1
|
Sano M, Hirosawa T, Yoshimura Y, Hasegawa C, An KM, Tanaka S, Yaoi K, Naitou N, Kikuchi M. Neural responses to syllable-induced P1m and social impairment in children with autism spectrum disorder and typically developing Peers. PLoS One 2024; 19:e0298020. [PMID: 38457397 PMCID: PMC10923473 DOI: 10.1371/journal.pone.0298020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/17/2024] [Indexed: 03/10/2024] Open
Abstract
In previous magnetoencephalography (MEG) studies, children with autism spectrum disorder (ASD) have been shown to respond differently to speech stimuli than typically developing (TD) children. Quantitative evaluation of this difference in responsiveness may support early diagnosis and intervention for ASD. The objective of this research is to investigate the relationship between syllable-induced P1m and social impairment in children with ASD and TD children. We analyzed 49 children with ASD aged 40-92 months and age-matched 26 TD children. We evaluated their social impairment by means of the Social Responsiveness Scale (SRS) and their intelligence ability using the Kaufman Assessment Battery for Children (K-ABC). Multiple regression analysis with SRS score as the dependent variable and syllable-induced P1m latency or intensity and intelligence ability as explanatory variables revealed that SRS score was associated with syllable-induced P1m latency in the left hemisphere only in the TD group and not in the ASD group. A second finding was that increased leftward-lateralization of intensity was correlated with higher SRS scores only in the ASD group. These results provide valuable insights but also highlight the intricate nature of neural mechanisms and their relationship with autistic traits.
Collapse
Affiliation(s)
- Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kyung-Min An
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Nobushige Naitou
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Ostrolenk A, Courchesne V, Mottron L. A longitudinal study on language acquisition in monozygotic twins concordant for autism and hyperlexia. Brain Cogn 2023; 173:106099. [PMID: 37839243 DOI: 10.1016/j.bandc.2023.106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Hyperlexia, a strong orientation towards written materials, along with a discrepancy between the precocious acquisition of decoding skills and weaker comprehension abilities, characterizes up to 20% of autistic children. Sometimes perceived as an obstacle to oral language acquisition, hyperlexia may alternatively be the first step in a non-social pathway of language acquisition in autism. METHOD We describe two monozygotic twin brothers, both autistic and hyperlexic, from the ages of 4 to 8 years old. Following an in-depth diagnostic assessment, we investigated cross-sectionally and longitudinally their verbal and non-verbal cognitive abilities, language, reading and writing skills, interests, and strengths. RESULTS The twins' features, including their high non-verbal level of intelligence, their special interests, and their skills in various domains, were highly similar. Their language consisted exclusively of letters and numbers until their fourth year. After that, their vocabulary broadened until they developed full sentences, and their perception-related interests expanded and merged over time to serve the development of other skills. CONCLUSION Our results show that hyperlexic skills can be harnessed to favor oral language development. Given the strong concordance between the twins' cognitive and behavioral phenotypes, we discuss the environmental and genetic influence that could explain their abilities.
Collapse
Affiliation(s)
- Alexia Ostrolenk
- Département de Psychiatrie et d'Addictologie, Université de Montréal, H3T 1J4 Québec, Canada; Montreal Autism Research Group, CIUSSS du Nord-de-l'île-de-Montréal, 7070 boulevard Perras, Montreal, QC H1E 1A4, Canada
| | - Valérie Courchesne
- Montreal Autism Research Group, CIUSSS du Nord-de-l'île-de-Montréal, 7070 boulevard Perras, Montreal, QC H1E 1A4, Canada; Centre for Addiction and Mental Health (CAMH), 80 Workman Way, Toronto, ON M6J 1H4, Canada
| | - Laurent Mottron
- Département de Psychiatrie et d'Addictologie, Université de Montréal, H3T 1J4 Québec, Canada; Montreal Autism Research Group, CIUSSS du Nord-de-l'île-de-Montréal, 7070 boulevard Perras, Montreal, QC H1E 1A4, Canada.
| |
Collapse
|
3
|
Zheng J, Shao L, Yan Z, Lai X, Duan F. Study subnetwork developing pattern of autism children by non-negative matrix factorization. Comput Biol Med 2023; 158:106816. [PMID: 37003070 DOI: 10.1016/j.compbiomed.2023.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND As a developmental disorder, the brain networks of autism children show abnormal patterns compared with that of typically developing. The differences between them are not stable due to the developing progress of children. It has become a choice to study the differences of developing trajectories between autistic and typically developing children by investigating the change of each group respectively. Related researches studied the developing of brain network by analyzing the relationship between network indices of the entire or sub brain networks and the cognitive developing scores. METHODS As a matrix decomposition algorithm, non-negative matrix factorization (NMF) was applied to decompose the association matrices of brain networks. By NMF, we can obtain subnetworks in an unsupervised way. The association matrices of autism and control children were estimated by their magnetoencephalography data. NMF was applied to decompose the matrices to obtain common subnetworks of both groups. Then we calculated the expression of each subnetwork in each child's brain network by two indices, energy and entropy. The relationship between the expression and the cognitive and development indices were investigated. RESULTS We found a subnetwork with left lateralization pattern in α band showed different expression tendency in two groups. The expression indices of two groups were correlated with cognitive indices in autism and control group in an opposite way. In γ band, a subnetwork with strong connections on right hemisphere of brain showed a negative correlation between the expression indices and development indices in autism group. CONCLUSION NMF algorithm can effectively decompose brain network to meaningful subnetworks. The finding of α band subnetworks confirms the results of abnormal lateralization of autistic children mentioned in relevant studies. We assume the results of decrease of expression of the subnetwork may relate to the dysfunction of mirror neuron. The decrease expression of γ subnetwork of autism may be related to the weaken process of high-frequency neurons in the neurotrophic competition.
Collapse
Affiliation(s)
- JinLin Zheng
- College of Information Science and Engineering, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - LiCheng Shao
- College of Information Science and Engineering, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Zheng Yan
- College of Information Science and Engineering, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - XiaoFei Lai
- College of Information Science and Engineering, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Fang Duan
- College of Information Science and Engineering, Huaqiao University, 668 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
4
|
Barik K, Watanabe K, Bhattacharya J, Saha G. Functional connectivity based machine learning approach for autism detection in young children using MEG signals. J Neural Eng 2023; 20. [PMID: 36812588 DOI: 10.1088/1741-2552/acbe1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Objective.Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, and identifying early autism biomarkers plays a vital role in improving detection and subsequent life outcomes. This study aims to reveal hidden biomarkers in the patterns of functional brain connectivity as recorded by the neuro-magnetic brain responses in children with ASD.Approach.We recorded resting-state magnetoencephalogram signals from thirty children with ASD (4-7 years) and thirty age and gender-matched typically developing (TD) children. We used a complex coherency-based functional connectivity analysis to understand the interactions between different brain regions of the neural system. The work characterizes the large-scale neural activity at different brain oscillations using functional connectivity analysis and assesses the classification performance of coherence-based (COH) measures for autism detection in young children. A comparative study has also been carried out on COH-based connectivity networks both region-wise and sensor-wise to understand frequency-band-specific connectivity patterns and their connections with autism symptomatology. We used artificial neural network (ANN) and support vector machine (SVM) classifiers in the machine learning framework with a five-fold CV technique.Main results.To classify ASD from TD children, the COH connectivity feature yields the highest classification accuracy of 91.66% in the high gamma (50-100 Hz) frequency band. In region-wise connectivity analysis, the second highest performance is in the delta band (1-4 Hz) after the gamma band. Combining the delta and gamma band features, we achieved a classification accuracy of 95.03% and 93.33% in the ANN and SVM classifiers, respectively. Using classification performance metrics and further statistical analysis, we show that ASD children demonstrate significant hyperconnectivity.Significance.Our findings support the weak central coherency theory in autism detection. Further, despite its lower complexity, we show that region-wise COH analysis outperforms the sensor-wise connectivity analysis. Altogether, these results demonstrate the functional brain connectivity patterns as an appropriate biomarker of autism in young children.
