1
|
Al-Dewik N, Abuarja T, Younes S, Nasrallah G, Alsharshani M, Ibrahim FE, Samara M, Farrell T, Abdulrouf PV, Qoronfleh MW, Al Rifai H. Precision medicine activities and opportunities for shaping maternal and neonatal health in Qatar. Per Med 2024; 21:313-333. [PMID: 39347749 DOI: 10.1080/17410541.2024.2394397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/16/2024] [Indexed: 10/01/2024]
Abstract
Precision Medicine (PM) is a transformative clinical medicine strategy that aims to revolutionize healthcare by leveraging biological information and biomarkers. In the context of maternal and neonatal health, PM enables personalized care from preconception through the postnatal period. Qatar has emerged as a key player in PM research, with dedicated programs driving advancements and translating cutting-edge research into clinical applications. This article delves into neonatal and maternal health in Qatar, emphasizing PM programs and initiatives that have been implemented. It also features noteworthy clinical cases that demonstrate the effectiveness of precision interventions. Furthermore, the article highlights the role of pharmacogenomics in addressing various maternal health conditions. The review further explores potential advancements in the application of PM in maternal and neonatal healthcare in Qatar.
Collapse
Affiliation(s)
- Nader Al-Dewik
- Department of Research & Translational & Precision Medicine Research Lab, Women's Wellness & Research Center (WWRC), Hamad Medical Corporation (HMC), Doha, 3050, Qatar
- Department of Neonatology, Neonatal Intensive Care Unit, Newborn Screening Unit, Women's Wellness & Research Center, Hamad Medical Corporation, Doha, 3050, Qatar
- Translational Research Institute (TRI), Hamad Medical Corporation (HMC), Doha, 3050, Qatar
- Genomics & Precision Medicine (GPM), College of Health & Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Tala Abuarja
- Department of Research & Translational & Precision Medicine Research Lab, Women's Wellness & Research Center (WWRC), Hamad Medical Corporation (HMC), Doha, 3050, Qatar
| | - Salma Younes
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University (QU), Doha, 2713, Qatar
| | - Gheyath Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University (QU), Doha, 2713, Qatar
| | - Mohamed Alsharshani
- Diagnostic Genetics Division (DGD), Department of Laboratory Medicine & Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, 3050, Qatar
| | - Faisal E Ibrahim
- Department of Research & Translational & Precision Medicine Research Lab, Women's Wellness & Research Center (WWRC), Hamad Medical Corporation (HMC), Doha, 3050, Qatar
| | - Muthanna Samara
- Department of Psychology, Kingston University London, Kingston upon Thames, London, KT1 2EE, United Kingdom
| | - Thomas Farrell
- Department of Research & Translational & Precision Medicine Research Lab, Women's Wellness & Research Center (WWRC), Hamad Medical Corporation (HMC), Doha, 3050, Qatar
| | - Palli Valapila Abdulrouf
- Department of Research & Translational & Precision Medicine Research Lab, Women's Wellness & Research Center (WWRC), Hamad Medical Corporation (HMC), Doha, 3050, Qatar
| | - M Walid Qoronfleh
- Q3 Research Institute (QRI), Healthcare Research & Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA
| | - Hilal Al Rifai
- Department of Research & Translational & Precision Medicine Research Lab, Women's Wellness & Research Center (WWRC), Hamad Medical Corporation (HMC), Doha, 3050, Qatar
- Department of Neonatology, Neonatal Intensive Care Unit, Newborn Screening Unit, Women's Wellness & Research Center, Hamad Medical Corporation, Doha, 3050, Qatar
| |
Collapse
|
2
|
Kim MS, Kim H, Lee G. Precision Medicine in Parkinson's Disease Using Induced Pluripotent Stem Cells. Adv Healthc Mater 2024; 13:e2303041. [PMID: 38269602 DOI: 10.1002/adhm.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Parkinson's disease (PD) is one of the most devastating neurological diseases; however, there is no effective cure yet. The availability of human induced pluripotent stem cells (iPSCs) provides unprecedented opportunities to understand the pathogenic mechanism and identification of new therapy for PD. Here a new model system of PD, including 2D human iPSC-derived midbrain dopaminergic (mDA) neurons, 3D iPSC-derived midbrain organoids (MOs) with cellular complexity, and more advanced microphysiological systems (MPS) with 3D organoids, is introduced. It is believed that successful integrations and applications of iPSC, organoid, and MPS technologies can bring new insight on PD's pathogenesis that will lead to more effective treatments for this debilitating disease.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hyesoo Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Majidpour M, Saravani R, Sargazi S, Sargazi S, Harati‐Sadegh M, Khorrami S, Sarhadi M, Alidadi A. A Study on Associations of Long Noncoding RNA HOTAIR Polymorphisms With Genetic Susceptibility to Chronic Kidney Disease. J Clin Lab Anal 2024; 38:e25086. [PMID: 38958113 PMCID: PMC11252834 DOI: 10.1002/jcla.25086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The importance of long noncoding RNAs (lncRNAs) in various biological processes has been increasingly recognized in recent years. This study investigated how gene polymorphism in HOX transcript antisense RNA (HOTAIR) lncRNA affects the predisposition to chronic kidney disease (CKD). METHODS This study comprised 150 patients with CKD and 150 healthy controls. A PCR-RFLP and ARMS-PCR techniques were used for genotyping the five target polymorphisms. RESULTS According to our findings, rs4759314 confers strong protection against CKD in allelic, dominant, and codominant heterozygote genetic patterns. Furthermore, rs3816153 decreased CKD risk by 78% when TT versus GG, 55% when GG+GT versus TT, and 74% when GT versus TT+GG. In contrast, the CC+CT genotype [odds ratio (OR) = 1.66, 95% confidence intervals (CIs) = 1.05-2.63] and the T allele (OR = 1.50, 95% CI = 1.06-2.11) of rs12826786, as well as the TT genotype (OR = 2.52, 95% CI = 1.06-5.98) of rs3816153 markedly increased the risk of CKD in the Iranian population. Although no linkage disequilibrium was found between the studied variants, the Crs12826786Trs920778Grs1899663Grs4759314Grs3816153 haplotype was associated with a decreased risk of CKD by 86% (OR = 0.14, 95% CI = 0.03-0.66). CONCLUSION The rs920778 was not correlated with CKD risk, whereas the HOTAIR rs4759314, rs12826786, rs1899663, and rs3816153 polymorphisms affected the risk of CKD in our population. It seems essential to conduct repeated studies across various ethnic groups to explore the link between HOTAIR variants and their impact on the disease outcome.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research CenterZahedan University of Medical SciencesZahedanIran
| | - Ramin Saravani
- Cellular and Molecular Research CenterResearch Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical SciencesZahedanIran
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Saman Sargazi
- Cellular and Molecular Research CenterResearch Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical SciencesZahedanIran
- Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Sara Sargazi
- Cellular and Molecular Research CenterResearch Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical SciencesZahedanIran
| | - Mahdiyeh Harati‐Sadegh
- Genetics of Non‐Communicable Disease Research CenterZahedan University of Medical SciencesZahedanIran
| | - Shadi Khorrami
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mohammad Sarhadi
- Cellular and Molecular Research CenterResearch Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical SciencesZahedanIran
| | - Ali Alidadi
- Department of Nephrology, Faculty of MedicineZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
4
|
Gunturu DR, Hassan M, Bedi D, Datta P, Manne U, Samuel T. Unlocking the Potential of Therapy-Induced Cytokine Responses: Illuminating New Pathways in Cancer Precision Medicine. Curr Oncol 2024; 31:1195-1206. [PMID: 38534922 PMCID: PMC10968790 DOI: 10.3390/curroncol31030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/26/2024] Open
Abstract
Precision cancer medicine primarily aims to identify individual patient genomic variations and exploit vulnerabilities in cancer cells to select suitable patients for specific drugs. These genomic features are commonly determined by gene sequencing prior to therapy, to identify individuals who would be most responsive. This precision approach in cancer therapeutics remains a powerful tool that benefits a smaller pool of patients, sparing others from unnecessary treatments. A limitation of this approach is that proteins, not genes, are the ultimate effectors of biological functions, and therefore the targets of therapeutics. An additional dimension in precision medicine that considers an individual's cytokine response to cancer therapeutics is proposed. Cytokine responses to therapy are multifactorial and vary among individuals. Thus, precision is dictated by the nature and magnitude of cytokine responses in the tumor microenvironment exposed to therapy. This review highlights cytokine responses as modules for precision medicine in cancer therapy, including potential challenges. For solid tumors, both detectability of cytokines in tissue fluids and their being amenable to routine sensitive analyses could address the difficulty of specimen collection for diagnosis and monitoring. Therefore, in precision cancer medicine, cytokines offer rational targets that can be utilized to enhance the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Dilip R. Gunturu
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Mohammed Hassan
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA (T.S.)
| | - Deepa Bedi
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Pran Datta
- School of Medicine-Medicine-Hematology & Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Temesgen Samuel
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA (T.S.)
| |
Collapse
|
5
|
Sobsey CA, Mady N, Richard VR, LeBlanc A, Zakharov T, Borchers CH, Jagoe RT. Measurement of CYP1A2 and CYP3A4 activity by a simplified Geneva cocktail approach in a cohort of free-living individuals: a pilot study. Front Pharmacol 2024; 15:1232595. [PMID: 38370474 PMCID: PMC10869543 DOI: 10.3389/fphar.2024.1232595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction: The cytochrome P450 enzyme subfamilies, including CYP3A4 and CYP1A2, have a major role in metabolism of a range of drugs including several anti-cancer treatments. Many factors including environmental exposures, diet, diseaserelated systemic inflammation and certain genetic polymorphisms can impact the activity level of these enzymes. As a result, the net activity of each enzyme subfamily can vary widely between individuals and in the same individual over time. This variability has potential major implications for treatment efficacy and risk of drug toxicity, but currently no assays are available for routine use to guide clinical decision-making. Methods: To address this, a mass spectrometry-based method to measure activities of CYP3A4, CYP1A2 was adapted and tested in free-living participants. The assay results were compared with the predicted activity of each enzyme, based on a self-report tool capturing diet, medication, chronic disease state, and tobacco usage. In addition, a feasibility test was performed using a low-volume dried blood spots (DBS) on two different filter-paper supports, to determine if the same assay could be deployed without the need for repeated standard blood tests. Results: The results confirmed the methodology is safe and feasible to perform in free-living participants using midazolam and caffeine as test substrates for CYP3A4 and CYP1A2 respectively. Furthermore, though similar methods were previously shown to be compatible with the DBS format, the assay can also be performed successfully while incorporating glucuronidase treatment into the DBS approach. The measured CYP3A4 activity score varied 2.6-fold across participants and correlated with predicted activity score obtained with the self-report tool. The measured CYP1A2 activity varied 3.5-fold between participants but no correlation with predicted activity from the self-report tool was found. Discussion: The results confirm the wide variation in CYP activity between individuals and the important role of diet and other exposures in determining CYP3A4 activity. This methodology shows great potential and future cross-sectional and longitudinal studies using DBS are warranted to determine how best to use the assay results to guide drug treatments.
