1
|
Tachibana T, Oyama TG, Yoshii Y, Hihara F, Igarashi C, Shinada M, Matsumoto H, Higashi T, Kishimoto T, Taguchi M. An In Vivo Dual-Observation Method to Monitor Tumor Mass and Tumor-Surface Blood Vessels for Developing Anti-Angiogenesis Agents against Submillimeter Tumors. Int J Mol Sci 2023; 24:17234. [PMID: 38139063 PMCID: PMC10743531 DOI: 10.3390/ijms242417234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Managing metastasis at the early stage and detecting and treating submillimeter tumors at early metastasis are crucial for improving cancer prognosis. Angiogenesis is a critical target for developing drugs to detect and inhibit submillimeter tumor growth; however, drug development remains challenging because there are no suitable models for observing the submillimeter tumor mass and the surrounding blood vessels in vivo. We have established a xenograft subcutaneous submillimeter tumor mouse model with HT-29-RFP by transplanting a single spheroid grown on radiation-crosslinked gelatin hydrogel microwells. Here, we developed an in vivo dual-observation method to observe the submillimeter tumor mass and tumor-surface blood vessels using this model. RFP was detected to observe the tumor mass, and a fluorescent angiography agent FITC-dextran was administered to observe blood vessels via stereoscopic fluorescence microscopy. The anti-angiogenesis agent regorafenib was used to confirm the usefulness of this method. This method effectively detected the submillimeter tumor mass and tumor-surface blood vessels in vivo. Regorafenib treatment revealed tumor growth inhibition and angiogenesis downregulation with reduced vascular extremities, segments, and meshes. Further, we confirmed that tumor-surface blood vessel areas monitored using in vivo dual-observation correlated with intratumoral blood vessel areas observed via fluorescence microscopy with frozen sections. In conclusion, this method would be useful in developing anti-angiogenesis agents against submillimeter tumors.
Collapse
Affiliation(s)
- Tomoko Tachibana
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; (F.H.); (C.I.); (M.S.); (H.M.); (T.H.)
- Faculty of Science, Toho University, Chiba 274-8510, Japan;
| | - Tomoko Gowa Oyama
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), Gunma 370-1292, Japan; (T.G.O.); (M.T.)
| | - Yukie Yoshii
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; (F.H.); (C.I.); (M.S.); (H.M.); (T.H.)
- Visible Cancer Drug Research Unit, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Fukiko Hihara
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; (F.H.); (C.I.); (M.S.); (H.M.); (T.H.)
| | - Chika Igarashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; (F.H.); (C.I.); (M.S.); (H.M.); (T.H.)
| | - Mitsuhiro Shinada
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; (F.H.); (C.I.); (M.S.); (H.M.); (T.H.)
- Faculty of Science, Toho University, Chiba 274-8510, Japan;
| | - Hiroki Matsumoto
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; (F.H.); (C.I.); (M.S.); (H.M.); (T.H.)
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; (F.H.); (C.I.); (M.S.); (H.M.); (T.H.)
| | | | - Mitsumasa Taguchi
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), Gunma 370-1292, Japan; (T.G.O.); (M.T.)
| |
Collapse
|
2
|
de la Torre-Rubio E, Muñoz-Moreno L, Bajo AM, Arias-Pérez MS, Cuenca T, Gude L, Royo E. Carbohydrate effect of novel arene Ru(II) phenanthroline-glycoconjugates on metastatic biological processes. J Inorg Biochem 2023; 247:112326. [PMID: 37478778 DOI: 10.1016/j.jinorgbio.2023.112326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Novel water-soluble half-sandwich ruthenium(II) polypyridyl-glycoconjugates [Ru(p-cymene)Cl{N-(1,10-phenanthroline-5-yl)-β-glycopyranosylamine}][Cl] (glycopyranosyl = d-glucopyranosyl (1), D-mannopyranosyl (2), L-rhamnopyranosyl (3) and l-xylopyranosyl (4)) have been synthesized and fully characterized. Their behaviour in water under physiological conditions has been studied by nuclear magnetic resonance spectroscopy, revealing their hydrolytic stability. Interactions of the novel compounds with duplex-deoxiribonucleic acid (dsDNA) were investigated by different techniques and the results indicate that, under physiological pH and saline conditions, the metal glycoconjugates bind DNA in the minor groove and/or through external, electrostatic interactions, and by a non-classical, partial intercalation mechanism in non-saline phosphate buffered solution. Effects of compounds 1-4 on cell viability have been assessed in vitro against two human cell lines (androgen-independent prostate cancer PC-3 and non-tumorigenic prostate RWPE-1), showing moderate cytotoxicities, with IC50 values higher than those found for free ligands [N-(1,10-phenanthroline-5-yl)-β-glycopyranosylamine] (glycopyranosyl = d-glucopyranosyl (a), D-mannopyranosyl (b), L-rhamnopyranosyl (c) and l-xylopyranosyl (d)) or corresponding metal-aglycone. Cell viability was assayed in the presence and absence of the glucose transporters (GLUTs) inhibitor [N4-{1-(4-cyanobenzyl)-5-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl}-7-fluoroquinoline-2,4-dicarboxamide] (BAY-876), and the results point to a negligible impact of the inhibition of GLUTs on the cytotoxicity caused by Ru(II) compounds 1-4. Remarkably, glycoconjugates 1-4 potently affect the migration pattern of PC-3 cells, and the wound healing assay evidence that the presence of the carbohydrate and the Ru(II) center is a requisite for the anti-migratory activity observed in these novel derivatives. In addition, derivatives 1-4 strongly affect the matrix metalloproteinase MMP-9 activities of PC-3 cells, while proMMP-2 and especially proMMP-9 were influenced to a much lesser extent.
