1
|
Fujino C, Sanoh S, Katsura T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol Pharm Bull 2021; 44:1617-1634. [PMID: 34719640 DOI: 10.1248/bpb.b21-00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.
Collapse
Affiliation(s)
- Chieri Fujino
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
2
|
Abstract
The regulation of brain cytochrome P450 enzymes (CYPs) is different compared with respective hepatic enzymes. This may result from anatomical bases and physiological functions of the two organs. The brain is composed of a variety of functional structures built of different interconnected cell types endowed with specific receptors that receive various neuronal signals from other brain regions. Those signals activate transcription factors or alter functioning of enzyme proteins. Moreover, the blood-brain barrier (BBB) does not allow free penetration of all substances from the periphery into the brain. Differences in neurotransmitter signaling, availability to endogenous and exogenous active substances, and levels of transcription factors between neuronal and hepatic cells lead to differentiated expression and susceptibility to the regulation of CYP genes in the brain and liver. Herein, we briefly describe the CYP enzymes of CYP1-3 families, their distribution in the brain, and discuss brain-specific regulation of CYP genes. In parallel, a comparison to liver CYP regulation is presented. CYP enzymes play an essential role in maintaining the levels of bioactive molecules within normal ranges. These enzymes modulate the metabolism of endogenous neurochemicals, such as neurosteroids, dopamine, serotonin, melatonin, anandamide, and exogenous substances, including psychotropics, drugs of abuse, neurotoxins, and carcinogens. The role of these enzymes is not restricted to xenobiotic-induced neurotoxicity, but they are also involved in brain physiology. Therefore, it is crucial to recognize the function and regulation of CYP enzymes in the brain to build a foundation for future medicine and neuroprotection and for personalized treatment of brain diseases.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
3
|
Xu D, Huang S, Wang H, Xie W. Regulation of brain drug metabolizing enzymes and transporters by nuclear receptors. Drug Metab Rev 2019; 50:407-414. [PMID: 30501435 DOI: 10.1080/03602532.2018.1554673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nuclear receptors (NRs) belong to a family of ligand-dependent transcription factors. The target genes of NRs include many drug metabolizing enzymes and transporters. The central nervous system (CNS) bears the expression of NRs, drug metabolizing enzymes and transporters. NRs that express in the brain can be divided into three groups according to their characteristics of ligand binding: steroid hormone receptors, non-steroid hormone receptors, and orphan receptors. The NR-mediated regulation of drug metabolizing enzymes and transporters plays important roles in the metabolism and disposition of drugs in the CNS and the penetration of endogenous and exogenous substances through the blood-brain barrier (BBB). NR-mediated regulation of drug metabolizing enzymes and transporters can cause the toxicological effects of xenobiotics in the CNS and also lead to drug resistance in the centrum. The regulatory pathways of drug metabolizing enzymes and transporters can provide new strategies for selective regulation of the BBB permeability and drug metabolism in the brain. This review focuses on the importance of NR-mediated regulation of drug metabolizing enzymes and transporters in the CNS and the implications of this regulation in the therapeutic effect of CNS drugs and CNS side effects of drugs and other xenotoxicants.
Collapse
Affiliation(s)
- Dan Xu
- a Department of Pharmacology School of Basic Medical Sciences , Wuhan University , Wuhan , China.,b Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA.,c Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan , China
| | - Songqiang Huang
- a Department of Pharmacology School of Basic Medical Sciences , Wuhan University , Wuhan , China
| | - Hui Wang
- a Department of Pharmacology School of Basic Medical Sciences , Wuhan University , Wuhan , China.,c Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan , China
| | - Wen Xie
- b Center for Pharmacogenetics and Department of Pharmaceutical Sciences , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
4
|
Kitaoka S, Hatogai J, Iimura R, Yamamoto Y, Oba K, Nakai M, Kusunoki Y, Ochiai W, Sugiyama K. Relationship between low midazolam metabolism by cytochrome P450 3A in mice and the high incidence of birth defects. J Toxicol Sci 2018; 43:65-74. [PMID: 29415953 DOI: 10.2131/jts.43.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The use of midazolam in early stages of pregnancy has resulted in a high incidence of birth defects; however, the underlying reason is unknown. We investigated expression changes of the CYP3A molecular species and focused on its midazolam metabolizing activity from the foetal period to adulthood. CYP3A16 was the only CYP3A species found to be expressed in the liver during the foetal period. However, CYP3A11 is upregulated in adult mice, but has been found to be downregulated during the foetal period and to gradually increase after birth. When CYP3A16 expression was induced in a microsomal fraction of cells used to study midazolam metabolism by CYP3A16, its activity was suppressed. These results showed that the capacity to metabolize midazolam in the liver during the foetal period is very low, which could hence result in a high incidence of birth defects associated with the use of midazolam during early stages of pregnancy.
Collapse
Affiliation(s)
| | - Jo Hatogai
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Ryuki Iimura
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Yuka Yamamoto
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Konomi Oba
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Mami Nakai
- Department of Clinical Pharmacokinetics, Hoshi University
| | | | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University
| | | |
Collapse
|
5
|
Ochiai W, Kobayashi H, Kitaoka S, Kashiwada M, Koyama Y, Nakaishi S, Nagai T, Aburada M, Sugiyama K. Effect of the active ingredient of Kaempferia parviflora, 5,7-dimethoxyflavone, on the pharmacokinetics of midazolam. J Nat Med 2018; 72:607-614. [PMID: 29550915 DOI: 10.1007/s11418-018-1184-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/26/2018] [Indexed: 11/28/2022]
Abstract
5,7-Dimethoxyflavone (5,7-DMF), one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. On the other hand, in vitro studies have reported that it directly inhibits the drug metabolizing enzyme family cytochrome P450 (CYP) 3As. In this study, its safety was evaluated from a pharmacokinetic point of view, based on daily ingestion of 5,7-DMF. Midazolam, a substrate of CYP3As, was orally administered to mice treated with 5,7-DMF for 10 days, and its pharmacokinetic properties were investigated. In the group administered 5,7-DMF, the area under the curve (AUC) of midazolam increased by 130% and its biological half-life was extended by approximately 100 min compared to the control group. Compared to the control group, 5,7-DMF markedly decreased the expression of CYP3A11 and CYP3A25 in the liver. These results suggest that continued ingestion of 5,7-DMF decreases the expression of CYP3As in the liver, consequently increasing the blood concentrations of drugs metabolized by CYP3As.
