1
|
Alrouji M, Yasmin S, Alshammari MS, Alhumaydhi FA, Sharaf SE, Shahwan M, Shamsi A. Virtual screening and molecular dynamics simulations identify repurposed drugs as potent inhibitors of Histone deacetylase 1: Implication in cancer therapeutics. PLoS One 2025; 20:e0316343. [PMID: 39752394 PMCID: PMC11698309 DOI: 10.1371/journal.pone.0316343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Epigenetic processes are the critical events in carcinogenesis. Histone modification plays a crucial role in gene expression regulation, where histone deacetylases (HDACs) are key players in epigenetic processes. Inhibiting HDACs has shown promise in modern cancer therapy. However, the non-selective nature and drug resistance of most HDAC inhibitors (HDACIs) limits their clinical use. This limitation prompts a search for isoform-selective and more effective inhibitors. Histone deacetylase 1 (HDAC1) is a member of the class I HDAC family and has emerged as a promising target in various diseases, including cancer and neurodegeneration. Drug repurposing has gained significant interest in identifying treatments for new targets, which involves finding new uses for existing drugs beyond their original medical indications. Here, we employed virtual screening of repurposed drugs from the DrugBank database to identify potential HDAC1 inhibitors. We conducted a series of analyses, including molecular docking, drug profiling, PASS evaluation, and interaction analysis. Molecular dynamics (MD) simulations and MM-PBSA analysis were also performed for 300 ns. Through these analyses, we pinpointed Alectinib, which exhibits a promising drug profile in PASS analysis and higher affinity and efficiency for HDAC1 than the reference inhibitor. MD simulations revealed that Alectinib stabilizes HDAC1 with minimal structural perturbations. The findings suggest that Alectinib holds promise as a therapeutic lead for HDAC1-associated carcinogenesis after required validation.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammed S. Alshammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Moyad Shahwan
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
2
|
Das D, Banerjee R, Bandyopadhyay M, Nag A. Exploring the potential of Andrographis paniculata for developing novel HDAC inhibitors: an in silico approach. J Biomol Struct Dyn 2025; 43:359-371. [PMID: 37969010 DOI: 10.1080/07391102.2023.2281635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
Cancer is one of the dreaded diseases of the twentieth century, emerging the major global causes of human morbidity. Cancer research in the last 15 years has provided unprecedented information on the role of epigenetics in cancer initiation and progression. Histone deacetylases (HDACs) are recognized as important epigenetic markers in cancer, whose overexpression leads to increased metastasis and angiogenesis. In the current study, thirty-four (34) compounds from Andrographis paniculata were screened for the identification of potential candidate drugs, targeting three Class I HDACs (Histone deacetylases), namely HDAC1 (PDB id 5ICN), HDAC3 (PDB id 4A69) and HDAC8 (PDB id 5FCW) through computer-assisted drug discovery study. Results showed that some of the phytochemicals chosen for this study exhibited significant drug-like properties. In silico molecular docking study further revealed that out of 34 compounds, the flavonoid Andrographidine E had the highest binding affinities towards HDAC1 (-9.261 Kcal mol-1) and 3 (-9.554 Kcal mol-1) when compared with the control drug Givinostat (-8.789 and -9.448 Kcal mol-1). The diterpenoid Andrographiside displayed the highest binding affinity (-9.588 Kcal mol-1) to HDAC8 compared to Givinostat (-8.947 Kcal mol-1). Statistical analysis using Principal Component Analysis tool revealed that all 34 phytocompounds could be clustered in four statistical groups. Most of them showed high or comparable inhibitory potentials towards HDAC target protein. Finally, the stability of top-ranked complexes (Andrographidine E-HDAC1 and HDAC3; Andrographiside-HDAC8) at the physiological condition was validated by Molecular Dynamic Simulation and MM-PBSA study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debalina Das
- Plant Molecular Cytogenetics and Plant Biotechnology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, West Bengal, India
| | - Ritesh Banerjee
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics and Plant Biotechnology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, West Bengal, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore Central Campus, Bangalore, India
| |
Collapse
|
3
|
Gautam N, Chapagain PP, Adhikari NP, Tiwari PB. Characterization of molecular interactions between HDAC7 and MEF2A. J Biomol Struct Dyn 2024:1-10. [PMID: 39660765 DOI: 10.1080/07391102.2024.2437523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/17/2024] [Indexed: 12/12/2024]
Abstract
Interactions of transcriptional corepressors such as histone deacetylase 7 (HDAC7), a class IIa HDAC, with myocyte enhancer factor-2 (MEF2) regulate MEF2 activity. Despite previous investigations exploring interactions between HDAC7 and MEF2, a detailed characterization of the HDAC7-MEF2 functional complex is still lacking. Herein, we first modeled the structure of the HDAC7-MEF2A complex and investigated the inter-protein interactions using all-atom molecular dynamics (MD) simulations. We identified specific amino acids within HDAC7 and MEF2A that participate in interactions such as salt bridges, hydrogen bonds, and hydrophobic interactions. Our results reveal a salt bridge formed between LYS96(HDAC7) and ASP63(MEF2A). Our analysis also predicted formations of reliable hydrogen bonds between SER82(HDAC7) and ASP63(MEF2A) as well as LYS96(HDAC7) and ASP63(MEF2A). In addition, clustering of hydrophobic residues at the interface contributes in stabilizing the HDAC7-MEF2A complex. Results from multiple sequence alignment show that most of the HDAC7 residues that are predicted to associate with MEF2A are conserved in at least three class IIa HDACs and all predicted residues in MEF2A are conserved in MEF2s. We also found that the association of DNA to MEF2A has no significant effect on HDAC7-MEF2A interactions. Our results may also provide useful insights into the interactions between other class IIa HDACs and MEF2s.
Collapse
Affiliation(s)
- Narayan Gautam
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Tri-Chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu, Nepal
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Narayan P Adhikari
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | |
Collapse
|
4
|
Liu J, Liu Y, Tang J, Gong Q, Yan G, Fan H, Zhang X, Pu C. Recent advances in dual PROTACs degrader strategies for disease treatment. Eur J Med Chem 2024; 279:116901. [PMID: 39341095 DOI: 10.1016/j.ejmech.2024.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) is regarded as an emerging therapeutic strategy with unlimited potential because of its mechanism of inducing target protein degradation though harnessing ubiquitin-proteasome system (UPS). Recently, researchers are combining the advantages of PROTACs and dual-targeted drugs to explore some new types of dual PROTACs degraders. The utilization of dual PROTACs not only enhances the efficiency of selective degradation for two or more distinct proteins, but also facilitates synergistic interactions between target proteins to optimize therapeutic efficacy as well as overcome resistance. In this review, we briefly investigate the innovative strategies of dual degraders based on bivalent or trivalent "Y-type" PROTACs in recent years, outline their design principles, degradation effects, and anticancer activities. Moreover, their advantages and limitations compared with traditional PROTACs will be discussed and provide the outlook on the associated challenges. Meaningfully, the development and application of these dual-targeted PROTACs may point out new directions for replacing numerous combination regimens in the future.
Collapse
Affiliation(s)
- Jianyu Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yanzhuo Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jiao Tang
- Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan, 610500, China
| | - Qianyuan Gong
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Guoyi Yan
- School of pharmacy, Xinxiang University, Xinxiang, Henan, 453003, China
| | - Hengrui Fan
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xueping Zhang
- Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610041, China.
| | - Chunlan Pu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| |
Collapse
|
5
|
Omar MH, Emam SH, Mikhail DS, Elmeligie S. Combretastatin A-4 based compounds as potential anticancer agents: A review. Bioorg Chem 2024; 153:107930. [PMID: 39504638 DOI: 10.1016/j.bioorg.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
The current review discusses the importance of combretastatin A-4 (CA-4) as a lead compound of microtubule targeting agents. CA-4 holds a unique place among naturally occurring compounds having cytotoxic activity. In this review an overall picture of design strategies, structure-activity relationship, synthesis, cytotoxic activity, and binding interactions of promising CA-4 analogues, are discussed and arranged chronologically from 2016 to early 2023. Also, this review emphasizes their biological activity as anticancer agents, within an overview of clinical application limitation and suggested strategies to overcome. Dual targeting tubulin inhibitors showed highpotentialto surpass medication resistance and provide synergistic efficacy. Linking platinum (IV), amino acids, and HDAC targeting moieties to active tubulin inhibitorsproduced potent active compounds. Analogues of CA-4 bridged with azetidin-2-one, pyrazole, sulfide, or carrying selenium atom exhibited cytotoxic action against a variety of malignant cell lines through different pathways.
Collapse
Affiliation(s)
- Mai H Omar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Salwa Elmeligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
Nair A, Singh R, Gautam N, Saxena S, Mittal S, Shah S, Talegaonkar S. Multifaceted role of phytoconstituents based nano drug delivery systems in combating TNBC: A paradigm shift from chemical to natural. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9207-9226. [PMID: 38953968 DOI: 10.1007/s00210-024-03234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Triple negative breast cancer is considered to be a malignancy of grave concern with limited routes of treatment due to the absence of specific breast cancer markers and ambiguity of other potential drug targets. Poor prognosis and inadequate survival rates have prompted further research into the understanding of the molecular pathophysiology and targeting of the disease. To overcome the recurrence and resistance mechanisms of the TNBC cells, various approaches have been devised, and are being continuously evaluated to enhance their efficacy and safety. Chemo-Adjuvant therapy is one such treatment modality being employed to improve the efficiency of standard chemotherapy. Combining chemo-adjuvant therapy with other upcoming approaches of cancer therapeutics such as phytoconstituents and nanotechnology has yielded promising results in the direction of improving the prognosis of TNBC. Numerous nanoformulations have been proven to substantially enhance the specificity and cellular uptake of drugs by cancer cells, thus reducing the possibility of unintended systemic side effects within cancer patients. While phytoconstituents offer a wide variety of beneficial active constituents useful in cancer therapeutics, most favorable outcomes have been observed within the scope of polyphenols, isoquinoline alkaloids and isothiocyanates. With an enhanced understanding of the molecular mechanisms of TNBC and the advent of newer targeting technologies and novel phytochemicals of medicinal importance, a new era of cancer theranostic treatments can be explored. This review hopes to instantiate the current body of research regarding the role of certain phytoconstituents and their potential nanoformulations in targeting specific TNBC pathways for treatment and diagnostic purposes.
