1
|
Luo Y, Takau A, Li J, Fan T, Hopkins BR, Le Y, Ramirez SR, Matsuo T, Kopp A. Regulatory Changes in the Fatty Acid Elongase eloF Underlie the Evolution of Sex-specific Pheromone Profiles in Drosophila prolongata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617394. [PMID: 39464098 PMCID: PMC11507777 DOI: 10.1101/2024.10.09.617394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Pheromones play a key role in regulating sexual behavior throughout the animal kingdom. In Drosophila and other insects, many cuticular hydrocarbons (CHCs) are sexually dimorphic, and some are known to perform pheromonal functions. However, the genetic control of sex-specific CHC production is not understood outside of the model species D. melanogaster . A recent evolutionary change is found in D. prolongata , which, compared to its closest relatives, shows greatly increased sexual dimorphism in both CHCs and the chemosensory system responsible for their perception. A key transition involves a male-specific increase in the proportion of long-chain CHCs. Perfuming D. prolongata females with the male-biased CHCs reduces copulation success, suggesting that these compounds function as sex pheromones. The evolutionary change in CHC profiles correlates with a male-specific increase in the expression of multiple genes involved in CHC biosynthesis, including fatty acid elongases and reductases and other key enzymes. In particular, elongase F , which is responsible for producing female-specific pheromones in D. melanogaster , is strongly upregulated in D. prolongata males compared both to females and to males of the sibling species. Induced mutations in eloF reduce the amount of long-chain CHCs, resulting in a partial feminization of pheromone profiles in D. prolongata males while having minimal effect in females. Transgenic experiments show that sex-biased expression of eloF is caused in part by a putative transposable element insertion in its regulatory region. These results reveal one of the genetic mechanisms responsible for a recent evolutionary change in sexual communication.
Collapse
|
2
|
Roy PR, Castillo DM. The neurodevelopmental genes alan shepard and Neuroglian contribute to female mate preference in African Drosophila melanogaster. J Evol Biol 2024; 37:877-890. [PMID: 38900077 PMCID: PMC11292574 DOI: 10.1093/jeb/voae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Mate choice is a key trait that determines fitness for most sexually reproducing organisms, with females often being the choosy sex. Female preference often results in strong selection on male traits that can drive rapid divergence of traits and preferences between lineages, leading to reproductive isolation. Despite this fundamental property of female mate choice, very few loci have been identified that contribute to mate choice and reproductive isolation. We used a combination of population genetics, quantitative complementation tests, and behavioural assays to demonstrate that alan shepard and Neuroglian contribute to female mate choice, and could contribute to partial reproductive isolation between populations of Drosophila melanogaster. Our study is among the first to identify genes that contribute to female mate preference in this historically important system, where female preference is an active premating barrier to reproduction. The identification of loci that are primarily known for their roles in neurodevelopment provides intriguing questions of how female mate preference evolves in populations via changes in sensory system and higher learning brain centres.
Collapse
Affiliation(s)
- Paula R Roy
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Dean M Castillo
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Yamamoto A, Huang W, Carbone MA, Anholt RRH, Mackay TFC. The genetic basis of incipient sexual isolation in Drosophila melanogaster. Proc Biol Sci 2024; 291:20240672. [PMID: 39045689 PMCID: PMC11267472 DOI: 10.1098/rspb.2024.0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
Speciation is a fundamental evolutionary process but the genetic changes accompanying speciation are difficult to determine since true species do not produce viable and fertile offspring. Partially reproductively isolated incipient species are useful for assessing genetic changes that occur prior to speciation. Drosophila melanogaster from Zimbabwe, Africa are partially sexually isolated from other D. melanogaster populations whose males have poor mating success with Zimbabwe females. We used the North American D. melanogaster Genetic Reference Panel (DGRP) to show that there is significant genetic variation in mating success of DGRP males with Zimbabwe females, to map genetic variants and genes associated with variation in mating success and to determine whether mating success to Zimbabwe females is associated with other quantitative traits previously measured in the DGRP. Incipient sexual isolation is highly polygenic and associated with the common African inversion In(3R)K and the amount of the sex pheromone 5,9-heptacosadiene in DGRP females. We functionally validated the effect of eight candidate genes using RNA interference to provide testable hypotheses for future studies investigating the molecular genetic basis of incipient sexual isolation in D. melanogaster.
Collapse
Affiliation(s)
- Akihiko Yamamoto
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh NC, Raleigh, NC27695-7614, USA
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh NC, Raleigh, NC27695-7614, USA
- Department of Animal Science, Michigan State University, 474 S Shaw Lane, East Lansing, MI, USA
| | - Mary Anna Carbone
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh NC, Raleigh, NC27695-7614, USA
- Center for Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Robert R. H. Anholt
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh NC, Raleigh, NC27695-7614, USA
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, USA
| | - Trudy F. C. Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh NC, Raleigh, NC27695-7614, USA
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, USA
| |
Collapse
|
4
|
Lollar MJ, Kim E, Stern DL, Pool JE. Courtship song differs between African and European populations of Drosophila melanogaster and involves a strong effect locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594231. [PMID: 38798463 PMCID: PMC11118343 DOI: 10.1101/2024.05.14.594231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The courtship song of Drosophila melanogaster has long served as excellent model system for studies of animal communication and differences in courtship song have been demonstrated among populations and between species. Here, we report that flies of African and European origin, which diverged approximately 13,000 years ago, show significant genetic differentiation in the use of slow versus fast pulse song. Using a combination of quantitative trait mapping and population genetic analysis we detected a single strong QTL underlying this trait and we identified candidate genes that may contribute to the evolution of this trait. Song trait variation between parental strains of our recombinant inbred panel enabled detection of genomic intervals associated with six additional song traits, some of which include known courtship-related genes. These findings improve the prospects for further genetic insights into the evolution of reproductive behavior and the biology underlying courtship song.
Collapse
Affiliation(s)
- Matthew J Lollar
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Elizabeth Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147 USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147 USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
5
|
Ferveur JF, Cortot J, Cobb M, Everaerts C. Natural Diversity of Cuticular Pheromones in a Local Population of Drosophila after Laboratory Acclimation. INSECTS 2024; 15:273. [PMID: 38667403 PMCID: PMC11050499 DOI: 10.3390/insects15040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Experimental studies of insects are often based on strains raised for many generations in constant laboratory conditions. However, laboratory acclimation could reduce species diversity reflecting adaptation to varied natural niches. Hydrocarbons covering the insect cuticle (cuticular hydrocarbons; CHCs) are reliable adaptation markers. They are involved in dehydration reduction and protection against harmful factors. CHCs can also be involved in chemical communication principally related to reproduction. However, the diversity of CHC profiles in nature and their evolution in the laboratory have rarely been investigated. Here, we sampled CHC natural diversity in Drosophila melanogaster flies from a particular location in a temperate region. We also measured cis-Vaccenyl acetate, a male-specific volatile pheromone. After trapping flies using varied fruit baits, we set up 21 D. melanogaster lines and analysed their pheromones at capture and after 1 to 40 generations in the laboratory. Under laboratory conditions, the broad initial pheromonal diversity found in male and female flies rapidly changed and became more limited. In some females, we detected CHCs only reported in tropical populations: the presence of flies with a novel CHC profile may reflect the rapid adaptation of this cosmopolitan species to global warming in a temperate area.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK;
| | - Claude Everaerts
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| |
Collapse
|
6
|
Meng Q, Li Y, Xu Y, Wang Y. Acetobacter and lactobacillus alleviate the symptom of insulin resistance by blocking the JNK-JAK/STAT pathway in Drosophila melanogaster. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166901. [PMID: 37774935 DOI: 10.1016/j.bbadis.2023.166901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
The dysregulation of intestinal microbiota is well-known to be one of the main causes of insulin resistance in both vertebrates and invertebrates. Specially, the acetobacter and lactobacillus have been identified as potentially capable of alleviating insulin resistance. However, the molecular mechanism underlying this effect requires further elucidation. In this study, we employed Drosophila melanogaster (fruit fly) as a model organism to delineate how intestinal microbiota disrupts the host intestinal signaling pathway, contributing to insulin resistance. Our findings demonstrate that a long-term high-sugar diet lead to a reduction in the general diversity of intestinal microbiota in flies, as well as a marked decrease in the abundances of acetobacter and lactobacillus. Furthermore, we observed that symptoms of insulin resistance were alleviated by feeding flies with acetobacter or lactobacillus, indicating that these microorganisms play an essential role in maintaining blood sugar homeostasis in flies. Conversely, when all intestinal microbiota was removed, flies show severe symptoms of insulin resistance, confirming that the critical role of intestinal microbiota in maintaining host blood sugar homeostasis. Our studies suggested that the intestinal but not fat body JNK pathway mediates the communication of intestinal microbiota and host insulin pathway. In flies, downregulation of JNK activity alleviates symptoms of insulin resistance by decreasing the activity of the JAK/STAT pathway. However, this offsets the therapeutic effects of supplying flies with acetobacter or lactobacillus, suggesting that the therapeutic function of these microorganisms is based on their interaction with JNK-JAK/STAT axis. Taken together, our study reveals that acetobacter and lactobacillus alleviate insulin resistance symptoms in a JNK-JAK/STAT pathway-dependent manner, indicating the therapeutic potential of probiotic supplementation and regulation of the activities of JNK-JAK/STAT pathway for diabetes control.