Collapse
Affiliation(s)
- Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Hiroko Kobayashi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Satoshi Kitaoka
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mayumi Kashiwada
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yuya Koyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Saho Nakaishi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomomi Nagai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Masaki Aburada
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Kiyoshi Sugiyama
- Department of Functional Molecule, Kinetics Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
6
|
Ikarashi N, Ogawa S, Hirobe R, Kusunoki Y, Kon R, Ochiai W, Sugiyama K. High-dose green tea polyphenol intake decreases CYP3A expression in a liver-specific manner with increases in blood substrate drug concentrations. Eur J Pharm Sci 2016; 89:137-45. [DOI: 10.1016/j.ejps.2016.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
7
|
Gamou T, Habano W, Terashima J, Ozawa S. A CAR-responsive enhancer element locating approximately 31 kb upstream in the 5'-flanking region of rat cytochrome P450 (CYP) 3A1 gene. Drug Metab Pharmacokinet 2015; 30:188-97. [PMID: 25989892 DOI: 10.1016/j.dmpk.2014.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/30/2014] [Accepted: 12/22/2014] [Indexed: 11/26/2022]
Abstract
Constitutive androstane receptor (CAR) is one of the principal regulators of hepatic cytochrome P450s (CYPs) 3A (CYP3A). cDNA-mediated expression of a mature rat CAR (rCAR) into rat hepatoma cells induced CYP3A1 and CYP2B mRNAs. Aberrant rCAR failed in these inductions. Three important human CYP3A4 regulatory elements (REs), proximal ER6 (proER6), xenobiotic responsive enhancer module (XREM) and constitutive liver enhancer module (CLEM), support constitutive and inducible expression of CYP3As mediated by CAR and pregnane X receptor (PXR). NHR-scan software predicted proER6, XREM and CLEM at -255 b, -8 kb and -11.5 kb, respectively of CYP3A4, but neither XREM nor CLEM was predicted in rat CYP3A. A luciferase reporter construct carrying a 5'-flanking sequence of CYP3A1 (-31,739 to -31,585 from its transcription initiation site) revealed important for the rCAR-dependent transactivation of CYP3A1. This region includes two putative binding motifs of nuclear receptors (DR4 and DR2), a putative hepatocyte nuclear factor-1 binding motif (HNF1), nuclear factor-kappa B binding motif (NFκB), activator protein 1 binding motif (AP-1), and ecotropic viral integration site 1 binding motif (Evi1). We hereby conclude DR4 and/or DR2 motifs being primarily responsible and HNF1 being synergistically functioning elements for the rCAR-mediated transcription of CYP3A1.
Collapse
Affiliation(s)
- Toshie Gamou
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Wataru Habano
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Jun Terashima
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Shogo Ozawa
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan.
| |
Collapse
|
8
|
Li J, Wan Y, Na S, Liu X, Dong G, Yang Z, Yang J, Yue J. Sex-dependent regulation of hepatic CYP3A by growth hormone: Roles of HNF6, C/EBPα, and RXRα. Biochem Pharmacol 2014; 93:92-103. [PMID: 25451687 DOI: 10.1016/j.bcp.2014.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022]
Abstract
Sex-based differences in the pharmacological profiles of many drugs are due in part to the female-predominant expression of CYP3A4, which is the most important CYP isoform responsible for drug metabolism. Transcription factors trigger the sexually dimorphic expression of drug-metabolizing enzymes in response to sex-dependent growth hormone (GH) secretion. We investigated the roles of HNF6, C/EBPα, and RXRα in the regulation of human female-predominant CYP3A4, mouse female-specific CYP3A41, and rat male-specific CYP3A2 expression by GH secretion patterns using HepG2 cells, growth hormone receptor (GHR) knockout mice as well as rat models of orchiectomy and hypophysectomy. The constitutive expression of HNF6 and RXRα was GH-dependent, and GHR deficiency decreased HNF6/C/EBPα complex levels and increased HNF6/RXRα complex levels. Feminine GH secretion induced the binding of HNF6 and C/EBPα to the CYP3A4 and Cyp3a41 promoters and HNF6/C/EBPα complex levels was more efficiently compared with masculine pattern. Additionally, a greater inhibition of the binding of RXRα to the CYP3A4 and Cyp3a41 promoters and HNF6/RXRα complex levels was observed by feminine GH secretion, but less inhibition was observed by masculine pattern. The binding of HNF6, C/EBPα, and RXRα to the CYP3A2 promoter was not directly regulated by androgens. RXRα completely abolished the synergistic activation of the CYP3A4, Cyp3a41, and CYP3A2 promoters by HNF6 and C/EBPα. The results demonstrate that sex-dependent GH secretion patterns affect the expressions and interactions of HNF6, C/EBPα, and RXRα as well as their binding to CYP3A genes. RXRα mediates the sex-dependent influence of GH on CYP3A expression as an important signalling molecule.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Wan
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Shufang Na
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaochan Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guicheng Dong
- Baotou Teachers' College, Inner Mongolia University of Science & Technology, Baotou 014030, China
| | - Zheqiong Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jing Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
9
|
Zancanella V, Giantin M, Dacasto M. Absolute quantification and modulation of cytochrome P450 3A isoforms in cattle liver. Vet J 2014; 202:106-11. [DOI: 10.1016/j.tvjl.2014.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022]
|
10
|
Oertel BG, Vermehren J, Huynh TT, Doehring A, Ferreiros N, Zimmermann M, Geisslinger G, Lötsch J. Cytochrome P450 Epoxygenase Dependence of Opioid Analgesia: Fluconazole Does Not Interfere With Remifentanil-Mediated Analgesia in Human Subjects. Clin Pharmacol Ther 2014; 96:684-93. [DOI: 10.1038/clpt.2014.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/09/2014] [Indexed: 11/09/2022]