Collapse
Affiliation(s)
- Anandita Nair
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Roshni Singh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Namrata Gautam
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Shilpi Saxena
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Saurabh Mittal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, U.P, Noida, 201303, India.
| | - Sadia Shah
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, 226003, India.
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India.
| |
Collapse
|
7
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
8
|
Lanka G, Banerjee S, Regula S, Adhikari N, Ghosh B. Pharmacophore modeling, 3D-QSAR, and MD simulation-based overture for the discovery of new potential HDAC1 inhibitors. J Biomol Struct Dyn 2024:1-24. [PMID: 39587443 DOI: 10.1080/07391102.2024.2429020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/15/2024] [Indexed: 11/27/2024]
Abstract
Histone deacetylases (HDACs) are important epigenetic regulators that modulate the activity of histone and non-histone proteins leading to various cancers. Histone deacetylase 1 (HDAC1) is a member of class 1 HDAC family related to different cancers. However, the nonselective profile of existing HDAC1 inhibitors restricted their clinical utility. Therefore, the identification of new HDAC1 selective inhibitors may be fruitful against cancer therapy. In this present work, a pharmacophore model was built using 60 benzamide-based known HDAC1 selective inhibitors and it was used further to filter the large epigenetic molecular database of small molecules. Further, the 3D-QSAR model was built using the best common pharmacophore hypothesis consisting of higher PLS statistics of R2 of 0.89, Q2 of 0.83, variance ratio (F) of 65.7 and Pearson-r value of 0.94 revealing the model reliability and its high predictive power. The screened hits of the pharmacophore model were then subjected to molecular docking against HDAC1 to identify high-affinity lead molecules. The top 10 hits were ranked from the docking studies using docking scores for lead optimization. The potential hit molecules M1 and M2 identified from the study showed promising interaction during HDAC1 docking and MD simulation studies with acceptable ADME properties. Also, the newly designed lead compounds M11 and M12 may be considered highly potential inhibitors against HDAC1. The 3D-QSAR analysis, conformational requirements, and observations noticed in the MD simulations study will enable the optimization of lead molecules and to design of novel effective, and selective HDAC1 inhibitors in the future.
Collapse
Affiliation(s)
- Goverdhan Lanka
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Sanjeev Regula
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India
| |
Collapse
|
9
|
Tang J, Chen H, Fan H, Chen T, Pu C, Guo Y. Research progress of BRD4 in head and neck squamous cell carcinoma: Therapeutic application of novel strategies and mechanisms. Bioorg Med Chem 2024; 113:117929. [PMID: 39317007 DOI: 10.1016/j.bmc.2024.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extra-terminal domain (BET) protein family, which plays a crucial role in recognizing acetylated lysine residues in chromatin. The abnormal expression of BRD4 contributes to the development of various human malignant tumors, including head and neck squamous cell carcinoma (HNSCC). Recent studies have shown that BRD4 inhibition can effectively prevent the proliferation and growth of HNSCC. However, the specific role and mechanism of BRD4 in HNSCC are not yet fully clarified. This article will briefly summarize the critical role of BRD4 in the pathogenesis of HNSCC and discuss the potential clinical applications of targeting BRD4 in HNSCC therapy. We further inquiry the challenges and opportunities for HNSCC therapies based on BRD4 inhibition, including BRD4 inhibitor combination with conventional chemotherapy, radiotherapy, and immunotherapy, as well as new strategies of BRD4-targeting drugs and BRD4 proteolysis-targeting chimeras (PROTACs). Moreover, we will also offer outlook on the associated challenges and future directions of targeting BRD4 for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Huaqiu Chen
- Department of Laboratory Medicine, Xichang People's Hospital, Xichang, Sichuan 615000, China
| | - Hengrui Fan
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| | - Tao Chen
- Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| | - Yuanbiao Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| |
Collapse
|
10
|
Fuller C, Jeanne Dit Fouque K, Valadares Tose L, Vitorino FNL, Garcia BA, Fernandez-Lima F. Online, Bottom-up Characterization of Histone H4 4-17 Isomers. Anal Chem 2024; 96:17165-17173. [PMID: 39422312 PMCID: PMC11526794 DOI: 10.1021/acs.analchem.4c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
The "Histone Code" is comprised of specific types and positions of post-translational modifications (PTMs) which produce biological signals for gene regulation and have potential as biomarkers for medical diagnostics. Previous work has shown that electron-based fragmentation improves the sequence coverage and confidence of labile PTM position assignment. Here, we evaluated two derivatization methods (e.g., irreversible - propionylation and reversible-citraconylation) for bottom-up analysis of histone H4 4-17 proteoforms using online liquid chromatography (LC), trapped ion mobility spectrometry (TIMS), and electron-based dissociation (ExD) in tandem with mass spectrometry. Two platforms were utilized: a custom-built LC-TIMS-q-ExD-ToF MS/MS based on a Bruker Impact and a commercial μLC-EAD-ToF MS/MS SCIEX instrument. Complementary LC-TIMS preseparation of H4 4-17 0-4ac positional isomer standards showed that they can be resolved in their endogenous form, while positional isomers cannot be fully resolved in their propionylated form; online LC-ExD-MS/MS provided high sequence coverage (>90%) for all H4 4-17 (0-4ac) proteoforms in both instrumental platforms. When applied to model cancer cells treated with a histone deacetylase inhibitor (HeLa + HDACi), both derivatization methods and platforms detected and confirmed H4 4-17 (0-4ac) proteolytic peptides based on their fragmentation pattern. Moreover, a larger number of HeLa + HDACi H4 4-17 proteoforms were observed combining LC-TIMS and LC-q-ExD-ToF MS/MS due to the positional isomer preseparation in the LC-TIMS domain of citraconylated H4 4-17 (0-4ac) peptides.
Collapse
Affiliation(s)
- Cassandra
N. Fuller
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Lilian Valadares Tose
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Francisca N. L. Vitorino
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Benjamin A. Garcia
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Francisco Fernandez-Lima
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| |
Collapse
|
11
|
Jamison JK, Zhou M, Gelmann EP, Luk L, Bates SE, Califano A, Fojo T. Entinostat in patients with relapsed or refractory abdominal neuroendocrine tumors. Oncologist 2024; 29:817-e1213. [PMID: 38886159 PMCID: PMC11379646 DOI: 10.1093/oncolo/oyae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare neoplasms with an increasing annual incidence and prevalence. Many are metastatic at presentation or recur following surgical resection and require systemic therapy, for which somatostatin analogs such as octreotide or lanreotide comprise typical first-line therapies. Nonetheless, treatment options remain limited. Epigenetic processes such as histone modifications have been implicated in malignant transformation and progression. In this study, we evaluated the anti-proliferative effects of a histone deacetylase (HDAC) inhibitor, entinostat, which was computationally predicted to show anti-cancer activity, as confirmed in in vitro and in vivo models of GEP-NETs. METHODS This was a phase II study to evaluate the efficacy and safety of entinostat in patients with relapsed or refractory abdominal NETs. The primary objective was to estimate the objective response rate to entinostat. Additionally, with each patient as his/her own control we estimated the rates of tumor growth prior to enrollment on study and while receiving entinostat. Patients received 5 mg entinostat weekly until disease progression or intolerable toxicity. The dose could be changed to 10 mg biweekly for patients who did not experience grade ≥ 2 treatment-related adverse events (AEs) in cycle 1, but was primarily administered at the starting 5 mg weekly dose. RESULTS The study enrolled only 5 patients due to early termination by the drug sponsor. The first patient that enrolled had advanced disease and died within days of enrollment before follow-up imaging due to a grade 5 AE unrelated to study treatment and was considered non-evaluable. Best RECIST response for the remaining 4 patients was stable disease (SD) with time on study of 154+, 243, 574, and 741 days. With each patient as his/her own control, rates of tumor growth on entinostat were markedly reduced with rates 17%, 20%, 33%, and 68% of the rates prior to enrollment on study. Toxicities possibly or definitely related to entinostat included grade 2/3 neutrophil count decrease [2/4 (50%)/ 2/4 (50%)], grade 3 hypophosphatemia [1/4, (25%)], grade 1/2 fatigue [1/4 (25%)/ 2/4 (50%)], and other self-limiting grade 1/2 AEs. CONCLUSION In the treatment of relapsed or refractory abdominal NETs, entinostat 5 mg weekly led to prolonged SD and reduced the rate of tumor growth by 32% to 83% with an acceptable safety profile (ClinicalTrials.gov Identifier: NCT03211988).
Collapse
Affiliation(s)
| | - Mengxi Zhou
- Department of Medicine, Division of Hematology Oncology, Columbia
University Irving Medical Center, New York, NY,
United States
| | | | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical
Center, New York, NY, United States
| | - Susan E Bates
- Department of Medicine, Division of Hematology Oncology, Columbia
University Irving Medical Center, New York, NY,
United States
| | - Andrea Califano
- Department of Medicine, Division of Hematology Oncology, Columbia
University Irving Medical Center, New York, NY,
United States
- Department of Systems Biology, Columbia University Irving Medical
Center, New York, NY, United States
- Department of Biochemistry and Molecular Biophysics, Columbia University
Irving Medical Center, New York, NY, United States
- Chan Zuckerberg Biohub New York, New York,
NY, United States
- Department of Biomedical Informatics, Columbia University Irving Medical
Center, New York, United
States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving
Medical Center, New York, United States
| | - Tito Fojo
- Department of Medicine, Division of Hematology Oncology, Columbia
University Irving Medical Center, New York, NY,
United States
| |
Collapse
|
12
|
Barati T, Mirzaei Z, Ebrahimi A, Shekari Khaniani M, Mansoori Derakhshan S. miR-449a: A Promising Biomarker and Therapeutic Target in Cancer and Other Diseases. Cell Biochem Biophys 2024; 82:1629-1650. [PMID: 38809350 DOI: 10.1007/s12013-024-01322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
In the regulation of gene expression, epigenetic factors like non-coding RNAs (ncRNAs) play an equal role in genetics. The role of microRNAs (miRNAs), which are members of the ncRNA family, in post-transcriptional gene regulation is well-documented and has important implications for both normal and abnormal biological processes, such as angiogenesis, proliferation, survival, and apoptosis. The purpose of this study was to synthesize previous research on miR-449a by analyzing published results from various databases, as there have been a number of investigations on miR-449's potential involvement in the development of human disorders. Based on our findings, miR-449 is strongly dysregulated in a wide range of diseases, from various cancers to cardiovascular diseases, cognitive impairments, and respiratory diseases, and it may play a pivotal role in the development of these problems. In addition, miR-449a functions as a crucial regulator of the expression of several well-known genes, including E2F-3, BCL2, NOTCH1, and SOX4. This, in turn, modulates various pathways and processes related to cancer, including Notch, PI3K, and TGF-β, and contributes to the improvement of cancer drug sensitivity. Curiously, abnormalities in the expression of this miRNA may serve as diagnostic or prognostic indicators for distinguishing between healthy people and patients or to evaluate the survival rates for specific disorders. This article provides a synopsis of the current understanding of miR-449a's role in human disease development through its regulation of gene expression and the biological processes related to these genes and their linked processes. In addition, we have covered the topic of miR-449a's potential as a clinical feature (diagnosis and prognosis) indicator for a range of disorders, both neoplastic and non-neoplastic. In general, our goal was to gain a thorough comprehension of the numerous functions of miR-449a in different disorders.