Collapse
Affiliation(s)
- Elena de la Torre-Rubio
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
| | - Laura Muñoz-Moreno
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, 28805 Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, 28805 Alcalá de Henares, Madrid, Spain
| | - Maria-Selma Arias-Pérez
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
| | - Tomás Cuenca
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
| | - Lourdes Gude
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
| | - Eva Royo
- Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
3
|
Bresciani G, Boni S, Funaioli T, Zacchini S, Pampaloni G, Busto N, Biver T, Marchetti F. Adding Diversity to a Diruthenium Biscyclopentadienyl Scaffold via Alkyne Incorporation: Synthesis and Biological Studies. Inorg Chem 2023; 62:12453-12467. [PMID: 37478132 PMCID: PMC10410612 DOI: 10.1021/acs.inorgchem.3c01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/23/2023]
Abstract
We report the synthesis and the assessment of the anticancer potential of two series of diruthenium biscyclopentadienyl carbonyl complexes. Novel dimetallacyclopentenone compounds (2-4) were obtained (45-92% yields) from the thermal reaction (PhCCPh exchange) of [Ru2Cp2(CO)(μ-CO){μ-η1:η3-C(Ph)═C(Ph)C(═O)}], 1, with alkynes HCCR [R = C5H4FeCp (Fc), 3-C6H4(Asp), 2-naphthyl; Cp = η5-C5H5, Asp = OC(O)-2-C6H4C(O)Me]. Protonation of 1-3 by HBF4 afforded the corresponding μ-alkenyl derivatives 5-7, in 40-86% yields. All products were characterized by IR and NMR spectroscopy; moreover, cyclic voltammetry (1, 2, 5, 7) and single-crystal X-ray diffraction (5, 7) analyses were performed on representative compounds. Complexes 5-7 revealed a cytotoxic activity comparable to that of cisplatin in A549 (lung adenocarcinoma), SW480 (colon adenocarcinoma), and ovarian (A2780) cancer cell lines, and 2, 5, 6, and 7 overcame cisplatin resistance in A2780cis cells. Complexes 2, 5, and 7 (but not the aspirin derivative 6) induced an increase in intracellular ROS levels. Otherwise, 6 strongly stabilizes and elongates natural DNA (from calf thymus, CT-DNA), suggesting a possible intercalation binding mode, whereas 5 is less effective in binding CT-DNA, and 7 is ineffective. This trend is reversed concerning RNA, and in particular, 7 is able to bind poly(rA)poly(rU) showing selectivity for this nucleic acid. Complexes 5-7 can interact with the albumin protein with a thermodynamic signature dominated by hydrophobic interactions. Overall, we show that organometallic species based on the Ru2Cp2(CO)x scaffold (x = 2, 3) are active against cancer cells, with different incorporated fragments influencing the interactions with nucleic acids and the production of ROS.
Collapse
Affiliation(s)
- Giulio Bresciani
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Serena Boni
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Tiziana Funaioli
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- University
of Bologna, Dipartimento di
Chimica Industriale “Toso Montanari”, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Natalia Busto
- University
of Burgos, Departamento de
Química, Plaza
Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Tarita Biver
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- University
of Pisa, Dipartimento di
Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
4
|
Organometallic Iridium Complexes with Glucose Based Phosphite Ligands. INORGANICS 2023. [DOI: 10.3390/inorganics11030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
New organometallic iridium compounds with phosphorus modified glucose ligands containing isopropylidene protection group or bearing uracil, thymine, and 5-fluorouracil (3,5,6-bicyclophosphite-1,2-O-isopropylidene-α-d-glucofuranoside, 3,5,6-bicyclophosphite-1-β-D-glucofuranosyluracil, 3,5,6-bicyclophosphite-1-β-D-glucofuranosylthymine, 3,5,6-bicyclophosphite-1-β-D-glucofuranosyl-5-flurouracil) were prepared. The structure of the new complexes was confirmed by the spectroscopic technique (1H, 31P{1H} NMR) and mass spectrometry, and purity by elemental analysis. The molecular structure of the complex with the isopropylidene protection group was established by the X-ray analysis. The antiproliferative activity of the new iridium compounds was evaluated against several cancer cell lines of human origin, and all compounds showed low toxicity independent of the pyrimidine base nature, attached to the sugar unit.
Collapse
|
5
|
Hydrolytically stable organometallic ruthenium complexes with glucose-based phosphite ligands. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Ravi P, Somu P, Acharya D, Gomez LA, Thathapudi JJ, Ramachandra YL, Rudraiah SB, Isaq M, Karua CS, Arifullah M, Poojari CC, Lee YR. Isolation and Phytochemical Screening of Endophytic Fungi Isolated from Medicinal Plant Mappia foetida and Evaluation of Its In Vitro Cytotoxicity in Cancer. Appl Biochem Biotechnol 2022; 194:4570-4586. [PMID: 35536539 DOI: 10.1007/s12010-022-03929-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Isolated endophyte fungi from Mappia foetida have been explored as a potential source for the mass production of anticancer drug lead compounds in the current study. Since medical plants are not feasible economically for mass production of bioactive pharmaceutical important molecules using plant tissue culture due to factors like media design and fungal contamination, endophyte fungal mass culture have been an alternative for the relatively easy and inexpensive production. Two endophytic fungi isolated, Alternaria alternata and Fusarium species were mass cultured and their prepared alcoholic extract subjected to standard procedures to identify the phytochemical screening by gas chromatography-mass spectrometry (GCMS), high-performance liquid chromatography (HPLC), UV visible spectrophotometry (UV-VIS), and Fourier transform infrared spectroscopy (FTIR). GC-MS analysis revealed the presence of three major compounds in the extracts. The phytochemical screening confirmed the presence of an anticancer compound (camptothecin) in their extract. Moreover, the dose-dependent anticancer activity of ethanol extract was demonstrated against cervical carcinoma (HeLa), breast carcinoma (MCF-7), non-small cell lung carcinoma (H1975), and hepatocellular carcinoma cell line (Hep G2) by MTT assay where doxorubicin was used as the positive control. Furthermore, the microscopic examination also confirmed the cytotoxic effect of extract of endophytic fungi Alternaria alternata and Fusarium species against tested cancer cells. Hence, endophytic fungi Alternaria alternata and Fusarium species might be exploited for mass production of phytochemicals having anticancer activity.