|
11
|
Elshenawy OH, Anwar-Mohamed A, Abdelhamid G, El-Kadi AOS. Murine atrial HL-1 cell line is a reliable model to study drug metabolizing enzymes in the heart. Vascul Pharmacol 2012; 58:326-33. [PMID: 23268359 DOI: 10.1016/j.vph.2012.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/23/2012] [Accepted: 12/15/2012] [Indexed: 02/06/2023]
Abstract
HL-1 cells are currently the only cells that spontaneously contract while maintaining a differentiated cardiac phenotype. Thus, our objective was to examine murine HL-1 cells as a new in vitro model to study drug metabolizing enzymes. We examined the expression of cytochrome P450s (Cyps), phase II enzymes, and nuclear receptors and compared their levels to mice hearts. Our results demonstrated that except for Cyp4a12 and Cyp4a14 all Cyps, phase II enzymes: glutathione-S-transferases (Gsts), heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase (Nqo1), nuclear receptors: aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator activated receptor (PPAR-alpha) were all constitutively expressed in HL-1 cells. Cyp2b19, Cyp2c29, Cyp2c38, Cyp2c40, and Cyp4f16 mRNA levels were higher in HL-1 cells compared to mice hearts. Cyp2b9, Cyp2c44, Cyp2j9, Cyp2j11, Cyp2j13, Cyp4f13, Cyp4f15 mRNA levels were expressed to the same extent to that of mice hearts. Cyp1a1, Cyp1a2, Cyp1b1, Cyp2b10, Cyp2d10, Cyp2d22, Cyp2e1, Cyp2j5, Cyp2j6, Cyp3a11, Cyp4a10, and Cyp4f18 mRNA levels were lower in HL-1 cells compared to mice hearts. Moreover, 3-methylcholanthrene induced Cyp1a1 while fenofibrate induced Cyp2j9 and Cyp4f13 mRNA levels in HL-1 cells. Examining the metabolism of arachidonic acid (AA) by HL-1 cells, our results demonstrated that HL-1 cells metabolize AA to epoxyeicosatrienoic acids, dihydroxyeicosatrienoic acids, and 20-hydroxyeicosatetraenoic acids. In conclusion, HL-1 cells provide a valuable in vitro model to study the role of Cyps and their associated AA metabolites in addition to phase II enzymes in cardiovascular disease states.
Collapse
Affiliation(s)
- Osama H Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | |
Collapse
|
12
|
Hasegawa M, Kapelyukh Y, Tahara H, Seibler J, Rode A, Krueger S, Lee DN, Wolf CR, Scheer N. Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug-drug interaction in a novel multiple humanized mouse line. Mol Pharmacol 2011; 80:518-28. [PMID: 21628639 DOI: 10.1124/mol.111.071845] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cytochrome P450 (P450) 3A4 is the predominant P450 enzyme expressed in human liver and intestine, and it is involved in the metabolism of approximately 50% of clinically used drugs. Because of the differences in the multiplicity of CYP3A genes and the poor correlation of substrate specificity of CYP3A proteins between species, the extrapolation of CYP3A-mediated metabolism of a drug from animals to man is difficult. This situation is further complicated by the fact that the predictability of the clinically common drug-drug interaction of pregnane X receptor (PXR)-mediated CYP3A4 induction by animal studies is limited as a result of marked species differences in the interaction of many drugs with this receptor. Here we describe a novel multiple humanized mouse line that combines a humanization for PXR, the closely related constitutive androstane receptor, and a replacement of the mouse Cyp3a cluster with a large human genomic region carrying CYP3A4 and CYP3A7. We provide evidence that this model shows a human-like CYP3A4 induction response to different PXR activators, that it allows the ranking of these activators according to their potency to induce CYP3A4 expression in the human liver, and that it provides an experimental approach to quantitatively predict PXR/CYP3A4-mediated drug-drug interactions in humans.
Collapse
|
13
|
Nonylphenol-mediated CYP induction is PXR-dependent: The use of humanized mice and human hepatocytes suggests that hPXR is less sensitive than mouse PXR to nonylphenol treatment. Toxicol Appl Pharmacol 2011; 252:259-67. [PMID: 21376070 DOI: 10.1016/j.taap.2011.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 12/22/2022]
Abstract
Nonylphenol (NP), a by-product of alkylphenol ethoxylates, is a pervasive surfactant that activates the xenosensing nuclear receptor, the pregnane X-receptor (PXR) in transactivation assays in vitro. We are interested in determining if NP activates PXR in vivo, determining if hPXR and mPXR act similarly, and investigating the role of PXR in protecting individuals from NP. Wild-type (WT), PXR-null, and humanized PXR (hPXR) mice were treated with NP at 0, 50 or 75mg/kg/day for one week, and cytochrome P450 (CYP) induction, liver histopathology, and serum NP concentrations were examined. WT mice treated with NP showed induction of Cyp2b, and male-specific induction of Cyp2c and Cyp3a. CYPs were not induced in PXR-null mice, demonstrating that PXR is necessary for NP-mediated CYP induction. CAR-mediated CYP induction was not observed in the PXR-null mice despite previous data demonstrating that NP is also a CAR activator. hPXR mice only showed moderate Cyp induction, suggesting that hPXR is not as sensitive to NP as mPXR in vivo. NP-mediated Cyp3a induction from three human hepatocyte donors was not significant, confirming that hPXR is not very sensitive to NP-mediated CYP induction. Lastly, mice with PXR (mPXR and hPXR) showed lower NP serum concentrations than PXR-null mice treated with NP suggesting that PXR plays a role in decreasing liver toxicity by basally regulating phase I-III detoxification enzymes that promote the metabolism and elimination of NP. In summary, PXR is required for NP-mediated CYP-induction, mPXR mediates greater CYP induction than hPXR in vivo, and the presence of PXR, especially mPXR, is associated with altered histopathology and increased clearance of NP.