Collapse
Affiliation(s)
- Constance A. Sobsey
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Noor Mady
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Vincent R. Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Andre LeBlanc
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Thomas Zakharov
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - R. Thomas Jagoe
- Peter Brojde Lung Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
- Department of Medicine, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
6
|
Bhat KG, Pillai RKJ, Lodhi H, Guleria VS, Abbot AK, Gupta L, Rastogi G, Sharma A, Mohammed Z, Sharma V. Pharmacogenomic evaluation of CYP2C19 alleles linking low clopidogrel response and the risk of acute coronary syndrome in Indians. J Gene Med 2024; 26:e3634. [PMID: 37985132 DOI: 10.1002/jgm.3634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Clopidogrel is an antiplatelet drug widely prescribed to prevent atherothrombotic events in coronary artery disease patients. However, there is evidence to suggest that the effectiveness of clopidogrel varies owing to genetic diversity in CYP2C19. This heterogeneity in South Asians, who are also known to have high risk of cardiac events than other population groups, highlights the importance of investigating CYP2C19 variants to estimate the risk proportion in the groups. METHODS Given the high prevalence and genetic heterogeneity, the population-based case control was conducted in a cohort of 1191 subjects comprising 645 acute coronary syndrome (ACS) cases (unstable angina, ST-elevation myocardial infarction, and non-ST-elevation myocardial infarction) and 546 healthy controls of South Asian Indian origin. The metabolization status of CYP2C19 was assessed using *2, *3 and *17 variants in the stated cohorts to determine the prevalence of metabolization and its association with phenotypes. RESULTS The results suggest a possible genetic association between studied CYP2C19 polymorphisms and ACS, since there was a higher proportion of intermediate and poor metabolizers present in the studied cohorts. The association analyses revealed that the *2 allele of CYP2C19 confers a significant risk for ACS, while the *17 allele provides protection. CONCLUSIONS These findings contribute to the understanding of CYP2C19 genetic variants and their impact on clopidogrel response in South Asian Indians. Additionally, they underline the significance of assessing CYP2C19 variations in patients receiving clopidogrel therapy in order to improve therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Heemanshu Lodhi
- Department of Cardiology, Army Hospital, Research and Referral, New Delhi, India
| | - Vivek Singh Guleria
- Department of Cardiology, Army Hospital, Research and Referral, New Delhi, India
| | - Anil Kumar Abbot
- Department of Cardiology, Army Hospital, Research and Referral, New Delhi, India
| | - Love Gupta
- NMC Genetics India Pvt. Ltd, Gurugram, Haryana, India
| | | | - Anuka Sharma
- NMC Genetics India Pvt. Ltd, Gurugram, Haryana, India
| | | | - Varun Sharma
- NMC Genetics India Pvt. Ltd, Gurugram, Haryana, India
| |
Collapse
|
7
|
Maia MDS, Mendonça-Junior FJB, Rodrigues GCS, da Silva AS, de Oliveira NIP, da Silva PR, Felipe CFB, Gurgel APAD, Nayarisseri A, Scotti MT, Scotti L. Virtual Screening of Different Subclasses of Lignans with Anticancer Potential and Based on Genetic Profile. Molecules 2023; 28:6011. [PMID: 37630263 PMCID: PMC10459202 DOI: 10.3390/molecules28166011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a multifactorial disease that continues to increase. Lignans are known to be important anticancer agents. However, due to the structural diversity of lignans, it is difficult to associate anticancer activity with a particular subclass. Therefore, the present study sought to evaluate the association of lignan subclasses with antitumor activity, considering the genetic profile of the variants of the selected targets. To do so, predictive models were built against the targets tyrosine-protein kinase ABL (ABL), epidermal growth factor receptor erbB1 (EGFR), histone deacetylase (HDAC), serine/threonine-protein kinase mTOR (mTOR) and poly [ADP-ribose] polymerase-1 (PARP1). Then, single nucleotide polymorphisms were mapped, target mutations were designed, and molecular docking was performed with the lignans with the best predicted biological activity. The results showed more anticancer activity in the dibenzocyclooctadiene, furofuran and aryltetralin subclasses. The lignans with the best predictive values of biological activity showed varying binding energy results in the presence of certain genetic variants.
Collapse
Affiliation(s)
- Mayara dos Santos Maia
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Francisco Jaime Bezerra Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, State Universtiy of Paraiba, João Pessoa 58071-160, PB, Brazil
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
| | | | - Adriano Soares da Silva
- Program in Ecology and Environmental Monitoring, Federal University of Paraíba, João Pessoa 58059-900, PB, Brazil; (A.S.d.S.); (N.I.P.d.O.)
| | - Niara Isis Pereira de Oliveira
- Program in Ecology and Environmental Monitoring, Federal University of Paraíba, João Pessoa 58059-900, PB, Brazil; (A.S.d.S.); (N.I.P.d.O.)
| | - Pablo Rayff da Silva
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
| | - Cícero Francisco Bezerra Felipe
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
| | | | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Bioscience, Indore 452010, Madhya Pradesh, India;
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
- Laboratory of Cheminformatics, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural Synthetic and Bioactive Products (PgPNSB), Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil; (P.R.d.S.); (C.F.B.F.); (M.T.S.); (L.S.)
- Laboratory of Cheminformatics, Health Sciences Center, Federal University of Paraíba, João Pessoa 58033-455, PB, Brazil
| |
Collapse
|
8
|
Peters U, Turner B, Alvarez D, Murray M, Sharma A, Mohan S, Patel S. Considerations for Embedding Inclusive Research Principles in the Design and Execution of Clinical Trials. Ther Innov Regul Sci 2023; 57:186-195. [PMID: 36241965 PMCID: PMC9568895 DOI: 10.1007/s43441-022-00464-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022]
Abstract
There is a growing recognition that the clinical research enterprise has a diversity problem, given that many clinical trials recruit historically marginalized individuals or patients reflective of real-world data at a rate that is far below the incidence and prevalence of the disease for which the investigational therapy or device is targeting. This lack of diversity in clinical research participation can obscure the safety and efficacy of drug therapies and limits our collective ability to develop effective treatments for all patients, leading to even wider health disparities. This review article provides an in-depth analysis of the impact of this bias on public health, along with a description of some of the barriers that prevent historically marginalized populations from participating in clinical research. Some practical solutions that can be employed to increase diversity in clinical trial participation are also discussed, including the crucial role clinical trial sponsors, research organizations, patients, and caregivers need to play in supporting the industry to achieve this ambitious but necessary goal.
Collapse
Affiliation(s)
- Ubong Peters
- Product Development - Global Clinical Operations, South San Francisco, CA, USA.
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Brenna Turner
- Product Development - Global Clinical Operations, South San Francisco, CA, USA
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Daniel Alvarez
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
- US Medical Affairs, South San Francisco, CA, USA
| | - Makaelah Murray
- Product Development - Global Clinical Operations, South San Francisco, CA, USA
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Aruna Sharma
- Global Program and Clinical Operations, Vaughan, ON, Canada
- AstraZeneca, Cambridge, UK
| | - Shalini Mohan
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
- US Medical Affairs, South San Francisco, CA, USA
| | - Shilpen Patel
- Global Medical Affairs, Washington, DC, USA
- Gilead Sciences, Washington, DC, USA
| |
Collapse
|
9
|
Yunis LK, Linares-Ballesteros A, Aponte N, Barros G, García J, Niño L, Uribe G, Quintero E, Yunis JJ. Pharmacogenetics of ABCB1, CDA, DCK, GSTT1, GSTM1 and outcomes in a cohort of pediatric acute myeloid leukemia patients from Colombia. Cancer Rep (Hoboken) 2023; 6:e1744. [PMID: 36316809 PMCID: PMC10026301 DOI: 10.1002/cnr2.1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND AND AIM Different studies have shown pharmacogenetic variants related to drug toxicity in acute myeloid leukemia (AML) patients. Our aim was to identify the association between ABCB1, CDA, DCK, GSTT1, and GSTM1 variants with clinical outcomes and toxicity in pediatric patients with AML. METHODS Fifty-one confirmed de novo AML pediatric patients were included. A SNaPshot™ assay and conventional PCR were used to evaluate ABCB1, CDA, DCK, GSTT1, and GSTM1 variants. Clinical outcomes and toxicity associations were evaluated using odds ratios and Chi-square analysis. RESULTS Patients carrying ABCB1 (1236C > T, rs1128503) GG genotype in had a 6.8 OR (CI 95% 1.08-42.73, p = .044) for cardiotoxicity as compared to patients carrying either AA or GA genotypes 0.14 OR (CI 95% 0.023-0.92, p = .044). For ABCB1 (1236G > A rs1128503/2677C > A/T rs2032582/3435G > A rs1045642) AA/AA/AA combined genotypes had a strong association with death after HSTC OR 13.73 (CI 95% 1.94-97.17, p = .009). Combined genotypes GG/CC/GG with CDA (79A > C, rs2072671) CA genotype or CDA (-451G > A, rs532545) CT genotype, had a 4.11 OR (CI 95% 2.32-725, p = .007) and 3.8 OR (CI 95% 2.23-6.47, p = .027) with MRD >0.1% after first chemotherapy cycle, respectively. CONCLUSION Our results highlight the importance of pharmacogenetic analysis in pediatric AML, particularly in populations with a high degree of admixture, and might be useful as a future tool for patient stratification for treatment.
Collapse
Affiliation(s)
- Luz K Yunis
- Grupo de Patología Molecular, Universidad Nacional de Colombia, Bogotá, Colombia
- Servicios Médicos Yunis Turbay y Cía S.A.S, Instituto de Genética, Bogotá, Colombia
| | - Adriana Linares-Ballesteros
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia-HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Nelson Aponte
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia-HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Gisela Barros
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia-HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Johnny García
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia-HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Laura Niño
- Unidad de Oncología/Hematología Pediátrica, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
- Grupo de Oncohematología Pediátrica, Universidad Nacional de Colombia-HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Gloria Uribe
- Unidad de Patología, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Edna Quintero
- Unidad de Patología, HOMI Fundación Hospital Pediátrico La Misericordia, Bogotá, Colombia
| | - Juan J Yunis
- Grupo de Patología Molecular, Universidad Nacional de Colombia, Bogotá, Colombia
- Servicios Médicos Yunis Turbay y Cía S.A.S, Instituto de Genética, Bogotá, Colombia
- Departamento de Patología, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Kassogue Y, Diakite B, Maiga M, Kassogue O, Konate I, Tamboura K, Diarra F, Diarra Z, Sawadogo MK, Goita Y, Sissoko SB, Sissoko AS, Guirou N, Dehbi H, Nadifi S, Bah S, Traore CB, Kamate B, Dao S, Dolo G. Influence of CYP2B6 and CYP3A4 polymorphisms on the virologic and immunologic responses of patients treated with efavirenz-containing regimen. Pharmacogenet Genomics 2022; 32:219-225. [PMID: 35852913 PMCID: PMC7613628 DOI: 10.1097/fpc.0000000000000477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The main objective of this study was to evaluate the effect of CYP2B6 and CYP3A4 polymorphisms on the virological and immunologic responses of HIV patients. A total of 153 HIV-positive patients were enlisted for the study. PATIENTS AND METHODS Viral load and median CD4 T cell counts were evaluated at baseline and month 6 (M6). Samples were identified using TaqMan genotyping assays. RESULTS The AG in CYP2B6 rs2279343 was associated with VLS compared to homozygous AA. In the dominant model, the AG/GG genotypes were associated with VLS compared to the AA genotype. Moreover, in overdominant model, the AG genotype was associated with VLS compared to AA/GG. Regarding immunological response, only the AG in SNP rs2279343 CYP2B6 was associated with an increase in CD4 cell count between baseline and M6. In CYP2B6 rs3745274, the CD4 cell count at M6 was higher than that of baseline for GG carriers and for GT carriers. In CYP3A4 rs2740574, the TC carriers showed a higher median CD4 count at M6 compared to that of the baseline count, as well as for CC carriers. The best genotypes combination associated with CD4 cell count improvement were AA/AG in SNP rs2279343 and GG/GT in SNP rs3745274. CONCLUSION Our findings support the fact that CYP2B6 rs2279343 could help in the prediction of VLS and both SNPs rs3745274 and rs2279343 in CYP2B6 and CYP3A4 rs2740574 were associated with immune recovery in Malian HIV-positive patients.