Collapse
Affiliation(s)
- Tahereh Barati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mirzaei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Lopes N, Salta S, Flores BT, Miranda-Gonçalves V, Correia MP, Gigliano D, Guimarães R, Henrique R, Jerónimo C. Anti-tumour activity of Panobinostat in oesophageal adenocarcinoma and squamous cell carcinoma cell lines. Clin Epigenetics 2024; 16:102. [PMID: 39097736 PMCID: PMC11297794 DOI: 10.1186/s13148-024-01700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Oesophageal cancer remains a challenging disease with high mortality rates and few therapeutic options. In view of these difficulties, epigenetic drugs have emerged as potential alternatives for patient care. The goal of this study was to evaluate the effect and biological consequences of Panobinostat treatment, an HDAC (histone deacetylase) inhibitor already approved for treatment of patients with multiple myeloma, in oesophageal cell lines of normal and malignant origin, with the latter being representative of the two main histological subtypes: adenocarcinoma and squamous cell carcinoma. RESULTS Panobinostat treatment inhibited growth and hindered proliferation, colony formation and invasion of oesophageal cancer cells. Considering HDAC tissue expression, HDAC1 was significantly upregulated in normal oesophageal epithelium in comparison with tumour tissue, whereas HDAC3 was overexpressed in oesophageal cancer compared to non-malignant mucosa. No differences between normal and tumour tissue were observed for HDAC2 and HDAC8 expression. CONCLUSIONS Panobinostat exposure effectively impaired malignant features of oesophageal cancer cells. Because HDAC3 was shown to be overexpressed in oesophageal tumour samples, this epigenetic drug may represent an alternative therapeutic option for oesophageal cancer patients.
Collapse
Affiliation(s)
- Nair Lopes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Doctoral Program in Pathology and Molecular Genetics, ICBAS - School of Medicine and Biomedical Sciences - University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Bianca Troncarelli Flores
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Margareta P Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Davide Gigliano
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rita Guimarães
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
14
|
Wu D, Huang C, Guan K. Mechanistic and therapeutic perspectives of miRNA-PTEN signaling axis in cancer therapy resistance. Biochem Pharmacol 2024; 226:116406. [PMID: 38969299 DOI: 10.1016/j.bcp.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer, being one of the most lethal illnesses, presents an escalating clinical dilemma on a global scale. Despite significant efforts and advancements in cancer treatment over recent decades, the persistent challenge of resistance to traditional chemotherapeutic agents and/or emerging targeted drugs remains a prominent issue in the field of cancer therapies. Among the frequently inactivated tumor suppressor genes in cancer, phosphatase and Tensin Homolog (PTEN) stands out, and its decreased expression may contribute to the emergence of therapeutic resistance. MicroRNAs (miRNAs), characterized by their short length of 22 nucleotides, exert regulatory control over target mRNA expression by binding to complementary sequences. Recent findings indicate that microRNAs play varied regulatory roles, encompassing promotion, suppression, and dual functions on PTEN, and their aberration is implicated in heightened resistance to anticancer therapies. Significantly, recent research has revealed that competitive endogenous RNAs (ceRNAs) play a pivotal role in influencing PTEN expression, and the regulatory network involving circRNA/lncRNA-miRNA-PTEN is intricately linked to resistance in various cancer types to anticancer therapies. Finally, our findings showcase that diverse approaches, such as herbal medicine, small molecule inhibitors, low-intensity ultrasound, and engineered exosomes, can effectively overcome drug resistance in cancer by modulating the miRNA-PTEN axis.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Lee HY, Hsu MJ, Chang HH, Chang WC, Huang WC, Cho EC. Enhancing anti-cancer capacity: Novel class I/II HDAC inhibitors modulate EMT, cell cycle, and apoptosis pathways. Bioorg Med Chem 2024; 109:117792. [PMID: 38897139 DOI: 10.1016/j.bmc.2024.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Cancer has been a leading cause of death over the last few decades in western countries as well as in Taiwan. However, traditional therapies are limited by the adverse effects of chemotherapy and radiotherapy, and tumor recurrence may occur. Therefore, it is critical to develop novel therapeutic drugs. In the field of HDAC inhibitor development, apart from the hydroxamic acid moiety, 2-aminobenzamide also functions as a zinc-binding domain, which is shown in well-known HDAC inhibitors such as Entinostat and Chidamide. With recent successful experiences in synthesizing 1-(phenylsulfonyl)indole-based compounds, in this study, we further combined two features of the above chemical compounds and generated indolyl benzamides. Compounds were screened in different cancer cell lines, and enzyme activity was examined to demonstrate their potential for anti-HDAC activity. Various biological functional assays evidenced that two of these compounds could suppress cancer growth and migration capacity, through regulating epithelial-mesenchymal transition (EMT), cell cycle, and apoptosis mechanisms. Data from 3D cancer cells and the in vivo zebrafish model suggested the potential of these compounds in cancer therapy in the future.
Collapse
Affiliation(s)
- Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Min-Jung Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Hao-Hsien Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Chiao Chang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Wan-Chen Huang
- Single-Molecule Biology Core Lab, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan.
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Oliero M, Alaoui AA, McCartney C, Santos MM. Colorectal cancer and inulin supplementation: the good, the bad, and the unhelpful. Gastroenterol Rep (Oxf) 2024; 12:goae058. [PMID: 38984069 PMCID: PMC11231048 DOI: 10.1093/gastro/goae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
The prebiotic inulin has been vaunted for its potential to reduce the risk of colorectal cancer. Inulin fermentation resulting in the production of short-chain fatty acids, primarily butyrate, has been reported to be associated with properties that are beneficial for gut health and has led to an increased consumption of inulin in the Western population through processed food and over-the-counter dietary supplements. However, in clinical trials, there is limited evidence of the efficacy of inulin in preventing colorectal cancer. Moreover, recent data suggest that improper inulin consumption may even be harmful for gastro-intestinal health under certain circumstances. The main objective of this review is to provide insight into the beneficial and potentially detrimental effects of inulin supplementation in the context of colorectal cancer prevention and enhancement of treatment efficacy.
Collapse
Affiliation(s)
- Manon Oliero
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ahmed Amine Alaoui
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claire McCartney
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
17
|
Chang YC, Gnann C, Steimbach RR, Bayer FP, Lechner S, Sakhteman A, Abele M, Zecha J, Trendel J, The M, Lundberg E, Miller AK, Kuster B. Decrypting lysine deacetylase inhibitor action and protein modifications by dose-resolved proteomics. Cell Rep 2024; 43:114272. [PMID: 38795348 DOI: 10.1016/j.celrep.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/12/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024] Open
Abstract
Lysine deacetylase inhibitors (KDACis) are approved drugs for cutaneous T cell lymphoma (CTCL), peripheral T cell lymphoma (PTCL), and multiple myeloma, but many aspects of their cellular mechanism of action (MoA) and substantial toxicity are not well understood. To shed more light on how KDACis elicit cellular responses, we systematically measured dose-dependent changes in acetylation, phosphorylation, and protein expression in response to 21 clinical and pre-clinical KDACis. The resulting 862,000 dose-response curves revealed, for instance, limited cellular specificity of histone deacetylase (HDAC) 1, 2, 3, and 6 inhibitors; strong cross-talk between acetylation and phosphorylation pathways; localization of most drug-responsive acetylation sites to intrinsically disordered regions (IDRs); an underappreciated role of acetylation in protein structure; and a shift in EP300 protein abundance between the cytoplasm and the nucleus. This comprehensive dataset serves as a resource for the investigation of the molecular mechanisms underlying KDACi action in cells and can be interactively explored online in ProteomicsDB.
Collapse
Affiliation(s)
- Yun-Chien Chang
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany
| | - Christian Gnann
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Raphael R Steimbach
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany; Biosciences Faculty, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany
| | - Miriam Abele
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany; Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany
| | - Jakob Trendel
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | - Aubry K Miller
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Baden-Württemberg, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany.
| |
Collapse
|
18
|
Valdez BC, Tsimberidou AM, Yuan B, Nieto Y, Baysal MA, Chakraborty A, Andersen CR, Andersson BS. Synergistic cytotoxicity of histone deacetylase and poly-ADP ribose polymerase inhibitors and decitabine in pancreatic cancer cells: Implications for novel therapy. Oncotarget 2024; 15:361-373. [PMID: 38829622 PMCID: PMC11146633 DOI: 10.18632/oncotarget.28588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Histone deacetylase inhibitors (HDACi) can modulate the acetylation status of proteins, influencing the genomic instability exhibited by cancer cells. Poly (ADP ribose) polymerase (PARP) inhibitors (PARPi) have a direct effect on protein poly (ADP-ribosyl)ation, which is important for DNA repair. Decitabine is a nucleoside cytidine analogue, which when phosphorylated gets incorporated into the growing DNA strand, inhibiting methylation and inducing DNA damage by inactivating and trapping DNA methyltransferase on the DNA, thereby activating transcriptionally silenced DNA loci. We explored various combinations of HDACi and PARPi +/- decitabine (hypomethylating agent) in pancreatic cancer cell lines BxPC-3 and PL45 (wild-type BRCA1 and BRCA2) and Capan-1 (mutated BRCA2). The combination of HDACi (panobinostat or vorinostat) with PARPi (talazoparib or olaparib) resulted in synergistic cytotoxicity in all cell lines tested. The addition of decitabine further increased the synergistic cytotoxicity noted with HDACi and PARPi, triggering apoptosis (evidenced by increased cleavage of caspase 3 and PARP1). The 3-drug combination treatments (vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine; panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine) induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs and impaired the DNA repair pathways (decreased levels of ATM, BRCA1, and ATRX proteins). The 3-drug combinations also altered the epigenetic regulation of gene expression (NuRD complex subunits, reduced levels). This is the first study to demonstrate synergistic interactions between the aforementioned agents in pancreatic cancer cell lines and provides preclinical data to design individualized therapeutic approaches with the potential to improve pancreatic cancer treatment outcomes.