Collapse
Affiliation(s)
- Kasturi Barik
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Joydeep Bhattacharya
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Goutam Saha
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
5
|
Yoshimura Y, Hasegawa C, Tanaka S, Ikeda T, Yaoi K, Iwasaki S, An K, Kikuchi M. Altered sensory integration from body and language development in children with autism spectrum disorder. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e64. [PMID: 38868651 PMCID: PMC11114361 DOI: 10.1002/pcn5.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/30/2022] [Accepted: 11/19/2022] [Indexed: 06/14/2024]
Abstract
Aim Although atypical sensory motor processing has been investigated in children with autism spectrum disorder (ASD), whether or not atypical sensory motor processing is related to altered language function in children with ASD remains unclear. Methods This study examined the relationship between sensory motor processing and language conceptual inference ability in 3-10-year-old children with (n = 61) and without (n = 114) ASD. Language performance was assessed using the language conceptual inference task of the Kaufman Assessment Battery for Children (K-ABC). Sensory processing was assessed using the Caregiver Sensory Profile. Results In children with ASD, altered processing of the fine motor/perceptual factor scored by sensory profile was found to be significantly related to language conceptual inference ability in the K-ABC, representing the integrated abilities of language comprehension and language expression, which reflect language semantic concept formation. Conclusions For children with ASD, the results suggest a relationship between difficulties of integrating sensory information perceived from the body adjusting fine movement and deficiencies of language semantic conceptual formation.
Collapse
Affiliation(s)
- Yuko Yoshimura
- Institute of Human and Social SciencesKanazawa UniversityKanazawaJapan
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
| | - Chiaki Hasegawa
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- Japan Society for the Promotion of ScienceChiyoda‐kuTokyoJapan
- Department of Cognitive ScienceMacquarie UniversitySydneyAustralia
| | - Sanae Tanaka
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
| | - Takashi Ikeda
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
| | - Ken Yaoi
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
| | - Sumie Iwasaki
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
| | - Kyung‐min An
- School of PsychologyUniversity of BirminghamBirminghamUK
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| | - Mitsuru Kikuchi
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
- Department of Psychiatry and Neurobiology, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
| |
Collapse
|
6
|
Sano M, Hirosawa T, Kikuchi M, Hasegawa C, Tanaka S, Yoshimura Y. Relation between acquisition of lexical concept and joint attention in children with autism spectrum disorder without severe intellectual disability. PLoS One 2022; 17:e0266953. [PMID: 35421165 PMCID: PMC9009620 DOI: 10.1371/journal.pone.0266953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
In children with autism spectrum disorder (ASD), impairment of joint attention and language function are observed frequently from early childhood. Earlier reports have described these two phenomena as mutually related. For this study, developing past research, the relation between joint attention and the ability of conceptual inference is examined in 113 Japanese children (67.9 months mean age, 75% male) with ASD. We calculated Pearson’s correlation coefficients between their Joint attention abnormality evaluated by ADOS-2 and “Riddle” subscale in K-ABC, then they are negatively correlated: r (104) = -.285. A larger abnormality of joint attention is associated with a lower ability of conceptual inference. New findings were obtained indicating that, in children of this age group with ASD, the degree of joint attention impairment is correlated negatively with conceptual inference ability, but not with expressive and receptive language abilities. Consideration of the mechanism of this relation is presented in this report.
Collapse
Affiliation(s)
- Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
7
|
Ogawa R, Kagitani-Shimono K, Matsuzaki J, Tanigawa J, Hanaie R, Yamamoto T, Tominaga K, Hirata M, Mohri I, Taniike M. Abnormal cortical activation during silent reading in adolescents with autism spectrum disorder. Brain Dev 2019; 41:234-244. [PMID: 30448302 DOI: 10.1016/j.braindev.2018.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/15/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a developmental disorder characterized by communication deficits and social difficulties, and individuals with ASD frequently exhibit varied levels of language abilities. However, the neurophysiological mechanisms underlying their language deficits remain unclear. To gain insight into the neurophysiological mechanisms of receptive language deficits, we assessed cortical activation patterns in adolescents with ASD during silent word-reading. METHODS We used magnetoencephalography to measure cortical activation during a silent word-reading task in 14 adolescent boys with high-functioning ASD and 17 adolescent boys with typical development (TD). RESULTS Compared with participants with TD, those with ASD exhibited significantly decreased cortical activation in the left middle temporal gyrus, left temporoparietal junction, bilateral superior temporal gyrus, left posterior insula, and right occipitotemporal gyrus, and increased activation in the right anterior insula. Participants with ASD also exhibited a lack of left-lateralization in the central sulcus and abnormal right-lateralization in the anterior insula area. Furthermore, in participants with ASD, we found that abnormal activation of the right central sulcus correlated significantly with lower visual word comprehension scores, and that decreased activation of the right anterior insula correlated significantly with the severity of social interaction difficulties. CONCLUSION Our findings suggest that atypical cortical activation and lateralization in the temporal-frontal area, which is associated with higher-order language processing functions, such as semantic analysis, may play a crucial role in visual word comprehension and social interaction difficulties in adolescents with ASD.
Collapse
Affiliation(s)
- Rei Ogawa
- United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Junko Matsuzaki
- United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junpei Tanigawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuzo Hanaie
- United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tomoka Yamamoto
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Tominaga
- United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ikuko Mohri
- United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masako Taniike
- United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Lopatina OL, Komleva YK, Gorina YV, Higashida H, Salmina AB. Neurobiological Aspects of Face Recognition: The Role of Oxytocin. Front Behav Neurosci 2018; 12:195. [PMID: 30210321 PMCID: PMC6121008 DOI: 10.3389/fnbeh.2018.00195] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022] Open
Abstract
Face recognition is an important index in the formation of social cognition and neurodevelopment in humans. Changes in face perception and memory are connected with altered sociability, which is a symptom of numerous brain conditions including autism spectrum disorder (ASD). Various brain regions and neuropeptides are implicated in face processing. The neuropeptide oxytocin (OT) plays an important role in various social behaviors, including face and emotion recognition. Nasal OT administration is a promising new therapy that can address social cognition deficits in individuals with ASD. New instrumental neurotechnologies enable the assessment of brain region activation during specific social tasks and therapies, and can characterize the involvement of genes and peptides in impaired neurodevelopment. The present review sought to discuss some of the mechanisms of the face distinguishing process, the ability of OT to modulate social cognition, as well as new perspectives and technologies for research and rehabilitation of face recognition.
Collapse
Affiliation(s)
- Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yulia K Komleva
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yana V Gorina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Haruhiro Higashida
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.,Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Magnetoencephalography: Clinical and Research Practices. Brain Sci 2018; 8:brainsci8080157. [PMID: 30126121 PMCID: PMC6120049 DOI: 10.3390/brainsci8080157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 11/25/2022] Open
Abstract
Magnetoencephalography (MEG) is a neurophysiological technique that detects the magnetic fields associated with brain activity. Synthetic aperture magnetometry (SAM), a MEG magnetic source imaging technique, can be used to construct both detailed maps of global brain activity as well as virtual electrode signals, which provide information that is similar to invasive electrode recordings. This innovative approach has demonstrated utility in both clinical and research settings. For individuals with epilepsy, MEG provides valuable, nonredundant information. MEG accurately localizes the irritative zone associated with interictal spikes, often detecting epileptiform activity other methods cannot, and may give localizing information when other methods fail. These capabilities potentially greatly increase the population eligible for epilepsy surgery and improve planning for those undergoing surgery. MEG methods can be readily adapted to research settings, allowing noninvasive assessment of whole brain neurophysiological activity, with a theoretical spatial range down to submillimeter voxels, and in both humans and nonhuman primates. The combination of clinical and research activities with MEG offers a unique opportunity to advance translational research from bench to bedside and back.
