1
|
Huang W, Huang Z, Yang E, Meng L, Chen J, Tan R, Xiao Z, Zhou Y, Xu M, Yu K. High- and low-temperature stress responses of Porites lutea from the relatively high-latitude region of the South China Sea. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106858. [PMID: 39615101 DOI: 10.1016/j.marenvres.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 02/09/2025]
Abstract
Global climate change has led to more frequent extreme temperature (extreme heat and cold) events, posing a serious threat to coral reef ecosystems. Higher latitudes are considered potential refuges for reef-building corals, but their response to extreme temperature stress in these regions remain unclear. This study, indoor simulated stress experiments ranging on Porites lutea from Weizhou Island in the northern part of the South China Sea, simulating suitable (26 °C) to extreme high (34 °C) and extreme low (12 °C) temperatures. Physiological, biochemical, and transcriptional responses, were analysed. Results showed P. lutea's tentacles contracted, and symbiotic relationships broke down at both high and low temperatures; leading to oxidative stress, and a higher risk of disease. The coral host's response to temperature stress was positively regulated, mainly through apoptosis and metabolic inhibition pathways, whereas Symbiodiniaceae C15 showed no significant response to either high- or low-temperature stress. The coral host played a dominant role in the holobiont's stress response, using similar mechanisms for both high- and low-temperatures with some differences in the details. This study enhances understanding the temperature response mechanisms of the dominant coral species, P. lutea in the relatively high-latitude regions of the South China Sea.
Collapse
Affiliation(s)
- Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhihua Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jinlian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ronghua Tan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zunyong Xiao
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yupeng Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Mingpei Xu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| |
Collapse
|
2
|
Lager CVA, Perry R, Daly J, Page C, Mizobe M, Bouwmeester J, Consiglio AN, Carter J, Powell-Palm MJ, Hagedorn M. Cryophysiology of coral microfragments: effects of chilling and cryoprotectant toxicity. PeerJ 2024; 12:e18447. [PMID: 39544418 PMCID: PMC11562774 DOI: 10.7717/peerj.18447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Coral reefs are being degraded at alarming rates and decisive intervention actions are urgently needed. One such intervention is coral cryopreservation. Although the cryopreservation of coral sperm and larvae has been achieved, preservation of coral fragments including both its tissue and skeleton, has not. The overarching aim of this study was to understand and assess the physiological stressors that might underlie coral fragment cryopreservation, understand the long-term consequences of these exposures to continued growth, and develop a health metrics scale for future research. Therefore, we assessed small fragments (~1 cm2) from the Hawaiian coral, Porites compressa, examining: (1) chill sensitivity; (2) chemical sensitivity to complex cryoprotectants; (3) methods to safely remove algal symbionts of coral for cryopreservation; (4) continued growth over time of coral fragments exposed to chilling and cryoprotectants; and (5) assessment of health and viability of coral fragments post the applied treatments. Corals were able to withstand chilling to 0 °C for 1 min and after 2 weeks were not significantly different from the live controls, whereas, corals exposed to complex cryoprotectants needed 3 weeks of recovery. Most importantly, it appears that once the coral fragments had surpassed this initial recovery, there was no difference in subsequent growth. Technological advances in cryo-technology promise to support successful coral fragment cryopreservation soon, and its success could help secure much of the genetic and biodiversity of reefs in the next decade.
Collapse
Affiliation(s)
- Claire V. A. Lager
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
- Hawaiʻi Institute of Marine Biology, Kāne’ohe, HI, United States
| | - Riley Perry
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
- Hawaiʻi Institute of Marine Biology, Kāne’ohe, HI, United States
| | - Jonathan Daly
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
- Taronga Conservation Society Australia, Mosman, NSW, Australia
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Christopher Page
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
- Hawaiʻi Institute of Marine Biology, Kāne’ohe, HI, United States
| | - Mindy Mizobe
- Hawaiʻi Institute of Marine Biology, Kāne’ohe, HI, United States
| | - Jessica Bouwmeester
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
- Hawaiʻi Institute of Marine Biology, Kāne’ohe, HI, United States
| | - Anthony N. Consiglio
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Jake Carter
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew J. Powell-Palm
- J. Mike Walker ʻ66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, United States
| | - Mary Hagedorn
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Front Royal, VA, United States
- Hawaiʻi Institute of Marine Biology, Kāne’ohe, HI, United States
| |
Collapse
|
3
|
Walker NS, Isma L, García N, True A, Walker T, Watkins J. The Young and the Resilient: Investigating Coral Thermal Resilience in Early Life Stages. Integr Comp Biol 2024; 64:1141-1153. [PMID: 39054304 DOI: 10.1093/icb/icae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Global ocean warming is affecting keystone species distributions and fitness, resulting in the degradation of marine ecosystems. Coral reefs are one of the most diverse and productive marine ecosystems. However, reef-building corals, the foundational taxa of coral reef ecosystems, are severely threatened by thermal stress. Models predict 40-80% of global coral cover will be lost by 2100, which highlights the urgent need for widespread interventions to preserve coral reef functionality. There has been extensive research on coral thermal stress and resilience, but 95% of studies have focused on adult corals. It is necessary to understand stress during early life stages (larvae, recruits, and juveniles), which will better inform selective breeding programs that aim to replenish reefs with resilient stock. In this review, we surveyed the literature on coral thermal resilience in early life stages, and we highlight that studies have been conducted on relatively few species (commonly Acropora spp.) and in limited regions (mainly Australia). Reef-building coral management will be improved by comprehensively understanding coral thermal resilience and fitness across life stages, as well as in diverse species and regions.
Collapse
Affiliation(s)
- Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Mānoa, HI, USA 96744
| | - Lys Isma
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Nepsis García
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Aliyah True
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Taylor Walker
- Department of BioSciences, Rice University, Houston, TX, USA 77005
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, USA 94720
| | - Joyah Watkins
- Department of BioSciences, Rice University, Houston, TX, USA 77005
| |
Collapse
|
4
|
Poding LH, Jägers P, Herlitze S, Huhn M. Diversity and function of fluorescent molecules in marine animals. Biol Rev Camb Philos Soc 2024; 99:1391-1410. [PMID: 38468189 DOI: 10.1111/brv.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Fluorescence in marine animals has mainly been studied in Cnidaria but is found in many different phyla such as Annelida, Crustacea, Mollusca, and Chordata. While many fluorescent proteins and molecules have been identified, very little information is available about the biological functions of fluorescence. In this review, we focus on describing the occurrence of fluorescence in marine animals and the behavioural and physiological functions of fluorescent molecules based on experimental approaches. These biological functions of fluorescence range from prey and symbiont attraction, photoprotection, photoenhancement, stress mitigation, mimicry, and aposematism to inter- and intraspecific communication. We provide a comprehensive list of marine taxa that utilise fluorescence, including demonstrated effects on behavioural or physiological responses. We describe the numerous known functions of fluorescence in anthozoans and their underlying molecular mechanisms. We also highlight that other marine taxa should be studied regarding the functions of fluorescence. We suggest that an increase in research effort in this field could contribute to understanding the capacity of marine animals to respond to negative effects of climate change, such as rising sea temperatures and increasing intensities of solar irradiation.
Collapse
Affiliation(s)
- Lars H Poding
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Peter Jägers
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Mareike Huhn
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| |
Collapse
|
5
|
Ricaurte M, Schizas NV, Weil EF, Ciborowski P, Boukli NM. Seasonal Proteome Variations in Orbicella faveolata Reveal Molecular Thermal Stress Adaptations. Proteomes 2024; 12:20. [PMID: 39051238 PMCID: PMC11270422 DOI: 10.3390/proteomes12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Although seasonal water temperatures typically fluctuate by less than 4 °C across most tropical reefs, sustained heat stress with an increase of even 1 °C can alter and destabilize metabolic and physiological coral functions, leading to losses of coral reefs worldwide. The Caribbean region provides a natural experimental design to study how corals respond physiologically throughout the year. While characterized by warm temperatures and precipitation, there is a significant seasonal component with relative cooler and drier conditions during the months of January to February and warmer and wetter conditions during September and October. We conducted a comparative abundance of differentially expressed proteins with two contrasting temperatures during the cold and warm seasons of 2014 and 2015 in Orbicella faveolata, one of the most important and affected reef-building corals of the Caribbean. All presented proteoforms (42) were found to be significant in our proteomics differential expression analysis and classified based on their gene ontology. The results were accomplished by a combination of two-dimensional gel electrophoresis (2DE) to separate and visualize proteins and mass spectrometry (MS) for protein identification. To validate the differentially expressed proteins of Orbicella faveolata at the transcription level, qRT-PCR was performed. Our data indicated that a 3.1 °C increase in temperature in O. faveolata between the cold and warm seasons in San Cristobal and Enrique reefs of southwestern Puerto Rico was enough to affect the expression of a significant number of proteins associated with oxidative and heat stress responses, metabolism, immunity, and apoptosis. This research extends our knowledge into the mechanistic response of O. faveolata to mitigate thermal seasonal temperature variations in coral reefs.
Collapse
Affiliation(s)
- Martha Ricaurte
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Call Box 9000, Mayagüez, PR 00681, USA; (M.R.)
| | - Nikolaos V. Schizas
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Call Box 9000, Mayagüez, PR 00681, USA; (M.R.)
| | - Ernesto F. Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, Call Box 9000, Mayagüez, PR 00681, USA; (M.R.)
| | - Pawel Ciborowski
- Mass Spectrometry and Proteomics Core Facility, Durham Research Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nawal M. Boukli
- Biomedical Proteomics Facility, Microbiology and Immunology Department, Universidad Central del Caribe, Bayamón, PR 00960, USA
| |
Collapse
|
6
|
Wuitchik DM, Aichelman HE, Atherton KF, Brown CM, Chen X, DiRoberts L, Pelose GE, Tramonte CA, Davies SW. Photosymbiosis reduces the environmental stress response under a heat challenge in a facultatively symbiotic coral. Sci Rep 2024; 14:15484. [PMID: 38969663 PMCID: PMC11226616 DOI: 10.1038/s41598-024-66057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
The symbiosis between corals and dinoflagellates of the family Symbiodiniaceae is sensitive to environmental stress. The oxidative bleaching hypothesis posits that extreme temperatures lead to accumulation of photobiont-derived reactive oxygen species ROS, which exacerbates the coral environmental stress response (ESR). To understand how photosymbiosis modulates coral ESRs, these responses must be explored in hosts in and out of symbiosis. We leveraged the facultatively symbiotic coral Astrangia poculata, which offers an opportunity to uncouple the ESR across its two symbiotic phenotypes (brown, white). Colonies of both symbiotic phenotypes were exposed to three temperature treatments for 15 days: (i) control (static 18 °C), (ii) heat challenge (increasing from 18 to 30 °C), and (iii) cold challenge (decreasing from 18 to 4 °C) after which host gene expression was profiled. Cold challenged corals elicited widespread differential expression, however, there were no differences between symbiotic phenotypes. In contrast, brown colonies exhibited greater gene expression plasticity under heat challenge, including enrichment of cell cycle pathways involved in controlling photobiont growth. While this plasticity was greater, the genes driving this plasticity were not associated with an amplified environmental stress response (ESR) and instead showed patterns of a dampened ESR under heat challenge. This provides nuance to the oxidative bleaching hypothesis and suggests that, at least during the early onset of bleaching, photobionts reduce the host's ESR under elevated temperatures in A. poculata.