Collapse
Affiliation(s)
- Yaya Kassogue
- Department of Anatomo-pathology, University Hospital of Point G
- Laboratory of Research and training on Molecular Pathologies, University Hospital of Point G
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
| | - Brehima Diakite
- Department of Anatomo-pathology, University Hospital of Point G
- Laboratory of Research and training on Molecular Pathologies, University Hospital of Point G
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
| | - Mamoudou Maiga
- Laboratory of Research and training on Molecular Pathologies, University Hospital of Point G
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Oumar Kassogue
- Laboratory of Research and training on Molecular Pathologies, University Hospital of Point G
| | - Issa Konate
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
- Department of Infectious Diseases and Tropical Medicine, University Hospital of Point G
| | - Kadidiatou Tamboura
- Department of Infectious Diseases and Tropical Medicine, University Hospital of Point G
| | - Fousseyni Diarra
- Laboratory of Research and training on Molecular Pathologies, University Hospital of Point G
| | - Zoumana Diarra
- Center of Listening, Care, Animation, and Counseling for People Living With HIV
| | | | - Yaya Goita
- Department of Medical Biology and Anatomo-pathology, University Hospital, Mali Hospital
- Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako
| | - Sidi Boula Sissoko
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
- Department of Cytogenetics and Reproductive Biology, National Institute for Public Health Research
| | - Adama Seydou Sissoko
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
- Department of Neurology, University Hospital of Point G
| | - Nouhoum Guirou
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
- Institute of Tropical Ophthalmology of Africa, Bamako, Mali
| | - Hind Dehbi
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy of Casablanca, University Hassan II
- Medical Genetics Laboratory, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Sellama Nadifi
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy of Casablanca, University Hassan II
- Medical Genetics Laboratory, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Sekou Bah
- Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako
- Department of pharmacy, University Hospital of Point G, Bamako, Mali
| | - Cheick Bougadari Traore
- Department of Anatomo-pathology, University Hospital of Point G
- Laboratory of Research and training on Molecular Pathologies, University Hospital of Point G
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
| | - Bakarou Kamate
- Department of Anatomo-pathology, University Hospital of Point G
- Laboratory of Research and training on Molecular Pathologies, University Hospital of Point G
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
| | - Sounkalo Dao
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
- Department of Infectious Diseases and Tropical Medicine, University Hospital of Point G
| | - Guimogo Dolo
- Laboratory of Research and training on Molecular Pathologies, University Hospital of Point G
- Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako
| |
Collapse
|
11
|
Jarrar Y, Musleh R, Hamdan A, Ghanim M. Evaluation of the need for pharmacogenomics testing among physicians in the West Bank of Palestine. Drug Metab Pers Ther 2021; 36:289-294. [PMID: 34821126 DOI: 10.1515/dmpt-2021-0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Pharmacogenomics (PGx) testing optimizes pharmacotherapy and reduces interindividual variation in drug responses. However, it is still not implemented in clinical practice in the West Bank of Palestine (WBP). The aim of this study was to determine the need for PGx education and testing among physicians from different specialties in WBP. METHODS This study used a cross-sectional survey that was administered to 381 physicians from different cities in WBP. The questionnaire consisted of 27 closed-ended questions that evaluate the exposure and attitude toward PGx education, the role of PGx testing in clinical practice, and the capabilities of physicians in PGx testing. RESULTS It was found that exposure to PGx education is low, with most of the respondents (81.1%) answering that PGx was not an integral part of their medical education. The majority (>90%) of the participants agreed that PGx should be included in the medical school curriculum. It was also found that 58.5% of the participants agreed that PGx testing is relevant to their current clinical practice. In addition, most of the participant physicians (>60%) think that they are currently not capable of prescribing and making decisions for pharmacotherapy based on PGx testing. CONCLUSIONS It is concluded that there is a high need for PGx education and implementation in clinical practice in WBP. We recommend adding PGx courses to the curricula of medical schools and going forward with the implementation of PGx testing in clinical practice in WBP.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rami Musleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anas Hamdan
- Department of Allied and Applied Medical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mustafa Ghanim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
12
|
Jarrar Y, Musleh R, Hamdan A, Ghanim M. Evaluation of the need for pharmacogenomics testing among physicians in the West Bank of Palestine. Drug Metab Pers Ther 2021; 0:dmdi-2021-0121. [PMID: 34087962 DOI: 10.1515/dmdi-2021-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Pharmacogenomics (PGx) testing optimizes pharmacotherapy and reduces interindividual variation in drug responses. However, it is still not implemented in clinical practice in the West Bank of Palestine (WBP). The aim of this study was to determine the need for PGx education and testing among physicians from different specialties in WBP. METHODS This study used a cross-sectional survey that was administered to 381 physicians from different cities in WBP. The questionnaire consisted of 27 closed-ended questions that evaluate the exposure and attitude toward PGx education, the role of PGx testing in clinical practice, and the capabilities of physicians in PGx testing. RESULTS It was found that exposure to PGx education is low, with most of the respondents (81.1%) answering that PGx was not an integral part of their medical education. The majority (>90%) of the participants agreed that PGx should be included in the medical school curriculum. It was also found that 58.5% of the participants agreed that PGx testing is relevant to their current clinical practice. In addition, most of the participant physicians (>60%) think that they are currently not capable of prescribing and making decisions for pharmacotherapy based on PGx testing. CONCLUSIONS It is concluded that there is a high need for PGx education and implementation in clinical practice in WBP. We recommend adding PGx courses to the curricula of medical schools and going forward with the implementation of PGx testing in clinical practice in WBP.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rami Musleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anas Hamdan
- Department of Allied and Applied Medical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mustafa Ghanim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
13
|
Sharma V, Shaik KM, Choudhury A, Kumar P, Kala P, Sultana Y, Shukla R, Kumar D. Investigations of process parameters during dissolution studies of drug loaded 3D printed tablets. Proc Inst Mech Eng H 2021; 235:523-529. [PMID: 33570013 DOI: 10.1177/0954411921993582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present research paper attempts to study the effect of different process parameters on the dissolution rate during 3D printed tablets. Three-dimensional printing has the potential of serving tailored made tablets to cater personalized drug delivery systems. Fluorescein loaded PVA filaments through impregnation route was used to fabricate tablets based on Taguchi based design of experimentation using Fused Deposition Modelling (FDM). The effect of print speed, infill percentage and layer thickness were analyzed to study the effect on rate of dissolution. Infill percentage followed by print speed were found to be critical parameters affecting dissolution rate. The data analysis provided an insight into the study of interaction among different 3D printing parameters to develop an empirical relation for percentage release of the drug in human body.
Collapse
Affiliation(s)
- Varun Sharma
- Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee, Uttarakhand, India
| | - Khaja Moinuddin Shaik
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Archita Choudhury
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Prateek Kala
- Department of Mechanical Engineering, BITS Pilani, Rajasthan, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Dalip Kumar
- Department of Chemistry, BITS Pilani, Rajasthan, India
| |
Collapse
|
14
|
Durga Prasad Reddy R, Sharma V. Additive manufacturing in drug delivery applications: A review. Int J Pharm 2020; 589:119820. [DOI: 10.1016/j.ijpharm.2020.119820] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
|
15
|
Lee J, Song C, Noh I, Song S, Rhee YS. Hot-Melt 3D Extrusion for the Fabrication of Customizable Modified-Release Solid Dosage Forms. Pharmaceutics 2020; 12:pharmaceutics12080738. [PMID: 32764499 PMCID: PMC7464107 DOI: 10.3390/pharmaceutics12080738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
In this work, modified-release solid dosage forms were fabricated by adjusting geometrical properties of solid dosage forms through hot-melt 3D extrusion (3D HME). Using a 3D printer with air pressure driving HME system, solid dosage forms containing ibuprofen (IBF), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG) were printed by simultaneous HME and 3D deposition. Printed solid dosage forms were evaluated for their physicochemical properties, dissolution rates, and floatable behavior. Results revealed that IBF content in the solid dosage form could be individualized by adjusting the volume of solid dosage form. IBF was dispersed as amorphous state with enhanced solubility and dissolution rate in a polymer solid dosage form matrix. Due to absence of a disintegrant, sustained release of IBF from printed solid dosage forms was observed in phosphate buffer at pH 6.8. The dissolution rate of IBF was dependent on geometric properties of the solid dosage form. The dissolution rate of IBF could be modified by merging two different geometries into one solid dosage form. In this study, the 3D HME process showed high reproducibility and accuracy for preparing dosage forms. API dosage and release profile were found to be customizable by modifying or combining 3D modeling.
Collapse
|
16
|
AL-Eitan LN, Al-Maqableh HW, Mohammad NN, Khair Hakooz NM, Dajani RB. Genetic Analysis of Pharmacogenomic VIP Variants of ABCB1, VDR and TPMT Genes in an Ethnically Isolated Population from the North Caucasus Living in Jordan. Curr Drug Metab 2020; 21:307-317. [DOI: 10.2174/1389200221666200505081139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/11/2023]
Abstract
Background:
Differences in individual responses to the same medications remarkably differ among
populations. A number of genes that play integral roles in drug responses have been designated as very important
pharmacogenes (VIP), as they are responsible for differences in drug safety, efficacy, and adverse drug reactions
among certain ethnic groups. Identifying the polymorphic distribution of VIP in a range of ethnic groups will be
conducive to population-based personalized medicine.
Objective:
The aim of the current study is to identify the polymorphic distribution of VIP regarding the Chechen
minority group from Jordan and compare their allele frequencies with other populations.
Methods:
A total of 131 unrelated Chechen individuals from Jordan were randomly recruited for blood collection.
Identification of allelic and genotypic frequencies of eleven VIP variants within the genes of interest (ABCB1, VDR
and TPMT) was carried out by means of the MassARRAY®System (iPLEX GOLD).
Results:
Within ABCB1, we found that the minor allele frequencies of the rs1128503 (A: 0.43), rs2032582 (A: 0.43),
rs1045642 (A: 0.43). For VDR, the minor allele frequencies of rs11568820 (T: 0.18), rs1540339 (T: 0.30), rs1544410
(T: 0.41), rs2228570 (T: 0.24), rs3782905 (C: 0.28) and rs7975232 (C: 0.45). Finally, the minor allele frequencies for
the TPMT rs1142345 and rs1800460 polymorphisms were found to be (C: 0.02) and (T: 0.01), respectively.