Collapse
Affiliation(s)
- Qinghao Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yidong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
7
|
Yu X, Li Y, Tian X, Zang X, Yang S, Qiao H, Zhu C, Moussian B, Wang Y. Pb exposure causes non-linear accumulation of Pb in D. melanogaster controlled by metallothionein B and exerts ecological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165680. [PMID: 37499811 DOI: 10.1016/j.scitotenv.2023.165680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Pb pollution can harm human health and the ecosystem. Therefore, it is worthwhile to study the metabolic processes of heavy metals in individual bodies and their influence on ecological systems. In this work, we analyzed the genetic responses and physiological changes of D. melanogaster which took diets exposed to different doses of Pb using transcriptomic analysis, ICP-MS, and various other physiological methods. We found that the Pb accumulated in D. melanogaster in a nonlinear pattern with the increase of Pb content in food. Metallothioneins (Mtns), especially the MtnB directly affects the accumulation and excretion of metal Pb in D. melanogaster, and causes the nonlinear accumulation. Metal regulatory transcription factor-1 (MTF-1) is involved in the regulation of Pb-induced high expressions of Mtns. Furthermore, an interaction between the metal metabolism pathway and xenobiotic response pathway leads to the cross-tolerances of Pb-exposed D. melanogaster to insecticides and other toxins. The oxidative stress induced by Pb toxicity may be the bridge between them. Our findings provide a physiological and molecular genetic basis for further study of the accumulation and metabolism of Pb in D. melanogaster.
Collapse
Affiliation(s)
- Xiaoyu Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Xiaohan Tian
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Xiya Zang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Shuyu Yang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Chunfeng Zhu
- School of Life Sciences, Tianjin University, 300072 Tianjin, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
8
|
Lollar MJ, Biewer-Heisler TJ, Danen CE, Pool JE. Hybrid breakdown in male reproduction between recently diverged Drosophila melanogaster populations has a complex and variable genetic architecture. Evolution 2023; 77:1550-1563. [PMID: 37071601 PMCID: PMC10309968 DOI: 10.1093/evolut/qpad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Secondary contact between formerly isolated populations may result in hybrid breakdown, in which untested allelic combinations in hybrids are maladaptive and limit genetic exchange. Studying early-stage reproductive isolation may yield key insights into the genetic architectures and evolutionary forces underlying the first steps toward speciation. Here, we leverage the recent worldwide expansion of Drosophila melanogaster to test for hybrid breakdown between populations that diverged within the last 13,000 years. We found clear evidence for hybrid breakdown in male reproduction, but not female reproduction or viability, supporting the prediction that hybrid breakdown affects the heterogametic sex first. The frequency of non-reproducing F2 males varied among different crosses involving the same southern African and European populations, as did the qualitative effect of cross direction, implying a genetically variable basis of hybrid breakdown and a role for uniparentally inherited factors. The levels of breakdown observed in F2 males were not recapitulated in backcrossed individuals, consistent with the existence of incompatibilities with at least three partners. Thus, some of the very first steps toward reproductive isolation could involve incompatibilities with complex and variable genetic architectures. Collectively, our findings emphasize this system's potential for future studies on the genetic and organismal basis of early-stage reproductive isolation.
Collapse
Affiliation(s)
- Matthew J Lollar
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | | - Clarice E Danen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
9
|
Li Y, Wang J, Xu Y, Meng Q, Wu M, Su Y, Miao Y, Wang Y. The water extract of Potentilla discolor Bunge (PDW) ameliorates high-sugar diet-induced type II diabetes model in Drosophila melanogaster via JAK/STAT signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023:116760. [PMID: 37301307 DOI: 10.1016/j.jep.2023.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Potentilla discolor Bunge (PD) is a member of the Rosaceae family. It has been traditionally used in folk medicine for the treatment of diabetes. Additionally, people in folk also eat fresh and tender PD stems as vegetables or brew them as tea. AIM OF THE STUDY The aim of this study was to explore the antidiabetic effects and underlying mechanisms of the water extract of Potentilla discolor (PDW) in a fruit fly model of high-sugar diet-induced type 2 diabetes. MATERIALS AND METHODS The antidiabetic efficacy of PDW was evaluated in a fruit fly model of diabetes induced by a high-sugar diet (HSD). Various physiological parameters were tested to evaluate the anti-diabetic effect of PDW. Gene expression levels related to insulin signaling pathways, glucose metabolism, lipid metabolism, and JAK/STAT signaling pathways were primarily analyzed using RT-qPCR to investigate the therapeutic mechanisms. RESULTS In this study, we found that the water extract of Potentilla discolor (PDW) can ameliorate type II diabetes phenotypes induced by the HSD in fruit flies. These phenotypes include growth rate, body size, hyperglycemia, glycogen metabolism, fat storage, and intestinal microflora homeostasis. PDW also improved the body size of s6k and rheb knockdown flies, suggesting its potential to activate the downstream insulin pathway and alleviate insulin resistance. Furthermore, we demonstrated that PDW reduced the expression of two target genes of the JAK/STAT signaling pathway, namely the insulin antagonist Impl2 and insulin receptor inhibitor Socs36E, which act as regulators inhibiting the activation of the insulin signaling pathway. CONCLUSIONS This study provides evidence for the anti-diabetic activity of PDW and suggests that its underlying mechanism may involve the improvement of insulin resistance by inhibiting the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Junlin Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yidong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Qinghao Meng
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Mengdi Wu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Yanfang Su
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300250, Tianjin, China.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
10
|
Redjdal A, Sahnoune M, Moali A, De Biseau JC. High Divergence of Cuticular Hydrocarbons and Hybridization Success in Two Allopatric Seven-Spot Ladybugs. J Chem Ecol 2023; 49:103-115. [PMID: 36749496 DOI: 10.1007/s10886-023-01406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
The seven-spotted ladybug is a widespread species in the Palearctic, and also acclimated in the Nearctic. It has been classified into different species on the basis of certain morphological characteristics, the geographical origin, and the genitalia structure of both sexes. The morphotypes of North Africa and the Canary Islands are separated, under the name of Coccinella algerica Kovář, 1977, from the rest of the Palearctic and Nearctic populations of Coccinella septempunctata Linnaeus, 1758. In this study, we investigated, on one hand, whether potential reproductive barriers have been established during evolution between the geographically isolated North African and the European seven-spotted ladybugs by performing reciprocal crosses. On the other hand, we assessed their cuticular hydrocarbon (CHC) divergence by GC-MS. The 33 CHCs indentified are with a skeleton of 23 to 32 carbon atoms. These CHCs are linear alkanes (24.9 ± 3.6%) and methyl-branched alkanes (75.1 ± 3.6%) including monomethylalkanes (48.8 ± 2.4%), dimethylalkanes (24.6 ± 4.0%) and trimethylalkanes (2.0 ± 1.0%). Although all the CHC compounds identified are present in the two seven-spotted ladybugs and their F1 and F2 hybrids, their profiles diverged significantly. However, these chemical divergences have not altered the sexual communication to cause reproductive isolation. The two ladybugs interbreed and leave viable and fertile offspring, with even a heterosis effect on reproductive performances, without phenotypic degradation after the F1 generation. So, these chemical differences are just an intraspecific variability in response to heterogeneous environments. The two types of ladybugs can be considered as two different races of the same species with reduced genetic divergence.
Collapse
Affiliation(s)
- Ahcene Redjdal
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire d'Ecologie Et Environnement, Université de Bejaia, 06000, Bejaia, Algérie.
| | - Mohamed Sahnoune
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire d'Ecologie Et Environnement, Université de Bejaia, 06000, Bejaia, Algérie
| | - Aïssa Moali
- Faculté Des Sciences de La Nature Et de La Vie, Laboratoire d'Ecologie Et Environnement, Université de Bejaia, 06000, Bejaia, Algérie
| | - Jean-Christophe De Biseau
- UR. Evolution Biologique Et Ecologie, Faculté Des Sciences, Université Libre de Bruxelles, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050, Brussels, Belgium
| |
Collapse
|
11
|
Ertl HA, Hill MS, Wittkopp PJ. Differential Grainy head binding correlates with variation in chromatin structure and gene expression in Drosophila melanogaster. BMC Genomics 2022; 23:854. [PMID: 36575386 PMCID: PMC9795675 DOI: 10.1186/s12864-022-09082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Phenotypic evolution is often caused by variation in gene expression resulting from altered gene regulatory mechanisms. Genetic variation affecting chromatin remodeling has been identified as a potential source of variable gene expression; however, the roles of specific chromatin remodeling factors remain unclear. Here, we address this knowledge gap by examining the relationship between variation in gene expression, variation in chromatin structure, and variation in binding of the pioneer factor Grainy head between imaginal wing discs of two divergent strains of Drosophila melanogaster and their F1 hybrid. We find that (1) variation in Grainy head binding is mostly due to sequence changes that act in cis but are located outside of the canonical Grainy head binding motif, (2) variation in Grainy head binding correlates with changes in chromatin accessibility, and (3) this variation in chromatin accessibility, coupled with variation in Grainy head binding, correlates with variation in gene expression in some cases but not others. Interactions among these three molecular layers is complex, but these results suggest that genetic variation affecting the binding of pioneer factors contributes to variation in chromatin remodeling and the evolution of gene expression.