Collapse
|
14
|
Pang X, Cheng J, Krausz KW, Guo DA, Gonzalez FJ. Pregnane X receptor-mediated induction of Cyp3a by black cohosh. Xenobiotica 2010; 41:112-23. [PMID: 20979450 DOI: 10.3109/00498254.2010.527021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Black cohosh (BC) has been widely applied for the treatment of menopausal symptoms. However, increasing concerns about herb-drug interactions demand the need for studies on the influence of BC on cytochrome 450. Cyp3a11 in liver was induced by 7-fold in wild-type mice treated with 500 mg/kg black cohosh for 28 days compared with the control group as assessed by quantitative real-time PCR; no difference was found in small intestine and kidney, suggesting that up-regulation of Cyp3a11 by black cohosh was liver-specific. Western blot, activity assays, and pharmacokinetic analyses established dose- and time-dependent induction of Cyp3a11. To determine the mechanism of Cyp3a11 induction, including the role of pregnane X receptor (PXR) in vivo and in vitro, respectively, in Pxr-null, PXR-humanized, and double transgenic CYP3A4/hPXR mice, cell-based luciferase assays were employed revealing that mouse PXR played a direct role in the induction of Cyp3a11; human PXR was not activated by black cohosh. Overall, these findings demonstrate that induction of Cyp3a11 is liver-specific and involved only mouse PXR, not the human counterpart. Thus, the incidence of herb-drug interaction in patients administered black cohosh may not be mediated by human PXR and CYP3A4.
Collapse
Affiliation(s)
- Xiaoyan Pang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Meyer RP, Gehlhaus M. A role for CYP in the drug–hormone crosstalk of the brain. Expert Opin Drug Metab Toxicol 2010; 6:675-87. [DOI: 10.1517/17425251003680791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Meyer RP, Pantazis G, Killer N, Bürck C, Schwab R, Brandt M, Knoth R, Gehlhaus M. Xenobiotics in the limbic system--affecting brain's network function. VITAMINS AND HORMONES 2010; 82:87-106. [PMID: 20472134 DOI: 10.1016/s0083-6729(10)82005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Xenobiotic compounds enter the brain through nutrition, environmentals, and drugs. In order to maintain intrinsic homeostasis, the brain has to adapt to xenobiotic influx. Among others, steroid hormones appear as crucial mediators in this process. However, especially in the therapy of neurological diseases or brain tumors, long-term application of neuroactive drugs is advised. Several clinically important malignancies based on hormonal dysbalance rise up after treatment with neuroactive drugs, for example, sexual and mental disorders or severe cognitive changes. A drug-hormone cross talk proceeding over drug-mediated cytochrome P450 induction predominantly in the limbic system and the blood-brain barrier, consequently altered steroid hormone metabolism, and P450-mediated change of steroid hormone receptor expression and signaling may serve as an explanation for such disorders. Especially, the interplay between the expression of AR and P450 at the blood-brain barrier and in structures of the limbic system is of considerable interest in understanding brain's reaction on xenobiotic treatment. This chapter summarizes present models and concepts on brain's reaction after xenobiotics crossing the blood-brain barrier and invading the limbic system.
Collapse
Affiliation(s)
- Ralf P Meyer
- Medizinische Fakultät der Universität Freiburg, Breisacherstrasse 64, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lachaud AA, Auclair-Vincent S, Massip L, Audet-Walsh E, Lebel M, Anderson A. Werner's syndrome helicase participates in transcription of phenobarbital-inducible CYP2B genes in rat and mouse liver. Biochem Pharmacol 2009; 79:463-70. [PMID: 19737542 DOI: 10.1016/j.bcp.2009.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/01/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Werner's syndrome (WS) is a rare human autosomal recessive segmental progeroid syndrome clinically characterized by atherosclerosis, cancer, osteoporosis, type 2 diabetes mellitus and ocular cataracts. The WRN gene codes for a RecQ helicase which is present in many tissues. Although the exact functions of the WRN protein remain unclear, accumulating evidence suggests that it participates in DNA repair, replication, recombination and telomere maintenance. It has also been proposed that WRN participates in RNA polymerase II-dependent transcription. However no promoter directly targeted by WRN has yet been identified. In this work, we report mammalian genes that are WRN targets. The rat CYP2B2 gene and its closely related mouse homolog, Cyp2b10, are both strongly induced in liver by phenobarbital. We found that there is phenobarbital-dependent recruitment of WRN to the promoter of the CYP2B2 gene as demonstrated by chromatin immunoprecipitation analysis. Mice homozygous for a Wrn mutation deleting part of the helicase domain showed a decrease in basal and phenobarbital-induced CYP2B10 mRNA levels compared to wild type animals. The phenobarbital-induced level of CYP2B10 protein was also reduced in the mutant mice. Electrophoretic mobility shift assays showed that WRN can participate in the formation of a complex with a specific sequence within the CYP2B2 basal promoter. Hence, there is a WRN binding site in a region of DNA sequence to which WRN is recruited in vivo. Taken together, these results suggest that WRN participates in transcription of CYP2B genes in liver and identifies the first physical interaction between a specific promoter sequence and WRN.
Collapse
Affiliation(s)
- Antoine Amaury Lachaud
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CHUQ, Québec, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Hernandez J, Mota L, Baldwin W. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2009; 7:81-105. [PMID: 20871735 PMCID: PMC2944248 DOI: 10.2174/187569209788654005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The constitutive androstane receptor (CAR) and the pregnane × receptor (PXR) are activated by a variety of endogenous and exogenous ligands, such as steroid hormones, bile acids, pharmaceuticals, and environmental, dietary, and occupational chemicals. In turn, they induce phase I-III detoxification enzymes and transporters that help eliminate these chemicals. Because many of the chemicals that activate CAR and PXR are environmentally-relevant (dietary and anthropogenic), studies need to address whether these chemicals or mixtures of these chemicals may increase the susceptibility to adverse drug interactions. In addition, CAR and PXR are involved in hepatic proliferation, intermediary metabolism, and protection from cholestasis. Therefore, activation of CAR and PXR may have a wide variety of implications for personalized medicine through physiological effects on metabolism and cell proliferation; some beneficial and others adverse. Identifying the chemicals that activate these promiscuous nuclear receptors and understanding how these chemicals may act in concert will help us predict adverse drug reactions (ADRs), predict cholestasis and steatosis, and regulate intermediary metabolism. This review summarizes the available data on CAR and PXR, including the environmental chemicals that activate these receptors, the genes they control, and the physiological processes that are perturbed or depend on CAR and PXR action. This knowledge contributes to a foundation that will be necessary to discern interindividual differences in the downstream biological pathways regulated by these key nuclear receptors.