Collapse
Affiliation(s)
- D M Wuitchik
- Department of Biology, Boston University, Boston, MA, USA.
- Department of Biology, Tufts University, Medford, MA, USA.
| | - H E Aichelman
- Department of Biology, Boston University, Boston, MA, USA
| | - K F Atherton
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - C M Brown
- Department of Biology, Boston University, Boston, MA, USA
| | - X Chen
- Department of Biology, Boston University, Boston, MA, USA
| | - L DiRoberts
- Department of Biology, Boston University, Boston, MA, USA
| | - G E Pelose
- Department of Biology, Boston University, Boston, MA, USA
| | - C A Tramonte
- Department of Biology, Boston College, Boston, MA, USA
| | - S W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
7
|
Han T, Liao X, Guo Z, Chen JY, He C, Lu Z. Deciphering temporal gene expression dynamics in multiple coral species exposed to heat stress: Implications for predicting resilience. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169021. [PMID: 38061659 DOI: 10.1016/j.scitotenv.2023.169021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
Coral reefs are facing unprecedented threats due to global climate change, particularly elevated sea surface temperatures causing coral bleaching. Understanding coral responses at the molecular level is crucial for predicting their resilience and developing effective conservation strategies. In this study, we conducted a comprehensive gene expression analysis of four coral species to investigate their long-term molecular response to heat stress. We identified distinct gene expression patterns among the coral species, with laminar corals exhibiting a stronger response compared to branching corals. Heat shock proteins (HSPs) showed an overall decreasing expression trend, indicating the high energy cost associated with sustaining elevated HSP levels during prolonged heat stress. Peroxidases and oxidoreductases involved in oxidative stress response demonstrated significant upregulation, highlighting their role in maintaining cellular redox balance. Differential expression of genes related to calcium homeostasis and bioluminescence suggested distinct mechanisms for coping with heat stress among the coral species. Furthermore, the impact of heat stress on coral biomineralization varied, with downregulation of carbonic anhydrase and skeletal organic matrix proteins indicating reduced capacity for biomineralization in the later stages of heat stress. Our findings provide insights into the molecular mechanisms underlying coral responses to heat stress and highlight the importance of considering species-specific responses in assessing coral resilience. The identified biomarkers may serve as indicators of heat stress and contribute to early detection of coral bleaching events. These findings contribute to our understanding of coral resilience and provide a basis for future research aimed at enhancing coral survival in the face of climate change.
Collapse
Affiliation(s)
- Tingyu Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Liao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai 536000, China
| | - Zhuojun Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - J-Y Chen
- Nanjing Institute of Paleontology and Geology, Nanjing 210008, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
8
|
Whitcher C, Beaver L, Lemmon EM. The effect of biofluorescence on predation upon Cope's gray treefrog: A clay model experiment. Behav Processes 2024; 215:104996. [PMID: 38278426 DOI: 10.1016/j.beproc.2024.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Biofluorescence, the ability to absorb light and reemit it at a longer wavelength, is present in many taxa but has been examined only recently in amphibians. Over half of the studies documenting biofluorescence in the last century suggest this fluorescent signal may affect predation; however, to date, only one other experimental study has tested this hypothesis. To address this question, we experimentally tested the effect of biofluorescence on predation through the study of the Cope's Gray Treefrog, Hyla chrysoscelis. First, we quantified the spectral characteristics of a novel biofluorescence pattern in H. chrysoscelis. In both sexes of this species, the fluorescent signal is concentrated in an area that contains a proposed aposematic pattern to warn predators of the frog's toxic secretions. We hypothesized that the biofluorescent trait may increase the conspicuousness of this pattern and enable the frogs to deter predators more effectively. Second, we tested this prediction by conducting a clay model field experiment to assess differences in predation attempts on fluorescent versus non-fluorescent H. chrysoscelis models by various predator types. We found no effect of biofluorescence on the overall presence, type, or location of predation, suggesting that biofluorescence alone does not act as an antipredator signal of H. chrysoscelis. This study represents one of the first attempts to experimentally test the effect of biofluorescence on predation in any organism and the first to do so in amphibians. Further work is needed to explore the role of this trait in predation in other systems and to investigate alternative functions for the biofluorescent signal in H. chrysoscelis.
Collapse
Affiliation(s)
- Courtney Whitcher
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA.
| | - Lilyanne Beaver
- Department of Neurobiology, Duke University, 3209 Duke Univserity School of Medicine, Durham, NC 27710, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| |
Collapse
|
9
|
Hawthorn A, Berzins IK, Dennis MM, Kiupel M, Newton AL, Peters EC, Reyes VA, Work TM. An introduction to lesions and histology of scleractinian corals. Vet Pathol 2023; 60:529-546. [PMID: 37519147 DOI: 10.1177/03009858231189289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Stony corals (Scleractinia) are in the Phylum Cnidaria (cnidae referring to various types of stinging cells). They may be solitary or colonial, but all secrete an external, supporting aragonite skeleton. Large, colonial members of this phylum are responsible for the accretion of coral reefs in tropical and subtropical waters that form the foundations of the most biodiverse marine ecosystems. Coral reefs worldwide, but particularly in the Caribbean, are experiencing unprecedented levels of disease, resulting in reef degradation. Most coral diseases remain poorly described and lack clear case definitions, while the etiologies and pathogenesis are even more elusive. This introductory guide is focused on reef-building corals and describes basic gross and microscopic lesions in these corals in order to serve as an invitation to other veterinary pathologists to play a critical role in defining and advancing the field of coral pathology.
Collapse
Affiliation(s)
- Aine Hawthorn
- University of Wisconsin-Madison, Madison, WI
- U.S. Geological Survey, Seattle, WA
| | - Ilze K Berzins
- University of Florida, Gainesville, FL
- One Water, One Health, LLC, Golden Valley, MN
| | | | | | - Alisa L Newton
- ZooQuatic Laboratory, LLC, Baltimore, MD
- OCEARCH, Park City, UT
| | | | | | | |
Collapse
|
10
|
Iser T, Lachiver L, Wilkie A. Affordable method for measuring fluorescence using Gaussian distributions and bounded MESE. OPTICS EXPRESS 2023; 31:24347-24362. [PMID: 37475264 DOI: 10.1364/oe.495459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
We present an accurate and low-cost method for measuring fluorescence in materials. Our method outputs an estimate of the material's Donaldson matrix, which is a commonly used two-dimensional spectral characterization of its fluorescence and reflectance properties. To find the estimate, only a few measurements of the material's reflectance under a few illuminants are needed, which we demonstrate using low-cost optical components. Internally, our algorithm is based on representing each Donaldson matrix with a multivariate Gaussian mixture model and its diagonal with a bounded MESE (maximum entropy spectral estimate). It parametrizes and constrains the estimate in a robust and simple way, allowing the use of gradient-descent optimization. We evaluate our algorithm on a combination of real and synthetic data, and four examples of distinct optical components. We reach significantly lower errors than the current state of the art on the exact same inputs, our estimates do not suffer from artifacts such as oscillations of the spectra, and they are stable and robust.
Collapse
|
11
|
Muncan J, Jinendra BMS, Kuroki S, Tsenkova R. Aquaphotomics Research of Cold Stress in Soybean Cultivars with Different Stress Tolerance Ability: Early Detection of Cold Stress Response. Molecules 2022; 27:744. [PMID: 35164009 PMCID: PMC8839594 DOI: 10.3390/molecules27030744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
The development of non-destructive methods for early detection of cold stress of plants and the identification of cold-tolerant cultivars is highly needed in crop breeding programs. Current methods are either destructive, time-consuming or imprecise. In this study, soybean leaves' spectra were acquired in the near infrared (NIR) range (588-1025 nm) from five cultivars genetically engineered to have different levels of cold stress tolerance. The spectra were acquired at the optimal growing temperature 27 °C and when the temperature was decreased to 22 °C. In this paper, we report the results of the aquaphotomics analysis performed with the objective of understanding the role of the water molecular system in the early cold stress response of all cultivars. The raw spectra and the results of Principal Component Analysis, Soft Independent Modeling of Class Analogies and aquagrams showed consistent evidence of huge differences in the NIR spectral profiles of all cultivars under normal and mild cold stress conditions. The SIMCA discrimination between the plants before and after stress was achieved with 100% accuracy. The interpretation of spectral patterns before and after cold stress revealed major changes in the water molecular structure of the soybean leaves, altered carbohydrate and oxidative metabolism. Specific water molecular structures in the leaves of soybean cultivars were found to be highly sensitive to the temperature, showing their crucial role in the cold stress response. The results also indicated the existence of differences in the cold stress response of different cultivars, which will be a topic of further research.
Collapse
Affiliation(s)
- Jelena Muncan
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan;
| | | | - Shinichiro Kuroki
- Laboratory for Information Engineering of Bioproduction, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan;
| | - Roumiana Tsenkova
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan;
| |
Collapse
|
12
|
Shinzato C, Takeuchi T, Yoshioka Y, Tada I, Kanda M, Broussard C, Iguchi A, Kusakabe M, Marin F, Satoh N, Inoue M. Whole-Genome Sequencing Highlights Conservative Genomic Strategies of a Stress-Tolerant, Long-Lived Scleractinian Coral, Porites australiensis Vaughan, 1918. Genome Biol Evol 2021; 13:6456307. [PMID: 34878117 PMCID: PMC8691061 DOI: 10.1093/gbe/evab270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Massive corals of the genus Porites, common, keystone reef builders in the Indo-Pacific Ocean, are distinguished by their relative stress tolerance and longevity. In order to identify genetic bases of these attributes, we sequenced the complete genome of a massive coral, Porites australiensis. We developed a genome assembly and gene models of comparable quality to those of other coral genomes. Proteome analysis identified 60 Porites skeletal matrix protein genes, all of which show significant similarities to genes from other corals and even to those from a sea anemone, which has no skeleton. Nonetheless, 30% of its skeletal matrix proteins were unique to Porites and were not present in the skeletons of other corals. Comparative genomic analyses showed that genes widely conserved among other organisms are selectively expanded in Porites. Specifically, comparisons of transcriptomic responses of P. australiensis and Acropora digitifera, a stress-sensitive coral, reveal significant differences in regard to genes that respond to increased water temperature, and some of the genes expanded exclusively in Porites may account for the different thermal tolerances of these corals. Taken together, widely shared genes may have given rise to unique biological characteristics of Porites, massive skeletons and stress tolerance.