Collapse
Affiliation(s)
- Henry A. Ertl
- grid.214458.e0000000086837370Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mark S. Hill
- grid.214458.e0000000086837370Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA ,grid.83440.3b0000000121901201Present address: Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute and The Francis Crick Institute, London, UK
| | - Patricia J. Wittkopp
- grid.214458.e0000000086837370Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
12
|
Frey T, Kwadha CA, Haag F, Pelletier J, Wallin EA, Holgersson E, Hedenström E, Bohman B, Bengtsson M, Becher PG, Krautwurst D, Witzgall P. The human odorant receptor OR10A6 is tuned to the pheromone of the commensal fruit fly Drosophila melanogaster. iScience 2022; 25:105269. [PMID: 36300000 PMCID: PMC9589189 DOI: 10.1016/j.isci.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/10/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
All living things speak chemistry. The challenge is to reveal the vocabulary, the odorants that enable communication across phylogenies and to translate them to physiological, behavioral, and ecological function. Olfactory receptors (ORs) interface animals with airborne odorants. Expression in heterologous cells makes it possible to interrogate single ORs and to identify cognate ligands. The cosmopolitan, anthropophilic strain of the vinegar fly Drosophila melanogaster depends on human resources and housing for survival. Curiously, humans sense the pheromone (Z)-4-undecenal (Z4-11Al) released by single fly females. A screening of all human ORs shows that the most highly expressed OR10A6 is tuned to Z4-11Al. Females of an ancestral African fly strain release a blend of Z4-11Al and Z4-9Al that produces a different aroma, which is how we distinguish these fly strains by nose. That flies and humans sense Z4-11Al via dedicated ORs shows how convergent evolution shapes communication channels between vertebrate and invertebrate animals. Humans sense the sex pheromone Z411-Al released by single Drosophila melanogaster females The most highly expressed human olfactory receptor OR10A6 is tuned to Z411-Al An African fly strain emits two aldehydes, which we distinguish from Z411-Al by nose Convergent evolution shapes chemical communication between phylogenies
Collapse
Affiliation(s)
- Tim Frey
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Charles A. Kwadha
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Franziska Haag
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Julien Pelletier
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Erika A. Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | | | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | - Björn Bohman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Dietmar Krautwurst
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden,Corresponding author
| |
Collapse
|
13
|
Jin B, Barbash DA, Castillo DM. Divergent selection on behavioural and chemical traits between reproductively isolated populations of Drosophila melanogaster. J Evol Biol 2022; 35:693-707. [PMID: 35411988 PMCID: PMC9320809 DOI: 10.1111/jeb.14007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
Speciation is driven by traits that can act to prevent mating between nascent lineages, including male courtship and female preference for male traits. Mating barriers involving these traits evolve quickly because there is strong selection on males and females to maximize reproductive success, and the tight co-evolution of mating interactions can lead to rapid diversification of sexual behaviour. Populations of Drosophila melanogaster show strong asymmetrical reproductive isolation that is correlated with geographic origin. Using strains that capture natural variation in mating traits, we ask two key questions: which specific male traits are females selecting, and are these traits under divergent sexual selection? These questions have proven extremely challenging to answer, because even in closely related lineages males often differ in multiple traits related to mating behaviour. We address these questions by estimating selection gradients for male courtship and cuticular hydrocarbons for two different female genotypes. We identify specific behaviours and particular cuticular hydrocarbons that are under divergent sexual selection and could potentially contribute to premating reproductive isolation. Additionally, we report that a subset of these traits are plastic; males adjust these traits based on the identity of the female genotype they interact with. These results suggest that even when male courtship is not fixed between lineages, ongoing selection can act on traits that are important for reproductive isolation.
Collapse
Affiliation(s)
- Bozhou Jin
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Daniel A. Barbash
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Dean M. Castillo
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| |
Collapse
|
14
|
Pavković-Lučić S, Trajković J, Miličić D, Anđelković B, Lučić L, Savić T, Vujisić L. "Scent of a fruit fly": Cuticular chemoprofiles after mating in differently fed Drosophila melanogaster (Diptera: Drosophilidae) strains. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21866. [PMID: 35020218 DOI: 10.1002/arch.21866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
In the world of complex smells in natural environment, feeding and mating represent two important olfactory-guided behaviors in Drosophila melanogaster (Diptera: Drosophilidae). Diet affects the chemoprofile composition of the individuals, which, indirectly, may significantly affect their mating success. In this study, chemoprofiles of recently mated flies belonging to four D. melanogaster strains, which were fed for many generations on different substrates (standard cornmeal-S strain; banana-B strain; carrot-C strain; tomato-T strain) were identified and quantified. In total, 67 chemical compounds were identified: 48 compounds were extracted from males maintained on banana and carrot, and 47 compounds from males maintained on cornmeal and tomato substrates, while total of 60 compounds were identified in females from all strains. The strains and the sexes significantly differed in qualitative nature of their chemoprofiles after mating. Significant differences in the relative amount of three major male pheromones (cis-vaccenyl acetate-cVA, (Z)-7-pentacosene, and (Z)-7-tricosene) and in female pheromone (Z,Z)-7,11-nonacosadiene among strains were also recorded. Furthermore, multivariate analysis of variance (MANOVA) pointed to significant differences between virgin and mated individuals of all strains and within both sexes. Differences in some of the well known sex pheromones were also identified when comparing their relative amount before and after mating. The presence of typical male pheromones in females, and vice versa may indicate their bidirectional transfer during copulation. Our results confirm significant effect of mating status on cuticular hydrocarbon (CHC) phenotypes in differently fed D. melanogaster flies.
Collapse
Affiliation(s)
| | | | - Dragana Miličić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Luka Lučić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tatjana Savić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
15
|
Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster. J Chem Ecol 2022; 48:152-164. [PMID: 35022940 DOI: 10.1007/s10886-021-01344-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The cuticle of all insects is covered with hydrocarbons which have multiple functions. Cuticular hydrocarbons (CHCs) basically serve to protect insects against environmental harm and reduce dehydration. In many species, some CHCs also act as pheromones. CHCs have been intensively studied in Drosophila species and more especially in D. melanogaster. In this species, flies produce about 40 CHCs forming a complex sex- and species-specific bouquet. The quantitative and qualitative pattern of the CHC bouquet was characterized during the first days of adult life but remains unexplored in aging flies. Here, we characterized CHCs during the whole-or a large period of-adult life in males and females of several wild type and transgenic lines. Both types of lines included standard and variant CHC profiles. Some of the genotypes tested here showed very dramatic and unexpected aging-related variation based on their early days' profile. This study provides a concrete dataset to better understand the mechanisms underlying the establishment and maintenance of CHCs on the fly cuticle. It could be useful to determine physiological parameters, including age and response to climate variation, in insects collected in the wild.
Collapse
|
16
|
Dutta R, Chechi TS, Yadav A, Prasad NG. Indirect selection on cuticular hydrocarbon divergence in
Drosophila melanogaster
populations evolving under different operational sex ratios. J Zool (1987) 2021. [DOI: 10.1111/jzo.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Dutta
- Department of Biological Sciences Indian Institute of Science Education and Research Mohali India
| | - T. S. Chechi
- Department of Biological Sciences Indian Institute of Science Education and Research Mohali India
| | - A. Yadav
- Department of Earth and Environmental Sciences Indian Institute of Science Education and Research Mohali India
| | - N. G. Prasad
- Department of Biological Sciences Indian Institute of Science Education and Research Mohali India
| |
Collapse
|
17
|
Serrato-Capuchina A, Schwochert TD, Zhang S, Roy B, Peede D, Koppelman C, Matute DR. Pure species discriminate against hybrids in the Drosophila melanogaster species subgroup. Evolution 2021; 75:1753-1774. [PMID: 34043234 DOI: 10.1111/evo.14259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Introgression, the exchange of alleles between species, is a common event in nature. This transfer of alleles between species must happen through fertile hybrids. Characterizing the traits that cause defects in hybrids illuminates how and when gene flow is expected to occur. Inviability and sterility are extreme examples of fitness reductions but are not the only type of defects in hybrids. Some traits specific to hybrids are more subtle but are important to determine their fitness. In this report, we study whether F1 hybrids between two species pairs of Drosophila are as attractive as the parental species. We find that in both species pairs, the sexual attractiveness of the F1 hybrids is reduced and that pure species discriminate strongly against them. We also find that the cuticular hydrocarbon (CHC) profile of the female hybrids is intermediate between the parental species. Perfuming experiments show that modifying the CHC profile of the female hybrids to resemble pure species improves their chances of mating. Our results show that behavioral discrimination against hybrids might be an important component of the persistence of species that can hybridize.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Timothy D Schwochert
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Stephania Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Baylee Roy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - David Peede
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Caleigh Koppelman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Daniel R Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
18
|
Goldberg JK, Pintel G, Pruett JA, Weiss SL. Whiptail lizards (
Aspidoscelis exsanguis
) recognize invertebrate prey via cuticular hydrocarbons. Ethology 2021. [DOI: 10.1111/eth.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jay K. Goldberg
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
- Department of Biology Indiana University Bloomington IN USA
| | | | - Jake A. Pruett
- Department of Biology Indiana State University Terre Haute IN USA
- Department of Biological Sciences Southeastern Oklahoma State University Durant OK USA
| | - Stacey L. Weiss
- Department of Biology University of Puget Sound Tacoma WA USA
| |
Collapse
|
19
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
20
|
Sato K, Yamamoto D. Contact-Chemosensory Evolution Underlying Reproductive Isolation in Drosophila Species. Front Behav Neurosci 2020; 14:597428. [PMID: 33343311 PMCID: PMC7746553 DOI: 10.3389/fnbeh.2020.597428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
The main theme of the review is how changes in pheromone biochemistry and the sensory circuits underlying pheromone detection contribute to mate choice and reproductive isolation. The review focuses primarily on gustatory and non-volatile signals in Drosophila. Premating isolation is prevalent among closely related species. In Drosophila, preference for conspecifics against other species in mate choice underlies premating isolation, and such preference relies on contact chemosensory communications between a female and male along with other biological factors. For example, although D. simulans and D. melanogaster are sibling species that yield hybrids, their premating isolation is maintained primarily by the contrasting effects of 7,11-heptacosadiene (7,11-HD), a predominant female pheromone in D. melanogaster, on males of the two species: it attracts D. melanogaster males and repels D. simulans males. The contrasting preference for 7,11-HD in males of these two species is mainly ascribed to opposite effects of 7,11-HD on neural activities in the courtship decision-making neurons in the male brain: 7,11-HD provokes both excitatory and inhibitory inputs in these neurons and differences in the balance between the two counteracting inputs result in the contrasting preference for 7,11-HD, i.e., attraction in D. melanogaster and repulsion in D. simulans. Introduction of two double bonds is a key step in 7,11-HD biosynthesis and is mediated by the desaturase desatF, which is active in D. melanogaster females but transcriptionally inactivated in D. simulans females. Thus, 7,11-HD biosynthesis diversified in females and 7,11-HD perception diversified in males, yet it remains elusive how concordance of the changes in the two sexes was attained in evolution.