Collapse
Affiliation(s)
- Pooja Ravi
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Prathap Somu
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea. .,Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to Be University), Saveetha Nagar, Thandalam, Chennai, 602105, India.
| | - Diptikanta Acharya
- Department of Biotechnology, GIET University, Gunupur, Odisha, India, 765022
| | - Levin Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore, Tamil Nadu, 641114, India
| | - Jesse Joel Thathapudi
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore, Tamil Nadu, 641114, India
| | - Yerappa Lakshmikanth Ramachandra
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Sunitha Bommanahalli Rudraiah
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Mona Isaq
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Chetan Shekhar Karua
- Department of Chemical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Mohammed Arifullah
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli, 17600, Kelantan, Malaysia
| | - Chandrappa Chinna Poojari
- Department of Biotechnology, Shridevi Institute of Engineering & Technology, Sira Road, Tumkur, Karnataka, India, 572106.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
7
|
Bag A. DFT based Computational Methodology of IC 50 Prediction. Curr Comput Aided Drug Des 2021; 17:244-253. [PMID: 32072903 DOI: 10.2174/1573409916666200219115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND IC50 is one of the most important parameters of a drug. But, it is very difficult to predict this value of a new compound without experiment. There are only a few QSAR based methods available for IC50 prediction, which is also highly dependable on a huge number of known data. Thus, there is an immense demand for a sophisticated computational method of IC50 prediction in the field of in silico drug designing. OBJECTIVE Recently developed quantum computation based method of IC50 prediction by Bag and Ghorai requires an affordable known data. In present research work, further development of this method is carried out such that the requisite number of known data being minimal. METHODS To retrench the cardinal data span and shrink the effects of variant biological parameters on the computed value of IC50, a relative approach of IC50 computation is pursued in the present method. To predict an approximate value of IC50 of a small molecule, only the IC50 of a similar kind of molecule is required for this method. RESULTS The present method of IC50 computation is tested for both organic and organometallic compounds as HIV-1 capsid A inhibitor and cancer drugs. Computed results match very well with the experiment. CONCLUSION This method is easily applicable to both organic and organometallic compounds with acceptable accuracy. Since this method requires only the dipole moments of an unknown compound and the reference compound, IC50 based drug search is possible with this method. An algorithm is proposed here for IC50 based drug search.
Collapse
Affiliation(s)
- Arijit Bag
- Department of Applied Science Under School of Natural & Applied Sciences, Maulana Abul Kalam Azad University of Technology, West Bengal, Simhat, Haringhata, Nadia 741249, India
| |
Collapse
|
8
|
Vyas KM, Sharma D, Magani SKJ, Mobin SM, Mukhopadhyay S. In vitro evaluation of cytotoxicity and antimetastatic properties of novel arene ruthenium(II)‐tetrazolato compounds on human cancer cell lines. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Komal M. Vyas
- Discipline of Chemistry Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 India
- Department of Chemistry Sardar Patel University Vallabh Vidyanagar 388120 India
| | - Deepu Sharma
- Department of Life Sciences, School of Natural Sciences Shiv Nadar University Greater Noida Uttar Pradesh 201314 India
| | - Sri Krishna Jayadev Magani
- Department of Life Sciences, School of Natural Sciences Shiv Nadar University Greater Noida Uttar Pradesh 201314 India
| | - Shaikh M. Mobin
- Discipline of Chemistry Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 India
| | - Suman Mukhopadhyay
- Discipline of Chemistry Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 India
- Discipline of Biosciences and Biomedical Engineering, School of Engineering Indian Institute of Technology Khandwa Road, Simrol Indore 453552 India
| |
Collapse
|
9
|
Allison M, Caramés-Méndez P, Pask CM, Phillips RM, Lord RM, McGowan PC. Bis(bipyridine)ruthenium(II) Ferrocenyl β-Diketonate Complexes: Exhibiting Nanomolar Potency against Human Cancer Cell Lines. Chemistry 2021; 27:3737-3744. [PMID: 33073884 DOI: 10.1002/chem.202004024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/09/2020] [Indexed: 12/23/2022]
Abstract
The synthesis and characterization of new bis(bipyridine)ruthenium(II) ferrocenyl β-diketonate complexes, [(bpy)2 Ru(Fc-acac)][PF6 ] (bpy=2,2'-bipyridine; Fc-acac=functionalized ferrocenyl β-diketonate ligand) are reported. Alongside clinical platinum drugs, these bimetallic ruthenium-iron complexes have been screened for their cytotoxicity against MIA PaCa-2 (human pancreatic carcinoma), HCT116 p53+/+ (human colon carcinoma, p53-wild type) and ARPE-19 (human retinal pigment epithelial) cell lines. With the exception of one complex, the library exhibit nanomolar potency against cancerous cell lines, and their relative potencies are up to 40x, 400x and 72x more cytotoxic than cisplatin, carboplatin and oxaliplatin, respectively. Under hypoxic conditions, the complexes remain cytotoxic (sub-micromolar range), highlighting their potential in targeting hypoxic tumor regions. The Comet assay was used to determine their ability to damage DNA, and results show dose dependent damage which correlates well with the cytotoxicity results. Their potential to treat bacterial and fungal strains has been determined, and highlight complexes have selective growth inhibition of up to 87-100 % against Staphylococcus aureus and Candida albicans.