Collapse
|
10
|
Picci G, Gotts SJ, Scherf KS. A theoretical rut: revisiting and critically evaluating the generalized under/over-connectivity hypothesis of autism. Dev Sci 2018; 19:524-49. [PMID: 27412228 DOI: 10.1111/desc.12467] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/28/2016] [Indexed: 11/29/2022]
Abstract
In 2004, two papers proposed that pervasive functional under-connectivity (Just et al., ) or a trade-off between excessive local connectivity at the cost of distal under-connectivity (Belmonte et al., ) characterizes atypical brain organization in autism. Here, we take stock of the most recent and rigorous functional and structural connectivity findings with a careful eye toward evaluating the extent to which they support these original hypotheses. Indeed, the empirical data do not support them. From rsfMRI studies in adolescents and adults, there is an emerging consensus regarding long-range functional connections indicating cortico-cortical under-connectivity, specifically involving the temporal lobes, combined with subcortical-cortical over-connectivity. In contrast, there is little to no consensus regarding local functional connectivity or findings from task-based functional connectivity studies. The structural connectivity data suggest that white matter tracts are pervasively weak, particularly in the temporal lobe. Together, these findings are revealing how deeply complex the story is regarding atypical neural network organization in autism. In other words, distance and strength of connectivity as individual factors or as interacting factors do not consistently explain the patterns of atypical neural connectivity in autism. Therefore, we make several methodological recommendations and highlight developmental considerations that will help researchers in the field cultivate new hypotheses about the nature and mechanisms of potentially aberrant functional and structural connectivity in autism.
Collapse
Affiliation(s)
- Giorgia Picci
- Department of Psychology, Pennsylvania State University, USA
| | - Stephen J Gotts
- Department of Psychology, Pennsylvania State University, USA
| | | |
Collapse
|
11
|
Pillai AS, McAuliffe D, Lakshmanan BM, Mostofsky SH, Crone NE, Ewen JB. Altered task-related modulation of long-range connectivity in children with autism. Autism Res 2018; 11:245-257. [PMID: 28898569 PMCID: PMC5825245 DOI: 10.1002/aur.1858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 11/07/2022]
Abstract
Functional connectivity differences between children with autism spectrum disorder (ASD) and typically developing children have been described in multiple datasets. However, few studies examine the task-related changes in connectivity in disorder-relevant behavioral paradigms. In this paper, we examined the task-related changes in functional connectivity using EEG and a movement-based paradigm that has behavioral relevance to ASD. Resting-state studies motivated our hypothesis that children with ASD would show a decreased magnitude of functional connectivity during the performance of a motor-control task. Contrary to our initial hypothesis, however, we observed that task-related modulation of functional connectivity in children with ASD was in the direction opposite to that of TDs. The task-related connectivity changes were correlated with clinical symptom scores. Our results suggest that children with ASD may have differences in cortical segregation/integration during the performance of a task, and that part of the differences in connectivity modulation may serve as a compensatory mechanism. Autism Res 2018, 11: 245-257. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Decreased connectivity between brain regions is thought to cause the symptoms of autism. Because most of our knowledge comes from data in which children are at rest, we do not know how connectivity changes directly lead to autistic behaviors, such as impaired gestures. When typically developing children produced complex movements, connectivity decreased between brain regions. In children with autism, connectivity increased. It may be that behavior-related changes in brain connectivity are more important than absolute differences in connectivity in autism.
Collapse
Affiliation(s)
- Ajay S Pillai
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Danielle McAuliffe
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD
| | - Balaji M Lakshmanan
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD
| | - Stewart H Mostofsky
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
12
|
Detection of atypical network development patterns in children with autism spectrum disorder using magnetoencephalography. PLoS One 2017; 12:e0184422. [PMID: 28886147 PMCID: PMC5590936 DOI: 10.1371/journal.pone.0184422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that involves developmental delays. It has been hypothesized that aberrant neural connectivity in ASD may cause atypical brain network development. Brain graphs not only describe the differences in brain networks between clinical and control groups, but also provide information about network development within each group. In the present study, graph indices of brain networks were estimated in children with ASD and in typically developing (TD) children using magnetoencephalography performed while the children viewed a cartoon video. We examined brain graphs from a developmental point of view, and compared the networks between children with ASD and TD children. Network development patterns (NDPs) were assessed by examining the association between the graph indices and the raw scores on the achievement scale or the age of the children. The ASD and TD groups exhibited different NDPs at both network and nodal levels. In the left frontal areas, the nodal degree and efficiency of the ASD group were negatively correlated with the achievement scores. Reduced network connections were observed in the temporal and posterior areas of TD children. These results suggested that the atypical network developmental trajectory in children with ASD is associated with the development score rather than age.
Collapse
|
13
|
Riaz B, Pfeiffer C, Schneiderman JF. Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps. Sci Rep 2017; 7:6974. [PMID: 28765594 PMCID: PMC5539206 DOI: 10.1038/s41598-017-07046-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023] Open
Abstract
While commercial magnetoencephalography (MEG) systems are the functional neuroimaging state-of-the-art in terms of spatio-temporal resolution, MEG sensors have not changed significantly since the 1990s. Interest in newer sensors that operate at less extreme temperatures, e.g., high critical temperature (high-T c) SQUIDs, optically-pumped magnetometers, etc., is growing because they enable significant reductions in head-to-sensor standoff (on-scalp MEG). Various metrics quantify the advantages of on-scalp MEG, but a single straightforward one is lacking. Previous works have furthermore been limited to arbitrary and/or unrealistic sensor layouts. We introduce spatial information density (SID) maps for quantitative and qualitative evaluations of sensor arrays. SID-maps present the spatial distribution of information a sensor array extracts from a source space while accounting for relevant source and sensor parameters. We use it in a systematic comparison of three practical on-scalp MEG sensor array layouts (based on high-T c SQUIDs) and the standard Elekta Neuromag TRIUX magnetometer array. Results strengthen the case for on-scalp and specifically high-T c SQUID-based MEG while providing a path for the practical design of future MEG systems. SID-maps are furthermore general to arbitrary magnetic sensor technologies and source spaces and can thus be used for design and evaluation of sensor arrays for magnetocardiography, magnetic particle imaging, etc.