Collapse
Affiliation(s)
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
21
|
González-Rojas MF, Darragh K, Robles J, Linares M, Schulz S, McMillan WO, Jiggins CD, Pardo-Diaz C, Salazar C. Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies. Proc Biol Sci 2020; 287:20200587. [PMID: 32370676 PMCID: PMC7282924 DOI: 10.1098/rspb.2020.0587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Colour pattern is the main trait that drives mate recognition between Heliconius species that are phylogenetically close. However, when this cue is compromised such as in cases of mimetic, sympatric and closely related species, alternative mating signals must evolve to ensure reproductive isolation and species integrity. The closely related species Heliconius melpomene malleti and H. timareta florencia occur in the same geographical region, and despite being co-mimics, they display strong reproductive isolation. In order to test which cues differ between species, and potentially contribute to reproductive isolation, we quantified differences in the wing phenotype and the male chemical profile. As expected, the wing colour pattern was indistinguishable between the two species, while the chemical profile of the androconial and genital males' extracts showed marked differences. We then conducted behavioural experiments to study the importance of these signals in mate recognition by females. In agreement with our previous results, we found that chemical blends and not wing colour pattern drive the preference of females for conspecific males. Also, experiments with hybrid males and females suggested an important genetic component for both chemical production and preference. Altogether, these results suggest that chemicals are the major reproductive barrier opposing gene flow between these two sister and co-mimic species.
Collapse
Affiliation(s)
- M F González-Rojas
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| | - K Darragh
- Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire CB2 3EJ, UK
| | - J Robles
- Department of Chemistry, Pontificia Universidad Javeriana, Bogota, Colombia
| | - M Linares
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| | - S Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - C D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire CB2 3EJ, UK
| | - C Pardo-Diaz
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| | - C Salazar
- Department of Biology, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota 111221, Colombia
| |
Collapse
|
22
|
Behavioral Evolution of Drosophila: Unraveling the Circuit Basis. Genes (Basel) 2020; 11:genes11020157. [PMID: 32024133 PMCID: PMC7074016 DOI: 10.3390/genes11020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/11/2023] Open
Abstract
Behavior is a readout of neural function. Therefore, any difference in behavior among different species is, in theory, an outcome of interspecies diversification in the structure and/or function of the nervous system. However, the neural diversity underlying the species-specificity in behavioral traits and its genetic basis have been poorly understood. In this article, we discuss potential neural substrates for species differences in the courtship pulse song frequency and mating partner choice in the Drosophila melanogaster subgroup. We also discuss possible neurogenetic mechanisms whereby a novel behavioral repertoire emerges based on the study of nuptial gift transfer, a trait unique to D. subobscura in the genus Drosophila. We found that the conserved central circuit composed primarily of fruitless-expressing neurons (the fru-circuit) serves for the execution of courtship behavior, whereas the sensory pathways impinging onto the fru-circuit or the motor pathways downstream of the fru-circuit are susceptible to changes associated with behavioral species differences.
Collapse
|
23
|
Camus MF, O'Leary M, Reuter M, Lane N. Impact of mitonuclear interactions on life-history responses to diet. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190416. [PMID: 31787037 DOI: 10.1098/rstb.2019.0416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are central to both energy metabolism and biosynthesis. Mitochondrial function could therefore influence resource allocation. Critically, mitochondrial function depends on interactions between proteins encoded by the mitochondrial and nuclear genomes. Severe incompatibilities between these genomes can have pervasive effects on both fitness and longevity. How milder deficits in mitochondrial function affect life-history trade-offs is less well understood. Here, we analyse how mitonuclear interactions affect the trade-off between fecundity and longevity in Drosophila melanogaster. We consider a panel of 10 different mitochondrial DNA haplotypes against two contrasting nuclear backgrounds (w1118 (WE) and Zim53 (ZIM)) in response to high-protein versus standard diet. We report strikingly different responses between the two nuclear backgrounds. WE females have higher fecundity and decreased longevity on high protein. ZIM females have much greater fecundity and shorter lifespan than WE flies on standard diet. High protein doubled their fecundity with no effect on longevity. Mitochondrial haplotype reflected nuclear life-history trade-offs, with a negative correlation between longevity and fecundity in WE flies and no correlation in ZIM flies. Mitonuclear interactions had substantial effects but did not reflect genetic distance between mitochondrial haplotypes. We conclude that mitonuclear interactions can have significant impact on life-history trade-offs, but their effects are not predictable by relatedness. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Michael O'Leary
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
24
|
Flying Drosophila show sex-specific attraction to fly-labelled food. Sci Rep 2019; 9:14947. [PMID: 31628403 PMCID: PMC6802089 DOI: 10.1038/s41598-019-51351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
Animals searching for food and sexual partners often use odourant mixtures combining food-derived molecules and pheromones. For orientation, the vinegar fly Drosophila melanogaster uses three types of chemical cues: (i) the male volatile pheromone 11-cis-vaccenyl acetate (cVA), (ii) sex-specific cuticular hydrocarbons (CHs; and CH-derived compounds), and (iii) food-derived molecules resulting from microbiota activity. To evaluate the effects of these chemicals on odour-tracking behaviour, we tested Drosophila individuals in a wind tunnel. Upwind flight and food preference were measured in individual control males and females presented with a choice of two food sources labelled by fly lines producing varying amounts of CHs and/or cVA. The flies originated from different species or strains, or their microbiota was manipulated. We found that (i) fly-labelled food could attract—but never repel—flies; (ii) the landing frequency on fly-labelled food was positively correlated with an increased flight duration; (iii) male—but not female or non-sex-specific—CHs tended to increase the landing frequency on fly-labelled food; (iv) cVA increased female—but not male—preference for cVA-rich food; and (v) microbiota-derived compounds only affected male upwind flight latency. Therefore, sex pheromones interact with food volatile chemicals to induce sex-specific flight responses in Drosophila.
Collapse
|
25
|
Experimental Introgression To Evaluate the Impact of Sex Specific Traits on Drosophila melanogaster Incipient Speciation. G3-GENES GENOMES GENETICS 2019; 9:2561-2572. [PMID: 31167833 PMCID: PMC6686937 DOI: 10.1534/g3.119.400385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex specific traits are involved in speciation but it is difficult to determine whether their variation initiates or reinforces sexual isolation. In some insects, speciation depends of the rapid change of expression in desaturase genes coding for sex pheromones. Two closely related desaturase genes are involved in Drosophila melanogaster pheromonal communication: desat1 affects both the production and the reception of sex pheromones while desat2 is involved in their production in flies of Zimbabwe populations. There is a strong asymmetric sexual isolation between Zimbabwe populations and all other "Cosmopolitan" populations: Zimbabwe females rarely copulate with Cosmopolitan males whereas Zimbabwe males readily copulate with all females. All populations express desat1 but only Zimbabwe strains show high desat2 expression. To evaluate the impact of sex pheromones, female receptivity and desat expression on the incipient speciation process between Zimbabwe and Cosmopolitan populations, we introgressed the Zimbabwe genome into a Cosmopolitan genome labeled with the white mutation, using a multi-generation procedure. The association between these sex-specific traits was determined during the procedure. The production of pheromones was largely dissociated between the sexes. The copulation frequency (but not latency) was highly correlated with the female-but not with the male-principal pheromones. We finally obtained two stable white lines showing Zimbabwe-like sex pheromones, copulation discrimination and desat expression. Our study indicates that the variation of sex pheromones and mating discrimination depend of distinct-yet overlapping-sets of genes in each sex suggesting that their cumulated effects participate to reinforce the speciation process.