Collapse
Affiliation(s)
- Matthew Allison
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Pablo Caramés-Méndez
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Christopher M Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Rianne M Lord
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Patrick C McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
10
|
Perez NM, Higashijima GY, Ramos VM, de Lima Batista AP, Nikolaou S. Probing solvents effects on the absorption spectrum of oxo-centered carbonyl-triruthenium clusters. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Gonchar MR, Matnurov EM, Burdina TA, Zava O, Ridel T, Milaeva ER, Dyson PJ, Nazarov AA. Ruthenium(II)–arene and triruthenium-carbonyl cluster complexes with new water-soluble phopsphites based on glucose: Synthesis, characterization and antiproliferative activity. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Aydin A, Korkmaz ŞA. Evaluation of Pharmacological Activity of Heterobimetallic Coordination Compounds Containing N, N-Bis (2-hydroxyethyl)-Ethylenediamine on HT29, HeLa, C6 and Vero cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:2011-2027. [PMID: 32184866 PMCID: PMC7059045 DOI: 10.22037/ijpr.2019.1100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study was conducted in order to investigate the pharmacological activities of three heterobimetallic coordination compounds: [Cd(N-bishydeten)2][Ni(CN)4] (C1), [Cu2(N-bishydeten)2Co(CN)6].3H2O (C2), and K[Cd(N-bishydeten)Co(CN)6].1.5H2O (C3) (N-bishydeten = N,N-bis(2-hydroxyethyl)-ethylenediamine). This paper describes the ability of complexes to inhibit cell growth, cell migration and human topoisomerase I and to interact with DNA/BSA; this paper also evaluates the potential mechanisms of action exhibited by these compounds via the use of powerful measurement techniques. Studies on HT29, HeLa, C6 and Vero cells revealed that each compound demonstrated significant antiproliferative activity in conjunction with regressed cell migration velocity and caused apoptotic changes in morphology. There are strong data suggesting that the mechanisms of action exhibited by these compounds are associated with their DNA/BSA binding features. The IC50 and binding constant range for the compounds are 20-180 µM and 1.2-3.2 x 104 M-1, respectively. Moreover, we observed that these compounds alter the P53-Bcl-2 ratio and inhibit the relaxation activity of human topoisomerase I. Furthermore, a correlation between the antiproliferative effects of these compounds and their cytotoxic activity was observed. In conclusion, preliminary information demonstrates that these compounds have been found to exhibit effective antiproliferative activity against cancer cell lines, indicating that they are a potent candidate for further pharmacological study.
Collapse
Affiliation(s)
- Ali Aydin
- Faculty of Art and Science, Department of Molecular Biology and Genetics, Gaziosmanpaşa University, 60240, Tokat, Turkey
| | - Şengül Aslan Korkmaz
- Faculty of Engineering, Department of Bioengineering, Munzur University, 62000, Tunceli, Turkey
| |
Collapse
|
13
|
Fernandes AC. Synthesis, Biological Activity and Medicinal Applications of Ruthenium Complexes Containing Carbohydrate Ligands. Curr Med Chem 2019; 26:6412-6437. [DOI: 10.2174/0929867326666190124124350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022]
Abstract
The search for new metal-efficient drugs has attracted considerable attention of the
scientific community. Among them, ruthenium complexes have emerged as an excellent alternative
of platinum complexes. This review presents a thorough and timely coverage of the synthesis,
biological activity and medicinal applications of ruthenium complexes bearing carbohydrate ligands,
allowing a large community of readers, in particularly the community that works in organic,
inorganic, bioorganometallic and medicinal chemistry, ready access to the most relevant examples.
Collapse
Affiliation(s)
- Ana Cristina Fernandes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049- 001 Lisboa, Portugal
| |
Collapse
|
14
|
Rausch M, Dyson PJ, Nowak‐Sliwinska P. Recent Considerations in the Application of RAPTA‐C for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Magdalena Rausch
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Patrycja Nowak‐Sliwinska
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
- Translational Research Centre in Oncohaematology Geneva, Switzerland, 1211 Geneva 4 Switzerland
| |
Collapse
|
15
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Carnizello AP, Alves JM, Pereira DE, Campos JCL, Barbosa MIF, Batista AA, Tavares DC. Study of the cytotoxic and genotoxic potential of the carbonyl ruthenium(II) compound,
ct‐
[RuCl(CO)(dppb)(bipy)]PF
6
[dppb = 1,4‐bis(diphenylphosphino)butane and bipy = 2,2′‐bipyridine], by in vitro and in vivo assays. J Appl Toxicol 2018; 39:630-638. [DOI: 10.1002/jat.3753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/24/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Andréa P. Carnizello
- Departamento de QuímicaUniversidade Federal de São Carlos CP 676, CEP 13565‐905 São Carlos SP Brazil
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Jacqueline M. Alves
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Daiane E. Pereira
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Jacqueline C. L. Campos
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| | - Marília I. F. Barbosa
- Departamento de QuímicaUniversidade Federal de São Carlos CP 676, CEP 13565‐905 São Carlos SP Brazil
| | - Alzir A. Batista
- Departamento de QuímicaUniversidade Federal de São Carlos CP 676, CEP 13565‐905 São Carlos SP Brazil
| | - Denise C. Tavares
- Laboratório de MutagêneseUniversidade de Franca Pq. Universitario, CEP 14404‐600 Franca SP Brazil
| |
Collapse
|
17
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Batchelor LK, Berti B, Cesari C, Ciabatti I, Dyson PJ, Femoni C, Iapalucci MC, Mor M, Ruggieri S, Zacchini S. Water soluble derivatives of platinum carbonyl Chini clusters: synthesis, molecular structures and cytotoxicity of [Pt 12(CO) 20(PTA) 4] 2- and [Pt 15(CO) 25(PTA) 5] 2- . Dalton Trans 2018; 47:4467-4477. [PMID: 29504622 DOI: 10.1039/c8dt00228b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reactions of [Pt3n(CO)6n]2- (n = 2-5) homoleptic Chini-type clusters with increasing amounts of 1,3,5-triaza-7-phosphaadamantane (PTA) result in the stepwise substitution of one terminal CO ligand per Pt3 triangular unit up to the formation of [Pt3n(CO)5n(PTA)n]2- (n = 2-5). Competition between the nonredox substitution with retention of the nuclearity and the redox fragmentation to afford lower nuclearity heteroleptic Chini-type clusters is observed as a function of the amount of PTA and the nuclearity of the starting cluster. Because of this, [Pt12(CO)20(PTA)4]2- and [Pt15(CO)25(PTA)5]2- are more conveniently obtained via the oxidation of [Pt9(CO)15(PTA)3]2-. All the new species were spectroscopically characterized, and the structures of [Pt12(CO)20(PTA)4]2- and [Pt15(CO)25(PTA)5]2- were determined by single-crystal X-ray diffraction. These clusters may be viewed as heteroleptic Chini-type clusters composed of stacks of four and five Pt3(μ-CO)3(CO)2(PTA) units, respectively. The solubility in water of [Pt12(CO)20(PTA)4]2- and [Pt15(CO)25(PTA)5]2- has been determined and their cytotoxicity towards human ovarian (A2780) cancer cells and their cisplatin-resistant strain (A2780cisR) has been evaluated.