Collapse
Affiliation(s)
- Bushra Riaz
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy and University of Gothenburg, Gothenburg, Sweden
| | - Christoph Pfeiffer
- Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, Gothenburg, Sweden
| | - Justin F Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy and University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
14
|
Ostrolenk A, Forgeot d’Arc B, Jelenic P, Samson F, Mottron L. Hyperlexia: Systematic review, neurocognitive modelling, and outcome. Neurosci Biobehav Rev 2017; 79:134-149. [DOI: 10.1016/j.neubiorev.2017.04.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/04/2017] [Accepted: 04/30/2017] [Indexed: 01/01/2023]
|
15
|
O’Reilly C, Lewis JD, Elsabbagh M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS One 2017; 12:e0175870. [PMID: 28467487 PMCID: PMC5414938 DOI: 10.1371/journal.pone.0175870] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/31/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although it is well recognized that autism is associated with altered patterns of over- and under-connectivity, specifics are still a matter of debate. Little has been done so far to synthesize available literature using whole-brain electroencephalography (EEG) and magnetoencephalography (MEG) recordings. OBJECTIVES 1) To systematically review the literature on EEG/MEG functional and effective connectivity in autism spectrum disorder (ASD), 2) to synthesize and critically appraise findings related with the hypothesis that ASD is characterized by long-range underconnectivity and local overconnectivity, and 3) to provide, based on the literature, an analysis of tentative factors that are likely to mediate association between ASD and atypical connectivity (e.g., development, topography, lateralization). METHODS Literature reviews were done using PubMed and PsychInfo databases. Abstracts were screened, and only relevant articles were analyzed based on the objectives of this paper. Special attention was paid to the methodological characteristics that could have created variability in outcomes reported between studies. RESULTS Our synthesis provides relatively strong support for long-range underconnectivity in ASD, whereas the status of local connectivity remains unclear. This observation was also mirrored by a similar relationship with lower frequencies being often associated with underconnectivity and higher frequencies being associated with both under- and over-connectivity. Putting together these observations, we propose that ASD is characterized by a general trend toward an under-expression of lower-band wide-spread integrative processes compensated by more focal, higher-frequency, locally specialized, and segregated processes. Further investigation is, however, needed to corroborate the conclusion and its generalizability across different tasks. Of note, abnormal lateralization in ASD, specifically an elevated left-over-right EEG and MEG functional connectivity ratio, has been also reported consistently across studies. CONCLUSIONS The large variability in study samples and methodology makes a systematic quantitative analysis (i.e. meta-analysis) of this body of research impossible. Nevertheless, a general trend supporting the hypothesis of long-range functional underconnectivity can be observed. Further research is necessary to more confidently determine the status of the hypothesis of short-range overconnectivity. Frequency-band specific patterns and their relationships with known symptoms of autism also need to be further clarified.
Collapse
Affiliation(s)
- Christian O’Reilly
- Douglas Mental Health University Institute, 6875 Boulevard Lasalle, Verdun, Canada
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, QC, Canada
| | - John D. Lewis
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, Canada
| | - Mayada Elsabbagh
- Douglas Mental Health University Institute, 6875 Boulevard Lasalle, Verdun, Canada
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, QC, Canada
| |
Collapse
|
16
|
Hasegawa C, Ikeda T, Yoshimura Y, Hiraishi H, Takahashi T, Furutani N, Hayashi N, Minabe Y, Hirata M, Asada M, Kikuchi M. Mu rhythm suppression reflects mother-child face-to-face interactions: a pilot study with simultaneous MEG recording. Sci Rep 2016; 6:34977. [PMID: 27721481 PMCID: PMC5056356 DOI: 10.1038/srep34977] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/21/2016] [Indexed: 11/09/2022] Open
Abstract
Spontaneous face-to-face interactions between mothers and their children play crucial roles in the development of social minds; however, these inter-brain dynamics are still unclear. In this pilot study, we measured MEG mu suppression during face-to-face spontaneous non-linguistic interactions between mothers and their children with autism spectrum disorder (ASD) using the MEG hyperscanning system (i.e., simultaneous recording). The results demonstrated significant correlations between the index of mu suppression (IMS) in the right precentral area and the traits (or severity) of ASD in 13 mothers and 8 children (MEG data from 5 of the children could not be obtained due to motion noise). In addition, higher IMS values (i.e., strong mu suppression) in mothers were associated with higher IMS values in their children. To evaluate the behavioral contingency between mothers and their children, we calculated cross correlations between the magnitude of the mother and child head-motion during MEG recordings. As a result, in mothers whose head motions tended to follow her child's head motion, the magnitudes of mu suppression in the mother's precentral area were large. Further studies with larger sample sizes, including typically developing children, are necessary to generalize this result to typical interactions between mothers and their children.
Collapse
Affiliation(s)
- Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Takashi Ikeda
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.,Department of Neurosurgery, Osaka University Medical School, Suita, 565-0871, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Naoki Furutani
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Norio Hayashi
- School of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, 371-0052, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, Suita, 565-0871, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
17
|
Takesaki N, Kikuchi M, Yoshimura Y, Hiraishi H, Hasegawa C, Kaneda R, Nakatani H, Takahashi T, Mottron L, Minabe Y. The Contribution of Increased Gamma Band Connectivity to Visual Non-Verbal Reasoning in Autistic Children: A MEG Study. PLoS One 2016; 11:e0163133. [PMID: 27631982 PMCID: PMC5025179 DOI: 10.1371/journal.pone.0163133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/03/2016] [Indexed: 12/12/2022] Open
Abstract
Some individuals with autism spectrum (AS) perform better on visual reasoning tasks than would be predicted by their general cognitive performance. In individuals with AS, mechanisms in the brain’s visual area that underlie visual processing play a more prominent role in visual reasoning tasks than they do in normal individuals. In addition, increased connectivity with the visual area is thought to be one of the neural bases of autistic visual cognitive abilities. However, the contribution of such brain connectivity to visual cognitive abilities is not well understood, particularly in children. In this study, we investigated how functional connectivity between the visual areas and higher-order regions, which is reflected by alpha, beta and gamma band oscillations, contributes to the performance of visual reasoning tasks in typically developing (TD) (n = 18) children and AS children (n = 18). Brain activity was measured using a custom child-sized magneto-encephalograph. Imaginary coherence analysis was used as a proxy to estimate the functional connectivity between the occipital and other areas of the brain. Stronger connectivity from the occipital area, as evidenced by higher imaginary coherence in the gamma band, was associated with higher performance in the AS children only. We observed no significant correlation between the alpha or beta bands imaginary coherence and performance in the both groups. Alpha and beta bands reflect top-down pathways, while gamma band oscillations reflect a bottom-up influence. Therefore, our results suggest that visual reasoning in AS children is at least partially based on an enhanced reliance on visual perception and increased bottom-up connectivity from the visual areas.
Collapse
Affiliation(s)
- Natsumi Takesaki
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
- * E-mail:
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Reizo Kaneda
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Hideo Nakatani
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Tetsuya Takahashi
- Health Administration Center, University of Fukui, Matsuokashimoaizuki, 910–1193, Japan
| | - Laurent Mottron
- University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Quebec, Canada
| | - Yoshio Minabe
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| |
Collapse
|
18
|
Atypical Bilateral Brain Synchronization in the Early Stage of Human Voice Auditory Processing in Young Children with Autism. PLoS One 2016; 11:e0153077. [PMID: 27074011 PMCID: PMC4830448 DOI: 10.1371/journal.pone.0153077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) has been postulated to involve impaired neuronal cooperation in large-scale neural networks, including cortico-cortical interhemispheric circuitry. In the context of ASD, alterations in both peripheral and central auditory processes have also attracted a great deal of interest because these changes appear to represent pathophysiological processes; therefore, many prior studies have focused on atypical auditory responses in ASD. The auditory evoked field (AEF), recorded by magnetoencephalography, and the synchronization of these processes between right and left hemispheres was recently suggested to reflect various cognitive abilities in children. However, to date, no previous study has focused on AEF synchronization in ASD subjects. To assess global coordination across spatially distributed brain regions, the analysis of Omega complexity from multichannel neurophysiological data was proposed. Using Omega complexity analysis, we investigated the global coordination of AEFs in 3–8-year-old typically developing (TD) children (n = 50) and children with ASD (n = 50) in 50-ms time-windows. Children with ASD displayed significantly higher Omega complexities compared with TD children in the time-window of 0–50 ms, suggesting lower whole brain synchronization in the early stage of the P1m component. When we analyzed the left and right hemispheres separately, no significant differences in any time-windows were observed. These results suggest lower right-left hemispheric synchronization in children with ASD compared with TD children. Our study provides new evidence of aberrant neural synchronization in young children with ASD by investigating auditory evoked neural responses to the human voice.