Collapse
Affiliation(s)
- J.P. Hernandez
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - L.C. Mota
- Institute of Environmental Toxicology, Clemson University, Pendleton, SC, USA
| | - W.S. Baldwin
- Institute of Environmental Toxicology, Clemson University, Pendleton, SC, USA
| |
Collapse
|
19
|
Zhang H, Wu X, Chung F, Naraharisetti SB, Whittington D, Mirfazaelian A, Unadkat JD. As in humans, pregnancy increases the clearance of the protease inhibitor nelfinavir in the nonhuman primate Macaca nemestrina. J Pharmacol Exp Ther 2009; 329:1016-22. [PMID: 19293388 DOI: 10.1124/jpet.109.151746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The apparent oral clearance of protease inhibitors (PIs) is increased in pregnant women. Although this phenomenon is reproduced in the mouse, because of the multiplicity of mouse cytochrome P450 isoforms, lack of information on their substrate and inhibitor selectivity, and lack of reagents (e.g., antibodies, purified protein), it is difficult to study the mechanistic basis of this phenomenon in this animal model. To investigate the mechanistic basis of this phenomenon in a more representative model, the nonhuman primate, we first determined whether this phenomenon could be reproduced in Macaca nemestrina, using nelfinavir as a model PI. Consistent with the human and mouse studies, we found that the apparent oral clearance of nelfinavir (NFV) in the macaques was significantly increased (3.14-fold) antepartum (n = 3) versus postpartum (n = 4). This increased apparent oral clearance was a result of an increased systemic clearance (1.9-fold) and a decreased bioavailability (approximately 45%) during pregnancy. In vitro, pregnancy significantly enhanced the rate of NFV depletion in hepatic, but not intestinal S-9 fractions. Human CYP3A inhibitors erythromycin (0.5 mM), ketoconazole (0.5 microM), and troleandomycin (0.01-1 mM), but not the CYP2C inhibitor, sulfaphenazole (3 microM), significantly inhibited the depletion of NFV in hepatic S-9 fractions and expressed rhesus CYP3A64 enzyme. Based on these data, we conclude that increased hepatic activity of NFV-metabolizing enzymes (perhaps CYP3A enzymes) results in increased clearance of PIs during pregnancy in the macaques. The M. nemestrina should be further investigated as a model to study the mechanisms by which the clearance of PIs is increased during pregnancy.
Collapse
Affiliation(s)
- Huixia Zhang
- Department of Pharmaceutics, University of Washington, Box 357610, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Rosen MB, Schmid JE, Das KP, Wood CR, Zehr RD, Lau C. Gene expression profiling in the liver and lung of perfluorooctane sulfonate-exposed mouse fetuses: comparison to changes induced by exposure to perfluorooctanoic acid. Reprod Toxicol 2009; 27:278-288. [PMID: 19429403 DOI: 10.1016/j.reprotox.2009.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 02/02/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmental contaminants found in the tissues of humans and wildlife. They are activators of peroxisome proliferator-activated receptor-alpha (PPAR alpha) and exhibit hepatocarcinogenic potential in rats. PFOS and PFOA are also developmental toxicants in rodents and PFOS has been shown to induce pulmonary deficits in rat offspring. Pregnant CD-1 mice were dosed with 0, 5, or 10mg/kg PFOS from gestation days 1-17. Transcript profiling was conducted on the fetal liver and lung. Results were contrasted to data derived from a previous PFOA study. PFOS-dependent changes were primarily related to activation of PPAR alpha. No remarkable differences were found between PFOS and PFOA. Given that PPAR alpha signaling is required for neonatal mortality in PFOA-treated mice but not those exposed to PFOS, the neonatal mortality observed for PFOS may reflect functional deficits related to the physical properties of the chemical rather than to transcript alterations.
Collapse
Affiliation(s)
- Mitchell B Rosen
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA.
| | - Judith E Schmid
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA
| | - Kaberi P Das
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA
| | - Carmen R Wood
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA
| | - Robert D Zehr
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA
| | - Christopher Lau
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC, USA
| |
Collapse
|
21
|
Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR). Toxicology 2008; 256:53-64. [PMID: 19041682 DOI: 10.1016/j.tox.2008.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 02/03/2023]
Abstract
The constitutive androstane receptor (CAR) is a xenosensing nuclear receptor and regulator of cytochrome P450s (CYPs). However, the role of CAR as a basal regulator of CYP expression nor its role in sexually dimorphic responses have been thoroughly studied. We investigated basal regulation and sexually dimorphic regulation and induction by the potent CAR activator TCPOBOP and the moderate CAR activator Nonylphenol (NP). NP is an environmental estrogen and one of the most commonly found environmental toxicants in Europe and the United States. Previous studies have demonstrated that NP induces several CYPs in a sexually dimorphic manner, however the role of CAR in regulating NP-mediated sexually dimorphic P450 expression and induction has not been elucidated. Therefore, wild-type and CAR-null male and female mice were treated with honey as a carrier, NP, or TCPOBOP and CYP expression monitored by QPCR and Western blotting. CAR basally regulates the expression of Cyp2c29, Cyp2b13, and potentially Cyp2b10 as demonstrated by QPCR. Furthermore, we observed a shift in the testosterone 6alpha/15alpha-hydroxylase ratio in untreated CAR-null female mice to the male pattern, which indicates an alteration in androgen status and suggests a role for androgens as CAR inverse agonists. Xenobiotic-treatments with NP and TCPOBOP induced Cyp2b10, Cyp2c29, and Cyp3a11 in a CAR-mediated fashion; however NP only induced these CYPs in females and TCPOBOP induced these CYPs in both males and females. Interestingly, Cyp2a4, was only induced in wild-type male mice by TCPOBOP suggesting Cyp2a4 induction is not sensitive to CAR-mediated induction in females. Overall, TCPOBOP and NP show similar CYP induction profiles in females, but widely different profiles in males potentially related to lower sensitivity of males to either indirect or moderate CAR activators such as NP. In summary, CAR regulates the basal and chemically inducible expression of several sexually dimorphic xenobiotic metabolizing P450s in a manner that varies depending on the ligand.