Collapse
|
26
|
Sato K, Ahsan MT, Ote M, Koganezawa M, Yamamoto D. Calmodulin-binding transcription factor shapes the male courtship song in Drosophila. PLoS Genet 2019; 15:e1008309. [PMID: 31344027 PMCID: PMC6690551 DOI: 10.1371/journal.pgen.1008309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/12/2019] [Accepted: 07/12/2019] [Indexed: 11/18/2022] Open
Abstract
Males of the Drosophila melanogaster mutant croaker (cro) generate a polycyclic pulse song dissimilar to the monocyclic songs typical of wild-type males during courtship. However, cro has not been molecularly mapped to any gene in the genome. We demonstrate that cro is a mutation in the gene encoding the Calmodulin-binding transcription factor (Camta) by genetic complementation tests with chromosomal deficiencies, molecular cloning of genomic fragments that flank the cro-mutagenic P-insertion, and phenotypic rescue of the cro mutant phenotype by Camta+-encoding cDNA as well as a BAC clone containing the gene for Camta. We further show that knockdown of the Camta-encoding gene phenocopies cro mutant songs when targeted to a subset of fruitless-positive neurons that include the mcALa and AL1 clusters in the brain. cro-GAL4 and an anti-Camta antibody labeled a large number of brain neurons including mcALa. We conclude that the Camta-encoding gene represents the cro locus, which has been implicated in a species-specific difference in courtship songs between D. sechellia and simulans. Selecting a suitable mate is a prerequisite for successful breeding in organisms. Indeed, the animals instinctively distinguish a conspecific partner from individuals of other species, yet the mechanism underlying such species-recognition remains largely unknown. In choosing a conspecific male as a mate, fruit fly females rely on a male-derived auditory signal, love song, which is generated by a series of unilateral wing vibration by the male. We study how the males produce love song that is unique to the species. We particularly focus on croaker (cro) mutants, whose males generate distorted love song. Our molecular analysis reveals that the cro mutation inhibits expression of the gene encoding a protein called Calmodulin-binding transcription factor (Camta) and that an introduction of the Camta-encoding DNA into the genome of cro mutants allows the mutant male to sing a normal song. Therefore, the Camta protein is an essential component for love song generation by males. We further show that knockdown of Camta only in tens of specific neurons in the brain is sufficient for inducing the cro mutant phenotype. This study paves the way for unraveling the mechanistic basis for female-male communications in conspecific mating.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Md. Tanveer Ahsan
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Manabu Ote
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Masayuki Koganezawa
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
- * E-mail:
| |
Collapse
|
27
|
Baião GC, Schneider DI, Miller WJ, Klasson L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genomics 2019; 20:465. [PMID: 31174466 PMCID: PMC6555960 DOI: 10.1186/s12864-019-5816-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Background The Neotropical fruit fly Drosophila paulistorum (Diptera: Drosophilidae) is a species complex in statu nascendi comprising six reproductively isolated semispecies, each harboring mutualistic Wolbachia strains. Although wild type flies of each semispecies are isolated from the others by both pre- and postmating incompatibilities, mating between semispecies and successful offspring development can be achieved once flies are treated with antibiotics to reduce Wolbachia titer. Here we use RNA-seq to study the impact of Wolbachia on D. paulistorum and investigate the hypothesis that the symbiont may play a role in host speciation. For that goal, we analyze samples of heads and abdomens of both sexes of the Amazonian, Centro American and Orinocan semispecies of D. paulistorum. Results We identify between 175 and 1192 differentially expressed genes associated with a variety of biological processes that respond either globally or according to tissue, sex or condition in the three semispecies. Some of the functions associated with differentially expressed genes are known to be affected by Wolbachia in other species, such as metabolism and immunity, whereas others represent putative novel phenotypes involving muscular functions, pheromone signaling, and visual perception. Conclusions Our results show that Wolbachia affect a large number of biological functions in D. paulistorum, particularly when present in high titer. We suggest that the significant metabolic impact of the infection on the host may cause several of the other putative and observed phenotypes. We also speculate that the observed differential expression of genes associated with chemical communication and reproduction may be associated with the emergence of pre- and postmating barriers between semispecies, which supports a role for Wolbachia in the speciation of D. paulistorum. Electronic supplementary material The online version of this article (10.1186/s12864-019-5816-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guilherme C Baião
- Molecular evolution, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 24, Uppsala, Sweden
| | - Daniela I Schneider
- Lab Genome Dynamics, Deparment Cell & Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.,Present address: Department of Epidemiology of Microbial Diseases, Yale University, 60 College Street, New Haven, CT, 06510, USA
| | - Wolfgang J Miller
- Lab Genome Dynamics, Deparment Cell & Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Lisa Klasson
- Molecular evolution, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 24, Uppsala, Sweden.
| |
Collapse
|
28
|
Cohen P, Privman E. Speciation and hybridization in invasive fire ants. BMC Evol Biol 2019; 19:111. [PMID: 31142287 PMCID: PMC6542140 DOI: 10.1186/s12862-019-1437-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A major focus of evolutionary biology is the formation of reproductive barriers leading to divergence and ultimately, speciation. Often, it is not clear whether the separation of populations is complete or if there still is ongoing gene flow in the form of rare cases of admixture, known as isolation with migration. Here, we studied the speciation of two fire ant species, Solenopsis invicta and Solenopsis richteri, both native to South America, both inadvertently introduced to North America in the early twentieth century. While the two species are known to admix in the introduced range, in the native range no hybrids were found. RESULTS We conducted a population genomic survey of native and introduced populations of the two species using reduced representation genomic sequencing of 337 samples. Using maximum likelihood analysis over native range samples, we found no evidence of any gene flow between the species since they diverged. We estimated their time of divergence to 190,000 (100,000-350,000) generations ago. Modelling the demographic history of native and introduced S. invicta populations, we evaluated their divergence times and historic and contemporary population sizes, including the original founder population in North America, which was estimated at 26 (10-93) unrelated singly-mated queens. CONCLUSIONS We provide evidence for complete genetic isolation maintained between two invasive species in their natïve range, based, for the first time, on large scale genomic data analysis. The results lay the foundations for further studies into different stages in the formation of genetic barriers in dynamic, invasive populations.
Collapse
Affiliation(s)
- Pnina Cohen
- Department of Evolution and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eyal Privman
- Department of Evolution and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
29
|
Houot B, Cazalé-Debat L, Fraichard S, Everaerts C, Saxena N, Sane SP, Ferveur JF. Gene Regulation and Species-Specific Evolution of Free Flight Odor Tracking in Drosophila. Mol Biol Evol 2019; 35:3-15. [PMID: 28961885 DOI: 10.1093/molbev/msx241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The flying ability of insects has coevolved with the development of organs necessary to take-off from the ground, generate, and modulate lift during flight in complex environments. Flight orientation to the appropriate food source and mating partner depends on the perception and integration of multiple chemical signals. We used a wind tunnel-based assay to investigate the natural and molecular evolution of free flight odor tracking in Drosophila. First, the comparison of female and male flies of several populations and species revealed substantial sex-, inter-, and intra-specific variations for distinct flight features. In these flies, we compared the molecular structure of desat1, a fast-evolving gene involved in multiple aspects of Drosophila pheromonal communication. We manipulated desat1 regulation and found that both neural and nonneural tissues affect distinct flight features. Together, our data suggest that desat1 is one of the genes involved in the evolution of free-flight odor tracking behaviors in Drosophila.
Collapse
Affiliation(s)
- Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Fraichard
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Nitesh Saxena
- Insect Flight Laboratory, National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Sanjay P Sane
- Insect Flight Laboratory, National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
30
|
Nojima T, Chauvel I, Houot B, Bousquet F, Farine JP, Everaerts C, Yamamoto D, Ferveur JF. The desaturase1 gene affects reproduction before, during and after copulation in Drosophila melanogaster. J Neurogenet 2019; 33:96-115. [PMID: 30724684 DOI: 10.1080/01677063.2018.1559843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Desaturase1 (desat1) is one of the few genes known to be involved in the two complementary aspects of sensory communication - signal emission and signal reception - in Drosophila melanogaster. In particular, desat1 is necessary for the biosynthesis of major cuticular pheromones in both males and females. It is also involved in the male ability to discriminate sex pheromones. Each of these two sensory communication aspects depends on distinct desat1 putative regulatory regions. Here, we used (i) mutant alleles resulting from the insertion/excision of a transposable genomic element inserted in a desat1 regulatory region, and (ii) transgenics made with desat1 regulatory regions used to target desat1 RNAi. These genetic variants were used to study several reproduction-related phenotypes. In particular, we compared the fecundity of various mutant and transgenic desat1 females with regard to the developmental fate of their progeny. We also compared the mating performance in pairs of flies with altered desat1 expression in various desat1-expressing tissues together with their inability to disengage at the end of copulation. Moreover, we investigated the developmental origin of altered sex pheromone discrimination in male flies. We attempted to map some of the tissues involved in these reproduction-related phenotypes. Given that desat1 is expressed in many brain neurons and in non-neuronal tissues required for varied aspects of reproduction, our data suggest that the regulation of this gene has evolved to allow the optimal reproduction and a successful adaptation to varied environments in this cosmopolitan species.