Collapse
Affiliation(s)
- Lucinda K Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dwyer BG, Johnson E, Cazares E, McFarlane Holman KL, Kirk SR. Ruthenium anticancer agent KP1019 binds more tightly than NAMI-A to tRNA Phe. J Inorg Biochem 2018; 182:177-183. [PMID: 29501978 DOI: 10.1016/j.jinorgbio.2018.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/29/2022]
Abstract
The ruthenium-based anticancer agent NAMI-A (ImH[trans-RuCl4(dmso)(Im)], where Im = imidazole) has been shown to interact with RNA in vivo and in vitro. We hypothesized that the similarly structured drug KP1019 (IndH[trans-RuCl4(Ind)2], where Ind = indazole) binds to RNA as well. Fluorescence spectroscopy was employed to assay the interactions between either NAMI-A or KP1019 and tRNAPhe through an intrinsic fluorophore wybutosine (Y) base and by extrinsic displacement of the intercalating agent ethidium bromide. In both the intrinsic Y-base and extrinsic ethidium bromide studies, KP1019 exhibited tighter binding to phenylalanine-specific tRNA (tRNAPhe) than NAMI-A. In the ethidium bromide study, reducing both drugs from RuIII to RuII resulted in a significant decrease in binding. Our findings suggest that the relatively large heteroaromatic indazole ligands of KP1019 intercalate in the π-stacks of tRNAPhe within structurally complex binding pockets. In addition, NAMI-A appears to be sensitive to destabilizing electrostatic interactions with the negative phosphate backbone of tRNAPhe. Interactions with additional tRNA molecules and other types of RNA require further evaluation to determine the role of RNA in the mechanisms of action for KP1019 and to better understand how Ru drugs fundamentally interact with biomolecules that are more structurally sophisticated than short DNA oligonucleotides. To the best of our knowledge, this is the first study to report KP1019 binding interactions with RNA.
Collapse
Affiliation(s)
- Brendan G Dwyer
- Department of Chemistry, Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Emily Johnson
- Department of Chemistry, Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Efren Cazares
- Department of Chemistry, Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Karen L McFarlane Holman
- Department of Chemistry, Willamette University, 900 State Street, Salem, Oregon 97301, United States
| | - Sarah R Kirk
- Department of Chemistry, Willamette University, 900 State Street, Salem, Oregon 97301, United States.
| |
Collapse
|
20
|
Boccalini A, Dyson PJ, Femoni C, Iapalucci MC, Ruggieri S, Zacchini S. Insertion of germanium atoms in high-nuclearity rhodium carbonyl compounds: synthesis, characterization and preliminary biological activity of the heterometallic [Rh13Ge(CO)25]3−, [Rh14Ge2(CO)30]2− and [Rh12Ge(CO)27]4− clusters. Dalton Trans 2018; 47:15737-15744. [DOI: 10.1039/c8dt02466a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of [Rh7(CO)16]3− with Ge2+ salts led to the first Rh carbonyl clusters with interstitial Ge atoms.