Collapse
|
22
|
Woodland C, Huang TT, Gryz E, Bendayan R, Fawcett JP. Expression, Activity and Regulation of CYP3A in Human and Rodent Brain. Drug Metab Rev 2008; 40:149-68. [DOI: 10.1080/03602530701836712] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Fisher CD, Jackson JP, Lickteig AJ, Augustine LM, Cherrington NJ. Drug metabolizing enzyme induction pathways in experimental non-alcoholic steatohepatitis. Arch Toxicol 2008; 82:959-64. [PMID: 18488193 DOI: 10.1007/s00204-008-0312-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a disease that compromises hepatic function and the capacity to metabolize numerous drugs. Aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARalpha), and nuclear factor-E2 related factor 2 (Nrf2) are xenobiotic activated transcription factors that regulate induction of a number of drug metabolizing enzymes (DMEs). The purpose of the current study was to determine whether experimental NASH alters the xenobiotic activation of these transcription factors and induction of downstream DME targets Cyp1A1, Cyp2B10, Cyp3A11, Cyp4A14 and NAD(P)H:quinone oxidoreductase 1 (Nqo1), respectively. Mice fed normal rodent chow or methionine-choline-deficient (MCD) diet for 8 weeks were then treated with microsomal enzyme inducers beta-naphoflavone (BNF), 1,4-bis-[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), pregnenolone-16alpha-carbonitrile (PCN), clofibrate (CFB) or oltipraz (OPZ), known activators of AhR, CAR, PXR, PPARalpha and Nrf2, respectively. Results of this study show that (1) Hepatic PXR mRNA levels were significantly increased (1.4-fold) in mice fed MCD diet, while AhR, CAR, PPARalpha and Nrf2 were not affected. (2) The MCD diet did not alter hepatic inducibility of Cyp1A1, Cyp2B10, Cyp3A11 mRNA levels by their respective microsomal inducers. (3) Constitutive levels of Cyp4A14 mRNA were significantly increased in mice fed the MCD diet, yet further induction by clofibrate was not observed. (4) Hepatic Nqo1 mRNA levels were significantly increased by the MCD diet; however, additional induction of Nqo1 was still achievable following treatment with the Nrf2 activator OPZ.
Collapse
Affiliation(s)
- Craig D Fisher
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
24
|
Casley WL, Ogrodowczyk C, Larocque L, Jaentschke B, LeBlanc-Westwood C, Menzies JA, Whitehouse L, Hefford MA, Aubin RA, Thorn CF, Whitehead AS, Li X. Cytotoxic doses of ketoconazole affect expression of a subset of hepatic genes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1946-1955. [PMID: 17966066 DOI: 10.1080/15287390701551407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ketoconazole is a widely prescribed antifungal drug, which has also been investigated as an anticancer therapy in both clinical and pre-clinical settings. However, severe hepatic injuries were reported to be associated with the use of ketoconazole, even in patients routinely monitored for their liver functions. Several questions concerning ketoconazole-induced hepatic injury remain unanswered, including (1) does ketoconazole alter cytochrome P450 expression at the transcriptional level?, (2) what types of gene products responsible for cytotoxicity are induced by ketoconazole?, and (3) what role do the major metabolites of ketoconazole play in this pathophysiologic process? A mouse model was employed to investigate hepatic gene expression following hepatotoxic doses of ketoconazole. Hepatic gene expression was analyzed using a toxicogenomic microarray platform, which is comprised of cDNA probes generated from livers exposed to various hepatoxicants. These hepatoxicants fall into five well-studied toxicological categories: peroxisome proliferators, aryl hydrocarbon receptor agonists, noncoplanar polychlorinated biphenyls, inflammatory agents, and hypoxia-inducing agents. Nine genes encoding enzymes involved in Phase I metabolism and one Phase II enzyme (glutathione S-transferase) were found to be upregulated. Serum amyloid A (SAA1/2) and hepcidin were the only genes that were downregulated among the 2364 genes assessed. In vitro cytotoxicity and transcription analyses revealed that SAA and hepcidin are associated with the general toxicity of ketoconazole, and might be usefully explored as generalized surrogate markers of xenobiotic-induced hepatic injury. Finally, it was shown that the primary metabolite of ketoconazole (de-N-acetyl ketoconazole) is largely responsible for the hepatoxicity and the downregulation of SAA and hepcidin.
Collapse
Affiliation(s)
- William L Casley
- Center for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The pregnane X receptor (PXR; NR1I2) is a nuclear hormone receptor (NR) that transcriptionally regulates genes encoding transporters and drug-metabolising enzymes in the liver and intestine. PXR activation leads to enhanced metabolism and elimination of xenobiotics and endogenous compounds such as hormones and bile salts. Relative to other vertebrate NRs, PXR has the broadest specificity for ligand activators by virtue of a large, flexible ligand-binding cavity. In addition, PXR has the most extensive sequence diversity across vertebrate species in the ligand-binding domain of any NR, with significant pharmacological differences between human and rodent PXRs, and especially marked divergence between mammalian and nonmammalian PXRs. The unusual properties of PXR complicate the use of in silico and animal models to predict in vivo human PXR pharmacology. Research into the evolutionary history of the PXR gene has also provided insight into the function of PXR in humans and other animals.