Collapse
|
19
|
Kikuchi M, Yoshimura Y, Mutou K, Minabe Y. Magnetoencephalography in the study of children with autism spectrum disorder. Psychiatry Clin Neurosci 2016; 70:74-88. [PMID: 26256564 DOI: 10.1111/pcn.12338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 12/29/2022]
Abstract
Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that provides a measure of cortical neural activity on a millisecond timescale with high spatial resolution. MEG has been clinically applied to various neurological diseases, including epilepsy and cognitive dysfunction. In the past decade, MEG has also emerged as an important investigatory tool in neurodevelopmental studies. It is therefore an opportune time to review how MEG is able to contribute to the study of atypical brain development. We limit this review to autism spectrum disorder (ASD). The relevant published work for children was accessed using PubMed on 5 January 2015. Case reports, case series, and papers on epilepsy were excluded. Owing to their accurate separation of brain activity in the right and left hemispheres and the higher accuracy of source localization, MEG studies have added new information related to auditory-evoked brain responses to findings from previous electroencephalography studies of children with ASD. In addition, evidence of atypical brain connectivity in children with ASD has accumulated over the past decade. MEG is well suited for the study of neural activity with high time resolution even in young children. Although further studies are still necessary, the detailed findings provided by neuroimaging methods may aid clinical diagnosis and even contribute to the refinement of diagnostic categories for neurodevelopmental disorders in the future.
Collapse
Affiliation(s)
- Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kouhei Mutou
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
20
|
Edgar JC, Fisk Iv CL, Berman JI, Chudnovskaya D, Liu S, Pandey J, Herrington JD, Port RG, Schultz RT, Roberts TPL. Auditory encoding abnormalities in children with autism spectrum disorder suggest delayed development of auditory cortex. Mol Autism 2015; 6:69. [PMID: 26719787 PMCID: PMC4696177 DOI: 10.1186/s13229-015-0065-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/21/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Findings of auditory abnormalities in children with autism spectrum disorder (ASD) include delayed superior temporal gyrus auditory responses, pre- and post-stimulus superior temporal gyrus (STG) auditory oscillatory abnormalities, and atypical hemispheric lateralization. These abnormalities are likely associated with abnormal brain maturation. To better understand changes in brain activity as a function of age, the present study investigated associations between age and STG auditory time-domain and time-frequency neural activity. METHODS While 306-channel magnetoencephalography (MEG) data were recorded, 500- and 1000-Hz tones of 300-ms duration were binaurally presented. Evaluable data were obtained from 63 typically developing children (TDC) (6 to 14 years old) and 52 children with ASD (6 to 14 years old). T1-weighted structural MRI was obtained, and a source model created using single dipoles anatomically constrained to each participant's left and right STG. Using this source model, left and right 50-ms (M50), 100-ms (M100), and 200-ms (M200) time-domain and time-frequency measures (total power (TP) and inter-trial coherence (ITC)) were obtained. RESULTS Paired t tests showed a right STG M100 latency delay in ASD versus TDC (significant for right 500 Hz and marginally significant for right 1000 Hz). In the left and right STG, time-frequency analyses showed a greater pre- to post-stimulus increase in 4- to 16-Hz TP for both tones in ASD versus TDC after 150 ms. In the right STG, greater post-stimulus 4- to 16-Hz ITC for both tones was observed in TDC versus ASD after 200 ms. Analyses of age effects suggested M200 group differences that were due to a maturational delay in ASD, with left and right M200 decreasing with age in TDC but significantly less so in ASD. Additional evidence indicating delayed maturation of auditory cortex in ASD included atypical hemispheric functional asymmetries, including a right versus left M100 latency advantage in TDC but not ASD, and a stronger left than right M50 response in TDC but not ASD. CONCLUSIONS Present findings indicated maturational abnormalities in the development of primary/secondary auditory areas in children with ASD. It is hypothesized that a longitudinal investigation of the maturation of auditory network activity will indicate delayed development of each component of the auditory processing system in ASD.
Collapse
Affiliation(s)
- J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd, Wood Building, Suite 2115, Philadelphia, PA 19104 USA
| | - Charles L Fisk Iv
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd, Wood Building, Suite 2115, Philadelphia, PA 19104 USA
| | - Jeffrey I Berman
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd, Wood Building, Suite 2115, Philadelphia, PA 19104 USA
| | - Darina Chudnovskaya
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd, Wood Building, Suite 2115, Philadelphia, PA 19104 USA
| | - Song Liu
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd, Wood Building, Suite 2115, Philadelphia, PA 19104 USA
| | - Juhi Pandey
- Center for Autism Research, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - John D Herrington
- Center for Autism Research, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Russell G Port
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd, Wood Building, Suite 2115, Philadelphia, PA 19104 USA
| | - Robert T Schultz
- Center for Autism Research, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd, Wood Building, Suite 2115, Philadelphia, PA 19104 USA
| |
Collapse
|
21
|
Takahashi T, Yoshimura Y, Hiraishi H, Hasegawa C, Munesue T, Higashida H, Minabe Y, Kikuchi M. Enhanced brain signal variability in children with autism spectrum disorder during early childhood. Hum Brain Mapp 2015; 37:1038-50. [PMID: 26859309 PMCID: PMC5064657 DOI: 10.1002/hbm.23089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/17/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
Extensive evidence shows that a core neurobiological mechanism of autism spectrum disorder (ASD) involves aberrant neural connectivity. Recent advances in the investigation of brain signal variability have yielded important information about neural network mechanisms. That information has been applied fruitfully to the assessment of aging and mental disorders. Multiscale entropy (MSE) analysis can characterize the complexity inherent in brain signal dynamics over multiple temporal scales in the dynamics of neural networks. For this investigation, we sought to characterize the magnetoencephalography (MEG) signal variability during free watching of videos without sound using MSE in 43 children with ASD and 72 typically developing controls (TD), emphasizing early childhood to older childhood: a critical period of neural network maturation. Results revealed an age‐related increase of brain signal variability in a specific timescale in TD children, whereas atypical age‐related alteration was observed in the ASD group. Additionally, enhanced brain signal variability was observed in children with ASD, and was confirmed particularly for younger children. In the ASD group, symptom severity was associated region‐specifically and timescale‐specifically with reduced brain signal variability. These results agree well with a recently reported theory of increased brain signal variability during development and aberrant neural connectivity in ASD, especially during early childhood. Results of this study suggest that MSE analytic method might serve as a useful approach for characterizing neurophysiological mechanisms of typical‐developing and its alterations in ASD through the detection of MEG signal variability at multiple timescales. Hum Brain Mapp 37:1038–1050, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Kanazawa University, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
22
|
Doesburg SM, Tingling K, MacDonald MJ, Pang EW. Development of Network Synchronization Predicts Language Abilities. J Cogn Neurosci 2015; 28:55-68. [PMID: 26401810 DOI: 10.1162/jocn_a_00879] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synchronization of oscillations among brain areas is understood to mediate network communication supporting cognition, perception, and language. How task-dependent synchronization during word production develops throughout childhood and adolescence, as well as how such network coherence is related to the development of language abilities, remains poorly understood. To address this, we recorded magnetoencephalography while 73 participants aged 4-18 years performed a verb generation task. Atlas-guided source reconstruction was performed, and phase synchronization among regions was calculated. Task-dependent increases in synchronization were observed in the theta, alpha, and beta frequency ranges, and network synchronization differences were observed between age groups. Task-dependent synchronization was strongest in the theta band, as were differences between age groups. Network topologies were calculated for brain regions associated with verb generation and were significantly associated with both age and language abilities. These findings establish the maturational trajectory of network synchronization underlying expressive language abilities throughout childhood and adolescence and provide the first evidence for an association between large-scale neurophysiological network synchronization and individual differences in the development of language abilities.