Collapse
Affiliation(s)
- Alberto Boccalini
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Cristina Femoni
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Maria C. Iapalucci
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Silvia Ruggieri
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| |
Collapse
|
21
|
Pérez SA, de Haro C, Vicente C, Donaire A, Zamora A, Zajac J, Kostrhunova H, Brabec V, Bautista D, Ruiz J. New Acridine Thiourea Gold(I) Anticancer Agents: Targeting the Nucleus and Inhibiting Vasculogenic Mimicry. ACS Chem Biol 2017; 12:1524-1537. [PMID: 28388047 DOI: 10.1021/acschembio.7b00090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two new 1-acridin-9-yl-3-methylthiourea Au(I) DNA intercalators [Au(ACRTU)2]Cl (2) and [Au(ACRTU) (PPh3)]PF6 (3) have been prepared. Both complexes were highly active in the human ovarian carcinoma cisplatin-sensitive A2780 cell line, exhibiting IC50 values in the submicromolar range. Compounds 2 and 3 are also cytotoxic toward different phenotypes of breast cancer cell lines MDA-MB-231 (triple negative), SK-BR-3 (HER2+, ERα-, and ERβ-), and MCF-7 (ER+). Both complexes induce apoptosis through activation of caspase-3 in vitro. While inhibition of some proteins (thiol-containing enzymes) seems to be the main mechanism of action for cytotoxic gold complexes, 2 and 3 present a DNA-dependent mechanism of action. They locate in the cell nucleus according to confocal microscopy and transmission electronic microscopy. The binding to DNA resulted to be via intercalation as shown by spectroscopic methods and viscometry, exhibiting a dose-dependent response on topoisomerase I mediated DNA unwinding. In addition, 2 and 3 exhibit potent antiangiogenic effects and are also able to inhibit vasculogenic mimicry of highly invasive MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sergio A. Pérez
- Departamento
de Química Inorgánica, Facultad de Química, Biomedical
Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Concepción de Haro
- Departamento
de Química Inorgánica, Facultad de Química, Biomedical
Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Consuelo Vicente
- Departamento
de Química Inorgánica, Facultad de Química, Biomedical
Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Antonio Donaire
- Departamento
de Química Inorgánica, Facultad de Química, Biomedical
Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Ana Zamora
- Departamento
de Química Inorgánica, Facultad de Química, Biomedical
Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| | - Juraj Zajac
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
- Department
of Biophysics, Faculty of Science, Palacky University, Slechtitelu
27, 783 71 Olomouc, Czech Republic
| | - Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | | | - José Ruiz
- Departamento
de Química Inorgánica, Facultad de Química, Biomedical
Research Institute of Murcia (IMIB-Arrixaca-UMU), Universidad de Murcia, E-30071 Murcia, Spain
| |
Collapse
|
22
|
Bag A, Ghorai PK. Enhancement of biocompatibility and photoacoustic contrast activity of metal clusters. J Mol Graph Model 2017; 75:220-232. [PMID: 28601707 DOI: 10.1016/j.jmgm.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 01/23/2023]
Abstract
Organometallic carbonyl clusters (OMCC) of group VIII elements are water soluble, bio-compatible and stable high-contrast photoacoustic agents for live cell imaging. But, they have limited application due to weak absorption within 700-1000nm wavelength which is known as the biological window of absorption. In this article, we report that hexa-nuclear iron (Fe6) carbonyl cluster derivatized with sodium thio-propanoate has very good absorption within 700-1600nm wave length. This modeled compound is water soluble and bio-compatible. The bio-compatibility of this compound is tested through cytotoxicity, LogP and metabolic probability at CYP450-2D6 enzyme.
Collapse
Affiliation(s)
- Arijit Bag
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, WB, India
| | - Pradip Kr Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, WB, India.
| |
Collapse
|
23
|
Berndsen RH, Abdul UK, Weiss A, Zoetemelk M, te Winkel MT, Dyson PJ, Griffioen AW, Nowak-Sliwinska P. Epigenetic approach for angiostatic therapy: promising combinations for cancer treatment. Angiogenesis 2017; 20:245-267. [DOI: 10.1007/s10456-017-9551-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022]
|
24
|
Berndsen RH, Weiss A, Abdul UK, Wong TJ, Meraldi P, Griffioen AW, Dyson PJ, Nowak-Sliwinska P. Combination of ruthenium(II)-arene complex [Ru(η 6-p-cymene)Cl 2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity. Sci Rep 2017; 7:43005. [PMID: 28223694 PMCID: PMC5320450 DOI: 10.1038/srep43005] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/17/2017] [Indexed: 12/28/2022] Open
Abstract
Ruthenium-based compounds show strong potential as anti-cancer drugs and are being investigated as alternatives to other well-established metal-based chemotherapeutics. The organometallic compound [Ru(η6-p-cymene)Cl2(pta)], where pta = 1,3,5-triaza-7-phosphaadamantane (RAPTA-C) exhibits broad acting anti-tumor efficacy with intrinsic angiostatic activity. In the search for an optimal anti-angiogenesis drug combination, we identified synergistic potential between RAPTA-C and the epidermal growth factor receptor (EGFR) inhibitor, erlotinib. This drug combination results in strong synergistic inhibition of cell viability in human endothelial (ECRF24 and HUVEC) and human ovarian carcinoma (A2780 and A2780cisR) cells. Additionally, erlotinib significantly enhances the cellular uptake of RAPTA-C relative to treatment with RAPTA-C alone in human ovarian carcinoma cells, but not endothelial cells. Drug combinations induce the formation of chromosome bridges that persist after mitotic exit and delay abscission in A2780 and A2780cisR, therefore suggesting initiation of cellular senescence. The therapeutic potential of these compounds and their combination is further validated in vivo on A2780 tumors grown on the chicken chorioallantoic membrane (CAM) model, and in a preclinical model in nude mice. Immunohistochemical analysis confirms effective anti-angiogenic and anti-proliferative activity in vivo, based on a significant reduction of microvascular density and a decrease in proliferating cells.
Collapse
Affiliation(s)
- Robert H. Berndsen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Andrea Weiss
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - U. Kulsoom Abdul
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tse J. Wong
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, University of Geneva (UNIGE), Geneva, Switzerland
| | - Arjan W. Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul J. Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
25
|
Wang JQ, Kou JF, Zhao ZZ, Qiu KQ, Chao H. Anthraquinone-bridged diruthenium(ii) complexes inhibit migration and invasion of human hepatocarcinoma MHCC97-H cells. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00149e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Four diruthenium(ii) complexes exhibited anti-metastatic properties on MHCC97-H cells, which involved in the inhibition of migration and invasion, negative remodulation of the cytoskeleton, blocking cell cycles and regulation of relative signal pathways.