Collapse
Affiliation(s)
- Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Yuan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mehmet A. Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Clark R. Andersen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
Khatun S, Bhagat RP, Amin SA, Jha T, Gayen S. Density functional theory (DFT) studies in HDAC-based chemotherapeutics: Current findings, case studies and future perspectives. Comput Biol Med 2024; 175:108468. [PMID: 38657469 DOI: 10.1016/j.compbiomed.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Density Functional Theory (DFT) is a quantum chemical computational method used to predict and analyze the electronic properties of atoms, molecules, and solids based on the density of electrons rather than wavefunctions. It provides insights into the structure, bonding, and behavior of different molecules, including those involved in the development of chemotherapeutic agents, such as histone deacetylase inhibitors (HDACis). HDACs are a wide group of metalloenzymes that facilitate the removal of acetyl groups from acetyl-lysine residues situated in the N-terminal tail of histones. Abnormal HDAC recruitment has been linked to several human diseases, especially cancer. Therefore, it has been recognized as a prospective target for accelerating the development of anticancer therapies. Researchers have studied HDACs and its inhibitors extensively using a combination of experimental methods and diverse in-silico approaches such as machine learning and quantitative structure-activity relationship (QSAR) methods, molecular docking, molecular dynamics, pharmacophore mapping, and more. In this context, DFT studies can make significant contribution by shedding light on the molecular properties, interactions, reaction pathways, transition states, reactivity and mechanisms involved in the development of HDACis. This review attempted to elucidate the scope in which DFT methodologies may be used to enhance our comprehension of the molecular aspects of HDAC inhibitors, aiding in the rational design and optimization of these compounds for therapeutic applications in cancer and other ailments. The insights gained can guide experimental efforts toward developing more potent and selective HDAC inhibitors.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Rinki Prasad Bhagat
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
20
|
Bhattacharya S, Tu BP. Histone acylation at a glance. J Cell Sci 2024; 137:jcs261250. [PMID: 38842578 PMCID: PMC11213524 DOI: 10.1242/jcs.261250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
An important mechanism of gene expression regulation is the epigenetic modification of histones. The cofactors and substrates for these modifications are often intermediary metabolites, and it is becoming increasingly clear that the metabolic and nutritional state of cells can influence these marks. These connections between the balance of metabolites, histone modifications and downstream transcriptional changes comprise a metabolic signaling program that can enable cells to adapt to changes in nutrient availability. Beyond acetylation, there is evidence now that histones can be modified by other acyl groups. In this Cell Science at a Glance article and the accompanying poster, we focus on these histone acylation modifications and provide an overview of the players that govern these acylations and their connections with metabolism.
Collapse
Affiliation(s)
- Saikat Bhattacharya
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Benjamin P. Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390-9038, USA
| |
Collapse
|
21
|
Zhao Z, Wu Y, Geng X, Yuan C, Yang G. Single-Cell Analysis Reveals Histone Deacetylation Factor Guide Intercellular Communication of Tumor Microenvironment that Contribute to Colorectal Cancer Progression and Immunotherapy. Biochem Genet 2024:10.1007/s10528-024-10730-8. [PMID: 38637426 DOI: 10.1007/s10528-024-10730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/31/2024] [Indexed: 04/20/2024]
Abstract
In this study, single-cell RNA-seq data were collected to analyze the characteristics of Histone deacetylation factor (HDF). The tumor microenvironment (TME) cell clusters related to prognosis and immune response were identified by using CRC tissue transcriptome and immunotherapy cohorts from public repository. We explored the expression characteristics of HDF in stromal cells, macrophages, T lymphocytes, and B lymphocytes of the CRC single-cell dataset TME and further identified 4 to 6 cell subclusters using the expression profiles of HDF-associated genes, respectively. The regulatory role of HDF-associated genes on the CRC tumor microenvironment was explored by using single-cell trajectory analysis, and the cellular subtypes identified by biologically characterized genes were compared with those identified by HDF-associated genes. The interaction of HDF-associated gene-mediated microenvironmental cell subtypes and tumor epithelial cells were explored by using intercellular communication analysis, revealing the molecular regulatory mechanism of tumor epithelial cell heterogeneity. Based on the expression of feature genes mediated by HDF-related genes in the microenvironment T-cell subtypes, enrichment scoring was performed on the feature gene expression in the CRC tumor tissue transcriptome dataset. It was found that the feature gene scoring of microenvironment T-cell subtypes (HDF-TME score) has a certain predictive ability for the prognosis and immunotherapy benefits of CRC tumor patients, providing data support for precise immunotherapy in CRC tumors.
Collapse
Affiliation(s)
- Zihan Zhao
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Yarui Wu
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Xuhua Geng
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Congrui Yuan
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China
| | - Guibin Yang
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, 15 Yuquan Road, Haidian District, Beijing, 100049, China.
| |
Collapse
|
22
|
Li F, Wang Y, Chen D, Du Y. Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion. Int J Mol Sci 2024; 25:1396. [PMID: 38338674 PMCID: PMC10855737 DOI: 10.3390/ijms25031396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
T-cell exhaustion refers to a state of T-cell dysfunction commonly observed in chronic infections and cancer. Immune checkpoint molecules blockading using PD-1 and TIM-3 antibodies have shown promising results in reversing exhaustion, but this approach has several limitations. The treatment of T-cell exhaustion is still facing great challenges, making it imperative to explore new therapeutic strategies. With the development of nanotechnology, nanoparticles have successfully been applied as drug carriers and delivery systems in the treatment of cancer and infectious diseases. Furthermore, nanoparticle-based immunotherapy has emerged as a crucial approach to reverse exhaustion. Here, we have compiled the latest advances in T-cell exhaustion, with a particular focus on the characteristics of exhaustion that can be targeted. Additionally, the emerging nanoparticle-based delivery systems were also reviewed. Moreover, we have discussed, in detail, nanoparticle-based immunotherapies that aim to reverse exhaustion, including targeting immune checkpoint blockades, remodeling the tumor microenvironment, and targeting the metabolism of exhausted T cells, etc. These data could aid in comprehending the immunopathogenesis of exhaustion and accomplishing the objective of preventing and treating chronic diseases or cancer.
Collapse
Affiliation(s)
- Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yahong Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Dandan Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
23
|
Martino E, Thakur S, Kumar A, Yadav AK, Boschi D, Kumar D, Lolli M. Insight in Quinazoline-based HDAC Inhibitors as Anti-cancer Agents. Mini Rev Med Chem 2024; 24:1983-2007. [PMID: 38859778 DOI: 10.2174/0113895575303614240527093106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 06/12/2024]
Abstract
Cancer remains a primary cause of death globally, and effective treatments are still limited. While chemotherapy has notably enhanced survival rates, it brings about numerous side effects. Consequently, the ongoing challenge persists in developing potent anti-cancer agents with minimal toxicity. The versatile nature of the quinazoline moiety has positioned it as a pivotal component in the development of various antitumor agents, showcasing its promising role in innovative cancer therapeutics. This concise review aims to reveal the potential of quinazolines in creating anticancer medications that target histone deacetylases (HDACs).
Collapse
Affiliation(s)
- Elena Martino
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, Turin, 10125, Italy
| | - Shruti Thakur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, Solan-173229, India
| | - Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, Solan-173229, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Donatella Boschi
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, Turin, 10125, Italy
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, Solan-173229, India
| | - Marco Lolli
- Department of Science and Drug Technology, University of Turin, via Pietro Giuria 9, Turin, 10125, Italy
| |
Collapse
|
24
|
Ratto A, Honek JF. Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry. Curr Med Chem 2024; 31:1172-1213. [PMID: 36915986 DOI: 10.2174/0929867330666230313141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 03/15/2023]
Abstract
The biological and medicinal chemistry of the oxocarbon acids 2,3- dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex- 5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.
Collapse
Affiliation(s)
- Amanda Ratto
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
25
|
Aslam S, Iqbal R, Saeed RF, Akram N, Ijaz F, Liaqat I, Aslam AS. Nutritional Genomics and Cancer Prevention. Cancer Treat Res 2024; 191:217-244. [PMID: 39133410 DOI: 10.1007/978-3-031-55622-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The scientific innovations have emphasized the importance of diet for one's health and wellbeing. The genetic revolution has enhanced our understanding about the effect of nutrients on genomic and transcriptomic profiles and gene-nutrition interactions (nutritional genomics). Furthermore, the contribution of micronutrient insufficiencies and macronutrient excess is evident in the development and progression of many diseases, especially cancer. It is speculated that nutrients have capacity to implicitly affect the physiological and pathophysiological processes via gene expression various regulatory processes. Moreover, the nutrients are known to affect the cellular networks involved in cancer progression and cancer inhibitory mechanisms targeting apoptosis or impaired angiogenesis. The interplay of regulatory processes in physiological systems and nutrients provides basis for the nutrigenomics. The functional genomics data further argue that cellular and molecular processes involved in the cancer progression are possibly programed genes during early development which may persist into adulthood and become detrimental. The incorporation of the functional interactions between nutrients and the genome has revolutionized the field of personalized medicine and provided the foundation for targeted cancer therapy through nutrients. There is growing evidence on the beneficial impacts of eating habits on lowering the risk of cancer, even if it can be difficult to pinpoint the precise role of nutrients. The nutrigenomic information may provide bases to develop disease prevention and treatment via nutrition, at the molecular level.