Conclusion:
Significant differences in allelic frequencies of eleven ABCB1, VDR and TPMT VIP variants were
found between Jordanian Chechens and other populations. In our study, most populations that are similar to
Chechens are those from South Asian, European (Finnish) and European, including: Utah residents with Northern
and Western European ancestry, Toscani in Italia, Mexican ancestry in Los Angeles and Circassian from Jordan. The
level of similarity between Chechens and those populations means that they might have shared high levels of gene
flow in the past. The results obtained in this study will contribute to the worldwide pharmacogenomic databases and
provide valuable information for future studies and better individualized treatments.
Collapse
Affiliation(s)
- Laith Naser AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | | | - Namarg Nawwaf Mohammad
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nancy Mohamed Khair Hakooz
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Rana Basem Dajani
- Department of Biology and Biotechnology, Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|
17
|
Al-Eitan LN. Pharmacogenomic landscape of VIP genetic variants in Jordanian Arabs and comparison with worldwide populations. Gene 2020; 737:144408. [PMID: 32007583 DOI: 10.1016/j.gene.2020.144408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
The pharmacogenomics has lately become a focal field of research that investigates the influence of genetic variations of drug-metabolizing enzymes and their receptors and downstream proteins on the interindividual variability in response to medications and adverse drug reactions. Therefore, it is significantly important to study and analyze the variations in drug response between different ethnic groups and populations. The current study aimed to detect the distribution of the genotype and allele frequencies in several very important pharmacogenetic (VIP) gene polymorphisms in the Jordanian population of Arab descent. This study involved 500 unrelated Jordanian individuals of Arab descent. A total of 65 VIP variants located within 33 candidate genes were randomly selected from the PharmGKB database and genotyped using the MassARRAY (iPLEX GOLD) system. The chi-square test was used to evaluate the significant differences of minor allele and genotype frequencies between the Jordanian and other populations including CHE, ASW, CEU, CHB, CDX, GIH, GBR, JPT, LWK, MXL, TSI, YRI, CAR, and ACB. This study revealed six variants were not in Hardy Weinberg equilibrium (HWE) (P-value > 0.05) and ten SNPs showed monomorphic features. Most of the remaining forty-nine variant frequencies were significantly different from the compared ethnic groups (P-value < 0.05). The results of this study may be helpful to develop safer treatment by applying the concept of personalized medicine based on the profile of VIP pharmacogene variants of the Jordanian population of Arab descent.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
18
|
Genetic Polymorphisms of Pharmacogenes among the Genetically Isolated Circassian Subpopulation from Jordan. J Pers Med 2020; 10:jpm10010002. [PMID: 31935801 PMCID: PMC7151588 DOI: 10.3390/jpm10010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
Several genetic variants have been identified that cause variation among different populations and even within individuals of a similar descent. This leads to interindividual variations in the optimal dose of the drug that is required to sustain the treatment efficiency. In this study, 56 single nucleotide polymorphisms (SNPs) within several pharmacogenes were analyzed in 128 unrelated subjects from a genetically isolated group of Circassian people living in Jordan. We also compared these variant distributions to other ethnic groups that are available at two databases (Genome 1000 and eXAC). Our results revealed that the distribution of allele frequencies within genes among Circassians in Jordan showed similarities and disparities when compared to other populations. This study provides a powerful base for clinically relevant SNPs to enhance medical research and future pharmacogenomic studies. Rare variants detected in isolated populations can significantly guide to novel loci involved in the development of clinically relevant traits.
Collapse
|
19
|
Beck JD, Philips K, Moss K, Divaris K, Morelli T, Offenbacher S. Advances in precision oral health. Periodontol 2000 2019; 82:268-285. [DOI: 10.1111/prd.12314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- James D. Beck
- Division of Comprehensive Oral Health Adams School of Dentistry University of North Carolina at Chapel Hill Chapel Hill North Carolina, USA
| | - Kamaira Philips
- Division of Oral and Craniofacial Health Sciences Adams School of Dentistry University of North Carolina at Chapel Hill Chapel Hill North Carolina, USA
| | - Kevin Moss
- Division of Oral and Craniofacial Health Sciences Adams School of Dentistry University of North Carolina at Chapel Hill Chapel Hill North Carolina, USA
| | - Kimon Divaris
- Division of Pediatric and Public Health Adams School of Dentistry University of North Carolina at Chapel Hill Chapel Hill North Carolina, USA
| | - Thiago Morelli
- Division of Comprehensive Oral Health Adams School of Dentistry University of North Carolina at Chapel Hill Chapel Hill North Carolina, USA
| | - Steven Offenbacher
- Division of Comprehensive Oral Health Adams School of Dentistry University of North Carolina at Chapel Hill Chapel Hill North Carolina, USA
| |
Collapse
|
20
|
3D-Printed Solid Dispersion Drug Products. Pharmaceutics 2019; 11:pharmaceutics11120672. [PMID: 31835682 PMCID: PMC6956082 DOI: 10.3390/pharmaceutics11120672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
With the well-known advantages of additive manufacturing methods such as three-dimensional (3D) printing in drug delivery, it is disappointing that only one product has been successful in achieving regulatory approval in the past few years. Further research and development is required in this area to introduce more 3D printed products into the market. Our study investigates the potential of fixed dose combination solid dispersion drug products generated via 3D printing. Two model drugs-fluorescein sodium (FS) and 5-aminosalicyclic acid (5-ASA)-were impregnated onto a polyvinyl alcohol (PVA) filament, and the influence of solvent choice in optimal drug loading as well as other influences such as the physicochemical and mechanical properties of the resultant filaments were investigated prior to development of the resultant drug products. Key outcomes of this work included the improvement of filament drug loading by one- to threefold due to solvent choice on the basis of its polarity and the generation of a 3D-printed product confirmed to be a solid dispersion fixed dose combination with the two model drugs exhibiting favourable in vitro dissolution characteristics.
Collapse
|
21
|
Zeeshan F, Madheswaran T, Pandey M, Gorain B. Three-Dimensional (3-D) Printing Technology Exploited for the Fabrication of Drug Delivery Systems. Curr Pharm Des 2019; 24:5019-5028. [PMID: 30621558 DOI: 10.2174/1381612825666190101111525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The conventional dosage forms cannot be administered to all patients because of interindividual variability found among people of different race coupled with different metabolism and cultural necessities. Therefore, to address this global issue there is a growing focus on the fabrication of new drug delivery systems customised to individual needs. Medicinal products printed using 3-D technology are transforming the current medicine business to a plausible alternative of conventional medicines. METHODS The PubMed database and Google scholar were browsed by keywords of 3-D printing, drug delivery, and personalised medicine. The data about techniques employed in the manufacturing of 3-D printed medicines and the application of 3-D printing technology in the fabrication of individualised medicine were collected, analysed and discussed. RESULTS Numerous techniques can fabricate 3-D printed medicines however, printing-based inkjet, nozzle-based deposition and laser-based writing systems are the most popular 3-D printing methods which have been employed successfully in the development of tablets, polypills, implants, solutions, nanoparticles, targeted and topical dug delivery. In addition, the approval of Spritam® containing levetiracetam by FDA as the primary 3-D printed drug product has boosted its importance. However, some drawbacks such as suitability of manufacturing techniques and the available excipients for 3-D printing need to be addressed to ensure simple, feasible, reliable and reproducible 3-D printed fabrication. CONCLUSION 3-D printing is a revolutionary in pharmaceutical technology to cater the present and future needs of individualised medicines. Nonetheless, more investigations are required on its manufacturing aspects in terms cost effectiveness, reproducibility and bio-equivalence.
Collapse
Affiliation(s)
- Farrukh Zeeshan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur-57000, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur-57000, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur-57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Selangor-47500, Malaysia
| |
Collapse
|
22
|
Kotta S, Nair A, Alsabeelah N. 3D Printing Technology in Drug Delivery: Recent Progress and Application. Curr Pharm Des 2019; 24:5039-5048. [PMID: 30520368 DOI: 10.2174/1381612825666181206123828] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND 3D printing technology is a new chapter in pharmaceutical manufacturing and has gained vast interest in the recent past as it offers significant advantages over traditional pharmaceutical processes. Advances in technologies can lead to the design of suitable 3D printing device capable of producing formulations with intended drug release. METHODS This review summarizes the applications of 3D printing technology in various drug delivery systems. The applications are well arranged in different sections like uses in personalized drug dosing, complex drugrelease profiles, personalized topical treatment devices, novel dosage forms and drug delivery devices and 3D printed polypills. RESULTS This niche technology seems to be a transformative tool with more flexibility in pharmaceutical manufacturing. Typically, 3D printing is a layer-by-layer process having the ability to fabricate 3D formulations by depositing the product components by digital control. This additive manufacturing process can provide tailored and individualized dosing for treatment of patients different backgrounds with varied customs and metabolism pattern. In addition, this printing technology has the capacity for dispensing low volumes with accuracy along with accurate spatial control for customized drug delivery. After the FDA approval of first 3D printed tablet Spritam, the 3D printing technology is extensively explored in the arena of drug delivery. CONCLUSION There is enormous scope for this promising technology in designing various delivery systems and provides customized patient-compatible formulations with polypills. The future of this technology will rely on its prospective to provide 3D printing systems capable of manufacturing personalized doses. In nutshell, the 3D approach is likely to revolutionize drug delivery systems to a new level, though need time to evolve.