Collapse
Affiliation(s)
- Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Ipputa Tada
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | - Frédéric Marin
- Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Mayuri Inoue
- Division of Earth Science, Graduate School of Natural Science and Technology, Okayama University, Japan
| |
Collapse
|
13
|
Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions. Animals (Basel) 2021; 11:ani11082213. [PMID: 34438670 PMCID: PMC8388371 DOI: 10.3390/ani11082213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Broilers are especially heat sensitive because of the absence of sweat glands and their elevated metabolism. Under commercial conditions, extremely high temperatures (heat stress) reduce their performance. This research aimed to assess spray-dried feeding plasma (SDP) during constant heat stress (HS) on the performance, intestinal permeability, and bone strength in broilers. Chickens fed with a diet supplemented with SDP increased both their body weight and body weight gain compared to the HS control group. At the end of the study (d 42 of age), chickens fed with SDP significantly alleviated the increased gut leakage induced by HS and showed a significant increase in tibia strength compared with control HS chickens. The results in the present study suggest SDP mends gut integrity, hence reducing chronic systemic inflammation. Abstract The aim of this study was to see how spray-dried plasma (SDP) supplementation affected broiler chicken performance, intestinal permeability, and bone strength during persistent heat stress. One-day-old chicks (n = 480) were randomly assigned into twelve environmental corrals; four thermoneutral (TN-negative control, maintained at 24 °C from d 21–42); four heat stress (HS, exposed to 35 °C from d 21–42); and four heat stress treated with 2% SDP in the feed until d 28 followed by 1% SDP until d 42 (HS-SDP). The performance and serum levels of fluorescein isothiocyanate-dextran (FITC-d) were evaluated at d 21, 28, 35, and 42. The tibias strength was evaluated on d 21 and 42. The increment in chicken temperature (p < 0.05) was observed two h following the increase in environmental temperature in both HS groups and was associated with decreased performance parameters compared with the TN group. At d 42 of age, the chickens exposed to HS had an impaired gut permeability and decreased tibia strength compared to the TN group (p < 0.05). However, partially feeding SDP mitigated these adverse effects significantly. These findings imply that using SDP strategically during stressful times, such as prolonged heat stress, may help mitigate its negative consequences.
Collapse
|
14
|
Dellisanti W, Chung JTH, Chow CFY, Wu J, Wells ML, Chan LL. Experimental Techniques to Assess Coral Physiology in situ Under Global and Local Stressors: Current Approaches and Novel Insights. Front Physiol 2021; 12:656562. [PMID: 34163371 PMCID: PMC8215126 DOI: 10.3389/fphys.2021.656562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/19/2022] Open
Abstract
Coral reefs are declining worldwide due to global changes in the marine environment. The increasing frequency of massive bleaching events in the tropics is highlighting the need to better understand the stages of coral physiological responses to extreme conditions. Moreover, like many other coastal regions, coral reef ecosystems are facing additional localized anthropogenic stressors such as nutrient loading, increased turbidity, and coastal development. Different strategies have been developed to measure the health status of a damaged reef, ranging from the resolution of individual polyps to the entire coral community, but techniques for measuring coral physiology in situ are not yet widely implemented. For instance, while there are many studies of the coral holobiont response in single or limited-number multiple stressor experiments, they provide only partial insights into metabolic performance under more complex and temporally and spatially variable natural conditions. Here, we discuss the current status of coral reefs and their global and local stressors in the context of experimental techniques that measure core processes in coral metabolism (respiration, photosynthesis, and biocalcification) in situ, and their role in indicating the health status of colonies and communities. We highlight the need to improve the capability of in situ studies in order to better understand the resilience and stress response of corals under multiple global and local scale stressors.
Collapse
Affiliation(s)
- Walter Dellisanti
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon, China
| | - Jeffery T H Chung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China
| | - Cher F Y Chow
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.,Centre for Biological Diversity, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China
| | - Mark L Wells
- School of Marine Sciences, University of Maine, Orono, ME, United States.,State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Leo L Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon, China.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
15
|
Evaluation of Three Formulations of Essential Oils in Broiler Chickens under Cyclic Heat Stress. Animals (Basel) 2021; 11:ani11041084. [PMID: 33920255 PMCID: PMC8069685 DOI: 10.3390/ani11041084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
The objective of the present research was to assess the dietary supplementation of three formulations of essential oils (EO) in chickens under heat stress (HS). Day-of-hatch Cobb 500 chicks (n = 500) were randomly distributed into four groups: 1. HS control + control diets; 2. HS + control diets supplemented with 37 ppm EO of Lippia origanoides (LO); 3. HS + control diets supplemented with 45 ppm LO + 45 ppm EO of Rosmarinus officinalis (RO) + 300 ppm red beetroot; 4. HS + 45 ppm LO + 45 ppm RO + 300 ppm natural betaine. Chickens that received the EO showed significant (p < 0.05) improvement on BW, BWG, FI, and FCR compared to control HS chickens. Average body core temperature in group 3 and group 4 was significantly (p < 0.05) reduced compared with the HS control group and group 2. Experimental groups showed a significant reduction in FITC-d at 42 days, a significant increase in SOD at both days but a significant reduction of IFN-γ and IgA compared with HS control (p < 0.05). Bone mineralization was significantly improved by EO treatments (p < 0.05). Together these data suggest that supplemental dietary EO may reduce the harmful effects of HS.
Collapse
|
16
|
Roger LM, Reich HG, Lawrence E, Li S, Vizgaudis W, Brenner N, Kumar L, Klein-Seetharaman J, Yang J, Putnam HM, Lewinski NA. Applying model approaches in non-model systems: A review and case study on coral cell culture. PLoS One 2021; 16:e0248953. [PMID: 33831033 PMCID: PMC8031391 DOI: 10.1371/journal.pone.0248953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.
Collapse
Affiliation(s)
- Liza M. Roger
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: ,
| | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Evan Lawrence
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shuaifeng Li
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Whitney Vizgaudis
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Nathan Brenner
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | | | - Jinkyu Yang
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Nastassja A. Lewinski
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
17
|
Keshavmurthy S, Beals M, Hsieh HJ, Choi KS, Chen CA. Physiological plasticity of corals to temperature stress in marginal coral communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143628. [PMID: 33248756 DOI: 10.1016/j.scitotenv.2020.143628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Adaptation and/or acclimatization through various mechanisms have been suggested to help some tropical coral species to overcome temperature-induced bleaching that is intensifying with climate change; however, while much research has been done on the physiological responses of tropical and subtropical corals to stress, little is known about these responses in corals in marginal environments-e.g., high-latitude and non-reefal communities. In this study, we examined the thermal-tolerant physiology of the flowerpot coral, Alveopora japonica, endemic to the high-latitude Jeju Island (33.39°N), South Korea and Oulastrea crispata and Coelastrea aspera from the subtropical non-reefal coral community on the Penghu Islands (23.34°N), Taiwan. Analysis of physiological parameters; photochemical efficiency, Chlorophyll pigment, Symbiodiniaceae cell number and host soluble proteins - showed that A. japonica can survive through a wide range of temperature stresses (10-32 °C) over a period of 8 days without showing signs of bleaching. In addition, corals O. crispata and C. aspera withstood temperature stresses of up to 33 °C and repeated temperature fluctuations without bleaching. Our results indicate that, under large seasonal variations and asymmetrical daily fluctuations in temperature, corals currently living in marginal environments could have thermal plasticity, allowing them to survive in the future climate change scenarios. This study reiterates the importance of studying the eco-physiology of corals that are generally ignored because of their neutral or positive responses to stress.
Collapse
Affiliation(s)
| | - Morgan Beals
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Sciences, National Taiwan Normal University, Taipei 106, Taiwan
| | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fishery Research Institute, Council of Agriculture, Magong, Penghu 880, Taiwan
| | - Kwang-Sik Choi
- School of Marine Biomedical Science (BK 21 PLUS), Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| | - Chaolun Allen Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Taiwan International Graduate Program-Biodiversity, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Sciences, National Taiwan Normal University, Taipei 106, Taiwan; Department of Life Sciences, Tunghai University, Taichung 404, Taiwan.
| |
Collapse
|
18
|
Marangoni LFDB, Rottier C, Ferrier-Pagès C. Symbiont regulation in Stylophora pistillata during cold stress: an acclimation mechanism against oxidative stress and severe bleaching. J Exp Biol 2021; 224:jeb.235275. [PMID: 33431596 DOI: 10.1242/jeb.235275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 01/25/2023]
Abstract
Widespread coral bleaching and mortality, leading to coral reef decline, have been mainly associated with climate-change-driven increases in sea surface temperature. However, bleaching and mortality events have also been related to decreases in sea surface temperature, with cold stress events (e.g. La Niña events) being expected to increase in frequency or intensity as a result of a changing climate. Cold stress creates physiological symptoms in symbiotic reef-building corals similar to those observed when they are heat stressed, and the biochemical mechanisms underpinning cold stress in corals have been suggested to be related to an oxidative stress condition. However, up to now, this hypothesis had not been tested. This study assessed how short and long cold excursions in seawater temperature affect the physiology and biochemical processes related to oxidative stress in the reef-building coral Stylophora pistillata We provide, for the first time, direct evidence that the mechanisms underpinning cold stress and bleaching are related to the production of reactive oxygen species, and that rapid expulsion of a significant proportion of the symbiont population by the host during cooling conditions is an acclimation mechanism to avoid oxidative stress and, ultimately, severe bleaching. Furthermore, this study is one of the first to show that upwelling conditions (short-term cold stress+nutrient enrichment) can provoke a more severe oxidative stress condition in corals than cold stress alone.
