1
|
Seo D, Choi BH, La JA, Kim Y, Kang T, Kim HK, Choi Y. Multi-Biomarker Profiling for Precision Diagnosis of Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402919. [PMID: 39221684 DOI: 10.1002/smll.202402919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Multi-biomarker analysis can enhance the accuracy of the single-biomarker analysis by reducing the errors caused by genetic and environmental differences. For this reason, multi-biomarker analysis shows higher accuracy in early and precision diagnosis. However, conventional analysis methods have limitations for multi-biomarker analysis because of their long pre-processing times, inconsistent results, and large sample requirements. To solve these, a fast and accurate precision diagnostic method is introduced for lung cancer by multi-biomarker profiling using a single drop of blood. For this, surface-enhanced Raman spectroscopic immunoassay (SERSIA) is employed for the accurate, quick, and reliable quantification of biomarkers. Then, it is checked the statistical relation of the multi-biomarkers to differentiate between healthy controls and lung cancer patients. This approach has proven effective; with 20 µL of blood serum, lung cancer is diagnosed with 92% accuracy. It also accurately identifies the type and stage of cancer with 87% and 85%, respectively. These results show the importance of multi-biomarker analysis in overcoming the challenges posed by single-biomarker diagnostics. Furthermore, it markedly improves multi-biomarker-based analysis methods, illustrating its important impact on clinical diagnostics.
Collapse
Affiliation(s)
- Dongkwon Seo
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ju A La
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Youngjae Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Taewook Kang
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Korea University, Seoul, 08308, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Gao H, Qin H, Fu H, Feng J, Chen M. Tau biosensor on aptamer-modified interdigitated electrode for monitoring neurological effect caused by anesthesia. Heliyon 2024; 10:e37449. [PMID: 39309811 PMCID: PMC11415702 DOI: 10.1016/j.heliyon.2024.e37449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
General anesthesia is significantly gaining prominence and becoming unavoidable in modern medicine. Since neuroprotein fluctuations are common during anesthetic procedures, it is essential to monitor protein levels to identify neuro-related issues. Tau protein fluctuations are often found in the anesthetic process, and higher levels of tau are highly related to various neuro-related issues. Researchers are focusing on monitoring tau levels during and after anesthesia. This research has developed a high-sensitive tau biosensor on a gold nanomaterial-modified interdigitated electrode, measured at 0-2 V on a dual-probe station. Aptamer and antibody were used as capture and detection molecules, and a biotin-streptavidin strategy was employed to attach a higher number of aptamers on the electrode. These immobilized aptamers recognize the tau protein and form a sandwich with antibodies, lowering the detection of tau protein to 1 fM on a linear regression from 0.001 to 100 pM (y = 2.0651x - 1.3813, R2 = 0.987). Further, tau-spiked cerebrospinal fluid increases the current flow without any interferences, confirming the selective detection of tau protein.
Collapse
Affiliation(s)
- Hongjuan Gao
- Operating Room, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Han Qin
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Hongjing Fu
- Operating Room, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Jing Feng
- Department of Nursing, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Min Chen
- Department of Nursing, Wuhan Fourth Hospital, Wuhan, 430000, China
| |
Collapse
|
3
|
Gezahagne HF, Jin DS, Vogel EM. The influence of charge on the translation of the sandwich ELISA approach to electronic biosensors. J Colloid Interface Sci 2024; 668:223-231. [PMID: 38677211 DOI: 10.1016/j.jcis.2024.04.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
The sandwich approach, whereby an antigen is captured by a primary antibody and detected by a secondary antibody, is commonly used to improve the selectivity and sensitivity of enzyme-linked immunosorbent assays (ELISA). This work details the experimental factors that impact the reliable translation of this sandwich approach to two commonly used electronic biosensors, namely potentiometric and impedimetric biosensors. Previous studies have demonstrated the Debye screening limitations associated with potentiometric biosensors. However, the correlation between the ionic strength of the measurement buffer and the impedimetric biosensing response has not been studied. Potentiometric biosensors were able to successfully detect the primary antibody and the target antigen by decreasing the ionic strength of the phosphate buffered saline (PBS) measurement buffer from 1x PBS to 0.01x PBS. However, the secondary antibody used for the selective signal amplification was not reliably detected. Therefore, the sandwich approach is not viable for potentiometric sensing at biologically relevant ionic strengths, due to the Debye screening effect. Alternatively, decreasing the ionic strength of the measurement buffer allowed for the successful translation of the sandwich approach to impedimetric biosensors. Impedimetric biosensing literature typically attributes a measured increase in the charge transfer resistance to an increase in the thickness of the immobilized biolayer. However, this work highlights the influence that both the charge and thickness of the biolayer have on the transport of the redox couple. Decreasing the ionic strength of the measurement buffer lowers the molecular charge screening effect. This permits the transport of a positively charged redox probe through a negatively charged immobilized biolayer via migration and diffusion. The results demonstrate that the use of a buffer at a lower, yet biologically relevant ionic strength allows for the successful translation of the sandwich approach to impedimetric biosensors.