Collapse
Affiliation(s)
- Sabna Kotta
- College of Pharmacy and Dentistry, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Anroop Nair
- College of Clinical Pharmacy, King Faisal University, Al Ahsa, Saudi Arabia
| | - Nimer Alsabeelah
- College of Pharmacy and Dentistry, Buraydah Private Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
23
|
Al-Eitan LN, Mohammad NN, Al-Maqableh HW, Hakooz NM, Dajani RB. Genetic Polymorphisms of Pharmacogenomic VIP Variants in the Circassian Subpopulation from Jordan. Curr Drug Metab 2019; 20:674-681. [PMID: 31362667 DOI: 10.2174/1389200220666190729124000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/27/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND It has been suggested that genetic variation within candidate pharmacogenes contributes to the differences in drug safety and efficacy as well as risk of adverse drug reactions among different ethnic groups. Illustrating the polymorphic distribution of Very Important Pharmacogenes (VIPs) in various ethnic groups will contribute to the development of personalized medicine for those populations. OBJECTIVE The present study aimed to identify the polymorphic distribution of VIPs in the Circassian subpopulation of Jordan and compare their allele frequencies with those of other populations. METHODS A total of 130 healthy and unrelated Circassian adults from Jordan were randomly recruited and genotyped for eleven VIP variants within the thiopurine S-methyltransferase (TPMT), ATP-binding cassette, sub-family B, member 1 (ABCB1), and vitamin D receptor (VDR) genes via Sequenom's MassARRAY® genotyping platform (iPLEX GOLD). RESULTS Our data on the allelic frequencies of the investigated VIP variants were compared to those of 18 other populations, comprising 11 HapMap populations, 6 Exome Aggregation Consortium populations, and the Chechen- Jordanian population from Jordan. Circassian-Jordanians were found to most resemble the African, Chechen- Jordanian, European (Finnish), European (non-Finnish), and South-Asian populations. CONCLUSION Circassians from Jordan significantly differ from other populations in terms of the allelic frequencies of selected VIP variants. The present findings constitute the first set of pharmacogenetic data for Circassian population from Jordan, providing a basis for safe drug administration that may be useful in diagnosing and treating diseases in this ethnic group.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Namarg N Mohammad
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Haneen W Al-Maqableh
- Department of Biology and Biotechnology, Hashemite University, Zarqa 13133, Jordan
| | - Nancy M Hakooz
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Rana B Dajani
- Department of Biology and Biotechnology, Hashemite University, Zarqa 13133, Jordan.,Radcliffe Institute for Advanced Studies, Harvard University, Cambridge, 02138 MA, United States
| |
Collapse
|
24
|
Fischer J, Stope MB, Gümbel D, Hakenberg O, Burchardt M, Dräger DL. [Influence of culture and religion on the treatment of cancer patients]. Urologe A 2019; 58:1179-1184. [PMID: 31338523 DOI: 10.1007/s00120-019-1003-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Religion, which is one of the most important sources of human identity, has so far hardly been taken into account in the clinic. In the largely secularized society of Germany, this has played a highly subordinate role. Currently, however, the development towards a multireligious society is emerging, which will also be reflected in everyday medical care. Disease and mortality in patients can affect different cultural-religious spheres. Although distinction between cultural and religious aspects is possible, it is not necessary for clinical practice. In the situation of oncological therapy, questions may arise which must be answered differently in the religions Christianity, Judaism and Islam and which should be taken into account when selecting therapy. The consideration of cultural-religious rules can intensify the patient's acceptance, but it can also impair it in case of disregard. Such peculiarities can be the separation into male and female spheres or the restriction of certain auxiliary substances or drugs (blood products, narcotics). Kübler-Ross's phase model is suitable for determining where cultural-religious sensitivities should be taken into account in the phases of disease and how cultural-religious offerings can benefit the course of therapy. Due to large individual, regional, cultural and confessional differences, no systematic catalogue of procedures can be provided here. However, knowledge of such differences, more sensitive interaction with patients and their families and cooperation with hospital pastors can strengthen the relationship of trust between doctor and patient and thus improve the conditions for successful oncological therapy. These aspects should not be underestimated when treating people of other faiths in Germany's secular society.
Collapse
Affiliation(s)
- J Fischer
- IB GIS Internationaler Bund - Gesellschaft für interdisziplinäre Studien, Hauptstätter Straße 119-121, 70178, Stuttgart, Deutschland.
| | - M B Stope
- Klinik und Poliklinik für Urologie, Universitätsmedizin Greifswald, Greifswald, Deutschland
| | - D Gümbel
- Klinik und Poliklinik für Unfall‑, Wiederherstellungschirurgie und Rehabilitative Medizin, Universitätsmedizin Greifswald, Greifswald, Deutschland
| | - O Hakenberg
- Urologische Klinik und Poliklinik für Urologie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - M Burchardt
- Klinik und Poliklinik für Urologie, Universitätsmedizin Greifswald, Greifswald, Deutschland
| | - D L Dräger
- Urologische Klinik und Poliklinik für Urologie, Universitätsmedizin Rostock, Rostock, Deutschland
| |
Collapse
|
25
|
Stoilkova-Hartmann A, Franssen FME, Augustin IML, Wouters EFM, Barnard KD. COPD patient education and support - Achieving patient-centredness. PATIENT EDUCATION AND COUNSELING 2018; 101:2031-2036. [PMID: 29884533 DOI: 10.1016/j.pec.2018.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The art of medicine is undergoing a dramatic shift in focus, evolving to focus on patient involvement as partners in care, transforming the traditional, prescriptive, reactive practice of healthcare into a proactive discipline. The personal and societal burden of chronic diseases is burgeoning and unsustainable in current systems, novel approaches are required to address this. DISCUSSION Although considerable progress has been made in the development of diagnostics, therapeutics and care guidelines for patients with chronic obstructive pulmonary disease (COPD), questions remain surrounding the implementation of best practice education and support. Current educational programmes, personal limitations and preferences and patient-clinician communication in modification of coping styles and behaviour are discussed. A novel holistic model, the Kaleidoscope Model of Care is proposed to address the barriers to optimal self-care behaviours. CONCLUSION AND PRACTICE IMPLICATIONS Holistic approaches are essential for optimal self-management and improved outcomes. Guidance on personalised goals for patients to help meeting their therapy priorities is needed to aid healthcare professionals (HCPs) and funders to minimise healthcare burden and costs. The novel KALMOD approach may optimise patient empowerment, exploring whole-life factors that impact COPD care and improve interactions between patients and HCPs for optimised outcomes.
Collapse
Affiliation(s)
- Ana Stoilkova-Hartmann
- Department of Respiratory Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands.
| | - Frits M E Franssen
- Department of Respiratory Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands; Department of Research & Education, CIRO, Centre of Expertise for Chronic Organ Failure, Horn, The Netherlands
| | - Ingrid M L Augustin
- Department of Research & Education, CIRO, Centre of Expertise for Chronic Organ Failure, Horn, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands; Department of Research & Education, CIRO, Centre of Expertise for Chronic Organ Failure, Horn, The Netherlands
| | | |
Collapse
|
26
|
Dehbozorgi M, Kamalidehghan B, Hosseini I, Dehghanfard Z, Sangtarash MH, Firoozi M, Ahmadipour F, Meng GY, Houshmand M. Prevalence of the CYP2C19*2 (681 G>A), *3 (636 G>A) and *17 (‑806 C>T) alleles among an Iranian population of different ethnicities. Mol Med Rep 2018; 17:4195-4202. [PMID: 29328413 PMCID: PMC5802190 DOI: 10.3892/mmr.2018.8377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/29/2017] [Indexed: 11/30/2022] Open
Abstract
Polymorphisms in the cytochrome P (CYP) 450 family may cause adverse drug responses in individuals. Cytochrome P450 2C19 (CYP2C19) is a member of the CYP family, where the presence of the 681 G>A, 636 G>A and 806 C>T polymorphisms result in the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. In the current study, the frequency of the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles in an Iranian population cohort of different ethnicities were examined and then compared with previously published frequencies within other populations. Allelic and genotypic frequencies of the CYP2C19 alleles (*2, *3 and *17) were detected using polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis, PCR-single-strand conformation polymorphism analysis and DNA sequencing from blood samples of 1,229 unrelated healthy individuals from different ethnicities within the Iranian population. The CYP2C19 allele frequencies among the Iranian population were 21.4, 1.7, and 27.1% for the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. The frequency of the homozygous A/A variant of the CYP2C19*2 allele was significantly high and low in the Lur (P<0.001) and Caspian (P<0.001) ethnicities, respectively. However, the frequency of the homozygous A/A variant of the CYP2C19*3 allele was not detected in the Iranian cohort in the current study. The frequency of the heterozygous G/A variant of the CYP2C19*3 allele had the significantly highest and lowest frequency in the Fars (P<0.001) and Lur (P<0.001) groups, respectively. The allele frequency of the homozygous T/T variant of the CYP2C19*17 allele was significantly high in the Caspian (P<0.001) and low in the Kurd (P<0.05) groups. The frequency of the CYP2C19 alleles involved in drug metabolism, may improve the clinical understanding of the ethnic differences in drug responses, resulting in the advancement of the personalized medicine among the different ethnicities within the Iranian population.
Collapse
Affiliation(s)
- Mahshid Dehbozorgi
- Department of Biology, University of Sistan and Baluchestan, Zahedan 98155‑987, Iran
| | - Behnam Kamalidehghan
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 198396‑3113, Iran
| | - Iman Hosseini
- Department of Cellular and Molecular Biology, Nourdanesh Institute of Higher Education, Isfahan 8351711111, Iran
| | - Zahra Dehghanfard
- Department of Cellular and Molecular Biology, Nourdanesh Institute of Higher Education, Isfahan 8351711111, Iran
| | | | - Maryam Firoozi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Fatemeh Ahmadipour
- Pharmacy Department, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Goh Yong Meng
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| |
Collapse
|
27
|
Torrellas C, Carril JC, Cacabelos R. Optimization of Antidepressant use with Pharmacogenetic Strategies. Curr Genomics 2017. [PMID: 29081699 DOI: 10.2174/1389202918666170426164940.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The response rate in the pharmacological treatment of depression has been estimated to be around 50%, achieving a remission in symptomatology in only one third of the patients. Suboptimal prescription of antidepressants has been proposed as a significant explanatory factor for this therapeutic inefficacy. The use of pharmacogenetic testing might favor the optimization of pharmacotherapy in emotional disorders. However, its implementation in the clinical routine requires studies which prove its efficacy. OBJECTIVE The aim is to explore the clinical effects obtained by means of the personalization of antidepressant treatment derived from the pharmacogenetic profile of the individual. METHOD A sample of 291 patients under antidepressant treatment was selected, and these patients were genotyped for the most common polymorphisms of the CYP2D6, CYP2C9, CYP2C19 and CYP3A4/5 genes using RT-PCR and TaqMan® technology. 30 of them were subjected to psycho-affective assessment using the HDRS scale before and after a process of individualization of their psychopharmacological treatment in accordance with the genotype obtained. RESULTS 70% of the individuals treated using the traditional criterion of trial-and-error were not taking the active ingredient most suited to their pharmacogenetic profile. The inclusion of this genetic information in the choice of drug and its dosage entailed a significant, progressive reduction in depressive symptomatology, with an efficacy ratio of 80% and a remission of the pathology in almost 30% of the cases. CONCLUSION These results suggest that the prescription of pharmacogenetic profile-based strategies has a positive effect on the therapeutic response to antidepressants.
Collapse
Affiliation(s)
- Clara Torrellas
- EuroEspes Biomedical Research Center, Institute of Medical Sciences and Genomic Medicine, 15165-Bergondo, Corunna, Spain.,Chair of Genomic Medicine, Camilo José Cela University, 28692- Madrid, Spain
| | - Juan Carlos Carril
- EuroEspes Biomedical Research Center, Institute of Medical Sciences and Genomic Medicine, 15165-Bergondo, Corunna, Spain.,Chair of Genomic Medicine, Camilo José Cela University, 28692- Madrid, Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Sciences and Genomic Medicine, 15165-Bergondo, Corunna, Spain.,Chair of Genomic Medicine, Camilo José Cela University, 28692- Madrid, Spain
| |
Collapse
|
28
|
Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful? Bioengineering (Basel) 2017; 4:bioengineering4040079. [PMID: 28952558 PMCID: PMC5746746 DOI: 10.3390/bioengineering4040079] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022] Open
Abstract
The interindividual variability is an increasingly global problem when treating patients from different backgrounds with diverse customs, metabolism, and necessities. Dose adjustment is frequently based on empirical methods, and therefore, the chance of undesirable side effects to occur is high. Three-dimensional (3D) Printed medicines are revolutionsing the pharmaceutical market as potential tools to achieve personalised treatments adapted to the specific requirements of each patient, taking into account their age, weight, comorbidities, pharmacogenetic, and pharmacokinetic characteristics. Additive manufacturing or 3D printing consists of a wide range of techniques classified in many categories but only three of them are mostly used in the 3D printing of medicines: printing-based inkjet systems, nozzle-based deposition systems, and laser-based writing systems. There are several drawbacks when using each technique and also the type of polymers readily available do not always possess the optimal properties for every drug. The aim of this review is to give an overview about the current techniques employed in 3D printing medicines, highlighting their advantages, disadvantages, along with the polymer and drug requirements for a successful printing. The major application of these techniques will be also discussed.