Collapse
Affiliation(s)
- Manisha Iyer
- University of Pittsburgh, Department of Pathology, Scaife Hall S-730, 3550 Terrace Street, Pittsburgh, PA 15261 USA
| | - Erica J. Reschly
- University of Pittsburgh, Department of Pathology, Scaife Hall S-730, 3550 Terrace Street, Pittsburgh, PA 15261 USA
| | - Matthew D. Krasowski
- University of Pittsburgh, Department of Pathology, Scaife Hall S-730, 3550 Terrace Street, Pittsburgh, PA 15261 USA
- Author for correspondence, Tel: 412-647-6517; Fax: 412-647-5934; E-mail:
| |
Collapse
|
26
|
Lane CS, Wang Y, Betts R, Griffiths WJ, Patterson LH. Comparative cytochrome P450 proteomics in the livers of immunodeficient mice using 18O stable isotope labeling. Mol Cell Proteomics 2007; 6:953-62. [PMID: 17296599 PMCID: PMC2315784 DOI: 10.1074/mcp.m600296-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quantitative changes in cytochrome P450 (CYP) proteins involved in drug metabolism as a consequence of drug treatment are important parameters in predicting the fates and pharmacological consequences of xenobiotics and drugs. In this study we undertook comparative P450 proteomics using liver from control and 1,4-bis-2-(3,5-dichloropyridyloxybenzene) (TCPOBOP)-dosed mice. The method involved separation of microsomal proteins by SDS-PAGE, trypsin digestion, and postdigest 18O/16O labeling followed by nano-LC-MS/MS for peptide identification and LC-MS for relative quantification. Seventeen P450 proteins were identified from mouse liver of which 16 yielded data sufficient for relative quantification. All the P450s detected were unambiguously identified except the highly homologous CYP2A4/2A5. With the exception of CYP2A12, -2D10, and -2F2, the levels of all the P450s quantified were affected by treatment with TCPOBOP (3 mg/kg). CYP1A2, -2A4/5, -2B10, -2B20, -2C29, -2C37, -2C38, -3A11, and -39A1 were up-regulated, and CYP2C40, -2E1, -3A41, and -27A1 down-regulated. The response of CYP2B20 to stimulation has not been distinguished previously from that of CYP2B10 because of the poor discrimination between these two proteins (they share 87% sequence identity). Differential response to chemical stimulation by closely related members of the CYP2C subfamily was also observed.
Collapse
Affiliation(s)
- Catherine S Lane
- The School of Pharmacy, University of London, London WC1N 1AX, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Down MJ, Arkle S, Mills JJ. Regulation and induction of CYP3A11, CYP3A13 and CYP3A25 in C57BL/6J mouse liver. Arch Biochem Biophys 2006; 457:105-10. [PMID: 17107656 DOI: 10.1016/j.abb.2006.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/14/2006] [Accepted: 09/17/2006] [Indexed: 12/18/2022]
Abstract
This study reports that dexamethasone (DEX) significantly induces CYP3A11, CYP3A13 and CYP3A25 mRNA expression in male and female 4 days, 3 weeks and 18 weeks old C57BL/6J mice. Furthermore, CYP3A activity, as measured by erythromycin-N-demethylation, is also significantly increased. PXR, RXRalpha and CAR are known to be involved in the induction of CYP3As. Here we report nuclear receptors PXR and RXRalpha but not CAR demonstrate gender- and age-dependent expression. Also, treatment of C57BL/6J mice with DEX induces PXR but not RXRalpha or CAR. In summary, we demonstrate DEX is not only able to up-regulate CYP3A expression and activity, but also the nuclear receptor PXR through which it may exert this effect. Furthermore, the gender- and age-dependent pattern of basal PXR and RXRalpha expression is similar to the 3 CYP3As analysed.
Collapse
Affiliation(s)
- M J Down
- Department of Pharmacology, School of Pharmacy and Biomedical Sciences, St Michaels Building, University of Portsmouth, White Swan Road, Portsmouth, UK
| | | | | |
Collapse
|
28
|
Cheng X, Klaassen CD. Regulation of mRNA expression of xenobiotic transporters by the pregnane x receptor in mouse liver, kidney, and intestine. Drug Metab Dispos 2006; 34:1863-7. [PMID: 16928788 DOI: 10.1124/dmd.106.010520] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple transporter systems are involved in the disposition of xenobiotics and endogenous compounds. The pregnane X receptor (PXR) is a major chemical sensor known to activate the expression of CYP3A/Cyp3a in humans and rodents. The purpose of this study is to systematically determine whether the major xenobiotic transporters in liver, kidney, duodenum, jejunum, and ileum are induced by pregnenolone-16alpha-carbonitrile (PCN), and whether this increase is mediated by the nuclear receptor PXR. In liver, PCN induced the expression of Oatp1a4 and Mrp3 mRNA in wild-type (WT) mouse liver, but not in PXR-null mice. In kidney, PCN did not alter the expression of any drug transporter. In duodenum, PCN increased Abca1 and Mdr1a mRNA expression in WT mice, but not in PXR-null mice. In jejunum and ileum, PCN increased Mdr1a and Mrp2 mRNA, but decreased Cnt2 mRNA in WT mice, but none of these transporters was altered when PCN was administered to PXR-null mice. Therefore, PCN regulates the expression of some transporters, namely, Oatp1a4 and Mrp3 in liver, as well as Abca1, Cnt2, Mdr1a, and Mrp2 in small intestine via a PXR-mediated mechanism.
Collapse
Affiliation(s)
- Xingguo Cheng
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
29
|
Hernandez JP, Chapman LM, Kretschmer XC, Baldwin WS. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice. Toxicol Appl Pharmacol 2006; 216:186-96. [PMID: 16828826 PMCID: PMC1964506 DOI: 10.1016/j.taap.2006.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/21/2006] [Accepted: 05/23/2006] [Indexed: 11/15/2022]
Abstract
Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ mice and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16alpha-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females.