Collapse
Affiliation(s)
- Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Riffat Iqbal
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Nuzhat Akram
- Hamdard College of Medicine, Hamdard University, Karachi, Pakistan
| | - Farhat Ijaz
- CMH Lahore Medical College & IOD (NUMS), Lahore, Pakistan
| | - Irfana Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
26
|
van den Bosch QCC, de Klein A, Verdijk RM, Kiliç E, Brosens E. Uveal melanoma modeling in mice and zebrafish. Biochim Biophys Acta Rev Cancer 2024; 1879:189055. [PMID: 38104908 DOI: 10.1016/j.bbcan.2023.189055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Despite extensive research and refined therapeutic options, the survival for metastasized uveal melanoma (UM) patients has not improved significantly. UM, a malignant tumor originating from melanocytes in the uveal tract, can be asymptomatic and small tumors may be detected only during routine ophthalmic exams; making early detection and treatment difficult. UM is the result of a number of characteristic somatic alterations which are associated with prognosis. Although UM morphology and biology have been extensively studied, there are significant gaps in our understanding of the early stages of UM tumor evolution and effective treatment to prevent metastatic disease remain elusive. A better understanding of the mechanisms that enable UM cells to thrive and successfully metastasize is crucial to improve treatment efficacy and survival rates. For more than forty years, animal models have been used to investigate the biology of UM. This has led to a number of essential mechanisms and pathways involved in UM aetiology. These models have also been used to evaluate the effectiveness of various drugs and treatment protocols. Here, we provide an overview of the molecular mechanisms and pharmacological studies using mouse and zebrafish UM models. Finally, we highlight promising therapeutics and discuss future considerations using UM models such as optimal inoculation sites, use of BAP1mut-cell lines and the rise of zebrafish models.
Collapse
Affiliation(s)
- Quincy C C van den Bosch
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Section of Ophthalmic Pathology, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Sun C, Bai S, Chen S, Chen J, Liu P, Wu Y, Zhao X, Wu Z. Insufficient Effective Time of Suberanilohydroxamic Acid, a Deacetylase Inhibitor, Treatment Promotes PC3 Cell Growth. Biol Pharm Bull 2024; 47:1708-1716. [PMID: 39462585 DOI: 10.1248/bpb.b24-00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Castration-resistant prostate cancer (CRPC) contributes mostly to prostate cancer-specific mortality, and conventional castration therapy is almost ineffective, new therapies are needed. As a new potential anti-cancer drug, histone deacetylases (HDACs) inhibitors were demonstrated to be effective in inhibiting drug-resistance cancers in preclinical studies, but the results from clinical trials on CRPC patients were disappointing, and the reasons are unknown. In this study, we investigated the effect of suberanilohydroxamic acid (SAHA), a broad-spectrum pan-HDAC inhibitor, on proliferation, apoptosis, cell cycle progression in PC3 cells, and found that, unlike significant inhibiting effects at high-dose, low-dose SAHA significantly promoted PC3 cell growth. Further colony formation assay showed that the inhibitory effect of SAHA is also dependent on the treatment time, high-dose SAHA also exhibited promoting effect on PC3 cells when the treatment time was insufficient. However, this effect was not observed in another CRPC cell line, DU145, or another HDAC inhibitor, Trichostatin A (TSA). Our results indicate that, instead of inhibitory effect, SAHA would promote PC3 cell growth if the dose is low or the treatment time is insufficient, but this effect has not been observed in other CRPC cell line or HDAC inhibitors.
Collapse
Affiliation(s)
- Chuan Sun
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital
- Oncology & Radiotherapy Department, Zhejiang Hospital
| | - Shiting Bai
- Department of Pain Medicine, Zhejiang Hospital
| | - Sisi Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University
| | - Jianglin Chen
- Second Clinical Medical College, Zhejiang Chinese Medical University
| | - Pengyuan Liu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital
- Oncology & Radiotherapy Department, Zhejiang Hospital
| | - Yajun Wu
- Department of TCM Pharmacy, Zhejiang Hospital
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University
| | - Zhibing Wu
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital
- Oncology & Radiotherapy Department, Zhejiang Hospital
| |
Collapse
|
28
|
Cong B, Thakur T, Uribe AH, Stamou E, Gopinath S, Maddocks O, Cagan R. Colon Cancer Cells Evade Drug Action by Enhancing Drug Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572817. [PMID: 38187524 PMCID: PMC10769412 DOI: 10.1101/2023.12.21.572817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Colorectal cancer (CRC) is the second most deadly cancer worldwide. One key reason is the failure of therapies that target RAS proteins, which represent approximately 40% of CRC cases. Despite the recent discovery of multiple alternative signalling pathways that contribute to resistance, durable therapies remain an unmet need. Here, we use liquid chromatography/mass spectrometry (LC/MS) analyses on Drosophila CRC tumour models to identify multiple metabolites in the glucuronidation pathway-a toxin clearance pathway-as upregulated in trametinib-resistant RAS/APC/P53 ("RAP") tumours compared to trametinib-sensitive RASG12V tumours. Elevating glucuronidation was sufficient to direct trametinib resistance in RASG12V animals while, conversely, inhibiting different steps along the glucuronidation pathway strongly reversed RAP resistance to trametinib. For example, blocking an initial HDAC1-mediated deacetylation step with the FDA-approved drug vorinostat strongly suppressed trametinib resistance in Drosophila RAP tumours. We provide functional evidence that pairing oncogenic RAS with hyperactive WNT activity strongly elevates PI3K/AKT/GLUT signalling, which in turn directs elevated glucose and subsequent glucuronidation. Finally, we show that this mechanism of trametinib resistance is conserved in an KRAS/APC/TP53 mouse CRC tumour organoid model. Our observations demonstrate a key mechanism by which oncogenic RAS/WNT activity promotes increased drug clearance in CRC. The majority of targeted therapies are glucuronidated, and our results provide a specific path towards abrogating this resistance in clinical trials.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Teena Thakur
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, Scotland G61 1BD UK
| | - Alejandro Huerta Uribe
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, Scotland G61 1BD UK
| | - Evangelia Stamou
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Sindhura Gopinath
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 25-82 Annenberg Building; Box 1020, One Gustave L. Levy Place, New York, NY 10029
| | - Oliver Maddocks
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| | - Ross Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre; Garscube Estate, Switchback Road, Bearsden; Glasgow, Scotland G61 1QH UK
| |
Collapse
|
29
|
Duan N, Hu X, Qiu H, Zhou R, Li Y, Lu W, Zhu Y, Shen S, Wu W, Yang F, Liu N. Targeting the E2F1/Rb/HDAC1 axis with the small molecule HR488B effectively inhibits colorectal cancer growth. Cell Death Dis 2023; 14:801. [PMID: 38062013 PMCID: PMC10703885 DOI: 10.1038/s41419-023-06205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 12/18/2023]
Abstract
Colorectal cancer (CRC), the third most common cancer worldwide, remains highly lethal as the disease only becomes symptomatic at an advanced stage. Growing evidence suggests that histone deacetylases (HDACs), a group of epigenetic enzymes overexpressed in precancerous lesions of CRC, may represent promising molecular targets for CRC treatment. Histone deacetylase inhibitors (HDACis) have gradually become powerful anti-cancer agents targeting epigenetic modulation and have been widely used in the clinical treatment of hematologic malignancies, while only few studies on the benefit of HDACis in the treatment of CRC. In the present study, we designed a series of small-molecule Thiazole-based HDACis, among which HR488B bound to HDAC1 with a high affinity and exerted effective anti-CRC activity both in vitro and in vivo. Moreover, we revealed that HR488B specifically suppressed the growth of CRC cells by inducing cell cycle G0/G1 arrest and apoptosis via causing mitochondrial dysfunction, reactive oxygen species (ROS) generation, and DNA damage accumulation. Importantly, we noticed that HR488B significantly decreased the expression of the E2F transcription factor 1 (E2F1), which was crucial for the inhibitory effect of HR488B on CRC. Mechanistically, HR488B obviously decreased the phosphorylation level of the retinoblastoma protein (Rb), and subsequently prevented the release of E2F1 from the E2F1/Rb/HDAC1 complex, which ultimately suppressed the growth of CRC cells. Overall, our study suggests that HR488B, a novel and efficient HDAC1 inhibitor, may be a potential candidate for CRC therapy in the future. Furthermore, targeting the E2F1/Rb/HDAC1 axis with HR488B provides a promising therapeutic avenue for CRC.
Collapse
Affiliation(s)
- Namin Duan
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Hu
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huiran Qiu
- School of Biological Science and Technology, University of Jinan, Jinan, P.R. China
| | - Rui Zhou
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuru Li
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenxia Lu
- School of Biological Science and Technology, University of Jinan, Jinan, P.R. China
| | - Yamin Zhu
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Shuang Shen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenhui Wu
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, P.R. China.
| | - Ning Liu
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
30
|
Zhu J, Cheng X, Naumovski N, Hu L, Wang K. Epigenetic regulation by quercetin: a comprehensive review focused on its biological mechanisms. Crit Rev Food Sci Nutr 2023; 65:627-646. [PMID: 38062765 DOI: 10.1080/10408398.2023.2278760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Epigenetics regulates gene expression and play significant roles across diverse disease states. Epigenetics mechanisms, including DNA methylation, histone modifications, microRNAs/lncRNA, and N6-methyladenosine (m6A) RNA methylation, elicit heritable but reversible modifications in gene expression without modifying the DNA sequence. Recent research suggests that certain natural phytochemicals with chemopreventive properties have the potential to function as epigenetic regulators. Quercetin, a derivative of natural flavonoid glycosides and a constituent of the human diet, is linked to a variety of health benefits including anti-inflammatory, anticancer activity, antiapoptotic, antihypertensive, and neuroprotective effects. Recent findings suggest that quercetin possesses the ability to modulate canonical biochemical signaling pathways and exert an impact on epigenetic networks. This review aims to synthesize the most recent research findings that elucidate the potential biological effects of quercetin and its influence on in vitro and in vivo models via epigenetic mechanisms. In light of our findings, it is evident that quercetin possesses the potential to function as an exemplary instance of naturally derived phytochemicals, which can be effectively employed as a pivotal constituent in functional foods and dietary supplements aimed at the amelioration of various ailments. More specifically, its mechanism of action involves the alteration of diverse epigenetic targets.