Collapse
|
29
|
Klein ME, Parvez MM, Shin JG. Clinical Implementation of Pharmacogenomics for Personalized Precision Medicine: Barriers and Solutions. J Pharm Sci 2017; 106:2368-2379. [DOI: 10.1016/j.xphs.2017.04.051] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
|
30
|
Torrellas C, Carril JC, Cacabelos R. Optimization of Antidepressant use with Pharmacogenetic Strategies. Curr Genomics 2017; 18:442-449. [PMID: 29081699 PMCID: PMC5635649 DOI: 10.2174/1389202918666170426164940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
Abstract
Background: The response rate in the pharmacological treatment of depression has been estimated to be around 50%, achieving a remission in symptomatology in only one third of the patients. Suboptimal prescription of antidepressants has been proposed as a significant explanatory factor for this therapeutic inefficacy. The use of pharmacogenetic testing might favor the optimization of pharmacotherapy in emotional disorders. However, its implementation in the clinical routine requires studies which prove its efficacy. Objective: The aim is to explore the clinical effects obtained by means of the personalization of antidepressant treatment derived from the pharmacogenetic profile of the individual. Method: A sample of 291 patients under antidepressant treatment was selected, and these patients were genotyped for the most common polymorphisms of the CYP2D6, CYP2C9, CYP2C19 and CYP3A4/5 genes using RT-PCR and TaqMan® technology. 30 of them were subjected to psycho-affective assessment using the HDRS scale before and after a process of individualization of their psychopharmacological treatment in accordance with the genotype obtained. Results: 70% of the individuals treated using the traditional criterion of trial-and-error were not taking the active ingredient most suited to their pharmacogenetic profile. The inclusion of this genetic information in the choice of drug and its dosage entailed a significant, progressive reduction in depressive symptomatology, with an efficacy ratio of 80% and a remission of the pathology in almost 30% of the cases. Conclusion: These results suggest that the prescription of pharmacogenetic profile-based strategies has a positive effect on the therapeutic response to antidepressants.
Collapse
Affiliation(s)
- Clara Torrellas
- EuroEspes Biomedical Research Center, Institute of Medical Sciences and Genomic Medicine, 15165-Bergondo, Corunna, Spain.,Chair of Genomic Medicine, Camilo José Cela University, 28692- Madrid, Spain
| | - Juan Carlos Carril
- EuroEspes Biomedical Research Center, Institute of Medical Sciences and Genomic Medicine, 15165-Bergondo, Corunna, Spain.,Chair of Genomic Medicine, Camilo José Cela University, 28692- Madrid, Spain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Sciences and Genomic Medicine, 15165-Bergondo, Corunna, Spain.,Chair of Genomic Medicine, Camilo José Cela University, 28692- Madrid, Spain
| |
Collapse
|
31
|
Banjar H, Adelson D, Brown F, Chaudhri N. Intelligent Techniques Using Molecular Data Analysis in Leukaemia: An Opportunity for Personalized Medicine Support System. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3587309. [PMID: 28812013 PMCID: PMC5547708 DOI: 10.1155/2017/3587309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 12/05/2022]
Abstract
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.
Collapse
Affiliation(s)
- Haneen Banjar
- School of Computer Science, University of Adelaide, Adelaide, SA, Australia
- Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David Adelson
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Fred Brown
- School of Computer Science, University of Adelaide, Adelaide, SA, Australia
| | - Naeem Chaudhri
- Oncology Centre, Section of Hematology, HSCT, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Campos CZ, Losi Guembarovski R, de Oliveira CEC, Banin Hirata BK, Vitiello GAF, Dias FL, Hiroki CH, Watanabe MAE, Mazzuco TL. Glutathione S-transferases deletions may act as prognosis and therapeutic markers in breast cancer. Clin Exp Med 2017; 18:27-35. [PMID: 28455582 DOI: 10.1007/s10238-017-0461-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is the main worldwide neoplasia in women. The metabolic balance between xenobiotic absorption and elimination rates plays an important role in preventing DNA damage and, consequently, tumor development. The glutathione S-transferases (GSTs), such as GSTM1 and GSTT1, and the NAD(P)H quinone oxidoreductase are important enzymes involved in phase II detoxification reactions. Deletions in GSTM1 and GSTT1, and single-nucleotide polymorphism (SNP) in NQO1 (rs1800655) have been investigated in cancer context, revealing conflicting results. The present study analyzed these genetic polymorphisms in 121 BC patients and 151 BC-free controls in order to verify if they could act as susceptibility modifiers and/or prognostic factors. Binary logistic regressions adjusted by age were performed to assess associations between allelic variants and interactions in polymorphisms combination with BC susceptibility, but no significant association was found. Genotypes distribution was also compared between BC subtypes, but no significant difference was observed (p > 0.05). GSTM1 deletion was significantly associated with histopathological grade, with a greater proportion of patients presenting grade III tumors (p = 0.007). Univariate analysis identified tumor size as the only clinicopathological parameter potentially associated with recurrence risk in patients that received adjuvant chemotherapy (p < 0.1). Thus, logistic regression analysis adjusted by tumor size revealed a positive association between GSTT1 deletion and recurrence risk in general BC (OR 4.25; p = 0.04), while GSTM1 was negatively associated with recurrence risk in ER/PR+HER2- samples (OR 0.07; p = 0.03). In conclusion, the present study indicated that GSTT1 deletion was associated with increased recurrence risk, while GSTM1 correlated with worst prognosis parameters at diagnosis, but was negatively associated with recurrence risk in luminal subtype samples.
Collapse
Affiliation(s)
- Clodoaldo Zago Campos
- Department of Medicine, Health Sciences Center, Londrina State University, Londrina, Parana, Brazil.,Department of Clinical Research, Londrina Cancer Hospital, Londrina, Parana, Brazil
| | - Roberta Losi Guembarovski
- Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, Parana, Brazil
| | - Carlos Eduardo Coral de Oliveira
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil
| | - Bruna Karina Banin Hirata
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil
| | - Glauco Akelinghton Freire Vitiello
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil
| | - Flávia Luísa Dias
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil
| | - Carlos Hiroji Hiroki
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil
| | - Maria Angelica Ehara Watanabe
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil.
| | - Tânia Longo Mazzuco
- Endocrine Interactions Research Group, Department of Medical Clinic, Health Sciences Center, Londrina State University, Londrina, Parana, Brazil
| |
Collapse
|
33
|
Kolluru S, Varughese JT. Structured academic discussions through an online education-specific platform to improve Pharm.D. students learning outcomes. CURRENTS IN PHARMACY TEACHING & LEARNING 2017; 9:230-236. [PMID: 29233408 DOI: 10.1016/j.cptl.2016.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 09/08/2016] [Accepted: 11/25/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To facilitate active academic discussions using an online, education-centered platform and reinforce concepts, in order to improve overall course outcomes. MATERIALS AND METHODS A third year integrated pharmacotherapy course was enrolled on an online searchable platform, Piazza®, to facilitate academic discussions. Students could ask, answer, and explore content, and build on submitted answers in wiki style in collaboration. Instructor posted learning objectives, endorsed student responses with correct answers and led follow-up discussions. Review sessions were conducted on this platform before all major exams. A student t-test was used to compare class performance with those of previous years. RESULTS In a post-activity qualitative survey, most students appreciated the less stressful, online interaction with peers and faculty. For 15 medicinal chemistry course hours, there were 83 posts on Piazza® with 303 total contributions, 107 student responses, and 546min of group discussion time. 94% of questions received student responses and 89% of those were endorsed by the instructor. Students enjoyed pre-exam discussions, organization of the page, and reinforcing material on complex learning objectives. This discussion forum fostered personal exploration of content by the students, which led to better performance on examinations. CONCLUSIONS Involving the use of an online, education-centered platform for student discussions was an effective means of increasing class engagement with the course material. Student performance on exams was significantly improved in both cohorts that utilized active learning compared to the cohort without active learning (p=0.001 and p= 0.002 respectively). Piazza® can be utilized for any course and across disciplines.
Collapse
Affiliation(s)
- Srikanth Kolluru
- Keck Graduate Institute School of Pharmacy, Claremont, CA 91739.
| | - James T Varughese
- Medicare & Retirement Appeals & Grievances United Healthcare, Sugar Land, TX 77478.
| |
Collapse
|
34
|
Lee W, Chen Q, Fan X, Yoon DK. Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption. LAB ON A CHIP 2016; 16:4770-4776. [PMID: 27868127 PMCID: PMC5137248 DOI: 10.1039/c6lc01258b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
DNA lasers self-amplify optical signals from a DNA analyte as well as thermodynamic differences between sequences, allowing quasi-digital DNA detection. However, these systems have drawbacks, such as relatively large sample consumption and complicated dye labelling. Moreover, although the lasing signal can detect the target DNA, it is superimposed on an unintended fluorescence background, which persists for non-target DNA samples as well. From an optical point of view, it is thus not truly digital detection and requires spectral analysis to identify the target. In this work, we propose and demonstrate an optofluidic laser that has a single layer of DNA molecules as the gain material. A target DNA produces intensive laser emission comparable to existing DNA lasers, while any unnecessary fluorescence background is successfully suppressed. As a result, the target DNA can be detected with a single laser pulse, in a truly digital manner. Since the DNA molecules cover only a single layer on the surface of the laser microcavity, the DNA sample consumption is a few orders of magnitude lower than that of existing DNA lasers. Furthermore, the DNA molecules are stained by simply immersing the microcavity in the intercalating dye solution, and thus the proposed DNA laser is free of any complex dye-labelling process prior to analysis.
Collapse
Affiliation(s)
- Wonsuk Lee
- Graduate School of Nanoscience and Technology and KINC, KAIST, Daejeon, 305-701, Republic of Korea.
| | - Qiushu Chen
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA.
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA.
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology and KINC, KAIST, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
35
|
Dai D, Gao Y, Chen J, Huang Y, Zhang Z, Xu F. Time-resolved metabolomics analysis of individual differences during the early stage of lipopolysaccharide-treated rats. Sci Rep 2016; 6:34136. [PMID: 27695004 PMCID: PMC5046119 DOI: 10.1038/srep34136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/07/2016] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) can lead to uncontrollable cytokine production and eventually cause fatal sepsis syndrome. Individual toxicity difference of LPS has been widely reported. In our study we observed that two thirds of the rats (24/36) died at a given dose of LPS, while the rest (12/36) survived. Tracking the dynamic metabolic change in survival and non-survival rats in the early stage may reveal new system information to understand the inter-individual variation in response to LPS. As the time-resolved datasets are very complex and no single method can elucidate the problem clearly and comprehensively, the static and dynamic metabolomics methods were employed in combination as cross-validation. Intriguingly, some common results have been observed. Lipids were the main different metabolites between survival and non-survival rats in pre-dose serum and in the early stage of infection with LPS. The LPS treatment led to S-adenosly-methionine and total cysteine individual difference in early stage, and subsequent significant perturbations in energy metabolism and oxidative stress. Furthermore, cytokine profiles were analyzed to identify potential biological associations between cytokines and specific metabolites. Our collective findings may provide some heuristic guidance for elucidating the underlying mechanism of individual difference in LPS-mediated disease.