Collapse
Affiliation(s)
- Tetsuya Nojima
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,c Centre for Neural Circuits and Behaviour , University of Oxford , Oxford , United Kingdom
| | - Isabelle Chauvel
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Benjamin Houot
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,d Division of Chemical Ecology, Department of Plant Protection Biology , Swedish University of Agricultural Sciences , Alnarp , Sweden
| | - François Bousquet
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Jean-Pierre Farine
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Claude Everaerts
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Daisuke Yamamoto
- b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,e Neuro-Network Evolution Project, Advanced ICT Research Institute , National Institute of Information and Communications Technology , Nishi-Ku , Japan Kobe
| | - Jean-François Ferveur
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| |
Collapse
|
31
|
Pardy JA, Rundle HD, Bernards MA, Moehring AJ. The genetic basis of female pheromone differences between Drosophila melanogaster and D. simulans. Heredity (Edinb) 2018; 122:93-109. [PMID: 29777168 DOI: 10.1038/s41437-018-0080-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 12/31/2022] Open
Abstract
Chemical signals are one means by which many insect species communicate. Differences in the combination of surface chemicals called cuticular hydrocarbons (CHCs) can influence mating behavior and affect reproductive isolation between species. Genes influencing three CHC compounds have been identified in Drosophila melanogaster. However, the genetic basis of other CHC compounds, whether these genes affect species differences in CHCs, and the genes' resulting effect on interspecies mating, remains unknown. We used fine-scale deficiency mapping of the third chromosome to identify 43 genomic regions that influence production of CHCs in both D. melanogaster and Drosophila simulans females. We identified an additional 23 small genomic regions that affect interspecies divergence in CHCs between females of these two species, one of which spans two genes known to influence the production of multiple CHCs within D. melanogaster. By testing these genes individually, we determined that desat1 also affects interspecific divergence in one CHC compound, while desat2 has no effect on interspecific divergence. Thus, some but not all genes affecting intraspecific amounts of CHCs also affect interspecific divergence, but not all genes or all CHCs. Lastly, we find no evidence of a relationship between the CHC profile and female attractiveness or receptivity towards D. melanogaster males.
Collapse
Affiliation(s)
- Jessica A Pardy
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Howard D Rundle
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Mark A Bernards
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Amanda J Moehring
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
32
|
Grillet M, Ferveur JF, Everaerts C. Behavioural elements and sensory cues involved in sexual isolation between Drosophila melanogaster strains. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172060. [PMID: 29892393 PMCID: PMC5990781 DOI: 10.1098/rsos.172060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Sensory cues exchanged during courtship are crucial for mate choice: if they show intraspecific divergence, this may cause or reinforce sexual isolation between strains, ultimately leading to speciation. There is a strong asymmetric sexual isolation between Drosophila melanogaster females from Zimbabwe (Z) and males from all other populations (M). While M and Z flies of both sexes show different cuticular pheromones, this variation is only partly responsible for the intraspecific isolation effect. Male acoustic signals are also partly involved in sexual isolation. We examined strain-specific courtship behaviour sequences to determine which body parts and sensory appendages may be involved in sexual isolation. Using two strains representative of the Z- and M-types, we manipulated sensory cues and the social context; we then measured the consequence of these manipulations on courtship and copulation. Our data suggest that Z females mated best with males whose sensory characteristics matched those of Z males in both quantity and quality. M females were less choosy and much less influenced by the sensory and social contexts. Differences in emission and reception of sensory signals seen between Z and M flies may lead to the concerted evolution of multiple sensory channel, thereby shaping a population-specific mate recognition system.
Collapse
Affiliation(s)
| | | | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, University Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
33
|
Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in Drosophila. Genetics 2018; 207:825-842. [PMID: 29097397 DOI: 10.1534/genetics.116.187120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster, will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved.
Collapse
|
34
|
Ferveur JF, Cortot J, Rihani K, Cobb M, Everaerts C. Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults. PeerJ 2018; 6:e4318. [PMID: 29456884 PMCID: PMC5813593 DOI: 10.7717/peerj.4318] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background The insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs) depend on their chain length and desaturation number. Drosophila CH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes. Methods The link between desiccation resistance and CH profile remains unclear, so we tested (1) experimentally selected desiccation-resistant lines, (2) transgenic flies with altered desaturase expression and (3) natural and laboratory-induced CH variants. We also explored the possible relationship between desiccation resistance, relative water content and fecundity in females. Results We found that increased desiccation resistance is linked with the increased proportion of desaturated CHs, but not with their total amount. Experimentally-induced desiccation resistance and CH variation both remained stable after many generations without selection. Conversely, flies with a higher water content and a lower proportion of desaturated CHs showed reduced desiccation resistance. This was also the case in flies with defective desaturase expression in the fat body. Discussion We conclude that rapidly acquired desiccation resistance, depending on both CH profile and water content, can remain stable without selection in a humid environment. These three phenotypes, which might be expected to show a simple relationship, turn out to have complex physiological and genetic links.
Collapse
Affiliation(s)
- Jean-Francois Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Karen Rihani
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
35
|
Darragh K, Vanjari S, Mann F, Gonzalez-Rojas MF, Morrison CR, Salazar C, Pardo-Diaz C, Merrill RM, McMillan WO, Schulz S, Jiggins CD. Male sex pheromone components in Heliconius butterflies released by the androconia affect female choice. PeerJ 2017; 5:e3953. [PMID: 29134139 PMCID: PMC5680698 DOI: 10.7717/peerj.3953] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/02/2017] [Indexed: 11/20/2022] Open
Abstract
Sex-specific pheromones are known to play an important role in butterfly courtship, and may influence both individual reproductive success and reproductive isolation between species. Extensive ecological, behavioural and genetic studies of Heliconius butterflies have made a substantial contribution to our understanding of speciation. Male pheromones, although long suspected to play an important role, have received relatively little attention in this genus. Here, we combine morphological, chemical and behavioural analyses of male pheromones in the Neotropical butterfly Heliconius melpomene. First, we identify putative androconia that are specialized brush-like scales that lie within the shiny grey region of the male hindwing. We then describe putative male sex pheromone compounds, which are largely confined to the androconial region of the hindwing of mature males, but are absent in immature males and females. Finally, behavioural choice experiments reveal that females of H. melpomene, H. erato and H. timareta strongly discriminate against conspecific males which have their androconial region experimentally blocked. As well as demonstrating the importance of chemical signalling for female mate choice in Heliconius butterflies, the results describe structures involved in release of the pheromone and a list of potential male sex pheromone compounds.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
- Smithsonian Tropical Research Institute, Panama
| | - Sohini Vanjari
- Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
- Smithsonian Tropical Research Institute, Panama
| | - Florian Mann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maria F. Gonzalez-Rojas
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota, Colombia
| | - Colin R. Morrison
- Smithsonian Tropical Research Institute, Panama
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota, Colombia
| | - Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota, Colombia
| | - Richard M. Merrill
- Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
- Smithsonian Tropical Research Institute, Panama
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
- Smithsonian Tropical Research Institute, Panama
| |
Collapse
|
36
|
Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin EA, Hedenström E, Hansson BS, Gustavsson AL, Bengtsson M, Birgersson G, Walker WB, Dweck HKM, Becher PG, Witzgall P. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol 2017; 15:88. [PMID: 28962619 PMCID: PMC5622430 DOI: 10.1186/s12915-017-0427-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
Background Mate finding and recognition in animals evolves during niche adaptation and involves social signals and habitat cues. Drosophila melanogaster and related species are known to be attracted to fermenting fruit for feeding and egg-laying, which poses the question of whether species-specific fly odours contribute to long-range premating communication. Results We have discovered an olfactory channel in D. melanogaster with a dual affinity to sex and food odorants. Female flies release a pheromone, (Z)-4-undecenal (Z4-11Al), that elicits flight attraction in both sexes. Its biosynthetic precursor is the cuticular hydrocarbon (Z,Z)-7,11-heptacosadiene (7,11-HD), which is known to afford reproductive isolation between the sibling species D. melanogaster and D. simulans during courtship. Twin olfactory receptors, Or69aB and Or69aA, are tuned to Z4-11Al and food odorants, respectively. They are co-expressed in the same olfactory sensory neurons, and feed into a neural circuit mediating species-specific, long-range communication; however, the close relative D. simulans, which shares food resources with D. melanogaster, does not respond to Z4-11Al. Conclusion The Or69aA and Or69aB isoforms have adopted dual olfactory traits. The underlying gene yields a collaboration between natural and sexual selection, which has the potential to drive speciation.
Collapse
Affiliation(s)
- Sebastien Lebreton
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Felipe Borrero-Echeverry
- Biological Control Laboratory, Colombian Corporation of Agricultural Research, AA 240142 Las Palmas, Bogota, Colombia
| | - Francisco Gonzalez
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Marit Solum
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Erika A Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 172, 17165, Solna, Sweden
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Göran Birgersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden
| | - Hany K M Dweck
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053, Alnarp, Sweden.
| |
Collapse
|
37
|
Trajković J, Miličić D, Savić T, Pavković-Lučić S. Sexual selection, sexual isolation and pheromones in Drosophila melanogaster strains after long-term maintaining on different diets. Behav Processes 2017; 140:81-86. [PMID: 28419833 DOI: 10.1016/j.beproc.2017.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/28/2017] [Accepted: 04/13/2017] [Indexed: 11/27/2022]
Abstract
Evolution of reproductive isolation may be a consequence of a variety of signals used in courtship and mate preferences. Pheromones play an important role in both sexual selection and sexual isolation. The abundance of pheromones in Drosophila melanogaster may depend on different environmental factors, including diet. The aim of this study was to ascertain to which degree principal pheromones affect sexual selection in D. melanogaster. We used D. melanogaster strains reared for 14 years on four substrates: standard cornmeal substrate and those containing tomato, banana and carrot. We have previously determined that long-term maintaining of these dietary strains resulted in differences in their cuticular hydrocarbons profile (CHs). In this work, we have tested the level of sexual selection and sexual isolation between aforementioned strains. We found that the high levels of cis-vaccenyl acetate, 7-pentacosene and 7,11-nonacosadiene in the strain reared on a substrate containing carrot affected the individual attractiveness and influenced sexual isolation between flies of this strain and flies reared on a substrate containing banana. Based on these results, long-term different diets, may contribute, to sexual behaviour of D. melanogaster via the effects of principal pheromones.