Collapse
Affiliation(s)
- Juan P Hernandez
- Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA
| | | | | | | |
Collapse
|
30
|
Faucette SR, Sueyoshi T, Smith CM, Negishi M, Lecluyse EL, Wang H. Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor. J Pharmacol Exp Ther 2006; 317:1200-9. [PMID: 16513849 DOI: 10.1124/jpet.105.098160] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accumulated evidence suggests that cross-talk between the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) results in shared transcriptional activation of CYP2B and CYP3A genes. Although most data imply symmetrical cross-regulation of these genes by rodent PXR and CAR, the actual selectivities of the corresponding human receptors are unknown. The objective of this study was to evaluate the symmetry of human (h) PXR and hCAR cross-talk by comparing the selectivities of these receptors for CYP2B6 and CYP3A4. Human hepatocyte studies revealed nonselective induction of both CYP2B6 and CYP3A4 by hPXR activation but marked preferential induction of CYP2B6 by selective hCAR activation. Gel shift assays demonstrated that hPXR exhibited strong and relatively equal binding to all functional response elements in both CYP2B6 and CYP3A4 genes, whereas hCAR displayed significantly weak binding to the CYP3A4 proximal ER6 motif. In cell-based transfection assays, hCAR displayed greater activation of CYP2B6 reporter gene expression compared with CYP3A4 with constructs containing both proximal and distal regulatory elements. Furthermore, in agreement with binding observations, transfection assays using promoter constructs containing repeats of CYP2B6 DR4 and CYP3A4 ER6 motifs revealed an even greater difference in reporter activation by hCAR. In contrast, hPXR activation resulted in less discernible differences between CYP2B6 and CYP3A4 reporter gene expression. These results suggest asymmetrical cross-regulation of CYP2B6 and CYP3A4 by hCAR but not hPXR in that hCAR exhibits preferential induction of CYP2B6 relative to CYP3A4 because of its weak binding and functional activation of the CYP3A4 ER6.
Collapse
MESH Headings
- Aryl Hydrocarbon Hydroxylases/genetics
- Base Sequence
- Cell Line, Tumor
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2B6
- Cytochrome P-450 CYP3A
- Cytochrome P-450 Enzyme System/genetics
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Genes, Reporter
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- Hepatocytes/metabolism
- Humans
- Liver/drug effects
- Liver/enzymology
- Liver/metabolism
- Molecular Sequence Data
- Oxidoreductases, N-Demethylating/genetics
- Oximes/pharmacology
- Pregnane X Receptor
- Protein Binding
- Receptor Cross-Talk/physiology
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Steroid/agonists
- Receptors, Steroid/metabolism
- Receptors, Steroid/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Rifampin/pharmacology
- Thiazoles/pharmacology
- Transcription Factors/agonists
- Transcription Factors/metabolism
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Stephanie R Faucette
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| | | | | | | | | | | |
Collapse
|
31
|
Xu C, Li CYT, Kong ANT. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 2005; 28:249-68. [PMID: 15832810 DOI: 10.1007/bf02977789] [Citation(s) in RCA: 853] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt), in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the retinoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fibrate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these CYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sulforaphane) generally appear to be electrophiles. They generally possess electrophilic-mediated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and CAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular "stress" response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other "cellular stresses" including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the "stress" expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against "environmental" insults such as those elicited by exposure to xenobiotics.
Collapse
Affiliation(s)
- Changjiang Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
32
|
Acevedo R, Parnell PG, Villanueva H, Chapman LM, Gimenez T, Gray SL, Baldwin WS. The contribution of hepatic steroid metabolism to serum estradiol and estriol concentrations in nonylphenol treated MMTVneu mice and its potential effects on breast cancer incidence and latency. J Appl Toxicol 2005; 25:339-53. [PMID: 16013040 DOI: 10.1002/jat.1078] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The two major pathways for the metabolism of estradiol-17beta (E2) are the 2- and 16-hydroxylase pathways. Research has suggested that the increased production of the estrogenically active 16-hydroxy products such as estriol (E3) may be involved in increased susceptibility to breast cancer. 4-Nonylphenol (4-NP) is an environmental estrogen that also can activate the pregnane-X receptor (PXR) and induce P-450 enzymes responsible for the production of E3. It is hypothesized that 4-NP may act in part as an environmental estrogen by increasing E3 production. Based on its affinity for the estrogen receptor (ER) alone, 4-NP may be more potent than predicted at increasing mammary cancer incidence in the MMTVneu mouse. Female mice were treated per os for 7 days at 0, 25, 50 or 75 mg kg(-1) day(-1) 4-NP to investigate the effects of 4-NP on hepatic estrogen metabolism after an acute treatment. 4-Nonylphenol increased the hepatic formation of E3 in a dose-dependent manner. However, serum E3 concentrations were only increased at 25 mg kg(-1) day(-1) presumably due to direct inhibition of E3 formation by 4-NP. MMTVneu mice were then treated for 32 weeks at 0, 30 or 45 mg kg(-1) day(-1) 4-NP to determine its effects on mammary cancer formation and estrogen metabolism. 4-Nonylphenol increased mammary cancer formation in the MMTVneu mice at 45 mg kg(-1) day(-1) but not at 30 mg kg(-1) day(-1). Mice treated with an equipotent dose of E2, 10 microg kg(-1) day(-1), based on the relative binding affinities of nonylphenol and estradiol for ER alpha, did not develop mammary cancer. This suggests that nonylphenol is more potent than predicted based on its affinity for the estrogen receptor. However, no changes in serum E3 concentrations or hepatic E3 production were measured after the chronic treatment. Changes in E3 formation were correlated with increased CYP2B levels after the 7 day 4-NP treatment, and repression of CYP2B and CYP3A after 32 weeks of 4-NP treatment. Microarray analysis and Q-PCR of liver mRNA from the mice treated for 32 weeks demonstrated a decrease in RXR alpha, the heterodimeric partner of the PXR, which may in part explain the repressed transcription of the P450s measured. In conclusion, 4-NP treatment for 32 weeks increased mammary cancer formation at a dose of 45 mg kg(-1) day(-1). However, chronic treatment with 4-NP did not increase hepatic E3 formation or serum E3 concentrations. The transient induction by 4-NP of hepatic E3 formation and serum concentrations is most likely not involved in the increased incidence of mammary cancer in MMTVneu mice since E3 serum concentrations were only increased at 25 mg kg(-1) day(-1), a dose that was not sufficient to induce mammary tumor formation. Nevertheless, the induced hepatic E3 production in the acute exposures to 4-NP was indicative of an increase in mammary cancer incidence after the chronic exposure.
Collapse
Affiliation(s)
- Ricardo Acevedo
- University of Texas at El Paso, Biological Sciences, El Paso, TX 79968, USA
| | | | | | | | | | | | | |
Collapse
|