Collapse
Affiliation(s)
| | - Cecile Rottier
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco MC-98000, Principality of Monaco
| | - Christine Ferrier-Pagès
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco MC-98000, Principality of Monaco
| |
Collapse
|
19
|
Satoh N, Kinjo K, Shintaku K, Kezuka D, Ishimori H, Yokokura A, Hagiwara K, Hisata K, Kawamitsu M, Koizumi K, Shinzato C, Zayasu Y. Color morphs of the coral, Acropora tenuis, show different responses to environmental stress and different expression profiles of fluorescent-protein genes. G3 (BETHESDA, MD.) 2021; 11:jkab018. [PMID: 33621334 PMCID: PMC8022974 DOI: 10.1093/g3journal/jkab018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022]
Abstract
Corals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increasing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs of Acropora tenuis have been recognized for decades. These include brown (N morph), yellow green (G), and purple (P) forms. The tips of axial polyps of each morph exhibit specific fluorescence spectra. This attribute is inherited asexually, and color morphs do not change seasonally. In Okinawa Prefecture, during the summer of 2017, N and P morphs experienced bleaching, in which many N morphs died. Dinoflagellates (Symbiodiniaceae) are essential partners of scleractinian corals, and photosynthetic activity of symbionts was reduced in N and P morphs. In contrast, G morphs successfully withstood the stress. Examination of the clade and type of Symbiodiniaceae indicated that the three color-morphs host similar sets of Clade-C symbionts, suggesting that beaching of N and P morphs is unlikely attributable to differences in the clade of Symbiodiniaceae the color morphs hosted. Fluorescent proteins play pivotal roles in physiological regulation of corals. Since the A. tenuis genome has been decoded, we identified five genes for green fluorescent proteins (GFPs), two for cyan fluorescent proteins (CFPs), three for red fluorescent proteins (RFPs), and seven genes for chromoprotein (ChrP). A summer survey of gene expression profiles under outdoor aquarium conditions demonstrated that (a) expression of CFP and REP was quite low during the summer in all three morphs, (b) P morphs expressed higher levels of ChrP than N and G morphs, (c) both N and G morphs expressed GFP more highly than P morphs, and (d) GFP expression in N morphs was reduced during summer whereas G morphs maintained high levels of GFP expression throughout the summer. Although further studies are required to understand the biological significance of these color morphs of A. tenuis, our results suggest that thermal stress resistance is modified by genetic mechanisms that coincidentally lead to diversification of color morphs of this coral.
Collapse
Affiliation(s)
- Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Koji Kinjo
- Umino-Tane Co. Ltd, Okinawa 905-0888, Japan
| | - Kohei Shintaku
- IDEA Consultants, Inc., Okinawa Branch Office, Okinawa 900-0003, Japan
| | - Daisuke Kezuka
- IDEA Consultants, Inc., Okinawa Branch Office, Okinawa 900-0003, Japan
| | - Hiroo Ishimori
- IDEA Consultants, Inc., Okinawa Branch Office, Okinawa 900-0003, Japan
| | - Atsushi Yokokura
- IDEA Consultants, Inc., Institute of Environmental Informatics, Kanagawa 224-0025, Japan
| | | | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Koji Koizumi
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
20
|
Puisay A, Elleaume N, Fouqueau L, Lacube Y, Goiran C, Sidobre C, Metian M, Hédouin L. Parental bleaching susceptibility leads to differences in larval fluorescence and dispersal potential in Pocillopora acuta corals. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105200. [PMID: 33248410 DOI: 10.1016/j.marenvres.2020.105200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Coral reef ecosystems are declining at an alarming rate. Increasing seawater temperatures and occurrence of extreme warming events can impair sexual reproduction in reef-building corals and inhibit the ability for coral communities to replenish and persist. Here, we investigated the role of photophysiology on the reproductive ecology of Pocillopora acuta coral colonies by focusing on the impacts of bleaching susceptibility of parents on reproduction and larval performance, during an El Niño Southern Oscillation event in Mo'orea, French Polynesia. Elevated temperature conditions at that time induced bleaching phenotypic differences among P. acuta individuals: certain colonies became pale (from the loss of pigments and/or decline in symbiont cell density), while others remained pigmented (normal/high symbiont cell density). More specifically, we studied the impact of parental phenotypes on offspring's fluorescence by counting released larvae and sorting them by fluorescence types, we assessed survival to thermal stress, recruitment success and post-recruitment survival of released larvae from each fluorescent phenotype, during summer months (February to April 2016). Our results showed that red and green fluorescent larvae released by P. acuta had distinct physiological performances: red fluorescent larvae exhibited a higher survival into the pelagic phase regardless temperature conditions, with lower capacity to settle and survive post-recruitment, compared to green larvae that settle within a short period. Interestingly, pale colonies released two-to seven-fold more red fluorescent larvae than pigmented colonies did. In the light of our results, photophysiological profiles of the brooding P. acuta parental colonies may modulate the fluorescence features of released larvae, and thus influence the dispersal strategy of their offspring, the green fluorescent larval phenotypes being more performant in the benthic than pelagic phase.
Collapse
Affiliation(s)
- Antoine Puisay
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Nicolas Elleaume
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Louise Fouqueau
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia; CNRS, UMI 3614, Evolutionary Biology and Ecology of Algae, Roscoff, France
| | - Yann Lacube
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Claire Goiran
- Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia; ISEA Institut de Sciences Exactes et Appliquées, Université de la Nouvelle-Calédonie, France
| | - Christine Sidobre
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98,000, Principality of Monaco, Monaco
| | - Laetitia Hédouin
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia.
| |
Collapse
|
21
|
Sun Y, Jiang L, Gong S, Guo M, Yuan X, Zhou G, Lei X, Zhang Y, Yuan T, Lian J, Qian P, Huang H. Impact of Ocean Warming and Acidification on Symbiosis Establishment and Gene Expression Profiles in Recruits of Reef Coral Acropora intermedia. Front Microbiol 2020; 11:532447. [PMID: 33117302 PMCID: PMC7561415 DOI: 10.3389/fmicb.2020.532447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
The onset of symbiosis and the early development of most broadcast spawning corals play pivotal roles in recruitment success, yet these critical early stages are threatened by multiple stressors. However, molecular mechanisms governing these critical processes under ocean warming and acidification are still poorly understood. The present study investigated the interactive impact of elevated temperature (∼28.0°C and ∼30.5°C) and partial pressure of carbon dioxide (pCO2) (∼600 and ∼1,200 μatm) on early development and the gene expression patterns in juvenile Acropora intermedia over 33 days. The results showed that coral survival was >89% and was unaffected by high temperature, pCO2, or the combined treatment. Notably, high temperature completely arrested successful symbiosis establishment and the budding process, whereas acidification had a negligible effect. Moreover, there was a positive exponential relationship between symbiosis establishment and budding rates (y = 0.0004e6.43x, R = 0.72, P < 0.0001), which indicated the importance of symbiosis in fueling asexual budding. Compared with corals at the control temperature (28°C), those under elevated temperature preferentially harbored Durusdinium spp., despite unsuccessful symbiosis establishment. In addition, compared to the control, 351 and 153 differentially expressed genes were detected in the symbiont and coral host in response to experimental conditions, respectively. In coral host, some genes involved in nutrient transportation and tissue fluorescence were affected by high temperature. In the symbionts, a suite of genes related to cell growth, ribosomal proteins, photosynthesis, and energy production was downregulated under high temperatures, which may have severely hampered successful cell proliferation of the endosymbionts and explains the failure of symbiosis establishment. Therefore, our results suggest that the responses of symbionts to future ocean conditions could play a vital role in shaping successful symbiosis in juvenile coral.
Collapse
Affiliation(s)
- Youfang Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Sanqiang Gong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China
| | - Minglan Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Xiangcheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Guowei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Xinming Lei
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yuyang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Tao Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Jiansheng Lian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Peiyuan Qian
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
22
|
Yu X, Yu K, Huang W, Liang J, Qin Z, Chen B, Yao Q, Liao Z. Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139319. [PMID: 32446076 DOI: 10.1016/j.scitotenv.2020.139319] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Field ecological observations indicate that scleractinian coral exposed to early thermal stress are likely to develop higher tolerance to subsequent heat stress. The causes of this phenomenon, however, remain enigmatic. To unravel the mechanisms underlying the increased heat tolerance, we applied different thermal treatments to the scleractinian coral Acropora pruinosa and studied the resulting differences in appearance, physiological index, Symbiodiniaceae and bacterial communities, and transcriptome response. We found that early heat stress improved the thermal tolerance of the coral holobiont. After thermal acclimation, the community structure and symbiotic bacterial diversity in the microbiota were reorganized, whereas those of Symbiodiniaceae remained stable. RNA-seq analysis revealed that the downregulated coral host genes were mainly involved in pathways relating to metabolism, particularly the nitrogen metabolism pathway. This indicates that thermal acclimation led to decrease in the metabolism level in the coral host, which might be a self-protection mechanism. We suggest that thermal acclimation may increase scleractinian coral thermal tolerance by slowing host metabolism, altering the dominant bacterial population, and increasing bacterial diversity. This study offers new insights into the adaptive potential of scleractinian coral to heat stress from global warming.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), China.
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Qiucui Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
23
|
Abstract
An optical feedback loop involving the coral host and its photosynthetic microalgal symbionts is responsible for the extreme coloration of corals during certain bleaching events. Colorful bleaching occurs after brief or mild exposure to heat or nutrient stress. Importantly, it can indicate good recovery prospects for the affected corals.
