CASP8, and CASP9; and induction of apoptosis but not autophagy. Whereas antiestrogen-resistant cells are capable of inducing autophagy through IFN-mediated signaling, their ability to do so through antiestrogen-regulated signaling is lost. The abilities of IFNgamma to activate CASP8, induce apoptosis, and restore antiestrogen sensitivity are prevented by siRNA targeting IRF1, whereas transient overexpression of IRF1 mimics the effects of IFNgamma treatment. These observations support the exploration of clinical trials combining antiestrogens and compounds that can induce IRF1, such as IFNgamma, for the treatment of some ER-positive breast cancers.
Collapse
Affiliation(s)
- Yanxia Ning
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ueki S, Dhupar R, Cardinal J, Tsung A, Yoshida J, Ozaki KS, Klune JR, Murase N, Geller DA. Critical role of interferon regulatory factor-1 in murine liver transplant ischemia reperfusion injury. Hepatology 2010; 51:1692-701. [PMID: 20131404 PMCID: PMC3001118 DOI: 10.1002/hep.23501] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interferon regulatory factor-1 (IRF-1) is a transcription factor that regulates gene expression during immunity. We hypothesized that IRF-1 plays a pivotal role in liver transplant (LTx) ischemia/reperfusion (I/R) injury. Mouse orthotopic LTx was conducted after 24 hours cold storage in University of Wisconsin (UW) solution in wildtype (WT) C57BL/6 and IRF-1 knockout (KO) mice. IRF-1 deficiency in liver grafts, but not in recipients, resulted in significant reduction of hepatocyte apoptosis and liver injury, as well as improved survival. IRF-1 mRNA up-regulation was typically seen in graft hepatocytes in WT-->WT LTx. Deficiency of IRF-1 signaling in graft resulted in significantly reduced messenger RNA (mRNA) levels for death ligands and death receptors in hepatocytes, as well as decreased caspase-8 activities, indicating that IRF-1 mediates death ligand-induced hepatocyte death. Further, a smaller but significant IRF-1 mRNA up-regulation was seen in WT graft nonparenchymal cells (NPC) and associated with interferon gamma (IFN-gamma) mRNA up-regulation exclusively in NPC. IFN-gamma mRNA was significantly reduced in IRF-1 KO graft. Thus, IRF-1 in graft hepatocytes and NPC has distinct effects in hepatic I/R injury. However, LTx with chimeric liver grafts showed that grafts lacking hepatocellular IRF-1 had better protection compared with those lacking IRF-1 in NPC. The study identifies a critical role for IRF-1 in liver transplant I/R injury.
Collapse
Affiliation(s)
- Shinya Ueki
- Thomas E. Starzl Transplant Institute, University of Pittsburgh, Department of Surgery, Pittsburgh PA, 15213
| | - Rajeev Dhupar
- University of Pittsburgh, Department of Surgery, Pittsburgh PA, 15213
| | - Jon Cardinal
- University of Pittsburgh, Department of Surgery, Pittsburgh PA, 15213
| | - Allan Tsung
- University of Pittsburgh, Department of Surgery, Pittsburgh PA, 15213
| | - Junichi Yoshida
- Thomas E. Starzl Transplant Institute, University of Pittsburgh, Department of Surgery, Pittsburgh PA, 15213
| | - Kikumi S. Ozaki
- Thomas E. Starzl Transplant Institute, University of Pittsburgh, Department of Surgery, Pittsburgh PA, 15213
| | - John Robert Klune
- University of Pittsburgh, Department of Surgery, Pittsburgh PA, 15213
| | - Noriko Murase
- Thomas E. Starzl Transplant Institute, University of Pittsburgh, Department of Surgery, Pittsburgh PA, 15213
| | - David A. Geller
- University of Pittsburgh Medical Center, Liver Cancer Center.,Corresponding Author: David A. Geller, M.D., UPMC Liver Cancer Center, 3471 Fifth Avenue, Kaufmann Medical Building, Suite 300, Pittsburgh, PA 15213. Phone: 412-692-2001; Fax: 412-692-2002;
| |
Collapse
|
38
|
IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death Differ 2009; 17:699-709. [PMID: 19851330 PMCID: PMC2838929 DOI: 10.1038/cdd.2009.156] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interferon Regulatory Factor-1 (IRF-1) is a transcription factor which acts as a tumor suppressor and causes apoptosis in cancer cells. We evaluated IRF-1 induced apoptosis in gastric cancer cell lines. We established stable clones in AGS cells that have a tetracycline inducible IRF-1 expression system. We used these clones and recombinant adenovirus expressing IRF-1 to explore the mechanism of IRF-1 induced apoptosis in gastric cancer. Expression of IRF-1 causes apoptosis in gastric cancer cell lines as demonstrated by phosphatidylserine exposure and cleavage of caspase-8, caspase-3, and Bid with mitochondrial release of cytochrome c. However, inhibition of caspase-8 and Bid did not inhibit apoptosis and did not decrease cleaved caspase-9 or mitochondrial release of cytochrome c. We then demonstrate that IRF-1 up-regulates PUMA (p53 up-regulated modulator of apoptosis), that is known to activate apoptosis by the intrinsic pathway; this can be p53 independent. IRF-1 binds to distinct sites in the promoter of PUMA and activates PUMA transcription. Moreover, molecular markers of mitochondrial apoptosis are eliminated in PUMA knockout and knockdown cells and phospatidylserine exposure is decreased dramatically. Finally, we demonstrate that IFN-γ induces IRF-1 mediated up-regulation of PUMA in cancer cells. We conclude that IRF-1 can induce apoptosis by the intrinsic pathway independent of the extrinsic pathway by up-regulation of PUMA.