Collapse
Affiliation(s)
- Jinfeng Zhu
- School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions. Soochow University, Suzhou, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma, Italy
| | - Xiaju Cheng
- School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions. Soochow University, Suzhou, China
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Bruce, Canberra, ACT, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Ngunnawal Country, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia
- Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | - Lin Hu
- School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions. Soochow University, Suzhou, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Rajaselvi ND, Jida MD, Ajeeshkumar KK, Nair SN, John P, Aziz Z, Nisha AR. Antineoplastic activity of plant-derived compounds mediated through inhibition of histone deacetylase: a review. Amino Acids 2023; 55:1803-1817. [PMID: 37389730 DOI: 10.1007/s00726-023-03298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
In the combat of treating cancer recent therapeutic approaches are focused towards enzymatic targets as they occupy a pivotal participation in the cascade of oncogenesis and malignancy. There are several enzymes that modulate the epigenetic pathways and chromatin structure related to cancer mutation. Among several epigenetic mechanisms such as methylation, phosphorylation, and sumoylation, acetylation status of histones is crucial and is governed by counteracting enzymes like histone acetyl transferase (HAT) and histone deacetylases (HDAC) which have contradictory effects on the histone acetylation. HDAC inhibition induces chromatin relaxation which forms euchromatin and thereby initiates the expression of certain transcription factors attributed with apoptosis, which are mostly correlated with the expression of the p21 gene and acetylation of H3 and H4 histones. Most of the synthetic and natural HDAC inhibitors elicit antineoplastic effect through activation of various apoptotic pathways and promoting cell cycle arrest at various phases. Due to their promising chemo preventive action and low cytotoxicity against normal host cells, bioactive substances like flavonoids, alkaloids, and polyphenolic compounds from plants have recently gained importance. Even though all bioactive compounds mentioned have an HDAC inhibitory action, some of them have a direct effect and others enhance the effects of the standard well known HDAC inhibitors. In this review, the action of plant derived compounds against histone deacetylases in a variety of in vitro cancer cell lines and in vivo animal models are articulated.
Collapse
Affiliation(s)
- N Divya Rajaselvi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - M D Jida
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - K K Ajeeshkumar
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Suresh N Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - Preethy John
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Wayanad, 673 576, India
| | - Zarina Aziz
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680 651, India.
| |
Collapse
|
32
|
Zhang W, Oh JH, Zhang W, Rathi S, Larson JD, Wechsler-Reya RJ, Sirianni RW, Elmquist WF. Central Nervous System Distribution of Panobinostat in Preclinical Models to Guide Dosing for Pediatric Brain Tumors. J Pharmacol Exp Ther 2023; 387:315-327. [PMID: 37827699 PMCID: PMC10658912 DOI: 10.1124/jpet.123.001826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Achieving adequate exposure of the free therapeutic agent at the target is a critical determinant of efficacious chemotherapy. With this in mind, a major challenge in developing therapies for central nervous system (CNS) tumors is to overcome barriers to delivery, including the blood-brain barrier (BBB). Panobinostat is a nonselective pan-histone deacetylase inhibitor that is being tested in preclinical and clinical studies, including for the treatment of pediatric medulloblastoma, which has a propensity for leptomeningeal spread and diffuse midline glioma, which can infiltrate into supratentorial brain regions. In this study, we examined the rate, extent, and spatial heterogeneity of panobinostat CNS distribution in mice. Transporter-deficient mouse studies show that panobinostat is a dual substrate of P-glycoprotein (P-gp) and breast cancer resistant protein (Bcrp), which are major efflux transporters expressed at the BBB. The CNS delivery of panobinostat was moderately limited by P-gp and Bcrp, and the unbound tissue-to-plasma partition coefficient of panobinostat was 0.32 and 0.21 in the brain and spinal cord in wild-type mice. In addition, following intravenous administration, panobinostat demonstrated heterogeneous distribution among brain regions, indicating that its efficacy would be influenced by tumor location or the presence and extent of leptomeningeal spread. Simulation using a compartmental BBB model suggests inadequate exposure of free panobinostat in the brain following a recommended oral dosing regimen in patients. Therefore, alternative approaches to CNS delivery may be necessary to have adequate exposure of free panobinostat for the treatment of a broad range of pediatric brain tumors. SIGNIFICANCE STATEMENT: This study shows that the central nervous system (CNS) penetration of panobinostat is limited by P-gp and Bcrp, and its efficacy may be limited by inadequate distribution to the tumor. Panobinostat has heterogeneous distribution into various brain regions, indicating that its efficacy might depend on the anatomical location of the tumors. These distributional parameters in the mouse CNS can inform both preclinical and clinical trial study design and may guide treatment for these devastating brain tumors in children.
Collapse
Affiliation(s)
- Wenqiu Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Ju-Hee Oh
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Wenjuan Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Sneha Rathi
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Jon D Larson
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Robert J Wechsler-Reya
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - Rachael W Sirianni
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota (Wenq.Z, J.-H.O., Wenj.Z., S.R., W.F.E.); Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California (J.D.L.); Herbert Irving Comprehensive Cancer Center, Columbia University Medical, New York, New York (R.J.W.-R.); and Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts (R.W.S.)
| |
Collapse
|
33
|
Zhou Z, Jiang Y, Zhong X, Yang J, Yang G. Characteristics and mechanisms of latency-reversing agents in the activation of the human immunodeficiency virus 1 reservoir. Arch Virol 2023; 168:301. [PMID: 38019293 DOI: 10.1007/s00705-023-05931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
The "Shock and Kill" method is being considered as a potential treatment for eradicating HIV-1 and achieving a functional cure for acquired immunodeficiency syndrome (AIDS). This approach involves using latency-reversing agents (LRAs) to activate human immunodeficiency virus (HIV-1) transcription in latent cells, followed by treatment with antiviral drugs to kill these cells. Although LRAs have shown promise in HIV-1 patient research, their widespread clinical use is hindered by side effects and limitations. In this review, we categorize and explain the mechanisms of these agonists in activating HIV-1 in vivo and discuss their advantages and disadvantages. In the future, combining different HIV-1 LRAs may overcome their respective shortcomings and facilitate a functional cure for HIV-1.
Collapse
Affiliation(s)
- Zhujiao Zhou
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
| | - Yashuang Jiang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xinyu Zhong
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
| | - Jingyi Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Geng Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310013, China.
| |
Collapse
|
34
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
35
|
Chen S, Zheng Y, Liang B, Yin Y, Yao J, Wang Q, Liu Y, Neamati N. The application of PROTAC in HDAC. Eur J Med Chem 2023; 260:115746. [PMID: 37607440 DOI: 10.1016/j.ejmech.2023.115746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Inducing protein degradation by proteolysis targeting chimera (PROTAC) has provided great opportunities for scientific research and industrial applications. Histone deacetylase (HDAC)-PROTAC has been widely developed since the first report of its ability to induce the degradation of SIRT2 in 2017. To date, ten of the eighteen HDACs (HDACs 1-8, HDAC10, and SIRT2) have been successfully targeted and degraded by HDAC-PROTACs. HDAC-PROTACs surpass traditional HDAC inhibitors in many aspects, such as higher selectivity, more potent antiproliferative activity, and the ability to disrupt the enzyme-independent functions of a multifunctional protein and overcome drug resistance. Rationally designing HDAC-PROTACs is a main challenge in development because slight variations in chemical structure can lead to drastic effects on the efficiency and selectivity of the degradation. In the future, HDAC-PROTACs can potentially be involved in clinical research with the support of the increased amount of in vivo data, pharmacokinetic evaluation, and pharmacological studies.
Collapse
Affiliation(s)
- Shaoting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yuxiang Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Benji Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yudong Yin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Jian Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Quande Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Yanghan Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
36
|
Isachesku E, Braicu C, Pirlog R, Kocijancic A, Busuioc C, Pruteanu LL, Pandey DP, Berindan-Neagoe I. The Role of Non-Coding RNAs in Epigenetic Dysregulation in Glioblastoma Development. Int J Mol Sci 2023; 24:16320. [PMID: 38003512 PMCID: PMC10671451 DOI: 10.3390/ijms242216320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor arising from glial cells. The tumor is highly aggressive, the reason for which it has become the deadliest brain tumor type with the poorest prognosis. Like other cancers, it compromises molecular alteration on genetic and epigenetic levels. Epigenetics refers to changes in gene expression or cellular phenotype without the occurrence of any genetic mutations or DNA sequence alterations in the driver tumor-related genes. These epigenetic changes are reversible, making them convenient targets in cancer therapy. Therefore, we aim to review critical epigenetic dysregulation processes in glioblastoma. We will highlight the significant affected tumor-related pathways and their outcomes, such as regulation of cell cycle progression, cell growth, apoptosis, angiogenesis, cell invasiveness, immune evasion, or acquirement of drug resistance. Examples of molecular changes induced by epigenetic modifications, such as DNA epigenetic alterations, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) regulation, are highlighted. As understanding the role of epigenetic regulators and underlying molecular mechanisms in the overall pro-tumorigenic landscape of glioblastoma is essential, this literature study will provide valuable insights for establishing the prognostic or diagnostic value of various non-coding transcripts, including miRNAs.
Collapse
Affiliation(s)
- Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Anja Kocijancic
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; (A.K.)
| | - Constantin Busuioc
- Department of Pathology, National Institute of Infectious Disease, 021105 Bucharest, Romania;
- Department of Pathology, Onco Team Diagnostic, 010719 Bucharest, Romania
| | - Lavinia-Lorena Pruteanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
- Department of Chemistry and Biology, North University Center, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
| | - Deo Prakash Pandey
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; (A.K.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| |
Collapse
|
37
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
38
|
Malviya M, Aretz Z, Molvi Z, Lee J, Pierre S, Wallisch P, Dao T, Scheinberg DA. Challenges and solutions for therapeutic TCR-based agents. Immunol Rev 2023; 320:58-82. [PMID: 37455333 PMCID: PMC11141734 DOI: 10.1111/imr.13233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.
Collapse
Affiliation(s)
- Manish Malviya
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Zita Aretz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Zaki Molvi
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Jayop Lee
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Tri-Institutional Medical Scientist Program, 1300 York Avenue, New York, NY 10021
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| |
Collapse
|
39
|
Ferro A, Pantazaka E, Athanassopoulos CM, Cuendet M. Histone deacetylase-based dual targeted inhibition in multiple myeloma. Med Res Rev 2023; 43:2177-2236. [PMID: 37191917 DOI: 10.1002/med.21972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/08/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Despite enormous advances in terms of therapeutic strategies, multiple myeloma (MM) still remains an incurable disease with MM patients often becoming resistant to standard treatments. To date, multiple combined and targeted therapies have proven to be more beneficial compared to monotherapy approaches, leading to a decrease in drug resistance and an improvement in median overall survival in patients. Moreover, recent breakthroughs highlighted the relevant role of histone deacetylases (HDACs) in cancer treatment, including MM. Thus, the simultaneous use of HDAC inhibitors with other conventional regimens, such as proteasome inhibitors, is of interest in the field. In this review, we provide a general overview of HDAC-based combination treatments in MM, through a critical presentation of publications from the past few decades related to in vitro and in vivo studies, as well as clinical trials. Furthermore, we discuss the recent introduction of dual-inhibitor entities that could have the same beneficial effects as drug combinations with the advantage of having two or more pharmacophores in one molecular structure. These findings could represent a starting-point for both reducing therapeutic doses and lowering the risk of developing drug resistance.