Collapse
Affiliation(s)
- Hilena F Gezahagne
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Decarle S Jin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eric M Vogel
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
4
|
Mendes G, Faulk B, Kaparthi B, Irion AR, Fong BL, Bayless K, Bondos SE. Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions. Biomacromolecules 2024; 25:4639-4662. [PMID: 39074364 PMCID: PMC11323028 DOI: 10.1021/acs.biomac.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Proteins implement many useful functions, including binding ligands with unparalleled affinity and specificity, catalyzing stereospecific chemical reactions, and directing cell behavior. Incorporating proteins into materials has the potential to imbue devices with these desirable traits. This review highlights recent advances in creating active materials by genetically fusing a self-assembling protein to a functional protein. These fusion proteins form materials while retaining the function of interest. Key advantages of this approach include elimination of a separate functionalization step during materials synthesis, uniform and dense coverage of the material by the functional protein, and stabilization of the functional protein. This review focuses on macroscale materials and discusses (i) multiple strategies for successful protein fusion design, (ii) successes and limitations of the protein fusion approach, (iii) engineering solutions to bypass any limitations, (iv) applications of protein fusion materials, including tissue engineering, drug delivery, enzyme immobilization, electronics, and biosensing, and (v) opportunities to further develop this useful technique.
Collapse
Affiliation(s)
- Gabriela
Geraldo Mendes
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Fralin
Biomedical Research Institute, Virginia
Tech University, Roanoke, Virginia 24016, United States
| | - Britt Faulk
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Bhavika Kaparthi
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Andrew R. Irion
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Brandon Look Fong
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Kayla Bayless
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Sarah E. Bondos
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Yoon J, Kim J, Lim S, Choi H, Bae J, Kim K, Song SH, Cho YB, Park W, Jung YG. All-in-one platform: Versatile, Easy, and User-friendly System (VEUS) based on automated and expert-independent antibody immobilization and immunoassay by utilizing customized movement of magnetic particles. Biotechnol J 2024; 19:e2400074. [PMID: 38896409 DOI: 10.1002/biot.202400074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
The ELISA is the most worldwide method for immunoassay. However, the ELISA is losing ground due to low reproducibility of manual experimental processes in both R&D and IVD areas. An automated platform is a good solution, but there are still limitations owning to extremely high cost and requiring large space to set up especially for a small size laboratory. Here, we present a novel all-in-one platform called "VEUS" settable on the laboratory table that offers comprehensive automation of the entire multiplex immunoassay process by exploiting antibody conjugated magnetic particles, quality control and then immunoanalytical reaction, thereby enhancing detection sensitivity and high reproducibility. As a proof of concept, the system exhibits a sensitive LOD of 0.6 and 3.1 pg mL-1 within 1 h run, comparable precision that of molecular diagnostic systems based on PCR method, enabling rapid multiplex diagnosis of Influenza A, Influenza B, and COVID-19 viruses with similar symptoms. Through automation by the all-in-one system, it can be used by novice users, something innovative for immunoassays, relying heavily on user experience. Furthermore, it can contribute to streamline entire immunoassay processes of diverse biomarkers with high reproducibility and convenience in laboratories.