Collapse
Affiliation(s)
- Jelena Trajković
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia.
| | - Dragana Miličić
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Tatjana Savić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", 142 Despot Stefan Blvd, 11000 Belgrade, Serbia
| | - Sofija Pavković-Lučić
- University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
38
|
Rajpurohit S, Hanus R, Vrkoslav V, Behrman EL, Bergland AO, Petrov D, Cvačka J, Schmidt PS. Adaptive dynamics of cuticular hydrocarbons in Drosophila. J Evol Biol 2016; 30:66-80. [PMID: 27718537 DOI: 10.1111/jeb.12988] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 01/19/2023]
Abstract
Cuticular hydrocarbons (CHCs) are hydrophobic compounds deposited on the arthropod cuticle that are of functional significance with respect to stress tolerance, social interactions and mating dynamics. We characterized CHC profiles in natural populations of Drosophila melanogaster at five levels: across a latitudinal transect in the eastern United States, as a function of developmental temperature during culture, across seasonal time in replicate years, and as a function of rapid evolution in experimental mesocosms in the field. Furthermore, we also characterized spatial and temporal changes in allele frequencies for SNPs in genes that are associated with the production and chemical profile of CHCs. Our data demonstrate a striking degree of parallelism for clinal and seasonal variation in CHCs in this taxon; CHC profiles also demonstrate significant plasticity in response to rearing temperature, and the observed patterns of plasticity parallel the spatiotemporal patterns observed in nature. We find that these congruent shifts in CHC profiles across time and space are also mirrored by predictable shifts in allele frequencies at SNPs associated with CHC chain length. Finally, we observed rapid and predictable evolution of CHC profiles in experimental mesocosms in the field. Together, these data strongly suggest that CHC profiles respond rapidly and adaptively to environmental parameters that covary with latitude and season, and that this response reflects the process of local adaptation in natural populations of D. melanogaster.
Collapse
Affiliation(s)
- S Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - R Hanus
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - V Vrkoslav
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - E L Behrman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - A O Bergland
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - D Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - J Cvačka
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - P S Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Dias VS, Silva JG, Lima KM, Petitinga CSCD, Hernández-Ortiz V, Laumann RA, Paranhos BJ, Uramoto K, Zucchi RA, Joachim-Bravo IS. An integrative multidisciplinary approach to understanding cryptic divergence in Brazilian species of theAnastrepha fraterculuscomplex (Diptera: Tephritidae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12712] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Vanessa S. Dias
- Departamento de Biologia Geral; Instituto de Biologia; Universidade Federal da Bahia; Salvador Bahia Brazil
- Department of Entomology and Nematology; University of Florida; Gainesville FL USA
| | - Janisete G. Silva
- Departamento de Ciências Biológicas; Universidade Estadual de Santa Cruz; UESC; Rodovia Jorge Amado km 16 Ilhéus Bahia Brazil
| | - Katia M. Lima
- Departamento de Ciências Biológicas; Universidade Estadual de Santa Cruz; UESC; Rodovia Jorge Amado km 16 Ilhéus Bahia Brazil
| | | | - Vicente Hernández-Ortiz
- Instituto de Ecología; A.C. Red de Interacciones Multitróficas. Carretera antigua a Coatepec 351; El Haya 91060 Xalapa Veracruz México
| | - Raúl A. Laumann
- Embrapa Recursos Genéticos e Biotecnologia; Brasília DF Brazil
| | - Beatriz J. Paranhos
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA-Semiárido); BR 428 Zona Rural Petrolina Pernambuco Brazil
| | - Keiko Uramoto
- Escola Superior de Agricultura Luiz de Queiroz; ESALQ/USP; Piracicaba São Paulo Brazil
| | - Roberto A. Zucchi
- Escola Superior de Agricultura Luiz de Queiroz; ESALQ/USP; Piracicaba São Paulo Brazil
| | - Iara S. Joachim-Bravo
- Departamento de Biologia Geral; Instituto de Biologia; Universidade Federal da Bahia; Salvador Bahia Brazil
| |
Collapse
|
40
|
Dembeck LM, Böröczky K, Huang W, Schal C, Anholt RRH, Mackay TFC. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. eLife 2015; 4:e09861. [PMID: 26568309 PMCID: PMC4749392 DOI: 10.7554/elife.09861] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/12/2015] [Indexed: 12/24/2022] Open
Abstract
Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.
Collapse
Affiliation(s)
- Lauren M Dembeck
- Department of Biological Sciences, North Carolina State University, Raleigh, United States
- Genetics Program, North Carolina State University, Raleigh, United States
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, United States
| | - Katalin Böröczky
- Genetics Program, North Carolina State University, Raleigh, United States
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, United States
- Department of Entomology, North Carolina State University, Raleigh, United States
| | - Wen Huang
- Department of Biological Sciences, North Carolina State University, Raleigh, United States
- Genetics Program, North Carolina State University, Raleigh, United States
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, United States
| | - Coby Schal
- Genetics Program, North Carolina State University, Raleigh, United States
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, United States
- Department of Entomology, North Carolina State University, Raleigh, United States
| | - Robert R H Anholt
- Department of Biological Sciences, North Carolina State University, Raleigh, United States
- Genetics Program, North Carolina State University, Raleigh, United States
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, United States
| | - Trudy F C Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, United States
- Genetics Program, North Carolina State University, Raleigh, United States
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, United States
| |
Collapse
|
41
|
Denis B, Rouzic AL, Wicker-Thomas C. Hydrocarbon Patterns and Mating Behaviour in Populations of Drosophila yakuba. INSECTS 2015; 6:897-911. [PMID: 26516919 PMCID: PMC4693177 DOI: 10.3390/insects6040897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022]
Abstract
Drosophila yakuba is widespread in Africa. Here we compare the cuticular hydrocarbon (CHC) profiles and mating behavior of mainland (Kounden, Cameroon) and island (Mayotte, Sao-Tome, Bioko) populations. The strains each had different CHC profiles: Bioko and Kounden were the most similar, while Mayotte and Sao-Tome contained significant amounts of 7-heptacosene. The CHC profile of the Sao-Tome population differed the most, with half the 7-tricosene of the other populations and more 7-heptacosene and 7-nonacosene. We also studied the characteristics of the mating behavior of the four strains: copulation duration was similar but latency times were higher in Mayotte and Sao-Tome populations. We found partial reproductive isolation between populations, especially in male-choice experiments with Sao-Tome females.
Collapse
Affiliation(s)
- Béatrice Denis
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette F-91198, France.
| | - Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette F-91198, France.
| | - Claude Wicker-Thomas
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette F-91198, France.
| |
Collapse
|
42
|
Bontonou G, Wicker-Thomas C. Sexual Communication in the Drosophila Genus. INSECTS 2014; 5:439-58. [PMID: 26462693 PMCID: PMC4592592 DOI: 10.3390/insects5020439] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/20/2022]
Abstract
In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.
Collapse
Affiliation(s)
- Gwénaëlle Bontonou
- CNRS UPR 9034 and Université de Paris Sud, 91198 Gif sur Yvette, France.
| | | |
Collapse
|
43
|
Pischedda A, Shahandeh MP, Cochrane WG, Cochrane VA, Turner TL. Natural variation in the strength and direction of male mating preferences for female pheromones in Drosophila melanogaster. PLoS One 2014; 9:e87509. [PMID: 24489930 PMCID: PMC3905024 DOI: 10.1371/journal.pone.0087509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/28/2013] [Indexed: 11/18/2022] Open
Abstract
Many animal species communicate using chemical signals. In Drosophila, cuticular hydrocarbons (CHCs) are involved in species and sexual identification, and have long been thought to act as stimulatory pheromones as well. However, a previous study reported that D. melanogaster males were more attracted to females that were lacking CHCs. This surprising result is consistent with several evolutionary hypotheses but is at odds with other work demonstrating that female CHCs are attractive to males. Here, we investigated natural variation in male preferences for female pheromones using transgenic flies that cannot produce CHCs. By perfuming females with CHCs and performing mate choice tests, we found that some male genotypes prefer females with pheromones, some have no apparent preference, and at least one male genotype prefers females without pheromones. This variation provides an excellent opportunity to further investigate the mechanistic causes and evolutionary implications of divergent pheromone preferences in D. melanogaster males.