Collapse
Affiliation(s)
| | | | | | - Elizabeth W Pang
- Hospital for Sick Children Research Institute, Toronto, Canada.,Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
23
|
Mottron L, Duret P, Mueller S, Moore RD, Forgeot d'Arc B, Jacquemont S, Xiong L. Sex differences in brain plasticity: a new hypothesis for sex ratio bias in autism. Mol Autism 2015; 6:33. [PMID: 26052415 PMCID: PMC4456778 DOI: 10.1186/s13229-015-0024-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/27/2015] [Indexed: 01/13/2023] Open
Abstract
Several observations support the hypothesis that differences in synaptic and regional cerebral plasticity between the sexes account for the high ratio of males to females in autism. First, males are more susceptible than females to perturbations in genes involved in synaptic plasticity. Second, sex-related differences in non-autistic brain structure and function are observed in highly variable regions, namely, the heteromodal associative cortices, and overlap with structural particularities and enhanced activity of perceptual associative regions in autistic individuals. Finally, functional cortical reallocations following brain lesions in non-autistic adults (for example, traumatic brain injury, multiple sclerosis) are sex-dependent. Interactions between genetic sex and hormones may therefore result in higher synaptic and consecutively regional plasticity in perceptual brain areas in males than in females. The onset of autism may largely involve mutations altering synaptic plasticity that create a plastic reaction affecting the most variable and sexually dimorphic brain regions. The sex ratio bias in autism may arise because males have a lower threshold than females for the development of this plastic reaction following a genetic or environmental event.
Collapse
Affiliation(s)
- Laurent Mottron
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| | - Pauline Duret
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada.,Département de Biologie, École Normale Supérieure de Lyon, Lyon, CEDEX 07 France
| | - Sophia Mueller
- Institute of Clinical Radiology, University Hospitals, Munich, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129 USA.,Harvard University, Center for Brain Science, Cambridge, MA 02138 USA
| | - Robert D Moore
- Department of Psychiatry, University of Montreal, Québec, Canada.,Department of Health Sciences, University of Montreal, Montreal, Canada.,College of Applied Health Sciences, University of Illinois, Urbana-Champaign, USA
| | - Baudouin Forgeot d'Arc
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| | - Sebastien Jacquemont
- Department of Psychiatry, University of Montreal, Québec, Canada.,Centre de recherche, Centre Hospitalier Universitaire Sainte Justine, Montréal, Canada.,Service of Medical Genetics, University Hospital of Lausanne, University of Lausanne, Lausanne, 1011 Switzerland
| | - Lan Xiong
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| |
Collapse
|
24
|
Hiraishi H, Kikuchi M, Yoshimura Y, Kitagawa S, Hasegawa C, Munesue T, Takesaki N, Ono Y, Takahashi T, Suzuki M, Higashida H, Asada M, Minabe Y. Unusual developmental pattern of brain lateralization in young boys with autism spectrum disorder: Power analysis with child-sized magnetoencephalography. Psychiatry Clin Neurosci 2015; 69:153-60. [PMID: 25439739 DOI: 10.1111/pcn.12261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/03/2014] [Accepted: 11/25/2014] [Indexed: 11/28/2022]
Abstract
AIMS Autism spectrum disorder (ASD) is often described as comprising an unusual brain growth pattern and aberrant brain lateralization. Although it is important to study the pathophysiology of the developing ASD cortex, examples of physiological brain lateralization in young children with ASD have yet to be well examined. METHODS Thirty-eight boys with ASD (aged 3-7 years) and 38 typically developing (TD) boys (aged 3-8 years) concentrated on video programs and their brain activities were measured non-invasively. We employed a customized child-sized magnetoencephalography system in which the sensors were located as close to the brain as possible for optimal recording in young children. To produce a credible laterality index of the brain oscillations, we defined two clusters of sensors corresponding to the right and left hemispheres. We focused on the laterality index ([left - right]/[left+right]) of the relative power band in seven frequency bands. RESULTS The TD group displayed significantly rightward lateralized brain oscillations in the theta-1 frequency bands compared to the ASD group. CONCLUSIONS This is the first study to demonstrate unusual brain lateralization of brain oscillations measured by magnetoencephalography in young children with ASD.
Collapse
Affiliation(s)
- Hirotoshi Hiraishi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kikuchi M, Yoshimura Y, Hiraishi H, Munesue T, Hashimoto T, Tsubokawa T, Takahashi T, Suzuki M, Higashida H, Minabe Y. Reduced long-range functional connectivity in young children with autism spectrum disorder. Soc Cogn Affect Neurosci 2015; 10:248-54. [PMID: 24652855 PMCID: PMC4321624 DOI: 10.1093/scan/nsu049] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/09/2014] [Accepted: 03/17/2014] [Indexed: 01/22/2023] Open
Abstract
Autism spectrum disorder (ASD) is often described as a disorder of aberrant neural connectivity. Although it is important to study the pathophysiology of ASD in the developing cortex, the functional connectivity in the brains of young children with ASD has not been well studied. In this study, brain activity was measured non-invasively during consciousness in 50 young human children with ASD and 50 age- and gender-matched typically developing human (TD) children. We employed a custom child-sized magnetoencephalography (MEG) system in which sensors were located as close to the brain as possible for optimal recording in young children. We focused on theta band oscillations because they are thought to be involved in long-range networks associated with higher cognitive processes. The ASD group showed significantly reduced connectivity between the left-anterior and the right-posterior areas, exhibiting a decrease in the coherence of theta band (6 Hz) oscillations compared with the TD group. This reduction in coherence was significantly correlated with clinical severity in right-handed children with ASD. This is the first study to demonstrate reduced long-range functional connectivity in conscious young children with ASD using a novel MEG approach.
Collapse
Affiliation(s)
- Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan
| | - Takanori Hashimoto
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan
| | - Tsunehisa Tsubokawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan
| | - Tsutomu Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan
| | - Michio Suzuki
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8641, Japan, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan, and Department of Neuropsychiatry, University of Toyama, Toyama 930-0152, Japan
| |
Collapse
|
26
|
Linking neocortical, cognitive, and genetic variability in autism with alterations of brain plasticity: the Trigger-Threshold-Target model. Neurosci Biobehav Rev 2014; 47:735-52. [PMID: 25155242 DOI: 10.1016/j.neubiorev.2014.07.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 07/02/2014] [Accepted: 07/12/2014] [Indexed: 11/23/2022]
Abstract
The phenotype of autism involves heterogeneous adaptive traits (strengths vs. disabilities), different domains of alterations (social vs. non-social), and various associated genetic conditions (syndromic vs. nonsyndromic autism). Three observations suggest that alterations in experience-dependent plasticity are an etiological factor in autism: (1) the main cognitive domains enhanced in autism are controlled by the most plastic cortical brain regions, the multimodal association cortices; (2) autism and sensory deprivation share several features of cortical and functional reorganization; and (3) genetic mutations and/or environmental insults involved in autism all appear to affect developmental synaptic plasticity, and mostly lead to its upregulation. We present the Trigger-Threshold-Target (TTT) model of autism to organize these findings. In this model, genetic mutations trigger brain reorganization in individuals with a low plasticity threshold, mostly within regions sensitive to cortical reallocations. These changes account for the cognitive enhancements and reduced social expertise associated with autism. Enhanced but normal plasticity may underlie non-syndromic autism, whereas syndromic autism may occur when a triggering mutation or event produces an altered plastic reaction, also resulting in intellectual disability and dysmorphism in addition to autism. Differences in the target of brain reorganization (perceptual vs. language regions) account for the main autistic subgroups. In light of this model, future research should investigate how individual and sex-related differences in synaptic/regional brain plasticity influence the occurrence of autism.