Collapse
Affiliation(s)
- Angelica Ferro
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras, Greece
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology, and Development, Department of Biology, University of Patras, Patras, Greece
| | | | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
40
|
Liu Y, Tong X, Hu W, Chen D. HDAC11: A novel target for improved cancer therapy. Biomed Pharmacother 2023; 166:115418. [PMID: 37659201 DOI: 10.1016/j.biopha.2023.115418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
Histone deacetylase 11 (HDAC11) is a unique member of the histone deacetylase family that plays an important role in the regulation of gene expression and protein function. In recent years, research on the role of HDAC11 in tumors has attracted increasing attention. This review summarizes the current knowledge on the subcellular localization, structure, expression, and functions of HDAC11 in tumors, as well as the regulatory mechanisms involved in its network, including ncRNA and substrates. Moreover, we focus on the progress made in targeting HDAC11 to overcome tumor therapy resistance, and the development of HDAC11 inhibitors for cancer treatment. Collectively, this review provides comprehensive insights into the potential clinical implications of HDAC11 for cancer therapy.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Xuechao Tong
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
41
|
Estrada-Pérez AR, García-Vázquez JB, Mendoza-Figueroa HL, Rosales-Hernández MC, Fernández-Pomares C, Correa-Basurto J. Untargeted LC-MS/MS Metabolomics Study of HO-AAVPA and VPA on Breast Cancer Cell Lines. Int J Mol Sci 2023; 24:14543. [PMID: 37833990 PMCID: PMC10572250 DOI: 10.3390/ijms241914543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) is one of the biggest health problems worldwide, characterized by intricate metabolic and biochemical complexities stemming from pronounced variations across dysregulated molecular pathways. If BC is not diagnosed early, complications may lead to death. Thus, the pursuit of novel therapeutic avenues persists, notably focusing on epigenetic pathways such as histone deacetylases (HDACs). The compound N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA), a derivative of valproic acid (VPA), has emerged as a promising candidate warranting pre-clinical investigation. HO-AAVPA is an HDAC inhibitor with antiproliferative effects on BC, but its molecular mechanism has yet to be deciphered. Furthermore, in the present study, we determined the metabolomic effects of HO-AAVPA and VPA on cells of luminal breast cancer (MCF-7) and triple-negative breast cancer (MDA-MB-231) subtypes. The LC-MS untargeted metabolomic study allowed for the simultaneous measurement of multiple metabolites and pathways, identifying that both compounds affect glycerophospholipid and sphingolipid metabolism in the MCF-7 and MDA-MB-231 cell lines, suggesting that other biological targets were different from HDACs. In addition, there are different dysregulate metabolites, possibly due to the physicochemical differences between HO-AAVPA and VPA.
Collapse
Affiliation(s)
- Alan Rubén Estrada-Pérez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Juan Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Humberto L. Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Cynthia Fernández-Pomares
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| |
Collapse
|
42
|
Mukherjee A, Zamani F, Suzuki T. Evolution of Slow-Binding Inhibitors Targeting Histone Deacetylase Isoforms. J Med Chem 2023; 66:11672-11700. [PMID: 37651268 DOI: 10.1021/acs.jmedchem.3c01160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Because the overexpression of histone deacetylase enzymes (HDACs) has been linked to numerous diseases, including various cancers and neurodegenerative disorders, HDAC inhibitors have emerged as promising therapeutic agents. However, most HDAC inhibitors lack both subclass and isoform selectivity, which leads to potential toxicity. Unlike classical hydroxamate HDAC inhibitors, slow-binding HDAC inhibitors form tight and prolonged bonds with HDAC enzymes. This distinct mechanism of action improves both selectivity and toxicity profiles, which makes slow-binding HDAC inhibitors a promising class of therapeutic agents for various diseases. Therefore, the development of slow-binding HDAC inhibitors that can effectively target a wide range of HDAC isoforms is crucial. This Perspective provides valuable insights into the potential and progress of slow-binding HDAC inhibitors as promising drug candidates for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Farzad Zamani
- SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
43
|
André AS, Dias JNR, Aguiar SI, Leonardo A, Nogueira S, Amaral JD, Fernandes C, Gano L, Correia JDG, Cavaco M, Neves V, Correia J, Castanho M, Rodrigues CMP, Gaspar MM, Tavares L, Aires-da-Silva F. Panobinostat-loaded folate targeted liposomes as a promising drug delivery system for treatment of canine B-cell lymphoma. Front Vet Sci 2023; 10:1236136. [PMID: 37711439 PMCID: PMC10498770 DOI: 10.3389/fvets.2023.1236136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Cancer is a major public health problem with over 19 million cases reported in 2020. Similarly to humans, dogs are also largely affected by cancer, with non-Hodgkin's lymphoma (NHL) among the most common cancers in both species. Comparative medicine has the potential to accelerate the development of new therapeutic options in oncology by leveraging commonalities between diseases affecting both humans and animals. Within this context, in the present study, we investigated the potential of panobinostat (Pan)-loaded folate-targeted PEGylated liposomes (FA-PEG-Pan-Lip) for the treatment of canine B-cell lymphoma, while contributing to new perspectives in comparative oncology. Methods and results Two formulations were developed, namely: PEG-Pan-Lip and FA-PEG-Pan-Lip. Firstly, folate receptor expression in the CLBL-1 canine B-cell lymphoma cell line was assessed. After confirming receptor expression, both Pan-loaded formulations (PEG-Pan-Lip, FA-PEG-Pan-Lip) demonstrated dose-dependent inhibitory effects on CLBL-1 cell proliferation. The FA-PEG-Pan-Lip formulation (IC50 = 10.9 ± 0.03 nM) showed higher cytotoxicity than the non-targeted PEG-Pan-Lip formulation (IC50 = 12.9 ± 0.03 nM) and the free panobinostat (Pan) compound (IC50 = 18.32±0.03 nM). Moreover, mechanistically, both Pan-containing formulations induced acetylation of H3 histone and apoptosis. Flow cytometry and immunofluorescence analysis of intracellular uptake of rhodamine-labeled liposome formulations in CLBL-1 cells confirmed cellular internalization of PEG-Lip and FA-PEG-Lip formulations and higher uptake profile for the latter. Biodistribution studies of both radiolabeled formulations in CD1 and SCID mice revealed a rapid clearance from the major organs and a 1.6-fold enhancement of tumor uptake at 24 h for 111In-FA-PEG-Pan-Lip (2.2 ± 0.1 %ID/g of tumor) compared to 111In-PEG-Pan-Lip formulation (1.2±0.2 %ID/g of tumor). Discussion In summary, our results provide new data validating Pan-loaded folate liposomes as a promising targeted drug delivery system for the treatment of canine B-cell lymphoma and open innovative perspectives for comparative oncology.
Collapse
Affiliation(s)
- Ana S. André
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Joana N. R. Dias
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Sandra I. Aguiar
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Ana Leonardo
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Sara Nogueira
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Joana D. Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Célia Fernandes
- Departamento de Engenharia e Ciências Nucleares, Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Bobadela, Portugal
| | - Lurdes Gano
- Departamento de Engenharia e Ciências Nucleares, Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Bobadela, Portugal
| | - João D. G. Correia
- Departamento de Engenharia e Ciências Nucleares, Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Bobadela, Portugal
| | - Marco Cavaco
- Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Vera Neves
- Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Correia
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Miguel Castanho
- Faculdade de Medicina, Instituto de Medicina Molecular-João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Tavares
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Frederico Aires-da-Silva
- Faculty of Veterinary Medicine, CIISA-Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Avenida da Universidade Técnica, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
44
|
Selim O, Song C, Kumar A, Phelan R, Singh A, Federman N. A review of the therapeutic potential of histone deacetylase inhibitors in rhabdomyosarcoma. Front Oncol 2023; 13:1244035. [PMID: 37664028 PMCID: PMC10471891 DOI: 10.3389/fonc.2023.1244035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
This review aims to summarize the putative role of histone deacetylases (HDACs) in rhabdomyosarcoma (RMS) and the effects of HDAC inhibitors (HDACi) on RMS by elucidating and highlighting known oncogenic pathways, mechanisms of resistance, and the synergistic potential of histone deacetylase inhibitors. We searched two databases (PubMed and Google Scholar) for the keywords "Rhabdomyosarcoma, histone deacetylase, histone deacetylase inhibitors." We excluded three publications that did not permit access to the full text to review and those that focus exclusively on pleiomorphic RMS in adults. Forty-seven papers met the inclusion criteria. This review highlights that HDACi induce cytotoxicity, cell-cycle arrest, and oxidative stress in RMS cells. Ultimately, HDACi have been shown to increase apoptosis and the cessation of embryonal and alveolar RMS proliferation in vivo and in vitro, both synergistically and on its own. HDACi contain potent therapeutic potential against RMS. This review discusses the significant findings and the biological mechanisms behind the anti-cancer effects of HDACi. Additionally, this review highlights important clinical trials assessing the efficacy of HDACi in sarcomas.
Collapse
Affiliation(s)
- Omar Selim
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Clara Song
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Amy Kumar
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Rebecca Phelan
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Arun Singh
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Noah Federman
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
45
|
Callahan SM, Hancock TJ, Doster RS, Parker CB, Wakim ME, Gaddy JA, Johnson JG. A secreted sirtuin from Campylobacter jejuni contributes to neutrophil activation and intestinal inflammation during infection. SCIENCE ADVANCES 2023; 9:eade2693. [PMID: 37566649 PMCID: PMC10421069 DOI: 10.1126/sciadv.ade2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
Histone modifications control numerous processes in eukaryotes, including inflammation. Some bacterial pathogens alter the activity or expression of host-derived factors, including sirtuins, to modify histones and induce responses that promote infection. In this study, we identified a deacetylase encoded by Campylobacter jejuni which has sirtuin activities and contributes to activation of human neutrophils by the pathogen. This sirtuin is secreted from the bacterium into neutrophils, where it associates with and deacetylates host histones to promote neutrophil activation and extracellular trap production. Using the murine model of campylobacteriosis, we found that a mutant of this bacterial sirtuin efficiently colonized the gastrointestinal tract but was unable to induce cytokine production, gastrointestinal inflammation, and tissue pathology. In conclusion, these results suggest that secreted bacterial sirtuins represent a previously unreported class of bacterial effector and that bacterial-mediated modification of host histones is responsible for the inflammation and pathology that occurs during campylobacteriosis.