Collapse
|
39
|
GAGE, an Antiapoptotic Protein Binds and Modulates the Expression of Nucleophosmin/B23 and Interferon Regulatory Factor 1. J Interferon Cytokine Res 2009; 29:645-55. [DOI: 10.1089/jir.2008.0099] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
40
|
Kim KH, Dhupar R, Ueki S, Cardinal J, Pan P, Cao Z, Cho SW, Murase N, Tsung A, Geller DA. Donor graft interferon regulatory factor-1 gene transfer worsens liver transplant ischemia/reperfusion injury. Surgery 2009; 146:181-9. [PMID: 19628072 DOI: 10.1016/j.surg.2009.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 06/12/2009] [Indexed: 01/08/2023]
Abstract
BACKGROUND Liver ischemia and reperfusion (IR) injury is a phenomenon that leads to graft dysfunction after liver transplantation. Understanding the molecular mechanisms behind this process is crucial to developing strategies to prevent short- and long-term graft dysfunction. The purpose of this study was to explore the role of the transcription factor interferon regulatory factor-1 (IRF-1) in a model of orthotopic rat liver transplantation. METHODS Orthotopic syngeneic LEW rat liver transplantation (OLT) was performed after 18 or 3 hours preservation in cold University of Wisconsin solution. Adenovirus-expressing IRF-1 (AdIRF-1) or control gene vector (Adnull) was delivered to the liver by donor intravenous pretreatment 4 days before graft harvesting. Uninfected grafts also served as controls. Recipients were humanely killed 1-24 hours post-transplantation. RESULTS Rats that underwent OLT with long-term preserved grafts (18 hours) displayed increased hepatic nuclear expression of IRF-1 protein at 1 and 3 hours. Rats pretreated with AdIRF-1 before transplantation had elevated alanine aminotransferase levels and increased expression of interferon (IFN)-beta, IFN-gamma, interleukin-12, and inducible nitric oxide synthase in the short-term period (3 hours) when compared with donor livers pretreated with Adnull. AdIRF-1 pretreated donor livers also exhibited increased susceptibility to early apoptosis in the transplanted grafts as shown by increased terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining and expression of cleaved caspase-3. Additionally, AdIRF-1 pretreated donor livers had increased activation of the MAP kinase Jun N-terminal kinase as compared with Adnull pretreated donor livers. CONCLUSION IRF-1 is an important regulator of IR injury after OLT in rats. Targeting of IRF-1 may be a potential strategy to ameliorate ischemic liver injury after transplantation to minimize organ dysfunction.
Collapse
Affiliation(s)
- Kee-Hwan Kim
- Starzl Transplant Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Teschendorff AE, Journée M, Absil PA, Sepulchre R, Caldas C. Elucidating the altered transcriptional programs in breast cancer using independent component analysis. PLoS Comput Biol 2007; 3:e161. [PMID: 17708679 PMCID: PMC1950343 DOI: 10.1371/journal.pcbi.0030161] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/28/2007] [Indexed: 12/29/2022] Open
Abstract
The quantity of mRNA transcripts in a cell is determined by a complex interplay of cooperative and counteracting biological processes. Independent Component Analysis (ICA) is one of a few number of unsupervised algorithms that have been applied to microarray gene expression data in an attempt to understand phenotype differences in terms of changes in the activation/inhibition patterns of biological pathways. While the ICA model has been shown to outperform other linear representations of the data such as Principal Components Analysis (PCA), a validation using explicit pathway and regulatory element information has not yet been performed. We apply a range of popular ICA algorithms to six of the largest microarray cancer datasets and use pathway-knowledge and regulatory-element databases for validation. We show that ICA outperforms PCA and clustering-based methods in that ICA components map closer to known cancer-related pathways, regulatory modules, and cancer phenotypes. Furthermore, we identify cancer signalling and oncogenic pathways and regulatory modules that play a prominent role in breast cancer and relate the differential activation patterns of these to breast cancer phenotypes. Importantly, we find novel associations linking immune response and epithelial–mesenchymal transition pathways with estrogen receptor status and histological grade, respectively. In addition, we find associations linking the activity levels of biological pathways and transcription factors (NF1 and NFAT) with clinical outcome in breast cancer. ICA provides a framework for a more biologically relevant interpretation of genomewide transcriptomic data. Adopting ICA as the analysis tool of choice will help understand the phenotype–pathway relationship and thus help elucidate the molecular taxonomy of heterogeneous cancers and of other complex genetic diseases. The amount of a given transcript or protein in a cell is determined by a balance of expression and repression in a complex network of biological processes. This delicate balance is compromised in complex genetic diseases such as cancer by alterations in the activation patterns of functionally important biological processes known as pathways. Over the last years, a large number of microarray experiments profiling the expression levels of more than 20,000 human genes in hundreds of tumor samples have shown that most cancer types are heterogeneous diseases, each characterized by many different expression subtypes. The biological and clinical goal is to explain the observed tumor and clinical heterogeneity in terms of specific patterns of altered pathways. The bioinformatic challenge is therefore to devise mathematical tools that explicitly attempt to infer these altered pathways. To this end, we applied a signal processing tool in a meta-analysis of breast cancer, encompassing more than 800 tumor specimens derived from four different patient cohorts, and showed that this algorithm significantly outperforms popular standard bioinformatics tools in identifying altered pathways underlying breast cancer. These results show that the same tool could be applied to other complex human genetic diseases to better elucidate the underlying altered pathways.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- Breast Cancer Functional Genomics Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|