Collapse
|
24
|
Bollati E, D'Angelo C, Alderdice R, Pratchett M, Ziegler M, Wiedenmann J. Optical Feedback Loop Involving Dinoflagellate Symbiont and Scleractinian Host Drives Colorful Coral Bleaching. Curr Biol 2020; 30:2433-2445.e3. [PMID: 32442463 DOI: 10.1016/j.cub.2020.04.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022]
Abstract
Coral bleaching, caused by the loss of brownish-colored dinoflagellate photosymbionts from the host tissue of reef-building corals, is a major threat to reef survival. Occasionally, bleached corals become exceptionally colorful rather than white. These colors derive from photoprotective green fluorescent protein (GFP)-like pigments produced by the coral host. There is currently no consensus regarding what causes colorful bleaching events and what the consequences for the corals are. Here, we document that colorful bleaching events are a recurring phenomenon in reef regions around the globe. Our analysis of temperature conditions associated with colorful bleaching events suggests that corals develop extreme coloration within 2 to 3 weeks after exposure to mild or temporary heat stress. We demonstrate that the increase of light fluxes in symbiont-depleted tissue promoted by reflection of the incident light from the coral skeleton induces strong expression of the photoprotective coral host pigments. We describe an optical feedback loop involving both partners of the association, discussing that the mitigation of light stress offered by host pigments could facilitate recolonization of bleached tissue by symbionts. Our data indicate that colorful bleaching has the potential to identify local environmental factors, such as nutrient stress, that can exacerbate the impact of elevated temperatures on corals, to indicate the severity of heat stress experienced by corals and to gauge their post-stress recovery potential. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Elena Bollati
- Coral Reef Laboratory, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Cecilia D'Angelo
- Coral Reef Laboratory, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK; Institute for Life Sciences (IFLS), University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Rachel Alderdice
- Coral Reef Laboratory, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK; Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Morgan Pratchett
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Maren Ziegler
- Systematics & Biodiversity Lab, Justus Liebig University, 35392 Giessen, Germany; Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jörg Wiedenmann
- Coral Reef Laboratory, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK; Institute for Life Sciences (IFLS), University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
25
|
Scucchia F, Nativ H, Neder M, Goodbody-Gringley G, Mass T. Physiological characteristics of Stylophora pistillata larvae across a depth gradient. FRONTIERS IN MARINE SCIENCE 2020; 7:00013. [PMID: 31993434 PMCID: PMC6986922 DOI: 10.3389/fmars.2020.00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Depth related parameters, specifically light, affect different aspects of corals physiology, including fluorescence. GFP-like pigments found in many coral species have been suggested to serve a variety of functions, including photo-protection and photo-enhancement. Using fluorescence imaging and molecular analysis, we further investigated the role of these proteins on the physiology of the coral Stylophora pistillata and its algal partners. Fluorescence was found to differ significantly between depths for larvae and adult colonies. Larvae from the shallow reef presented a higher GFP expression and a greater fluorescence intensity compared to the larvae from the mesophotic reef, reflecting the elevated need for photo-protection against high light levels characteristic of the shallow reef, thus supporting the "sunscreen" hypothesis. Additionally, given the lower but still occurring protein expression under non-damaging low light conditions, our results suggest that GFP-like proteins might act to regulate the amount of photosynthetically usable light for the benefit of the symbiotic algae. Moreover, we propose that the differences in GFP expression and green fluorescence between shallow and deep larvae indicate that the GFPs within coral larvae might serve to attract and retain different symbiont clades, increasing the chances of survival when encountering new environments.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel
- The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel
| | - Hagai Nativ
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel
| | - Maayan Neder
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel
- The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel
| | | | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel
| |
Collapse
|
26
|
Dziedzic KE, Elder H, Tavalire H, Meyer E. Heritable variation in bleaching responses and its functional genomic basis in reef‐building corals (
Orbicella faveolata
). Mol Ecol 2019; 28:2238-2253. [DOI: 10.1111/mec.15081] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
| | - Holland Elder
- Department of Integrative Biology Oregon State University Corvallis Oregon
| | - Hannah Tavalire
- Institute of Ecology and Evolution University of Oregon Eugene Oregon
- Prevention Science Institute University of Oregon Eugene Oregon
| | - Eli Meyer
- Department of Integrative Biology Oregon State University Corvallis Oregon
| |
Collapse
|
27
|
Ben-Zvi O, Eyal G, Loya Y. Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci Rep 2019; 9:5245. [PMID: 30918298 PMCID: PMC6437176 DOI: 10.1038/s41598-019-41710-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/15/2019] [Indexed: 11/09/2022] Open
Abstract
Euphyllia paradivisa is a strictly mesophotic coral in the reefs of Eilat that displays a striking color polymorphism, attributed to fluorescent proteins (FPs). FPs, which are used as visual markers in biomedical research, have been suggested to serve as photoprotectors or as facilitators of photosynthesis in corals due to their ability to transform light. Solar radiation that penetrates the sea includes, among others, both vital photosynthetic active radiation (PAR) and ultra-violet radiation (UVR). Both types, at high intensities, are known to have negative effects on corals, ranging from cellular damage to changes in community structure. In the present study, fluorescence morphs of E. paradivisa were used to investigate UVR response in a mesophotic organism and to examine the phenomenon of fluorescence polymorphism. E. paradivisa, although able to survive in high-light environments, displayed several physiological and behavioral responses that indicated severe light and UVR stress. We suggest that high PAR and UVR are potential drivers behind the absence of this coral from shallow reefs. Moreover, we found no significant differences between the different fluorescence morphs' responses and no evidence of either photoprotection or photosynthesis enhancement. We therefore suggest that FPs in mesophotic corals might have a different biological role than that previously hypothesized for shallow corals.
Collapse
Affiliation(s)
- Or Ben-Zvi
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel. .,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel.
| | - Gal Eyal
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel.,ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Australia
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
28
|
Takahashi-Kariyazono S, Sakai K, Terai Y. Presence-Absence Polymorphisms of Highly Expressed FP Sequences Contribute to Fluorescent Polymorphisms in Acropora digitifera. Genome Biol Evol 2018; 10:1715-1729. [PMID: 30016429 PMCID: PMC6048989 DOI: 10.1093/gbe/evy122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/30/2022] Open
Abstract
Despite many hypotheses regarding the roles of fluorescent proteins (FPs), their biological roles and the genetic basis of FP-mediated color polymorphisms in Acropora remain unclear. In this study, we determined the genetic mechanism underlying fluorescent polymorphisms in A. digitifera. Using a high-throughput sequencing approach, we found that FP gene sequences in FP multigene family exhibit presence-absence polymorphism among individuals. A few particular sequences in short-to-middle wavelength emission and middle-to-long wavelength emission clades were highly expressed in adults, and different sequences were highly expressed in larvae. These highly expressed sequences were absent in the genomes of individuals with low total FP gene expression. In adults, presence-absence differences of the highly expressed FP sequences were consistent with measurements of emission spectra of corals, suggesting that presence-absence polymorphisms of these FP sequences contributed to the fluorescent polymorphisms. The functions of recombinant FPs encoded by highly expressed sequences in adult and larval stages were different, suggesting that expression of FP sequences with different functions may depend on the life-stage of A. digitifera. Highly expressed FP sequences exhibited presence-absence polymorphisms in subpopulations of A. digitifera, suggesting that presence-absence status is maintained during the evolution of A. digitifera subpopulations. The difference in FPs between adults and larvae and the polymorphisms of highly expressed FP genes may provide key insight into the biological roles of FPs in corals.
Collapse
Affiliation(s)
- Shiho Takahashi-Kariyazono
- Department of Evolutionary Studies of Biosystems, Shonan Village, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Kazuhiko Sakai
- Department of Coral Reef and Biological Science, Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, Shonan Village, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| |
Collapse
|
29
|
Parkinson JE, Bartels E, Devlin‐Durante MK, Lustic C, Nedimyer K, Schopmeyer S, Lirman D, LaJeunesse TC, Baums IB. Extensive transcriptional variation poses a challenge to thermal stress biomarker development for endangered corals. Mol Ecol 2018; 27:1103-1119. [DOI: 10.1111/mec.14517] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/29/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
- John Everett Parkinson
- Department of Biology Pennsylvania State University State College PA USA
- Department of Integrative Biology Oregon State University Corvallis OR USA
| | - Erich Bartels
- Center for Coral Reef Research Mote Marine Laboratory Summerland Key FL USA
| | | | - Caitlin Lustic
- The Nature Conservancy Florida Keys Office Summerland Key FL USA
| | | | - Stephanie Schopmeyer
- Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| | - Diego Lirman
- Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| | - Todd C. LaJeunesse
- Department of Biology Pennsylvania State University State College PA USA
| | - Iliana B. Baums
- Department of Biology Pennsylvania State University State College PA USA
| |
Collapse
|
30
|
van de Water JAJM, Chaib De Mares M, Dixon GB, Raina JB, Willis BL, Bourne DG, van Oppen MJH. Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef-building coral. Mol Ecol 2018; 27:1065-1080. [PMID: 29334418 DOI: 10.1111/mec.14489] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022]
Abstract
Global increases in coral disease prevalence have been linked to ocean warming through changes in coral-associated bacterial communities, pathogen virulence and immune system function. However, the interactive effects of temperature and pathogens on the coral holobiont are poorly understood. Here, we assessed three compartments of the holobiont (host, Symbiodinium and bacterial community) of the coral Montipora aequituberculata challenged with the pathogen Vibrio coralliilyticus and the commensal bacterium Oceanospirillales sp. under ambient (27°C) and elevated (29.5 and 32°C) seawater temperatures. Few visual signs of bleaching and disease development were apparent in any of the treatments, but responses were detected in the holobiont compartments. V. coralliilyticus acted synergistically and negatively impacted the photochemical efficiency of Symbiodinium at 32°C, while Oceanospirillales had no significant effect on photosynthetic efficiency. The coral, however, exhibited a minor response to the bacterial challenges, with the response towards V. coralliilyticus being significantly more pronounced, and involving the prophenoloxidase-activating system and multiple immune system-related genes. Elevated seawater temperatures did not induce shifts in the coral-associated bacterial community, but caused significant gene expression modulation in both Symbiodinium and the coral host. While Symbiodinium exhibited an antiviral response and upregulated stress response genes, M. aequituberculata showed regulation of genes involved in stress and innate immune response processes, including immune and cytokine receptor signalling, the complement system, immune cell activation and phagocytosis, as well as molecular chaperones. These observations show that M. aequituberculata is capable of maintaining a stable bacterial community under elevated seawater temperatures and thereby contributes to preventing disease development.
Collapse
Affiliation(s)
- Jeroen A J M van de Water
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,Département de Biologie Marine, Centre Scientifique de Monaco, Monaco, Principauté de Monaco
| | - Maryam Chaib De Mares
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Groves B Dixon
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jean-Baptiste Raina
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia
| | - Bette L Willis
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Madeleine J H van Oppen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
31
|
Shiu JH, Keshavmurthy S, Chiang PW, Chen HJ, Lou SP, Tseng CH, Justin Hsieh H, Allen Chen C, Tang SL. Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. Sci Rep 2017; 7:14933. [PMID: 29097716 PMCID: PMC5668310 DOI: 10.1038/s41598-017-14927-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 11/08/2022] Open
Abstract
Seasonal variation in temperature fluctuations may provide corals and their algal symbionts varying abilities to acclimate to changing temperatures. We hypothesized that different temperature ranges between seasons may promote temperature-tolerance of corals, which would increase stability of a bacterial community following thermal stress. Acropora muricata coral colonies were collected in summer and winter (water temperatures were 23.4-30.2 and 12.1-23.1 °C, respectively) from the Penghu Archipelago in Taiwan, then exposed to 6 temperature treatments (10-33 °C). Changes in coral-associated bacteria were determined after 12, 24, and 48 h. Based on 16S rRNA gene amplicons and Illumina sequencing, bacterial communities differed between seasons and treatments altered the dominant bacteria. Cold stress caused slower shifts in the bacterial community in winter than in summer, whereas a more rapid shift occurred under heat stress in both seasons. Results supported our hypothesis that bacterial community composition of corals in winter are more stable in cold temperatures but changed rapidly in hot temperatures, with opposite results for the bacterial communities in summer. We infer that the thermal tolerance ranges of coral-associated bacteria, with a stable community composition, are associated with their short-term (3 mo) seawater thermal history. Therefore, seasonal acclimation may increase tolerance of coral-associated bacteria to temperature fluctuations.