Collapse
Affiliation(s)
- Jin-Quan Wang
- Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research
- Guangdong Pharmaceutical University
- Guangzhou 510275
- China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
| | - Jun-Feng Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Zi-Zhuo Zhao
- Sun Yat-sen Memorial Hospital
- Sun Yat-Sen University
- Guangzhou
- China
| | - Kang-Qiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
26
|
|
27
|
Jovanović KK, Tanić M, Ivanović I, Gligorijević N, Dojčinović BP, Radulović S. Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand. J Inorg Biochem 2016; 163:362-373. [DOI: 10.1016/j.jinorgbio.2016.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/21/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022]
|
28
|
Wu Q, Zheng K, Liao S, Ding Y, Li Y, Mei W. Arene Ruthenium(II) Complexes as Low-Toxicity Inhibitor against the Proliferation, Migration, and Invasion of MDA-MB-231 Cells through Binding and Stabilizing c-myc G-Quadruplex DNA. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00820] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qiong Wu
- Key
Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Kangdi Zheng
- School
of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Siyan Liao
- School
of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yang Ding
- School
of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yangqiu Li
- Key
Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Wenjie Mei
- School
of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
29
|
Nowak-Sliwinska P, Weiss A, Păunescu E, Clavel CM, Griffioen AW, Dyson PJ. Anti-angiogenic properties of chlorambucil derivatives with fluorous and hydrocarbon appendages. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00271d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorambucil (CLB) derivatives with long fluorous (referred to as 1 and 2) or hydrocarbon (3) chains have been evaluated in a series of in vitro and in vivo assays.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Angiogenesis Laboratory
- Department of Medical Oncology
- VU University Medical Center
- Amsterdam
- The Netherlands
| | - Andrea Weiss
- School of Pharmaceutical Sciences
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Emilia Păunescu
- School of Pharmaceutical Sciences
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Catherine M. Clavel
- School of Pharmaceutical Sciences
- University of Geneva
- CH-1211 Geneva 4
- Switzerland
| | - Arjan W. Griffioen
- Angiogenesis Laboratory
- Department of Medical Oncology
- VU University Medical Center
- Amsterdam
- The Netherlands
| | - Paul J. Dyson
- Institute of Chemical Sciences and Engineering
- Swiss Federal Institute of Technology (EPFL)
- Lausanne
- Switzerland
| |
Collapse
|
30
|
Grozav A, Balacescu O, Balacescu L, Cheminel T, Berindan-Neagoe I, Therrien B. Synthesis, Anticancer Activity, and Genome Profiling of Thiazolo Arene Ruthenium Complexes. J Med Chem 2015; 58:8475-90. [PMID: 26488797 DOI: 10.1021/acs.jmedchem.5b00855] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sixteen hydrazinyl-thiazolo arene ruthenium complexes of the general formula [(η(6)-p-cymene)Ru(N,N'-hydrazinyl-thiazolo)Cl]Cl were synthesized. All complexes were tested in vitro for their antiproliferative activity on three tumor cell lines (HeLa, A2780, and A2780cisR) and on a noncancerous cell line (HFL-1). A superior cytotoxic activity of the ruthenium complexes as compared to cisplatin and oxaliplatin, on both cisplatin-sensitive and cisplatin resistant ovarian cancer cells, was observed. In addition, the biological activity of two selected derivatives was evaluated using microarray gene expression assay and ingenuity pathway analysis. p53 signaling was identified as an important pathway modulated by both arene ruthenium compounds. New activated molecules such as FAS, ZMAT3, PRMT2, BBC3/PUMA, and PDCD4, whose overexpressions are correlated with overcoming resistance to cisplatin therapy, were also identified as potential targets. Moreover, the arene ruthenium complexes can be used in association with cisplatin to prevent cisplatin resistance development and synergistically to induce cell death in ovarian cancer cells.
Collapse
Affiliation(s)
- Adriana Grozav
- Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Victor Babes Str. 41, RO-400012 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta" , 34-36 Republicii Str, RO-400015, Cluj-Napoca, Romania
| | - Loredana Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta" , 34-36 Republicii Str, RO-400015, Cluj-Napoca, Romania
| | - Thomas Cheminel
- Institut de Chimie, Université de Neuchâtel , 51 Avenue de Bellevaux, CH-2000 Neuchâtel, Switzerland
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta" , 34-36 Republicii Str, RO-400015, Cluj-Napoca, Romania.,Research Center of Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu″ University of Medicine and Pharmacy , 23 Marinescu Str, RO-400337 Cluj-Napoca, Romania
| | - Bruno Therrien
- Institut de Chimie, Université de Neuchâtel , 51 Avenue de Bellevaux, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
31
|
Synthesis of water-soluble ruthenium clusters by reaction with PTA (1,3,5-triaza-7-phosphaadamantane). J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Păunescu E, Nowak-Sliwinska P, Clavel CM, Scopelliti R, Griffioen AW, Dyson PJ. Anticancer Organometallic Osmium(II)-p-cymene Complexes. ChemMedChem 2015; 10:1539-1547. [PMID: 26190176 DOI: 10.1002/cmdc.201500221] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 01/04/2025]
Abstract
Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells. Two of these three cancer-cell-selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications.
Collapse
Affiliation(s)
- Emilia Păunescu
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Patrycja Nowak-Sliwinska
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam (The Netherlands)
| | - Catherine M Clavel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam (The Netherlands)
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland).