Collapse
Affiliation(s)
- Sean M. Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN 37930, USA
| | - Ryan S. Doster
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Caroline B. Parker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mary E. Wakim
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jennifer A. Gaddy
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeremiah G. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
46
|
El Omari N, Bakrim S, Khalid A, Abdalla AN, Almalki WH, Lee LH, Ardianto C, Ming LC, Bouyahya A. Molecular mechanisms underlying the clinical efficacy of panobinostat involve Stochasticity of epigenetic signaling, sensitization to anticancer drugs, and induction of cellular cell death related to cellular stresses. Biomed Pharmacother 2023; 164:114886. [PMID: 37224752 DOI: 10.1016/j.biopha.2023.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Panobinostat, also known as Farydak®, LBH589, PNB, or panobinostat lactate, is a hydroxamic acid that has been approved by the Food and Drug Administration (FDA) for its anti-cancer properties. This orally bioavailable drug is classified as a non-selective histone deacetylase inhibitor (pan-HDACi) that inhibits class I, II, and IV HDACs at nanomolar levels due to its significant histone modifications and epigenetic mechanisms. A mismatch between histone acetyltransferases (HATs) and HDACs can negatively affect the regulation of the genes concerned, which in turn can contribute to tumorigenesis. Indeed, panobinostat inhibits HDACs, potentially leading to acetylated histone accumulation, re-establishing normal gene expression in cancer cells, and helping to drive multiple signaling pathways. These pathways include induction of histone acetylation and cytotoxicity for the majority of tested cancer cell lines, increased levels of p21 cell cycle proteins, enhanced amounts of pro-apoptotic factors (such as caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase (PARP)) associated with decreased levels of anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-XL)], as well as regulation of immune response [upregulated programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression] and other events. The therapeutic outcome of panobinostat is therefore mediated by sub-pathways involving proteasome and/or aggresome degradation, endoplasmic reticulum, cell cycle arrest, promotion of extrinsic and intrinsic processes of apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this investigation, we aimed to pinpoint the precise molecular mechanism underlying panobinostat's HDAC inhibitory effect. A more thorough understanding of these mechanisms will greatly advance our knowledge of cancer cell aberrations and, as a result, provide an opportunity for the discovery of significant new therapeutic perspectives through cancer therapeutics.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
47
|
Peter RM, Sarwar MS, Mostafa SZ, Wang Y, Su X, Kong AN. Histone deacetylase inhibitor belinostat regulates metabolic reprogramming in killing KRAS-mutant human lung cancer cells. Mol Carcinog 2023; 62:1136-1146. [PMID: 37144836 PMCID: PMC10524423 DOI: 10.1002/mc.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Kirsten rat sarcoma virus (KRAS) oncogene, found in 20%-25% of lung cancer patients, potentially regulates metabolic reprogramming and redox status during tumorigenesis. Histone deacetylase (HDAC) inhibitors have been investigated for treating KRAS-mutant lung cancer. In the current study, we investigate the effect of HDAC inhibitor (HDACi) belinostat at clinically relevant concentration on nuclear factor erythroid 2-related factor 2 (NRF2) and mitochondrial metabolism for the treatment of KRAS-mutant human lung cancer. LC-MS metabolomic study of belinostat on mitochondrial metabolism was performed in G12C KRAS-mutant H358 non-small cell lung cancer cells. Furthermore, l-methionine (methyl-13 C) isotope tracer was used to explore the effect of belinostat on one-carbon metabolism. Bioinformatic analyses of metabolomic data were performed to identify the pattern of significantly regulated metabolites. To study the effect of belinostat on redox signaling ARE-NRF2 pathway, luciferase reporter activity assay was done in stably transfected HepG2-C8 cells (containing pARE-TI-luciferase construct), followed by qPCR analysis of NRF2 and its target gene in H358 cells, which was further confirmed in G12S KRAS-mutant A549 cells. Metabolomic study reveals significantly altered metabolites related to redox homeostasis, including tricarboxylic acid (TCA) cycle metabolites (citrate, aconitate, fumarate, malate, and α-ketoglutarate); urea cycle metabolites (Arginine, ornithine, argino-succinate, aspartate, and fumarate); and antioxidative glutathione metabolism pathway (GSH/GSSG and NAD/NADH ratio) after belinostat treatment. 13 C stable isotope labeling data indicates potential role of belinostat in creatine biosynthesis via methylation of guanidinoacetate. Moreover, belinostat downregulated the expression of NRF2 and its target gene NAD(P)H:quinone oxidoreductase 1 (NQO1), indicating anticancer effect of belinostat is mediated, potentially via Nrf2-regulated glutathione pathway. Another HDACi panobinostat also showed potential anticancer effect in both H358 and A549 cells via Nrf2 pathway. In summary, belinostat is effective in killing KRAS-mutant human lung cancer cells by regulating mitochondrial metabolism which could be used as biomarkers for preclinical and clinical studies.
Collapse
Affiliation(s)
- Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sarah Z. Mostafa
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
48
|
Zand A, Enkhbilguun S, Macharia JM, Budán F, Gyöngyi Z, Varjas T. Tartrazine Modifies the Activity of DNMT and HDAC Genes-Is This a Link between Cancer and Neurological Disorders? Nutrients 2023; 15:2946. [PMID: 37447272 DOI: 10.3390/nu15132946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, artificial additives, especially synthetic food colorants, were found to demonstrate wider properties compared to their natural equivalents; however, their health impact is still not totally mapped. Our study aimed to determine the long-term (30 and 90 days) exposure effect of one of the commonly used artificial food colorants, tartrazine, on NMRI mice. The applied dose of tartrazine referred to the human equivalent dose for acceptable daily intake (ADI). Further, we evaluated its impact on the transcription of a range of epigenetic effectors, members of the DNA methyltransferase (DNMT) as well as histone deacetylase (HDAC) families. Following the exposure, organ biopsies were collected from the lungs, kidneys, liver, and spleen, and the gene expression levels were determined by real-time quantitative reverse transcription PCR (RT-qPCR). Our results demonstrated significant upregulation of genes in the tested organs in various patterns followed by the intake of tartrazine on ADI. Since DNMT and HDAC genes are involved in different steps of carcinogenesis, have roles in the development of neurological disorders and the effect of dose of everyday exposure is rarely studied, further investigation is warranted to study these possible associations.
Collapse
Affiliation(s)
- Afshin Zand
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Sodbuyan Enkhbilguun
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pécs, H-7621 Pécs, Hungary
| | - Ferenc Budán
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Gyöngyi
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
49
|
Islam R, Dash D, Singh R. An antioxidant ameliorates allergic airway inflammation by inhibiting HDAC 1 via HIF-1α/VEGF axis suppression in mice. Sci Rep 2023; 13:9637. [PMID: 37316684 DOI: 10.1038/s41598-023-36678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) are novel class of drugs as they are involved in post translational modification of several proteins involved in signaling pathways related to asthma. HDACi have been reported to elicit protective effects on asthma but the signaling pathways associated with it have not been investigated much. Recently, we have demonstrated that intranasal administrations of Pan-HDAC inhibitors, sodium butyrate and curcumin, which have effectively reduced asthma severity via HDAC1 inhibition in Ovalbumin induced mouse model. Present study aimed to investigate possible pathways by which curcumin and sodium butyrate may minimize asthma pathogenesis via HDAC 1 inhibition. Balb/c mice were exposed (sensitized and challenged) with Ovalbumin to establish allergic asthma model followed by pretreatment of curcumin (5 mg/kg) and sodium butyrate (50 mg/kg) through intranasal route. Effects of curcumin and sodium butyrate on HIF-1α/VEGF signaling through activation of PI3K/Akt axis has been investigated using protein expressions followed by chromatin immunoprecipitation of BCL2 and CCL2 against HDAC1. Molecular docking analysis was also performed to investigate effects of curcumin and butyrate on mucus hypersecretion, goblet cell hyperplasia and airway hyperresponsiveness. Augmented expressions of HDAC-1, HIF-1α, VEGF, p-Akt and p-PI3K were observed in asthmatic group which was suppressed in both the treatments. NRF-2 level was significantly restored by curcumin and butyrate treatments. Protein expressions of p-p38, IL-5 and mRNA expressions of GATA-3 were also reduced in curcumin and butyrate treatment groups. Our findings suggest that curcumin and sodium butyrate may attenuate airway inflammation via down regulation of p-Akt/p-PI3K/HIF-1α/VEGF axis.
Collapse
Affiliation(s)
- Ramiya Islam
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
50
|
Huang G, Cierpicki T, Grembecka J. 2-Aminobenzothiazoles in anticancer drug design and discovery. Bioorg Chem 2023; 135:106477. [PMID: 36989736 PMCID: PMC10718064 DOI: 10.1016/j.bioorg.2023.106477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023]
Abstract
Cancer is one of the major causes of mortality and morbidity worldwide. Substantial research efforts have been made to develop new chemical entities with improved anticancer efficacy. 2-Aminobenzothiazole is an important class of heterocycles containing one sulfur and two nitrogen atoms, which is associated with a broad spectrum of medical and pharmacological activities, including antitumor, antibacterial, antimalarial, anti-inflammatory, and antiviral activities. In recent years, an extraordinary collection of potent and low-toxicity 2-aminobenzothiazole compounds have been discovered as new anticancer agents. Herein, we provide a comprehensive review of this class of compounds based on their activities against tumor-related proteins, including tyrosine kinases (CSF1R, EGFR, VEGFR-2, FAK, and MET), serine/threonine kinases (Aurora, CDK, CK, RAF, and DYRK2), PI3K kinase, BCL-XL, HSP90, mutant p53 protein, DNA topoisomerase, HDAC, NSD1, LSD1, FTO, mPGES-1, SCD, hCA IX/XII, and CXCR. In addition, the anticancer potentials of 2-aminobenzothiazole-derived chelators and metal complexes are also described here. Moreover, the design strategies, mechanism of actions, structure-activity relationships (SAR) and more advanced stages of pre-clinical development of 2-aminobenzothiazoles as new anticancer agents are extensively reviewed in this article. Finally, the examples that 2-aminobenzothiazoles showcase an advantage over other heterocyclic systems are also highlighted.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|