Collapse
Affiliation(s)
- Jia-Ho Shiu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | | | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsing-Ju Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shueh-Ping Lou
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hernyi Justin Hsieh
- Penghu Marine Biology Research Center, Fishery Research Institute, Council of Agriculture, Magong, Penghu, 880, Taiwan
| | | | - Sen-Lin Tang
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung, Taiwan.
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
32
|
Bonesso JL, Leggat W, Ainsworth TD. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 2017; 5:e3719. [PMID: 28828283 PMCID: PMC5564385 DOI: 10.7717/peerj.3719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 07/29/2017] [Indexed: 12/28/2022] Open
Abstract
Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals’ upper thermal limits. The temperatures at which a breakdown of the coral-Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals’ nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals’ bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.
Collapse
Affiliation(s)
- Joshua Louis Bonesso
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - William Leggat
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | | |
Collapse
|
33
|
Thomas L, Kennington WJ, Evans RD, Kendrick GA, Stat M. Restricted gene flow and local adaptation highlight the vulnerability of high-latitude reefs to rapid environmental change. GLOBAL CHANGE BIOLOGY 2017; 23:2197-2205. [PMID: 28132420 DOI: 10.1111/gcb.13639] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/20/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Global climate change poses a serious threat to the future health of coral reef ecosystems. This calls for management strategies that are focused on maximizing the evolutionary potential of coral reefs. Fundamental to this is an accurate understanding of the spatial genetic structure in dominant reef-building coral species. In this study, we apply a genotyping-by-sequencing approach to investigate genome-wide patterns of genetic diversity, gene flow, and local adaptation in a reef-building coral, Pocillopora damicornis, across 10 degrees of latitude and a transition from temperate to tropical waters. We identified strong patterns of differentiation and reduced genetic diversity in high-latitude populations. In addition, genome-wide scans for selection identified a number of outlier loci putatively under directional selection with homology to proteins previously known to be involved in heat tolerance in corals and associated with processes such as photoprotection, protein degradation, and immunity. This study provides genomic evidence for both restricted gene flow and local adaptation in a widely distributed coral species, and highlights the potential vulnerability of leading-edge populations to rapid environmental change as they are locally adapted, reproductively isolated, and have reduced levels of genetic diversity.
Collapse
Affiliation(s)
- Luke Thomas
- The UWA Oceans Institute, School of Plant Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Richard D Evans
- Science and Conservation Division, Department of Parks and Wildlife, Marine Science Program, Perth, WA, 6151, Australia
| | - Gary A Kendrick
- The UWA Oceans Institute, School of Plant Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Michael Stat
- Trace and Environmental DNA (TrEnD) Laboratory, Department of Environment and Agriculture, Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
34
|
Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Sci Rep 2017; 7:2609. [PMID: 28572677 PMCID: PMC5454005 DOI: 10.1038/s41598-017-02685-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Disease causes significant coral mortality worldwide; however, factors responsible for intraspecific variation in disease resistance remain unclear. We exposed fragments of eight Acropora millepora colonies (genotypes) to putatively pathogenic bacteria (Vibrio spp.). Genotypes varied from zero to >90% mortality, with bacterial challenge increasing average mortality rates 4–6 fold and shifting the microbiome in favor of stress-associated taxa. Constitutive immunity and subsequent immune and transcriptomic responses to the challenge were more prominent in high-mortality individuals, whereas low-mortality corals remained largely unaffected and maintained expression signatures of a healthier condition (i.e., did not launch a large stress response). Our results suggest that lesions appeared due to changes in the coral pathobiome (multiple bacterial species associated with disease) and general health deterioration after the biotic disturbance, rather than the direct activity of any specific pathogen. If diseases in nature arise because of weaknesses in holobiont physiology, instead of the virulence of any single etiological agent, environmental stressors compromising coral condition might play a larger role in disease outbreaks than is currently thought. To facilitate the diagnosis of compromised individuals, we developed and independently cross-validated a biomarker assay to predict mortality based on genes whose expression in asymptomatic individuals coincides with mortality rates.
Collapse
|
35
|
Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral. Sci Rep 2017; 7:41053. [PMID: 28145458 PMCID: PMC5286515 DOI: 10.1038/srep41053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO2 concentrations predicted to occur in 2050 and 2100 than under present-day conditions, (ii) that two macroalgae damage corals via allelopathy, and (iii) that one macroalga is allelopathic under conditions of elevated CO2, but not at ambient levels. Lipid-soluble, surface extracts from the macroalga Canistrocarpus (=Dictyota) cervicornis were significantly more damaging to the coral Acropora intermedia growing in the field if these extracts were from thalli grown under elevated vs ambient concentrations of CO2. Extracts from the macroalgae Chlorodesmis fastigiata and Amansia glomerata were not more potent when grown under elevated CO2. Our results demonstrate increasing OA advantages seaweeds over corals, that algal allelopathy can mediate coral-algal interactions, and that OA may enhance the allelopathy of some macroalgae. Other mechanisms also affect coral-macroalgal interactions under OA, and OA further suppresses the resilience of coral reefs suffering blooms of macroalgae.
Collapse
|
36
|
Takahashi-Kariyazono S, Gojobori J, Satta Y, Sakai K, Terai Y. Acropora digitifera Encodes the Largest Known Family of Fluorescent Proteins that Has Persisted during the Evolution of Acropora Species. Genome Biol Evol 2016; 8:3271-3283. [PMID: 27920057 PMCID: PMC5203795 DOI: 10.1093/gbe/evw265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fluorescent proteins (FPs) are well known and broadly used as bio-imaging markers in molecular biology research. Many FP genes were cloned from anthozoan species and it was suggested that multi-copies of these genes are present in their genomes. However, the full complement of FP genes in any single coral species remained unidentified. In this study, we analyzed the FP genes in two stony coral species. FP cDNA sequences from Acropora digitifera and Acropora tenuis revealed the presence of a multi-gene family with an unexpectedly large number of genes, separated into short-/middle-wavelength emission (S/MWE), middle-/long-wavelength emission (M/LWE), and chromoprotein (CP) clades. FP gene copy numbers in the genomes of four A. digitifera colonies were estimated as 16–22 in the S/MWE, 3–6 in the M/LWE, and 8–12 in the CP clades, and, in total, 35, 31, 33, and 33 FP gene copies per individual shown by quantitative PCR. To the best of our knowledge, these are the largest sets of FP genes per genome. The fluorescent light produced by recombinant protein products encoded by the newly isolated genes explained the fluorescent range of live A. digitifera, suggesting that the high copy multi-FP gene family generates coral fluorescence. The functionally diverse multi-FP gene family must have existed in the ancestor of Acropora species, as suggested by molecular phylogenetic and evolutionary analyses. The persistence of a diverse function and high copy number multi-FP gene family may indicate the biological importance of diverse fluorescence emission and light absorption in Acropora species.
Collapse
Affiliation(s)
- Shiho Takahashi-Kariyazono
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Japan
| | - Jun Gojobori
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Japan
| | - Kazuhiko Sakai
- Department of Coral Reef and Biological Science, Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Japan
| |
Collapse
|
37
|
van de Water JAJM, Lamb JB, Heron SF, van Oppen MJH, Willis BL. Temporal patterns in innate immunity parameters in reef‐building corals and linkages with local climatic conditions. Ecosphere 2016. [DOI: 10.1002/ecs2.1505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jeroen A. J. M. van de Water
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland 4811 Australia
- College of Marine and Environmental Sciences James Cook University Townsville Queensland 4811 Australia
- AIMS@JCU James Cook University Townsville Queensland 4811 Australia
- Australian Institute of Marine Science PMB 3, Townsville MC Townsville Queensland 4810 Australia
- Centre Scientifique de Monaco MC 98000 Monaco
| | - Joleah B. Lamb
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland 4811 Australia
- College of Marine and Environmental Sciences James Cook University Townsville Queensland 4811 Australia
- AIMS@JCU James Cook University Townsville Queensland 4811 Australia
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14850 USA
| | - Scott F. Heron
- National Oceanic and Atmospheric Administration–Coral Reef Watch James Cook University Townsville Queensland 4811 Australia
- Marine Geophysical Laboratory Physics Department College of Science, Technology and Engineering James Cook University Townsville Queensland 4811 Australia
| | - Madeleine J. H. van Oppen
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland 4811 Australia
- AIMS@JCU James Cook University Townsville Queensland 4811 Australia
- Australian Institute of Marine Science PMB 3, Townsville MC Townsville Queensland 4810 Australia
- School of BioSciences The University of Melbourne Parkville Victoria 3010 Australia
| | - Bette L. Willis
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland 4811 Australia
- College of Marine and Environmental Sciences James Cook University Townsville Queensland 4811 Australia
- AIMS@JCU James Cook University Townsville Queensland 4811 Australia
| |
Collapse
|
38
|
Fuess LE, Pinzόn C JH, Weil E, Mydlarz LD. Associations between transcriptional changes and protein phenotypes provide insights into immune regulation in corals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:17-28. [PMID: 27109903 DOI: 10.1016/j.dci.2016.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Disease outbreaks in marine ecosystems have driven worldwide declines of numerous taxa, including corals. Some corals, such as Orbicella faveolata, are particularly susceptible to disease. To explore the mechanisms contributing to susceptibility, colonies of O. faveolata were exposed to immune challenge with lipopolysaccharides. RNA sequencing and protein activity assays were used to characterize the response of corals to immune challenge. Differential expression analyses identified 17 immune-related transcripts that varied in expression post-immune challenge. Network analyses revealed several groups of transcripts correlated to immune protein activity. Several transcripts, which were annotated as positive regulators of immunity were included in these groups, and some were downregulated following immune challenge. Correlations between expression of these transcripts and protein activity results further supported the role of these transcripts in positive regulation of immunity. The observed pattern of gene expression and protein activity may elucidate the processes contributing to the disease susceptibility of species like O. faveolata.