Collapse
Affiliation(s)
- Jinsik Yoon
- Institute for Wearable Convergence Electronics, College of Electronics and Information, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Jiyeong Kim
- EzDiaTech Inc. Anyang, Gyeonggi, Republic of Korea
| | - Sujeong Lim
- Institute for Wearable Convergence Electronics, College of Electronics and Information, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Heelak Choi
- EzDiaTech Inc. Anyang, Gyeonggi, Republic of Korea
| | - Junghyun Bae
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Kibeom Kim
- Department of Electronic Engineering, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Suk-Heung Song
- Institute for Wearable Convergence Electronics, College of Electronics and Information, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Yoo-Bok Cho
- EzDiaTech Inc. Anyang, Gyeonggi, Republic of Korea
| | - Wook Park
- Institute for Wearable Convergence Electronics, College of Electronics and Information, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
- Department of Electronic Engineering, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | | |
Collapse
|
6
|
Shirani E, Razmjou A, Asadnia M, Nordon RE, Inglis DW. Surface Modification of Polystyrene with Boronic Acid for Immunoaffinity-Based Cell Enrichment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4361-4372. [PMID: 38357828 DOI: 10.1021/acs.langmuir.3c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Obtaining an enriched and phenotypically pure cell population from heterogeneous cell mixtures is important for diagnostics and biosensing. Existing techniques such as fluorescent-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) require preincubation with antibodies (Ab) and specialized equipment. Cell immunopanning removes the need for preincubation and can be done with no specialized equipment. The majority of the available antibody-mediated analyte capture techniques require a modification to the Abs for binding. In this work, no antibody modification is used because we take advantage of the carbohydrate chain in the Fc region of Ab. We use boronic acid as a cross-linker to bind the Ab to a modified surface. The process allows for functional orientation and cleavable binding of the Ab. In this study, we created an immunoaffinity matrix on polystyrene (PS), an inexpensive and ubiquitous plastic. We observed a 37% increase in Ab binding compared with that of a passive adsorption approach. The method also displayed a more consistent antibody binding with 17 times less variation in Ab loading among replicates than did the passive adsorption approach. Surface topography analysis revealed that a dextran coating reduced nonspecific antibody binding. Elemental analysis (XPS) was used to characterize the surface at different stages and showed that APBA molecules can bind upside-down on the surface. While upside-down antibodies likely remain functional, their elution behavior might differ from those bound in the desired way. Cell capture experiments show that the new surface has 43% better selectivity and 2.4-fold higher capture efficiency compared to a control surface of passively adsorbed Abs. This specific surface chemistry modification will allow the targeted capture of cells or analytes with the option of chemical detachment for further research and characterization.
Collapse
Affiliation(s)
- Elham Shirani
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, Western Australia 6027, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Robert E Nordon
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
7
|
Moskaluk AE, Darlington L, VandeWoude S. Subtilisin 3 production from Microsporum canis is independent of keratin substrate availability. J Basic Microbiol 2024; 64:22-31. [PMID: 37551993 DOI: 10.1002/jobm.202300125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Dermatophytes are highly infectious fungi that cause superficial infections in keratinized tissues in humans and animals. This group of fungi is defined by their ability to digest keratin and encompasses a wide range of species. We investigated a critical adhesion protein, subtilisin 3, utilized by Microsporum canis during initial stages of infection, analyzing its production and expression under varying growth conditions. Additionally, as this protein must be expressed and produced for dermatophyte infections to occur, we developed and optimized a diagnostic antibody assay targeting this protein. Subtilisin 3 levels were increased in culture when grown in baffled flasks and supplemented with either l-cysteine or cat hair. As subtilisin 3 was also produced in cultures not supplemented with keratin or cysteine, this study demonstrated that subtilisin 3 production is not reliant on the presence of keratin or its derivatives. These findings could help direct future metabolic studies of dermatophytes, particularly during the adherence phase of infections.
Collapse
Affiliation(s)
- Alex E Moskaluk
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren Darlington
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
Lv Y, Fan J, Zhao M, Wu R, Li LS. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. NANOSCALE 2023; 15:5560-5578. [PMID: 36866747 DOI: 10.1039/d2nr07247e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorescence immunoassays have been given considerable attention among the quantitative detection methods in the clinical medicine and food safety testing fields. In particular, semiconductor quantum dots (QDs) have become ideal fluorescent probes for highly sensitive and multiplexed detection due to their unique photophysical properties, and the QD fluorescence-linked immunosorbent assay (FLISA) with high sensitivity, high accuracy, and high throughput has been greatly developed recently. In this manuscript, the advantages of applying QDs to FLISA platforms and some strategies for their application to in vitro diagnostics and food safety are discussed. Given the rapid development of this field, we classify these strategies based on the combination of QD types and detection targets, including traditional QDs or QD micro/nano-spheres-FLISA, and multiple FLISA platforms. In addition, some new sensors based on the QD-FLISA are introduced; this is one of the hot spots in this field. The current focus and future direction of QD-FLISA are also discussed, which provides important guidance for the further development of FLISA.