Collapse
|
27
|
Lajiness-O’Neill R, Bowyer SM, Moran JE, Zillgitt A, Richard AE, Boutros NN. Neurophysiological findings from magnetoencephalography in autism spectrum disorder: a comprehensive review. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT: Autism spectrum disorder (ASD) is an etiologically and clinically heterogeneous group of neurodevelopmental disorders, diagnosed exclusively by the behavioral phenotype. The neural basis of altered social, communicative, somatosensory, and restricted and repetitive behaviors remains largely unknown. Magnetoencephalography (MEG) provides a vital method of inquiry to identify the neurophysiological mechanisms of ASD, better illuminate etiologically distinct subgroups, understand the developmental trajectories of aberrant connectivity and track outcome. MEG is a neuroimaging methodology that can localize sources of electrical activity within the brain with millisecond resolution by noninvasively measuring the magnetic fields arising from such activity. This review addresses the central MEG findings exploring auditory, visual and somatosensory processing, higher-order/executive functioning, and resting state in individuals with ASD over the past decade and a half. We offer a summary of emerging trends related to neurophysiological alterations, aberrant hemispheric specialization and connectivity, as well as limitations in the literature and recommendations for future MEG investigations.
Collapse
Affiliation(s)
| | - Susan M Bowyer
- Henry Ford Hospital, Department of Neurology, Neuromagnetism Laboratory, Detroit, MI, USA
- Wayne State University, Psychiatry & Behavioral Neurosciences, Detroit, MI, USA
- Oakland University, Department of Physics, Rochester, MI, USA
| | - John E Moran
- Cleveland Clinic, Epilepsy Center, Cleveland, OH, USA
| | - Andrew Zillgitt
- Henry Ford Hospital, Department of Neurology, Neuromagnetism Laboratory, Detroit, MI, USA
| | - Annette E Richard
- Eastern Michigan University, Department of Psychology, Ypsilanti, MI, USA
| | - Nash N Boutros
- University of Missouri, Department of Psychiatry & Neurosciences, Kansas City, MI, USA
| |
Collapse
|
28
|
Hirata M, Ikeda T, Kikuchi M, Kimura T, Hiraishi H, Yoshimura Y, Asada M. Hyperscanning MEG for understanding mother-child cerebral interactions. Front Hum Neurosci 2014; 8:118. [PMID: 24624076 PMCID: PMC3941301 DOI: 10.3389/fnhum.2014.00118] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/17/2014] [Indexed: 11/13/2022] Open
Abstract
Child development is seriously affected by social interactions with caregivers, which may lead to forming social minds in our daily life afterward. However, the underlying neural mechanism for such interactions has not yet been revealed. This article introduces a magnetoencephalographic (MEG) hyperscanning system to examine brain-to-brain interactions between a mother and her child. We used two whole-head MEG systems placed in the same magnetically-shielded room. One is a 160-channel gradiometer system for an adult and the other is a 151-channel gradiometer system for a child. We developed an audio-visual presentation system, which enabled a mother and her child to look at each other in real time. In each MEG system, a video camera was placed behind a half-mirror screen for visual presentation to obtain the subjects' facial expressions. The visual presentation system is capable of displaying not only real-time facial expression but also processed facial expression such as a still face or delayed facial expressions. A projector system displays the side-by-side face images of the mother and child, and the images are divided into each face using splitting mirrors and each face is displayed on the half-mirror screen in front of the other subject. To the best of our knowledge, our system is the first MEG hyperscanning system in a single shielded room, and may contribute to elucidating brain-to-brain interactions not only between a mother and her child but also in general inter-individual, brain-to-brain interactions.
Collapse
Affiliation(s)
- Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School Suita, Japan
| | - Takashi Ikeda
- Department of Neurosurgery, Osaka University Medical School Suita, Japan ; Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University Suita, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University Kanazawa, Japan
| | | | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University Kanazawa, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University Suita, Japan
| |
Collapse
|
29
|
Roberts TPL, Paulson DN, Hirschkoff E, Pratt K, Mascarenas A, Miller P, Han M, Caffrey J, Kincade C, Power B, Murray R, Chow V, Fisk C, Ku M, Chudnovskaya D, Dell J, Golembski R, Lam P, Blaskey L, Kuschner E, Bloy L, Gaetz W, Edgar JC. Artemis 123: development of a whole-head infant and young child MEG system. Front Hum Neurosci 2014; 8:99. [PMID: 24624069 PMCID: PMC3939774 DOI: 10.3389/fnhum.2014.00099] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/09/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND A major motivation in designing the new infant and child magnetoencephalography (MEG) system described in this manuscript is the premise that electrophysiological signatures (resting activity and evoked responses) may serve as biomarkers of neurodevelopmental disorders, with neuronal abnormalities in conditions such as autism spectrum disorder (ASD) potentially detectable early in development. Whole-head MEG systems are generally optimized/sized for adults. Since magnetic field produced by neuronal currents decreases as a function of distance(2) and infants and young children have smaller head sizes (and thus increased brain-to-sensor distance), whole-head adult MEG systems do not provide optimal signal-to-noise in younger individuals. This spurred development of a whole-head infant and young child MEG system - Artemis 123. METHODS In addition to describing the design of the Artemis 123, the focus of this manuscript is the use of Artemis 123 to obtain auditory evoked neuromagnetic recordings and resting-state data in young children. Data were collected from a 14-month-old female, an 18-month-old female, and a 48-month-old male. Phantom data are also provided to show localization accuracy. RESULTS Examination of Artemis 123 auditory data showed generalizability and reproducibility, with auditory responses observed in all participants. The auditory MEG measures were also found to be manipulable, exhibiting sensitivity to tone frequency. Furthermore, there appeared to be a predictable sensitivity of evoked components to development, with latencies decreasing with age. Examination of resting-state data showed characteristic oscillatory activity. Finally, phantom data showed that dipole sources could be localized with an error less than 0.5 cm. CONCLUSIONS Artemis 123 allows efficient recording of high-quality whole-head MEG in infants four years and younger. Future work will involve examining the feasibility of obtaining somatosensory and visual recordings in similar-age children as well as obtaining recordings from younger infants. Thus, the Artemis 123 offers the promise of detecting earlier diagnostic signatures in such neurodevelopmental disorders.
Collapse
Affiliation(s)
- Timothy P L Roberts
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | | | | | - Kevin Pratt
- Tristan Technologies, Inc., San Diego, CA, USA
| | | | - Paul Miller
- Tristan Technologies, Inc., San Diego, CA, USA
| | - Mengali Han
- Tristan Technologies, Inc., San Diego, CA, USA
| | | | | | - Bill Power
- Tristan Technologies, Inc., San Diego, CA, USA
| | - Rebecca Murray
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Vivian Chow
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Charlie Fisk
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Matthew Ku
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Darina Chudnovskaya
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - John Dell
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Rachel Golembski
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Peter Lam
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Lisa Blaskey
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Emily Kuschner
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Luke Bloy
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - William Gaetz
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - J Christopher Edgar
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| |
Collapse
|
30
|
Duan F, Watanabe K, Yoshimura Y, Kikuchi M, Minabe Y, Aihara K. Relationship between brain network pattern and cognitive performance of children revealed by MEG signals during free viewing of video. Brain Cogn 2014; 86:10-6. [PMID: 24525012 DOI: 10.1016/j.bandc.2014.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Application of graph theory to analysis of functional networks in the brain is an important research trend. Extensive research on the resting state has shown a "small-world" organization of the brain network as a whole. However, the small-worldness of children's brain networks in a working state has not yet been well characterized. In this paper, we used a custom-made, child-sized magnetoencephalography (MEG) device to collect data from children while they were watching cartoon videos. Network structures were analyzed and compared with scores on the Kaufman Assessment Battery for Children (K-ABC). The results of network analysis showed that (1) the small-world scalar showed a negative correlation with the simultaneous processing raw score, a measure of visual processing (Gv) ability, and (2) the children with higher simultaneous processing raw scores possessed network structures that can be more efficient for local information processing than children with lower scores. These results were compatible with previous studies on the adult working state. Additional results obtained from further analysis of the frontal and occipital lobes indicated that high cognitive performance could represent better local efficiency in task-related sub-networks. Under free viewing of cartoon videos, brain networks were no longer confined to their strongest small-world states; connections became clustered in local areas such as the frontal and occipital lobes, which might be a more useful configuration for handling visual processing tasks.