Collapse
Affiliation(s)
- Lauren E Fuess
- Department of Biology, University of Texas Arlington, Arlington, TX, USA
| | - Jorge H Pinzόn C
- Department of Biology, University of Texas Arlington, Arlington, TX, USA
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, PR, USA
| | - Laura D Mydlarz
- Department of Biology, University of Texas Arlington, Arlington, TX, USA.
| |
Collapse
|
39
|
Seveso D, Montano S, Strona G, Orlandi I, Galli P, Vai M. Hsp60 expression profiles in the reef-building coral Seriatopora caliendrum subjected to heat and cold shock regimes. MARINE ENVIRONMENTAL RESEARCH 2016; 119:1-11. [PMID: 27183199 DOI: 10.1016/j.marenvres.2016.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/07/2016] [Indexed: 06/05/2023]
Abstract
Climate changes have increased the intensity/frequency of extreme thermal events, which represent serious threats to the health of reef-building corals. Since the vulnerability of corals exposed to thermal stresses are related to their ability to regulate Heat shock proteins (Hsps), we have analyzed together the time related expression profiles of the mitochondrial Hsp60 and the associated changes in tissue pigmentation in Seriatopora caliendrum subjected to 48 h of heat and cold treatments characterized by moderate (±2 °C) and severe (±6 °C) shocks. For the first time, an Hsp60 response was observed in a scleractinian coral exposed to cold stresses. Furthermore, the Hsp60 modulations and the changes in the tissue coloration were found to be specific for each treatment. A strong down-regulation at the end of the treatments was observed following both the severe shocks, but only the severe heat stress led to bleaching in concert with the lowest levels of Hsp60, suggesting that a severe heat shock can be more deleterious than an exposure to a severe cold temperature. On the contrary, a moderate cold stress seems to be more harmful than a moderate temperature increase, which could allow coral acclimation. Our results can provide a potential framework for understanding the physiological tolerance of corals under possible future climate changes.
Collapse
Affiliation(s)
- Davide Seveso
- Department of Biotechnologies and Biosciences, University of Milan - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy; MaRHE Centre (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives.
| | - Simone Montano
- Department of Biotechnologies and Biosciences, University of Milan - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy; MaRHE Centre (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Giovanni Strona
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi 2749, I-21027, Ispra, Italy
| | - Ivan Orlandi
- Department of Biotechnologies and Biosciences, University of Milan - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Paolo Galli
- Department of Biotechnologies and Biosciences, University of Milan - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy; MaRHE Centre (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Marina Vai
- Department of Biotechnologies and Biosciences, University of Milan - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
40
|
Shikina S, Chiu YL, Chung YJ, Chen CJ, Lee YH, Chang CF. Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis. Sci Rep 2016; 6:25868. [PMID: 27167722 PMCID: PMC4863156 DOI: 10.1038/srep25868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/25/2016] [Indexed: 11/26/2022] Open
Abstract
To date,the molecular and cellular mechanisms underlying coral sexual reproduction remain largely unknown. We then performed a differential screen to identify genes related to oogenesis in the stony coral Euphyllia ancora. We identified a clone encoding a novel red fluorescent protein cDNA of E. ancora (named EaRFP). Microscopic observation and quantitative RT-PCR revealed that EaRFP is almost exclusively expressed in the ovary of the adult coral. The combination of the ovarian-cell separation method and the RT-PCR analysis revealed that the oocytes, but not the ovarian somatic cells, are the cells expressing EaRFP. Immunohistochemical analysis revealed that the expression of EaRFP starts in the early stage of the oocyte and continues until the maturation period. Furthermore, recombinant EaRFP was shown to possess an H2O2 degradation activity. These results raise the possibility that EaRFP plays a role in protecting the oocytes from oxidative stress from the early to late stages of oogenesis. The present study provides not only the first evidence for the potential involvement of FPs in coral oogenesis but also an insight into a cellular strategy underlying coral sexual reproduction.
Collapse
Affiliation(s)
- Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yi-Ling Chiu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yi-Jou Chung
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chieh-Jhen Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, 10617, Taiwan
| | - Yan-Horn Lee
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Tungkang, 20246, Taiwan
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
41
|
Gruber DF, Loew ER, Deheyn DD, Akkaynak D, Gaffney JP, Smith WL, Davis MP, Stern JH, Pieribone VA, Sparks JS. Biofluorescence in Catsharks (Scyliorhinidae): Fundamental Description and Relevance for Elasmobranch Visual Ecology. Sci Rep 2016; 6:24751. [PMID: 27109385 PMCID: PMC4843165 DOI: 10.1038/srep24751] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023] Open
Abstract
Biofluorescence has recently been found to be widespread in marine fishes, including sharks. Catsharks, such as the Swell Shark (Cephaloscyllium ventriosum) from the eastern Pacific and the Chain Catshark (Scyliorhinus retifer) from the western Atlantic, are known to exhibit bright green fluorescence. We examined the spectral sensitivity and visual characteristics of these reclusive sharks, while also considering the fluorescent properties of their skin. Spectral absorbance of the photoreceptor cells in these sharks revealed the presence of a single visual pigment in each species. Cephaloscyllium ventriosum exhibited a maximum absorbance of 484 ± 3 nm and an absorbance range at half maximum (λ1/2max) of 440-540 nm, whereas for S. retifer maximum absorbance was 488 ± 3 nm with the same absorbance range. Using the photoreceptor properties derived here, a "shark eye" camera was designed and developed that yielded contrast information on areas where fluorescence is anatomically distributed on the shark, as seen from other sharks' eyes of these two species. Phylogenetic investigations indicate that biofluorescence has evolved at least three times in cartilaginous fishes. The repeated evolution of biofluorescence in elasmobranchs, coupled with a visual adaptation to detect it; and evidence that biofluorescence creates greater luminosity contrast with the surrounding background, highlights the potential importance of biofluorescence in elasmobranch behavior and biology.
Collapse
Affiliation(s)
- David F. Gruber
- Baruch College, City University of New York, Department of Natural Sciences, New York, NY 10010, USA
- City University of New York, The Graduate Center, Program in Biology, New York, NY 10016, USA
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY 10024, USA
| | - Ellis R. Loew
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Dimitri D. Deheyn
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Derya Akkaynak
- University of Haifa, Charney School of Marine Sciences, Haifa, 3498838, Israel
- Interuniversity Institute of Marine Sciences, Eilat, 88103, Israel
| | - Jean P. Gaffney
- Baruch College, City University of New York, Department of Natural Sciences, New York, NY 10010, USA
| | - W. Leo Smith
- University of Kansas, Biodiversity Institute and Department of Ecology and Evolutionary Biology, Lawrence, KS 66049, USA
| | - Matthew P. Davis
- St. Cloud State University, Department of Biological Sciences, St. Cloud, MN 56301, USA
| | - Jennifer H. Stern
- University of Kansas, Biodiversity Institute and Department of Ecology and Evolutionary Biology, Lawrence, KS 66049, USA
| | - Vincent A. Pieribone
- The John B. Pierce Laboratory, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - John S. Sparks
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY 10024, USA
- American Museum of Natural History, Division of Vertebrate Zoology, Department of Ichthyology, New York, NY 10024, USA
| |
Collapse
|
42
|
Strader ME, Aglyamova GV, Matz MV. Red fluorescence in coral larvae is associated with a diapause‐like state. Mol Ecol 2016; 25:559-69. [DOI: 10.1111/mec.13488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Marie E. Strader
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| | - Galina V. Aglyamova
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| | - Mikhail V. Matz
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| |
Collapse
|
43
|
Gruber DF, Gaffney JP, Mehr S, DeSalle R, Sparks JS, Platisa J, Pieribone VA. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment. PLoS One 2015; 10:e0140972. [PMID: 26561348 PMCID: PMC4641735 DOI: 10.1371/journal.pone.0140972] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 11/23/2022] Open
Abstract
We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.
Collapse
Affiliation(s)
- David F. Gruber
- Baruch College, Department of Natural Sciences, City University of New York, New York, New York, United States of America
- The Graduate Center, Program in Biology, City University of New York, New York, New York, United States of America
- American Museum of Natural History, Sackler Institute for Comparative Genomics,Central Park W at 79th St, New York, New York, United States of America
- * E-mail:
| | - Jean P. Gaffney
- Baruch College, Department of Natural Sciences, City University of New York, New York, New York, United States of America
| | - Shaadi Mehr
- State University of New York, Biological Science Department, College at Old Westbury, Old Westbury, New York, United States of America
- American Museum of Natural History, Sackler Institute for Comparative Genomics,Central Park W at 79th St, New York, New York, United States of America
| | - Rob DeSalle
- American Museum of Natural History, Sackler Institute for Comparative Genomics,Central Park W at 79th St, New York, New York, United States of America
| | - John S. Sparks
- American Museum of Natural History, Sackler Institute for Comparative Genomics,Central Park W at 79th St, New York, New York, United States of America
- American Museum of Natural History, Department of Ichthyology, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Jelena Platisa
- The John B. Pierce Laboratory, Inc., New Haven, Connecticut, United States of America
| | - Vincent A. Pieribone
- The John B. Pierce Laboratory, Inc., New Haven, Connecticut, United States of America
- Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
44
|
Morphological Variability and Distinct Protein Profiles of Cultured and Endosymbiotic Symbiodinium cells Isolated from Exaiptasia pulchella. Sci Rep 2015; 5:15353. [PMID: 26481560 PMCID: PMC4611179 DOI: 10.1038/srep15353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/05/2015] [Indexed: 01/10/2023] Open
Abstract
Symbiodinium is a dinoflagellate that plays an important role in the physiology of the symbiotic relationships of Cnidarians such as corals and sea anemones. However, it is very difficult to cultivate free-living dinoflagellates after being isolated from the host, as they are very sensitive to environmental changes. How these symbiont cells are supported by the host tissue is still unclear. This study investigated the characteristics of Symbiodinium cells, particularly with respect to the morphological variability and distinct protein profiles of both cultured and endosymbiotic Symbiodinium which were freshly isolated from Exaiptasia pulchella. The response of the cellular morphology of freshly isolated Symbiodinium cells kept under a 12 h L:12 h D cycle to different temperatures was measured. Cellular proliferation was investigated by measuring the growth pattern of Symbiodinium cells, the results of which indicated that the growth was significantly reduced in response to the extreme temperatures. Proteomic analysis of freshly isolated Symbiodinium cells revealed twelve novel proteins that putatively included transcription translation factors, photosystem proteins, and proteins associated with energy and lipid metabolism, as well as defense response. The results of this study will bring more understandings to the mechanisms governing the endosymbiotic relationship between the cnidarians and dinoflagellates.