Collapse
Affiliation(s)
- Yanbing Lv
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Jinjin Fan
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Man Zhao
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Ruili Wu
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Lin Song Li
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Ambrožič R, Mravljak R, Podgornik A. Rapid, Direct, Noninvasive Method to Determine the Amount of Immobilized Protein. Anal Chem 2023; 95:5643-5651. [PMID: 36939216 PMCID: PMC10077329 DOI: 10.1021/acs.analchem.2c05402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Protein immobilization is of utmost importance in many areas, where various proteins are used for selective detection of target compounds. Despite the importance given to determine the amount of immobilized protein, there is no simple method that allows direct, noninvasive detection. In this work, a method based on pH transition, occurring during change of solution ionic strength, was developed. The method utilized the ionic character of the immobilized protein while implementing biologically compatible buffers. Five different proteins, namely, glucose oxidase, horseradish peroxidase, bovine serum albumin, lysozyme, and protein A, were immobilized in different amounts on a porous polymeric matrix, and their pH transition was measured using lactate buffer of various concentrations and pH values. A linear correlation was found between the amount of immobilized protein and the amplitude of the pH transition, allowing the detection down to 2 nmol of immobilized protein. By changing the buffer concentration and pH, the sensitivity of the method could be tailored. Criteria based on the symmetry of the pH transition peak have been developed to determine if a particular measurement is within a linear range. In addition, a mathematical model was developed enabling prediction of pH transition profiles based solely on the protein amino acid sequence, the buffer pKa value(s), and the amount of immobilized protein.Hence, it can be used to design pH transition method experiments to achieve the required sensitivity for a target sample. Since the proposed method is noninvasive, it can be routinely applied during optimization of the immobilization protocol, for quality control, and also as an in-process monitoring tool.
Collapse
Affiliation(s)
- Rok Ambrožič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia
| | - Rok Mravljak
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia
| | - Aleš Podgornik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia.,COBIK, Mirce 21, 5270 Ajdovščina, Slovenia
| |
Collapse
|
10
|
Lee AS, Kim SM, Kim KR, Park C, Lee DG, Heo HR, Cha HJ, Kim CS. A colorimetric lateral flow immunoassay based on oriented antibody immobilization for sensitive detection of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 379:133245. [PMID: 36589904 PMCID: PMC9791791 DOI: 10.1016/j.snb.2022.133245] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 06/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). The high human-to-human transmission and rapid evolution of SARS-CoV-2 have resulted in a worldwide pandemic. To contain SARS-CoV-2, it is essential to efficiently control the transmission of the virus through the early diagnosis of infected individuals, including asymptomatic people. Therefore, a rapid and accurate assay is vital for the early diagnosis of SARS-CoV-2 in suspected individuals. In this study, we developed a colorimetric lateral flow immunoassay (LFIA) in which a CBP31-BC linker was used to immobilize antibodies on a cellulose membrane in an oriented manner. The developed LFIA enabled sensitive detection of cultured SARS-CoV-2 in 15 min with a detection limit of 5 × 104 copies/mL. The clinical performance of the LFIA for detecting SARS-CoV-2 was evaluated using 19 clinical samples validated by reverse transcription-polymerase chain reaction (RT-PCR). The LFIA detected all the positive and negative samples accurately, corresponding to 100% accuracy. Importantly, patient samples with low viral loads were accurately identified. Thus, the proposed method can provide a useful platform for rapid and accurate point-of-care testing of SARS-CoV-2 in infected individuals to efficiently control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ae Sol Lee
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Su Min Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong-Gun Lee
- Vaccine Bio Research Institute, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Ryoung Heo
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
- School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Liu S, Lin M, Hu X, Shen C, Zhang X, Xu C, Zhu Q, Xie Y, Lu H, Wang Y, Lü P, Pooe OJ, Liu Y, Sun A, Liu X. Improved sensitivity of the anti-microcystin-LR ELISA using phage-displayed alpha-type anti-idiotypic nanobody. Anal Biochem 2023; 664:115030. [PMID: 36572217 DOI: 10.1016/j.ab.2022.115030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Anti-idiotypic antibodies (Ab2) are valuable tools that can be used for a better understanding of molecular mimicry and the immunological network. In this work, we showed a new application of a phage-displayed alpha-type Ab2 (Ab2α) to improve the sensitivity of an enzyme-linked immunosorbent assay (ELISA) detecting cyanobacterial toxin microcystin-LR (MC-LR). A monoclonal antibody (mAb) against MC-LR was used as an antigen to isolate binders in a camelid nanobody library. After three rounds of panning, three unique clones with strong binding against anti-MC-LR mAbs were isolated. These clones could specifically bind to anti-MC-LR mAbs without influencing mAbs binding with MC-LR, meaning these clones were Ab2αs. Based on the signal amplification effect of phage coat proteins and the non-competitive nature of Ab2α, a novel competitive ELISA method for MC-LR was established with a phage-displayed Ab2α. It showed that the phage-displayed Ab2α greatly enhanced the ELISA signal and sensitivity of the method was improved 3.5-fold to the conventional one. Combining with the optimization of pre-incubation time, the optimized ELISA decreased its limit of detection (LOD) from 4.5 ng/mL to 0.8 ng/mL (5.6-fold improvement). This new application of Ab2α may potentially be employed to improve the sensitivity of immunoassays for other environmental pollutants.