Collapse
Affiliation(s)
- Die Dai
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yiqiao Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaqing Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
36
|
Thirumal Kumar D, George Priya Doss C. Role of E542 and E545 missense mutations of PIK3CA in breast cancer: a comparative computational approach. J Biomol Struct Dyn 2016; 35:2745-2757. [DOI: 10.1080/07391102.2016.1231082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D. Thirumal Kumar
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - C. George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
37
|
Haga SB, Mills R, Moaddeb J, Allen Lapointe N, Cho A, Ginsburg GS. Patient experiences with pharmacogenetic testing in a primary care setting. Pharmacogenomics 2016; 17:1629-1636. [PMID: 27648637 DOI: 10.2217/pgs-2016-0077] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM To investigate patient experiences with pharmacogenetic (PGx) testing. METHODS Patients were offered PGx testing through a study on pharmacist-assisted delivery of PGx testing and invited to complete pre- and post-testing surveys about their experience. RESULTS Of 63 patients tested, 17 completed the baseline survey (27%). Interest in testing was mostly impacted by desire to inform selection of best treatment (n = 13). Seven of 12 patients that completed the follow-up survey indicated that their provider discussed the test result with them. Five patients understood their test result very or somewhat well. All would be likely to have PGx testing again. CONCLUSION Patients perceived PGx testing to be useful, though more effort may be needed to improve patient-provider communication of test results.
Collapse
Affiliation(s)
- Susanne B Haga
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 304 Research Drive, Durham, NC 27708, USA
| | - Rachel Mills
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 304 Research Drive, Durham, NC 27708, USA
| | - Jivan Moaddeb
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 304 Research Drive, Durham, NC 27708, USA
| | | | - Alex Cho
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 304 Research Drive, Durham, NC 27708, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 304 Research Drive, Durham, NC 27708, USA
| |
Collapse
|
38
|
Arici M, Özhan G. CYP2C9, CYPC19 and CYP2D6 gene profiles and gene susceptibility to drug response and toxicity in Turkish population. Saudi Pharm J 2016; 25:376-380. [PMID: 28344492 PMCID: PMC5357098 DOI: 10.1016/j.jsps.2016.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/09/2016] [Indexed: 01/15/2023] Open
Abstract
Pharmacogenetics is a vast field covering drug discovery research, the genetic basis of pharmacokinetics and dynamics, genetic testing and clinical management in diseases. Pharmacogenetic approach usually focuses on variations of drug transporters, drug targets, drug metabolizing enzymes and other biomarker genes. Cytochrome P450 (CYP) enzymes, an essential source of variability in drug-response, play role in not only phase I-dependent metabolism of xenobiotics but also metabolism of endogenous compounds such as steroids, vitamins and fatty acids. CYP2C9, CYP2C19 and CYP2D6 enzymes being highly polymorphic are responsible for metabolism of a variety of drug groups. In the study, it was determined the genotype and allele frequency of CYP2C9∗2, CYP2C19∗3, CYP2C19∗2, CYP2C19∗3, CYP2C19∗17, CYP2D6∗9 and CYP2D6∗41, very common and functional single-nucleotide polymorphisms (SNPs), in healthy volunteers. The genotype distributions were consistent with the Hardy-Weinberg equilibrium in the population (p > 0.05). It is believed that the determination of polymorphisms in the enzymes may be beneficial in order to prevention or reduction in adverse effects and death. The recessive allele frequencies of CYP2C9∗2, CYP2C19∗3, CYP2C19∗2, CYP2C19∗3, CYP2C19∗17, CYP2D6∗9 and CYP2D6∗41 were 11, 13, 12, 13, 25, 4 and 15%, respectively. According to the obtained results, the carriers of CYP2D6∗9 variant allele should be received higher doses of the drugs metabolizing with this enzyme in Turkish population, while the carriers of other variant alleles do not generally have any requirement of dose regimen.
Collapse
Affiliation(s)
| | - Gül Özhan
- Corresponding author. Fax: +90 2124400252.
| |
Collapse
|
39
|
Arici M, Özhan G. The genetic profiles of CYP1A1, CYP1A2 and CYP2E1 enzymes as susceptibility factor in xenobiotic toxicity in Turkish population. Saudi Pharm J 2016; 25:294-297. [PMID: 28344482 PMCID: PMC5355561 DOI: 10.1016/j.jsps.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/12/2016] [Indexed: 01/19/2023] Open
Abstract
Evaluation and sequencing of heritable alterations in the human genome and the large-scale identification of gene polymorphism for understanding the genetic background of individuals in response to potential toxicants are provided by toxicogenetics. Cytochrome P450 (CYP) enzymes play role not only phase I-dependent metabolism of xenobiotics but also metabolism of endogenous compounds. CYP1A1, CYP1A2 and CYP2E1 enzymes, which are in phase I enzymes, are responsible for metabolic activation and detoxification of several chemical compounds. In the present study, it was determined the genotype and allele frequency of CYP1A1∗2A, CYP1A2∗1C, CYP1A2∗1F, CYP2E1 and CYP2E1∗6, very common and functional single-nucleotide polymorphisms (SNPs), in Turkish healthy volunteers. It is believed that the determination of polymorphisms in the enzymes may be beneficial to prevent and reduce and adverse effects and death in response to drugs. The allele frequencies of these genes were 24%, 9%, 33%, 42%, and 12%, respectively. In the present study, the genotype profile of Turkish population was determined about critical enzymes for xenobiotic metabolism. It is suggested that the obtained results might be beneficial in order to dose adjustment of drugs and prevention of adverse reactions, and further investigation about mentioned enzymes and their polymorphisms.
Collapse
Affiliation(s)
- Merve Arici
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazıt 34116, Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Beyazıt 34116, Istanbul, Turkey
| |
Collapse
|
40
|
García-González X, Cortejoso L, García MI, García-Alfonso P, Robles L, Grávalos C, González-Haba E, Marta P, Sanjurjo M, López-Fernández LA. Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer. Oncotarget 2016; 6:6422-30. [PMID: 25691056 PMCID: PMC4467446 DOI: 10.18632/oncotarget.3289] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/02/2015] [Indexed: 12/27/2022] Open
Abstract
Adverse reactions to capecitabine-based chemotherapy limit full administration of cytotoxic agents. Likewise, genetic variations associated with capecitabine-related adverse reactions are associated with controversial results and a low predictive value. Thus, more evidence on the role of these variations is needed. We evaluated the association between nine polymorphisms in MTHFR, CDA, TYMS, ABCB1, and ENOSF1 and adverse reactions, dose reductions, treatment delays, and overall toxicity in 239 colorectal cancer patients treated with capecitabine-based regimens. The ABCB1*1 haplotype was associated with a high risk of delay in administration or reduction in the dose of capecitabine, diarrhea, and overall toxicity. CDA rs2072671 A was associated with a high risk of overall toxicity. TYMS rs45445694 was associated with a high risk of delay in administration or reduction in the dose of capecitabine, HFS >1 and HFS >2. Finally, ENOSF1 rs2612091 was associated with HFS >1, but was a poorer predictor than TYMS rs45445694. A score based on ABCB1-CDA polymorphisms efficiently predicts patients at high risk of severe overall toxicity (PPV, 54%; sensitivity, 43%) in colorectal cancer patients treated with regimens containing capecitabine. Polymorphisms in ABCB1, CDA, ENOSF1,and TYMS could help to predict specific and overall severe adverse reactions to capecitabine.
Collapse
Affiliation(s)
- Xandra García-González
- Department of Pharmacy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Lucía Cortejoso
- Department of Pharmacy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María I García
- Department of Pharmacy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pilar García-Alfonso
- Department of Medical Oncology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis Robles
- Department of Medical Oncology, Hospital Universitario Doce de Octubre, Instituto de Investigación Sanitaria Doce de Octubre, Madrid, Spain
| | - Cristina Grávalos
- Department of Medical Oncology, Hospital Universitario Doce de Octubre, Instituto de Investigación Sanitaria Doce de Octubre, Madrid, Spain
| | - Eva González-Haba
- Department of Pharmacy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pellicer Marta
- Department of Pharmacy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - María Sanjurjo
- Department of Pharmacy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luis A López-Fernández
- Department of Pharmacy, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
41
|
Development of a Physiologically Based Pharmacokinetic/Pharmacodynamic Model to Predict the Impact of Genetic Polymorphisms on the Pharmacokinetics and Pharmacodynamics Represented by Receptor/Transporter Occupancy of Central Nervous System Drugs. Clin Pharmacokinet 2016; 55:957-69. [DOI: 10.1007/s40262-016-0367-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
The population genetics of pharmacogenomics VIP variants in the Sherpa population. Drug Metab Pharmacokinet 2016; 31:82-89. [PMID: 26825850 DOI: 10.1016/j.dmpk.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/13/2015] [Accepted: 11/29/2015] [Indexed: 11/20/2022]
Abstract
Polymorphic distributions of pharmacogenes among some ethnicities are under-represented in current pharmacogenetic research. Particularly, there is a paucity of pharmacogenetic information in the Sherpa population in Tibet. We used the Sequenom MassARRAY single nucleotide polymorphism (SNP) genotyping technology to detect 86 very important pharmacogene (VIP) variants in Sherpas and compared the genotypic frequencies of these variants with HapMap populations. Overall, 59 of the 60 previously reported variants in the HapMap populations were found in our study. We found minimal differences between populations of Sherpas and Chinese Han in Beijing (CHB), Chinese in Metropolitan Denver, Colorado (CHD), Japanese in Tokyo, Japan (JPT), and Mexicans in Los Angeles, California (MEX) after a strict Bonferroni correction. Only 8, 4, 5, 4 VIP genotypes, respectively, were different in these groups. Additionally, pairwise FST values and clustering analyses showed that the VIP variants in the Sherpa population exhibited a close genetic affinity with the CHB and JPT populations, but they were most similar to the CHD population. Our results contribute to a better understanding of the molecular basis underlying ethnic differences in drug response, which may potentially benefit the development of personalized medicine for the Sherpa population.
Collapse
|
43
|
Méndez Palacios N, Escobar MEA, Mendoza MM, Crispín RH, Andrade OG, Melández JH, Martínez AA. Prepubertal male rats with high rates of germ-cell apoptosis present exacerbated rates of germ-cell apoptosis after serotonin depletion. Reprod Fertil Dev 2016; 28:806-14. [DOI: 10.1071/rd13382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 10/07/2014] [Indexed: 11/23/2022] Open
Abstract
Male germ-cell apoptosis occurs naturally and can be increased by exposure to drugs and toxic chemicals. Individuals may have different rates of apoptosis and are likely to also exhibit differential sensitivity to outside influences. Previously, we reported that p-chloroamphetamine (pCA), a substance that inhibits serotonin synthesis, induced germ-cell apoptosis in prepubertal male rats. Here, we identified prepubertal rats with naturally high or low rates of germ-cell apoptosis and evaluated gene expression in both groups. Bax and Shbg mRNA levels were higher in rats with high rates of germ-cell apoptosis. Rats were then treated with pCA and the neuro-hormonal response and gene expression were evaluated. Treatment with pCA induced a reduction in serotonin concentrations but levels of sex hormones and gonadotrophins were not changed. Rats with initially high rates of germ-cell apoptosis had even higher rates of germ-cell apoptosis after treatment with pCA. In rats with high rates of germ-cell apoptosis Bax mRNA expression remained high after treatment with pCA. On the basis of category, an inverse relationship between mRNA expression of Bax and Bcl2, Bax and AR and Bax and Hsd3b2 was found. Here we provide evidence that innate levels of germ-cell apoptosis could be explained by the level of mRNA expression of genes involved with apoptosis and spermatogenesis.