Collapse
|
45
|
Strader ME, Davies SW, Matz MV. Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150358. [PMID: 26587247 PMCID: PMC4632519 DOI: 10.1098/rsos.150358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/09/2015] [Indexed: 05/28/2023]
Abstract
Reef-building corals produce planktonic planula larvae that must select an appropriate habitat to settle and spend the rest of their life, a behaviour that plays a critical role in survival. Here, we report that larvae obtained from a deep-water population of Pseudodiploria strigosa settled more readily under blue light and in the dark, which aligns well with the light field characteristics of their natal habitat. By contrast, larvae of the shallow-water coral Acropora millepora settled in high proportions under blue and green light while settlement was less in the dark. Acropora millepora larvae also showed reduced settlement under red light, which should be abundant at shallow depth. Hypothesizing that this might be a mechanism preventing the larvae from settling on the exposed upwards-facing surfaces, we quantified A. millepora settlement in manipulated light chambers in situ on the reef. While A. millepora larvae naturally preferred settling on vertical rather than exposed horizontal surfaces, swapping the colours of upwards-facing and sideways-facing light fields was sufficient to invert this preference. We also tested if the variation in intrinsic red fluorescence in A. millepora larvae correlates with settlement rates, as has been suggested previously. We observed this correlation only in the absence of light, indicating that larval red fluorescent protein is probably not directly involved in light sensing. Our study reveals previously under-appreciated light-sensory capabilities in coral larvae, which could be an important axis of ecological differentiation between coral species and/or populations.
Collapse
|
46
|
Blakeway D, Hamblin MG. Self-generated morphology in lagoon reefs. PeerJ 2015; 3:e935. [PMID: 26175962 PMCID: PMC4499466 DOI: 10.7717/peerj.935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 04/15/2015] [Indexed: 11/30/2022] Open
Abstract
The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decoded. Traditionally, reef morphology has been attributed to external controls such as substrate topography or hydrodynamic influences. Little is known about inherent reef morphology in the absence of external control. Here we use reef growth simulations, based on observations in the cellular reefs of Western Australia’s Houtman Abrolhos Islands, to show that reef morphology is fundamentally determined by the mechanical behaviour of the reef-building organisms themselves—specifically their tendency to either remain in place or to collapse. Reef-building organisms that tend to remain in place, such as massive and encrusting corals or coralline algae, produce nodular reefs, whereas those that tend to collapse, such as branching Acropora, produce cellular reefs. The purest reef growth forms arise in sheltered lagoons dominated by a single type of reef builder, as in the branching Acropora-dominated lagoons of the Abrolhos. In these situations reef morphology can be considered a phenotype of the predominant reef building organism. The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images. More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef.
Collapse
Affiliation(s)
- David Blakeway
- School of Earth and Environment, University of Western Australia , Crawley , Western Australia, Australia
| | - Michael G Hamblin
- School of Mechanical and Chemical Engineering, University of Western Australia , Crawley , Western Australia, Australia
| |
Collapse
|
47
|
Vajed Samiei J, Saleh A, Mehdinia A, Shirvani A, Kayal M. Photosynthetic response of Persian Gulf acroporid corals to summer versus winter temperature deviations. PeerJ 2015; 3:e1062. [PMID: 26157627 PMCID: PMC4493696 DOI: 10.7717/peerj.1062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
With on-going climate change, coral susceptibility to thermal stress constitutes a central concern in reefconservation. In the Persian Gulf, coral reefs are confronted with a high seasonal variability in water temperature, and both hot and cold extremes have been associated with episodes of coral bleaching and mortality. Using physiological performance as a measure of coral health, we investigated the thermal susceptibility of the common acroporid, Acropora downingi, near Hengam Island where the temperature oscillates seasonally in the range 20.2–34.2 °C. In a series of two short-term experiments comparing coral response in summer versus winter conditions, we exposed corals during each season (1) to the corresponding seasonal average and extreme temperature levels in a static thermal environment, and (2) to a progressive temperature deviation from the annual mean toward the corresponding extreme seasonal value and beyond in a dynamic thermal environment. We monitored four indictors of coral physiological performance: net photosynthesis (Pn), dark respiration (R), autotrophic capability (Pn/R), and survival. Corals exposed to warming during summer showed a decrease in net photosynthesis and ultimately died, while corals exposed to cooling during winter were not affected in their photosynthetic performance and survival. Coral autotrophic capability Pn/R was lower at the warmer thermal level within eachseason, and during summer compared to winter. Corals exposed to the maximum temperature of summer displayed Pn/R < 1, inferring that photosynthetic performance could not support basal metabolic needs under this environment. Our results suggest that the autotrophic performance of the Persian Gulf A. downingi is sensitive to the extreme temperatures endured in summer, and therefore its populations may be impacted by future increases in water temperature.
Collapse
Affiliation(s)
| | - Abolfazl Saleh
- Iranian National Institute for Oceanography and Atmospheric Science , Tehran , Iran
| | - Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science , Tehran , Iran
| | - Arash Shirvani
- Iranian National Institute for Oceanography and Atmospheric Science , Tehran , Iran
| | - Mohsen Kayal
- Bren School of Environmental Science and Management, University of California , Santa Barbara, CA , USA
| |
Collapse
|
48
|
Eyal G, Wiedenmann J, Grinblat M, D’Angelo C, Kramarsky-Winter E, Treibitz T, Ben-Zvi O, Shaked Y, Smith TB, Harii S, Denis V, Noyes T, Tamir R, Loya Y. Spectral Diversity and Regulation of Coral Fluorescence in a Mesophotic Reef Habitat in the Red Sea. PLoS One 2015; 10:e0128697. [PMID: 26107282 PMCID: PMC4479885 DOI: 10.1371/journal.pone.0128697] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022] Open
Abstract
The phenomenon of coral fluorescence in mesophotic reefs, although well described for shallow waters, remains largely unstudied. We found that representatives of many scleractinian species are brightly fluorescent at depths of 50–60 m at the Interuniversity Institute for Marine Sciences (IUI) reef in Eilat, Israel. Some of these fluorescent species have distribution maxima at mesophotic depths (40–100 m). Several individuals from these depths displayed yellow or orange-red fluorescence, the latter being essentially absent in corals from the shallowest parts of this reef. We demonstrate experimentally that in some cases the production of fluorescent pigments is independent of the exposure to light; while in others, the fluorescence signature is altered or lost when the animals are kept in darkness. Furthermore, we show that green-to-red photoconversion of fluorescent pigments mediated by short-wavelength light can occur also at depths where ultraviolet wavelengths are absent from the underwater light field. Intraspecific colour polymorphisms regarding the colour of the tissue fluorescence, common among shallow water corals, were also observed for mesophotic species. Our results suggest that fluorescent pigments in mesophotic reefs fulfil a distinct biological function and offer promising application potential for coral-reef monitoring and biomedical imaging.
Collapse
Affiliation(s)
- Gal Eyal
- Department of Zoology, Tel-Aviv University, Tel-Aviv, Israel
- The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel
| | - Jörg Wiedenmann
- Coral Reef Laboratory, University of Southampton, NOCS, Southampton, United Kingdom
- Institute for Life Sciences (IFLS), University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Mila Grinblat
- Department of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Cecilia D’Angelo
- Coral Reef Laboratory, University of Southampton, NOCS, Southampton, United Kingdom
| | | | - Tali Treibitz
- Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Or Ben-Zvi
- Department of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Yonathan Shaked
- The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel
| | - Tyler B. Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, United States Virgin Islands, United States of America
| | - Saki Harii
- Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan
| | - Vianney Denis
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Tim Noyes
- Bermuda Institute of Ocean Sciences (BIOS), St. George's, Bermuda
| | - Raz Tamir
- The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yossi Loya
- Department of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
49
|
Lagorio MG, Cordon GB, Iriel A. Reviewing the relevance of fluorescence in biological systems. Photochem Photobiol Sci 2015; 14:1538-59. [PMID: 26103563 DOI: 10.1039/c5pp00122f] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorescence is emitted by diverse living organisms. The analysis and interpretation of these signals may give information about their physiological state, ways of communication among species and the presence of specific chemicals. In this manuscript we review the state of the art in the research on the fluorescence emitted by plant leaves, fruits, flowers, avians, butterflies, beetles, dragonflies, millipedes, cockroaches, bees, spiders, scorpions and sea organisms and discuss its relevance in nature.
Collapse
Affiliation(s)
- M Gabriela Lagorio
- INQUIMAE/D.Q.I.A y Q.F. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| | | | | |
Collapse
|
50
|
Wright RM, Aglyamova GV, Meyer E, Matz MV. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 2015; 16:371. [PMID: 25956907 PMCID: PMC4425862 DOI: 10.1186/s12864-015-1540-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corals are capable of launching diverse immune defenses at the site of direct contact with pathogens, but the molecular mechanisms of this activity and the colony-wide effects of such stressors remain poorly understood. Here we compared gene expression profiles in eight healthy Acropora hyacinthus colonies against eight colonies exhibiting tissue loss commonly associated with white syndromes, all collected from a natural reef environment near Palau. Two types of tissues were sampled from diseased corals: visibly affected and apparently healthy. RESULTS Tag-based RNA-Seq followed by weighted gene co-expression network analysis identified groups of co-regulated differentially expressed genes between all health states (disease lesion, apparently healthy tissues of diseased colonies, and fully healthy). Differences between healthy and diseased tissues indicate activation of several innate immunity and tissue repair pathways accompanied by reduced calcification and the switch towards metabolic reliance on stored lipids. Unaffected parts of diseased colonies, although displaying a trend towards these changes, were not significantly different from fully healthy samples. Still, network analysis identified a group of genes, suggestive of altered immunity state, that were specifically up-regulated in unaffected parts of diseased colonies. CONCLUSIONS Similarity of fully healthy samples to apparently healthy parts of diseased colonies indicates that systemic effects of white syndromes on A. hyacinthus are weak, which implies that the coral colony is largely able to sustain its physiological performance despite disease. The genes specifically up-regulated in unaffected parts of diseased colonies, instead of being the consequence of disease, might be related to the originally higher susceptibility of these colonies to naturally occurring white syndromes.
Collapse
Affiliation(s)
- Rachel M Wright
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, USA.
| | - Galina V Aglyamova
- Department of Integrative Biology, The University of Texas at Austin, Austin, USA.
| | - Eli Meyer
- Department of Zoology, Oregon State University, Corvallis, USA.
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, Austin, USA.
| |
Collapse
|