Collapse
Affiliation(s)
- Alison Pischedda
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| | - Michael P. Shahandeh
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Wesley G. Cochrane
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Veronica A. Cochrane
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Thomas L. Turner
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
44
|
Laturney M, Billeter JC. Neurogenetics of female reproductive behaviors in Drosophila melanogaster. ADVANCES IN GENETICS 2014; 85:1-108. [PMID: 24880733 DOI: 10.1016/b978-0-12-800271-1.00001-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We follow an adult Drosophila melanogaster female through the major reproductive decisions she makes during her lifetime, including habitat selection, precopulatory mate choice, postcopulatory physiological changes, polyandry, and egg-laying site selection. In the process, we review the molecular and neuronal mechanisms allowing females to integrate signals from both environmental and social sources to produce those behavioral outputs. We pay attention to how an understanding of D. melanogaster female reproductive behaviors contributes to a wider understanding of evolutionary processes such as pre- and postcopulatory sexual selection as well as sexual conflict. Within each section, we attempt to connect the theories that pertain to the evolution of female reproductive behaviors with the molecular and neurobiological data that support these theories. We draw attention to the fact that the evolutionary and mechanistic basis of female reproductive behaviors, even in a species as extensively studied as D. melanogaster, remains poorly understood.
Collapse
Affiliation(s)
- Meghan Laturney
- Behavioural Biology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Behavioural Biology, Centre for Behaviour and Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Bontonou G, Denis B, Wicker-Thomas C. Interaction between temperature and male pheromone in sexual isolation in Drosophila melanogaster. J Evol Biol 2013; 26:2008-20. [PMID: 23944628 PMCID: PMC4217391 DOI: 10.1111/jeb.12206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
In Drosophila, female hydrocarbons are known to be involved in premating isolation between different species and pheromonal races. The role of male-specific hydrocarbon polymorphism is not as well documented. The dominant cuticular hydrocarbon (CHC) in male D. melanogaster is usually 7-tricosene (7-T), with the exception of African populations, in which 7-pentacosene (7-P) is dominant. Here, we took advantage of a population from the Comoro Islands (Com), in which males fell on a continuum of low to high levels of 7-T, to perform temperature selection and selection on CHCs’ profiles. We conducted several experiments on the selected Com males to study the plasticity of their CHCs in response to temperature shift, their role in resistance to desiccation and in sexual selection. We then compared the results obtained for selected lines to those from three common laboratory strains with different and homogenous hydrocarbon profiles: CS, Cot and Tai. Temperature selection modified the CHC profiles of the Com males in few generations of selection. We showed that the 7-P/7-T ratio depends on temperature with generally more 7-P at higher temperatures and observed a relationship between chain length and resistance to desiccation in both temperature- and phenotypically selected Com lines. There was partial sexual isolation between the flies with clear-cut phenotypes within the phenotypically selected lines and the laboratory strains. These results indicate that the dominant male pheromones are under environmental selection and may have played a role in reproductive isolation.
Collapse
Affiliation(s)
- G Bontonou
- CNRS UPR 9034, Université de Paris Sud, Gif sur Yvette, France
| | | | | |
Collapse
|
46
|
Schwander T, Arbuthnott D, Gries R, Gries G, Nosil P, Crespi BJ. Hydrocarbon divergence and reproductive isolation in Timema stick insects. BMC Evol Biol 2013; 13:151. [PMID: 23855797 PMCID: PMC3728149 DOI: 10.1186/1471-2148-13-151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/12/2013] [Indexed: 01/06/2023] Open
Abstract
Background Individuals commonly prefer certain trait values over others when choosing their mates. If such preferences diverge between populations, they can generate behavioral reproductive isolation and thereby contribute to speciation. Reproductive isolation in insects often involves chemical communication, and cuticular hydrocarbons, in particular, serve as mate recognition signals in many species. We combined data on female cuticular hydrocarbons, interspecific mating propensity, and phylogenetics to evaluate the role of cuticular hydrocarbons in diversification of Timema walking-sticks. Results Hydrocarbon profiles differed substantially among the nine analyzed species, as well as between partially reproductively-isolated T. cristinae populations adapted to different host plants. In no-choice trials, mating was more likely between species with similar than divergent hydrocarbon profiles, even after correcting for genetic divergences. The macroevolution of hydrocarbon profiles, along a Timema species phylogeny, fits best with a punctuated model of phenotypic change concentrated around speciation events, consistent with change driven by selection during the evolution of reproductive isolation. Conclusion Altogether, our data indicate that cuticular hydrocarbon profiles vary among Timema species and populations, and that most evolutionary change in hydrocarbon profiles occurs in association with speciation events. Similarities in hydrocarbon profiles between species are correlated with interspecific mating propensities, suggesting a role for cuticular hydrocarbon profiles in mate choice and speciation in the genus Timema.
Collapse
Affiliation(s)
- Tanja Schwander
- Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Fan P, Manoli DS, Ahmed OM, Chen Y, Agarwal N, Kwong S, Cai AG, Neitz J, Renslo A, Baker BS, Shah NM. Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 2013; 154:89-102. [PMID: 23810192 PMCID: PMC3823234 DOI: 10.1016/j.cell.2013.06.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 04/12/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022]
Abstract
Genetically hard-wired neural mechanisms must enforce behavioral reproductive isolation because interspecies courtship is rare even in sexually naïve animals of most species. We find that the chemoreceptor Gr32a inhibits male D. melanogaster from courting diverse fruit fly species. Gr32a recognizes nonvolatile aversive cues present on these reproductively dead-end targets, and activity of Gr32a neurons is necessary and sufficient to inhibit interspecies courtship. Male-specific Fruitless (Fru(M)), a master regulator of courtship, also inhibits interspecies courtship. Gr32a and Fru(M) are not coexpressed, but Fru(M) neurons contact Gr32a neurons, suggesting that these genes influence a shared neural circuit that inhibits interspecies courtship. Gr32a and Fru(M) also suppress within-species intermale courtship, but we show that distinct mechanisms preclude sexual displays toward conspecific males and other species. Although this chemosensory pathway does not inhibit interspecies mating in D. melanogaster females, similar mechanisms appear to inhibit this behavior in many other male drosophilids.
Collapse
Affiliation(s)
- Pu Fan
- State Key Laboratory of Biomembrane and Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Devanand S. Manoli
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Dept. of Psychiatry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Osama M. Ahmed
- Neuroscience Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yi Chen
- Dept. of Biological Chemistry, HHMI, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Neha Agarwal
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sara Kwong
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Allen G. Cai
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Neitz
- Small Molecule Discovery Center, Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam Renslo
- Small Molecule Discovery Center, Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bruce S. Baker
- Janelia Farm Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Nirao M. Shah
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Neuroscience Program, University of California San Francisco, San Francisco, CA 94158, USA
- Correspondence:
| |
Collapse
|
48
|
Kim YK, Phillips DR, Tao Y. Evidence for no sexual isolation between Drosophila albomicans and D. nasuta. Ecol Evol 2013; 3:2061-74. [PMID: 23919152 PMCID: PMC3728947 DOI: 10.1002/ece3.619] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/22/2013] [Accepted: 05/01/2013] [Indexed: 11/26/2022] Open
Abstract
Sexual isolation, the reduced tendency to mate, is one of the reproductive barriers that prevent gene flow between different species. Various species-specific signals during courtship contribute to sexual isolation between species. Drosophila albomicans and D. nasuta are closely related species of the nasuta subgroup within the Drosophila immigrans group and are distributed in allopatry. We analyzed mating behavior and courtship as well as cuticular hydrocarbon profiles within and between species. Here, we report that these two species randomly mated with each other. We did not observe any sexual isolation between species or between strains within species by multiple-choice tests. Significant difference in the courtship index was detected between these two species, but males and females of both species showed no discrimination against heterospecific partners. Significant quantitative variations in cuticular hydrocarbons between these two species were also found, but the cuticular hydrocarbons appear to play a negligible role in both courtship and sexual isolation between these two species. In contrast to the evident postzygotic isolation, the lack of sexual isolation between these two species suggests that the evolution of premating isolation may lag behind that of the intergenomic incompatibility, which might be driven by intragenomic conflicts.
Collapse
Affiliation(s)
- Yong-Kyu Kim
- Department of Biology, Emory University Atlanta, Georgia, 30322 ; Howard Hughes Medical Institute, Janelia Farm Research Campus 19700 Helix Drive, Ashburn, Virginia, 20147
| | | | | |
Collapse
|
49
|
Abstracts of Neurofly 2012. September 3-7, 2012. Padua, Italy. J Neurogenet 2012; 26 Suppl 1:1-88. [PMID: 23163745 DOI: 10.3109/01677063.2012.741306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Bontonou G, Denis B, Wicker-Thomas C. Male pheromone polymorphism and reproductive isolation in populations of Drosophila simulans. Ecol Evol 2012; 2:2527-36. [PMID: 23145337 PMCID: PMC3492778 DOI: 10.1002/ece3.342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 11/11/2022] Open
Abstract
The dominant cuticular hydrocarbons (HC) in Drosophila simulans are 7-tricosene (7-T) and 7-pentacosene (7-P). The 7-T is the major HC in East Africa and in other continents. In West Africa, D. simulans is very rare and displays 7-P as the major compound. We studied three D. simulans strains from Egypt (Eg), Sao-Tome (ST), and Cameroon (Cam), with 7-T, intermediary or 7-P phenotypes. HC profiles of ST and Cam female differed slightly from corresponding male profiles; females had more 7-T and less 7-P. Varying temperature affected all HCs (even those with 27 and 29 carbons)-not just 7-T and 7-P; there was no clear relationship between HC phenotype and resistance to desiccation. We report reproductive isolation between Eg and ST and Eg and Cam (but not between ST and Cam), which is due to Eg and Cam female preferences for their own males. In conclusion, our findings do support divergence of D. simulans populations from West Africa for both pheromonal profile and mating preference.
Collapse
|