Collapse
Affiliation(s)
- Fang Duan
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 153-8904, Japan.
| | - Katsumi Watanabe
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Kazuyuki Aihara
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 153-8904, Japan; Institute of Industrial Science, The University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|
31
|
Yoshimura Y, Kikuchi M, Ueno S, Okumura E, Hiraishi H, Hasegawa C, Remijn GB, Shitamichi K, Munesue T, Tsubokawa T, Higashida H, Minabe Y. The brain's response to the human voice depends on the incidence of autistic traits in the general population. PLoS One 2013; 8:e80126. [PMID: 24278247 PMCID: PMC3835888 DOI: 10.1371/journal.pone.0080126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/30/2013] [Indexed: 11/18/2022] Open
Abstract
Optimal brain sensitivity to the fundamental frequency (F0) contour changes in the human voice is important for understanding a speaker's intonation, and consequently, the speaker's attitude. However, whether sensitivity in the brain's response to a human voice F0 contour change varies with an interaction between an individual's traits (i.e., autistic traits) and a human voice element (i.e., presence or absence of communicative action such as calling) has not been investigated. In the present study, we investigated the neural processes involved in the perception of F0 contour changes in the Japanese monosyllables "ne" and "nu." "Ne" is an interjection that means "hi" or "hey" in English; pronunciation of "ne" with a high falling F0 contour is used when the speaker wants to attract a listener's attention (i.e., social intonation). Meanwhile, the Japanese concrete noun "nu" has no communicative meaning. We applied an adaptive spatial filtering method to the neuromagnetic time course recorded by whole-head magnetoencephalography (MEG) and estimated the spatiotemporal frequency dynamics of event-related cerebral oscillatory changes in beta band during the oddball paradigm. During the perception of the F0 contour change when "ne" was presented, there was event-related de-synchronization (ERD) in the right temporal lobe. In contrast, during the perception of the F0 contour change when "nu" was presented, ERD occurred in the left temporal lobe and in the bilateral occipital lobes. ERD that occurred during the social stimulus "ne" in the right hemisphere was significantly correlated with a greater number of autistic traits measured according to the Autism Spectrum Quotient (AQ), suggesting that the differences in human voice processing are associated with higher autistic traits, even in non-clinical subjects.
Collapse
Affiliation(s)
- Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- * E-mail:
| | - Sanae Ueno
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Eiichi Okumura
- Department of MEG, Yokogawa Electric Corporation, Tokyo, Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Gerard B. Remijn
- International Education Center, Kyushu University, Fukuoka, Japan
| | - Kiyomi Shitamichi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tsunehisa Tsubokawa
- Department of Anesthesiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yoshio Minabe
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
32
|
Yoshimura Y, Kikuchi M, Shitamichi K, Ueno S, Munesue T, Ono Y, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, Minabe Y. Atypical brain lateralisation in the auditory cortex and language performance in 3- to 7-year-old children with high-functioning autism spectrum disorder: a child-customised magnetoencephalography (MEG) study. Mol Autism 2013; 4:38. [PMID: 24103585 PMCID: PMC4021603 DOI: 10.1186/2040-2392-4-38] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 09/12/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Magnetoencephalography (MEG) is used to measure the auditory evoked magnetic field (AEF), which reflects language-related performance. In young children, however, the simultaneous quantification of the bilateral auditory-evoked response during binaural hearing is difficult using conventional adult-sized MEG systems. Recently, a child-customised MEG device has facilitated the acquisition of bi-hemispheric recordings, even in young children. Using the child-customised MEG device, we previously reported that language-related performance was reflected in the strength of the early component (P50m) of the auditory evoked magnetic field (AEF) in typically developing (TD) young children (2 to 5 years old) [Eur J Neurosci 2012, 35:644-650]. The aim of this study was to investigate how this neurophysiological index in each hemisphere is correlated with language performance in autism spectrum disorder (ASD) and TD children. METHODS We used magnetoencephalography (MEG) to measure the auditory evoked magnetic field (AEF), which reflects language-related performance. We investigated the P50m that is evoked by voice stimuli (/ne/) bilaterally in 33 young children (3 to 7 years old) with ASD and in 30 young children who were typically developing (TD). The children were matched according to their age (in months) and gender. Most of the children with ASD were high-functioning subjects. RESULTS The results showed that the children with ASD exhibited significantly less leftward lateralisation in their P50m intensity compared with the TD children. Furthermore, the results of a multiple regression analysis indicated that a shorter P50m latency in both hemispheres was specifically correlated with higher language-related performance in the TD children, whereas this latency was not correlated with non-verbal cognitive performance or chronological age. The children with ASD did not show any correlation between P50m latency and language-related performance; instead, increasing chronological age was a significant predictor of shorter P50m latency in the right hemisphere. CONCLUSIONS Using a child-customised MEG device, we studied the P50m component that was evoked through binaural human voice stimuli in young ASD and TD children to examine differences in auditory cortex function that are associated with language development. Our results suggest that there is atypical brain function in the auditory cortex in young children with ASD, regardless of language development.
Collapse
Affiliation(s)
- Yuko Yoshimura
- Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kikuchi M, Shitamichi K, Yoshimura Y, Ueno S, Hiraishi H, Hirosawa T, Munesue T, Nakatani H, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, Minabe Y. Altered brain connectivity in 3-to 7-year-old children with autism spectrum disorder. Neuroimage Clin 2013; 2:394-401. [PMID: 24179793 PMCID: PMC3777701 DOI: 10.1016/j.nicl.2013.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/06/2013] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorder (ASD) is often described as a disorder of aberrant neural connectivity and/or aberrant hemispheric lateralization. Although it is important to study the pathophysiology of the developing ASD cortex, the physiological connectivity of the brain in young children with ASD under conscious conditions has not yet been described. Magnetoencephalography (MEG) is a noninvasive brain imaging technique that is practical for use in young children. MEG produces a reference-free signal and is, therefore, an ideal tool for computing the coherence between two distant cortical rhythms. Using a custom child-sized MEG, we recently reported that 5- to 7-year-old children with ASD (n = 26) have inherently different neural pathways than typically developing (TD) children that contribute to their relatively preserved performance of visual tasks. In this study, we performed non-invasive measurements of the brain activity of 70 young children (3-7 years old, of which 18 were aged 3-4 years), a sample consisting of 35 ASD children and 35 TD children. Physiological connectivity and the laterality of physiological connectivity were assessed using intrahemispheric coherence for 9 frequency bands. As a result, significant rightward connectivity between the parietotemporal areas, via gamma band oscillations, was found in the ASD group. As we obtained the non-invasive measurements using a custom child-sized MEG, this is the first study to demonstrate a rightward-lateralized neurophysiological network in conscious young children (including children aged 3-4 years) with ASD.
Collapse
Affiliation(s)
- Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan ; Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan ; Higher Brain Functions & Autism Research, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|