Collapse
|
44
|
Lishout FV, Gadaleta F, Moore JH, Wehenkel L, Steen KV. gammaMAXT: a fast multiple-testing correction algorithm. BioData Min 2015; 8:36. [PMID: 26594243 PMCID: PMC4654922 DOI: 10.1186/s13040-015-0069-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The purpose of the MaxT algorithm is to provide a significance test algorithm that controls the family-wise error rate (FWER) during simultaneous hypothesis testing. However, the requirements in terms of computing time and memory of this procedure are proportional to the number of investigated hypotheses. The memory issue has been solved in 2013 by Van Lishout's implementation of MaxT, which makes the memory usage independent from the size of the dataset. This algorithm is implemented in MBMDR-3.0.3, a software that is able to identify genetic interactions, for a variety of SNP-SNP based epistasis models effectively. On the other hand, that implementation turned out to be less suitable for genome-wide interaction analysis studies, due to the prohibitive computational burden. RESULTS In this work we introduce gammaMAXT, a novel implementation of the maxT algorithm for multiple testing correction. The algorithm was implemented in software MBMDR-4.2.2, as part of the MB-MDR framework to screen for SNP-SNP, SNP-environment or SNP-SNP-environment interactions at a genome-wide level. We show that, in the absence of interaction effects, test-statistics produced by the MB-MDR methodology follow a mixture distribution with a point mass at zero and a shifted gamma distribution for the top 10 % of the strictly positive values. We show that the gammaMAXT algorithm has a power comparable to MaxT and maintains FWER, but requires less computational resources and time. We analyze a dataset composed of 10(6) SNPs and 1000 individuals within one day on a 256-core computer cluster. The same analysis would take about 10(4) times longer with MBMDR-3.0.3. CONCLUSIONS These results are promising for future GWAIs. However, the proposed gammaMAXT algorithm offers a general significance assessment and multiple testing approach, applicable to any context that requires performing hundreds of thousands of tests. It offers new perspectives for fast and efficient permutation-based significance assessment in large-scale (integrated) omics studies.
Collapse
Affiliation(s)
- François Van Lishout
- Systems and Modeling Unit, Montefiore Institute, University of Liège, Allée de la découverte 10, Liège, 4000 Belgium ; Bioinformatics and Modeling, GIGA-R, Avenue de l'Hôpital 1, Sart-Tilman, 4000 Belgium
| | - Francesco Gadaleta
- Systems and Modeling Unit, Montefiore Institute, University of Liège, Allée de la découverte 10, Liège, 4000 Belgium ; Bioinformatics and Modeling, GIGA-R, Avenue de l'Hôpital 1, Sart-Tilman, 4000 Belgium
| | - Jason H Moore
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104-6021 PA USA
| | - Louis Wehenkel
- Systems and Modeling Unit, Montefiore Institute, University of Liège, Allée de la découverte 10, Liège, 4000 Belgium ; Bioinformatics and Modeling, GIGA-R, Avenue de l'Hôpital 1, Sart-Tilman, 4000 Belgium
| | - Kristel Van Steen
- Systems and Modeling Unit, Montefiore Institute, University of Liège, Allée de la découverte 10, Liège, 4000 Belgium ; Bioinformatics and Modeling, GIGA-R, Avenue de l'Hôpital 1, Sart-Tilman, 4000 Belgium
| |
Collapse
|
45
|
Sneha P, Doss CGP. Molecular Dynamics: New Frontier in Personalized Medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:181-224. [PMID: 26827606 DOI: 10.1016/bs.apcsb.2015.09.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine.
Collapse
Affiliation(s)
- P Sneha
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
46
|
Abstract
UNLABELLED Pharmacogenomics and personalised medicine incorporate genetic factors, historical data, and environmental exposures to predict individual variation in response to medications. The study of pharmacology and pharmacogenomics is challenging in obstetrics, and our knowledge in this area lags behind other disciplines of medicine. Some preliminary data, however, suggest that some of the interindividual variation seen in response to medications given for the prevention (progesterone) and the treatment (nifedipine, terbutaline, and others) of preterm labour may be caused by pharmacogenomic effects. A comprehensive approach, integrating clinical data, environmental factors, including concomitant medications and genotype, to optimise the prevention and treatment strategies for preterm birth, is urgently needed. TWEETABLE ABSTRACT Some of the variation to meds for prematurity prevention/treatment may arise from pharmacogenomic effects.
Collapse
Affiliation(s)
- T A Manuck
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA.,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
47
|
Jayachandran D, Laínez-Aguirre J, Rundell A, Vik T, Hannemann R, Reklaitis G, Ramkrishna D. Model-Based Individualized Treatment of Chemotherapeutics: Bayesian Population Modeling and Dose Optimization. PLoS One 2015; 10:e0133244. [PMID: 26226448 PMCID: PMC4520687 DOI: 10.1371/journal.pone.0133244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/25/2015] [Indexed: 11/18/2022] Open
Abstract
6-Mercaptopurine (6-MP) is one of the key drugs in the treatment of many pediatric cancers, auto immune diseases and inflammatory bowel disease. 6-MP is a prodrug, converted to an active metabolite 6-thioguanine nucleotide (6-TGN) through enzymatic reaction involving thiopurine methyltransferase (TPMT). Pharmacogenomic variation observed in the TPMT enzyme produces a significant variation in drug response among the patient population. Despite 6-MP's widespread use and observed variation in treatment response, efforts at quantitative optimization of dose regimens for individual patients are limited. In addition, research efforts devoted on pharmacogenomics to predict clinical responses are proving far from ideal. In this work, we present a Bayesian population modeling approach to develop a pharmacological model for 6-MP metabolism in humans. In the face of scarcity of data in clinical settings, a global sensitivity analysis based model reduction approach is used to minimize the parameter space. For accurate estimation of sensitive parameters, robust optimal experimental design based on D-optimality criteria was exploited. With the patient-specific model, a model predictive control algorithm is used to optimize the dose scheduling with the objective of maintaining the 6-TGN concentration within its therapeutic window. More importantly, for the first time, we show how the incorporation of information from different levels of biological chain-of response (i.e. gene expression-enzyme phenotype-drug phenotype) plays a critical role in determining the uncertainty in predicting therapeutic target. The model and the control approach can be utilized in the clinical setting to individualize 6-MP dosing based on the patient's ability to metabolize the drug instead of the traditional standard-dose-for-all approach.
Collapse
Affiliation(s)
- Devaraj Jayachandran
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Way, West Lafayette, IN, 47907, United States of America
| | - José Laínez-Aguirre
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Way, West Lafayette, IN, 47907, United States of America
| | - Ann Rundell
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN, 47907, United States of America
| | - Terry Vik
- Riley Hospital for Children, 702 Barnhill Drive, Indianapolis, IN, 46202, United States of America
| | - Robert Hannemann
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Way, West Lafayette, IN, 47907, United States of America
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN, 47907, United States of America
| | - Gintaras Reklaitis
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Way, West Lafayette, IN, 47907, United States of America
| | - Doraiswami Ramkrishna
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Way, West Lafayette, IN, 47907, United States of America
| |
Collapse
|
48
|
Cha S, Yu H, Park AY, Oh SA, Kim JY. The obesity-risk variant of FTO is inversely related with the So-Eum constitutional type: genome-wide association and replication analyses. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:120. [PMID: 25888059 PMCID: PMC4432511 DOI: 10.1186/s12906-015-0609-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/13/2015] [Indexed: 01/30/2023]
Abstract
Background Body constitutional types described in the traditional Korean medicine system, Sasang constitutional medicine, are heritable, as has been revealed by twin and family studies. Thus, individuals with the same constitution type usually have similar pathophysiological and psychological traits. In several recent genome-wide association (GWA) analyses performed to identify constitution-associated variants, the association signals were not replicated due to small sample size and dissimilar, non-objective methods for classification of the constitutional types. Methods We conducted GWA analysis and followed replication analysis in two large populations (5,490 subjects: 3,810 subjects at discovery stage and 1,680 subjects at replication stage) to identify the replicable constitution-associated variants, wherein subjects with the highest tertile of constitution probability values versus the reference with the lowest tertile of the values obtained from a recently developed constitution analysis tool were compared. Results We found that the obesity-risk variant in intron 1 of the fat mass and obesity–associated (FTO) gene was replicably inversely associated with the So-Eum (SE) type, characterized by reduced appetite, slim body, and cautious personality (rs7193144 in combined samples: odds ratio = 0.729, p = 1.47 × 10−7), and substantial association signal remained after controlling for body mass index (BMI). In contrast, the association of the variant with the Tae-Eum type, characterized by high body mass, disappeared after controlling BMI. Conclusions In summary, the obesity-risk variant in FTO intron 1 was inversely associated with the SE type, independent of BMI, which corresponded well with the characteristics of the SE type, such as the lowest body mass and lowest susceptibility to metabolic disorders among the constitutional types. Therefore, the obesity-risk variant of FTO associated with body mass increase might be involved in the determination of body constitution type. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0609-4) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Dooley MJ, Dixon B, Poole SG, Chiang C, Whitlock A, Schneider H. Phenotyping for Thiopurine Therapy in Clinical Practice. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2015. [DOI: 10.1002/j.2055-2335.2008.tb00835.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | - Hans Schneider
- Department of Medicine, Central and Eastern Clinical School; Monash University; Clayton Victoria
| |
Collapse
|
50
|
Horgan D, Jansen M, Leyens L, Lal JA, Sudbrak R, Hackenitz E, Bußhoff U, Ballensiefen W, Brand A. An index of barriers for the implementation of personalised medicine and pharmacogenomics in Europe. Public Health Genomics 2014; 17:287-98. [PMID: 25401385 DOI: 10.1159/000368034] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Personalised medicine (PM) is an innovative way to produce better patient outcomes by using an individualised or stratified approach to disease and treatment rather than a collective treatment approach for patients. Despite its tangible advantages, the complex process to translate PM into the member states and European healthcare systems has delayed its uptake. The aim of this study is to identify relevant barriers represented by an index to summarise challenging areas for the implementation of PM in Europe. METHODS A systematic literature review was conducted, and a gaps-and-needs assessment together with a strengths-weaknesses-opportunities-and-threats analysis were applied to review strategic reports and conduct interviews with key stakeholders. Furthermore, surveys were sent out to representatives of stakeholder groups. The index was constructed based on the priorisation of relevant factors by stakeholders. RESULTS A need for stakeholder-agreed standards at all levels of implementation of PM exists, from validating biomarkers to definitions of 'informed consent'. The barriers to implement PM are identified in 7 areas, namely, stakeholder involvement, standardisation, interoperable infrastructure, European-level policy making, funding, data and research, and healthcare systems. CONCLUSIONS Challenges in the above-mentioned areas can and must be successfully tackled if we are to create a healthier Europe through PM. In order to create an environment in which PM can thrive for the patients' best outcomes, there is an urgent need for systematic actions to remove as many barriers as possible.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine (EAPM), Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|