| |
Collapse
|
33
|
Nowak-Sliwinska P, Clavel CM, Păunescu E, te Winkel MT, Griffioen AW, Dyson PJ. Antiangiogenic and Anticancer Properties of Bifunctional Ruthenium(II)–p-Cymene Complexes: Influence of Pendant Perfluorous Chains. Mol Pharm 2015; 12:3089-96. [DOI: 10.1021/acs.molpharmaceut.5b00417] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Angiogenesis
Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Institute
of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
| | - Catherine M. Clavel
- Institute
of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
| | - Emilia Păunescu
- Institute
of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
| | - Marije T. te Winkel
- Angiogenesis
Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Institute
of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
| | - Arjan W. Griffioen
- Angiogenesis
Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul J. Dyson
- Institute
of Chemical Sciences and Engineering, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
34
|
Clavel CM, Păunescu E, Nowak-Sliwinska P, Griffioen AW, Scopelliti R, Dyson PJ. Modulating the Anticancer Activity of Ruthenium(II)-Arene Complexes. J Med Chem 2015; 58:3356-65. [PMID: 25812075 DOI: 10.1021/jm501655t] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Following the identification of [Ru(η(6)-p-cymene)Cl2(1H,1H,2H,2H-perfluorodecyl-3-(pyridin-3-yl)propanoate)], a ruthenium(II)-arene complex with a perfluoroalkyl-modified ligand that displays remarkable in vitro cancer cell selectivity, a series of structurally related compounds were designed. In the new derivatives, the p-cymene ring and/or the chloride ligands are substituted by other ligands to modulate the steric bulk or aquation kinetics. The new compounds were evaluated in both in vitro (cytotoxicity and migration assays) and in vivo (chicken chorioallantoic membrane) models and were found to exhibit potent antivascular effects.
Collapse
Affiliation(s)
- Catherine M Clavel
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Emilia Păunescu
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Patrycja Nowak-Sliwinska
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Arjan W Griffioen
- ‡Angiogenesis Laboratory, Department of Medical Oncology, VUMC Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rosario Scopelliti
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J Dyson
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Ruthenium polypyridyl complex inhibits growth and metastasis of breast cancer cells by suppressing FAK signaling with enhancement of TRAIL-induced apoptosis. Sci Rep 2015; 5:9157. [PMID: 25778692 PMCID: PMC4361883 DOI: 10.1038/srep09157] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
Ruthenium-based complexes have emerged as promising antitumor and antimetastatic agents during the past decades. However, the limited understanding of the antimetastatic mechanisms of these agents is a roadblock to their clinical application. Herein, we reported that, RuPOP, a ruthenium polypyridyl complex with potent antitumor activity, was able to effectively inhibit growth and metastasis of MDA-MB-231 cells and synergistically enhance TRAIL-induced apoptosis. The selective intracellular uptake and cytotoxic effect of RuPOP was found associated with transferring receptor (TfR)-mediated endocytosis. Further investigation on intracellular mechanisms reveled that RuPOP notably suppressed FAK-mediated ERK and Akt activation. Pretreatment of cells with ERK inhibitor (U0126) and PI3K inhibitor (LY294002) significantly potentiated the inhibitory effect of RuPOP on cell growth, migration and invasion. Moreover, the alternation in the expression levels of metastatic regulatory proteins, including uPA, MMP-2/-9, and inhibition of VEGF secretion were also observed after RuPOP treatment. These results demonstrate the inhibitory effect of RuPOP on the growth and metastasis of cancer cells and the enhancement of TRAIL-induced apoptosis though suppression of FAK-mediated signaling. Furthermore, RuPOP exhibits the potential to be developed as a metal-based antimetastatic agent and chemosensitizer of TRAIL for the treatment of human metastatic cancers.
Collapse
|
36
|
Zamora A, Pérez SA, Rodríguez V, Janiak C, Yellol GS, Ruiz J. Dual Antitumor and Antiangiogenic Activity of Organoplatinum(II) Complexes. J Med Chem 2015; 58:1320-36. [PMID: 25581345 DOI: 10.1021/jm501662b] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ana Zamora
- Departamento
de Química Inorgánica and Regional Campus of International
Excellence “Campus Mare Nostrum“, Universidad de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Sergio A. Pérez
- Departamento
de Química Inorgánica and Regional Campus of International
Excellence “Campus Mare Nostrum“, Universidad de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Venancio Rodríguez
- Departamento
de Química Inorgánica and Regional Campus of International
Excellence “Campus Mare Nostrum“, Universidad de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Gorakh S. Yellol
- Departamento
de Química Inorgánica and Regional Campus of International
Excellence “Campus Mare Nostrum“, Universidad de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica and Regional Campus of International
Excellence “Campus Mare Nostrum“, Universidad de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| |
Collapse
|
37
|
Bag A, Ghorai PK. Computational investigation of the ligand field effect to improve the photoacoustic properties of organometallic carbonyl clusters. RSC Adv 2015. [DOI: 10.1039/c5ra01757b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Organometallic nitrosyl carbonyl clusters are stable and better high-contrast photoacoustic contrast agents (PACAs) than organometallic carbonyl clusters.
Collapse
Affiliation(s)
- Arijit Bag
- Indian Institute of Science Education and Research Kolkata
- India
| | | |
Collapse
|
38
|
The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 2014; 17:779-804. [PMID: 25138280 DOI: 10.1007/s10456-014-9440-7] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/13/2014] [Indexed: 01/16/2023]
Abstract
The chicken chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development, including but not restricted to gas exchange. Over the last two decades, interest in the CAM as a robust experimental platform to study blood vessels has been shared by specialists working in bioengineering, development, morphology, biochemistry, transplant biology, cancer research and drug development. The tissue composition and accessibility of the CAM for experimental manipulation, makes it an attractive preclinical in vivo model for drug screening and/or for studies of vascular growth. In this article we provide a detailed review of the use of the CAM to study vascular biology and response of blood vessels to a variety of agonists. We also present distinct cultivation protocols discussing their advantages and limitations and provide a summarized update on the use of the CAM in vascular imaging, drug delivery, pharmacokinetics and toxicology.
Collapse
|
39
|
Clavel CM, Păunescu E, Nowak-Sliwinska P, Griffioen AW, Scopelliti R, Dyson PJ. Discovery of a Highly Tumor-Selective Organometallic Ruthenium(II)–Arene Complex. J Med Chem 2014; 57:3546-58. [DOI: 10.1021/jm5002748] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Catherine M. Clavel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Emilia Păunescu
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Patrycja Nowak-Sliwinska
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Arjan W. Griffioen
- Angiogenesis
Laboratory, Department of Medical Oncology, VUMC Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|