Collapse
Affiliation(s)
- Shu Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Manman Lin
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Xiaodan Hu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Cheng Shen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Xiao Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Chongxin Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Qin Zhu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Yajing Xie
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Haiyan Lu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Ofentse Jacob Pooe
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Yuan Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Aidong Sun
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China.
| | - Xianjin Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
12
|
Antibody Immobilization. Methods Mol Biol 2023; 2612:33-44. [PMID: 36795357 DOI: 10.1007/978-1-0716-2903-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In the ELISA format(s), the capture antibody is usually affixed to a solid phase, commonly referred to as the immunosorbent. How to tether the antibody most effectively will depend upon the physical properties of the support (plate well, latex bead, flow cell, etc.) as well as its chemical nature (hydrophobic, hydrophilic, the presence of reactive groups such as epoxide, etc.). Of course, it is ultimately the suitability of the antibody to withstand the linking process while preserving its antigen-binding efficiency that must be determined. In this chapter, the antibody immobilization processes and their consequences are described.
Collapse
|
13
|
Pant A, Kaur T, Sharma T, Singh J, Suttee A, Barnwal RP, Kaur IP, Singh G, Singh B. A glass matrices-assisted quantum dots-based biosensor for selective capturing and detection of Escherichia coli. JOURNAL OF WATER AND HEALTH 2022; 20:1673-1687. [PMID: 36573672 DOI: 10.2166/wh.2022.293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial contamination of water and food is a grave health concern rendering humans quite vulnerable to disease(s), and proving, at times, fatal too. Exploration of the novel diagnostic tools is, accordingly, highly called for to ensure rapid detection of the pathogenic bacteria, particularly Escherichia coli. The current manuscript, accordingly, reports the use of silane-functionalized glass matrices and antibody-conjugated cadmium telluride (CdTe) quantum dots (QDs) for efficient detection of E. coli. Synthesis of QDs (size: 5.4-6.8 nm) using mercaptopropionic acid (MPA) stabilizer yielded stable photoluminescence (∼62%), corroborating superior fluorescent characteristics. A test sample, when added to antibody-conjugated matrices, followed by antibody-conjugated CdTe-MPA QDs, formed a pathogen-antibody QDs complex. The latter, during confocal microscopy, demonstrated rapid detection of the selectively captured pathogenic bacteria (10 microorganism cells/10 μL) with enhanced sensitivity and specificity. The work, overall, encompasses establishment and design of an innovative detection platform in microbial diagnostics for rapid capturing of pathogens in water and food samples.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Taranvir Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Teenu Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India 140401
| | - Joga Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | | | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014 ; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India 140401
| |
Collapse
|
14
|
Hao X, Yang X, Zou S, Cao X. Surface Modification of Poly(styrene) 96-well Plates Using Aptamers via a Dendrimer-templated Strategy to Enhance ELISA Performances. Colloids Surf B Biointerfaces 2022; 221:113003. [DOI: 10.1016/j.colsurfb.2022.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
|
15
|
Aamri ME, Mohammadi H, Amine A. Novel Label-free Colorimetric and Electrochemical Detection for MiRNA-21 Based on the Complexation of Molybdate with Phosphate. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Salahandish R, Haghayegh F, Khetani S, Hassani M, Nezhad AS. Immuno-affinity Potent Strip with Pre-Embedded Intermixed PEDOT:PSS Conductive Polymers and Graphene Nanosheets for Bio-Ready Electrochemical Biosensing of Central Nervous System Injury Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28651-28662. [PMID: 35704794 DOI: 10.1021/acsami.2c07322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Future point-of-care (PoC) and wearable electrochemical biosensors explore new technology solutions to eliminate the need for multistep electrode modification and functionalization, overcome the limited reproducibility, and automate the sensing steps. In this work, a new screen-printed immuno-biosensor strip is engineered and characterized using a hybrid graphene nanosheet intermixed with the conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymers, all embedded within the base carbon matrix (GiPEC) of the screen-printing ink. This intermixed nanocomposite ink is chemically designed for self-containing the "carboxyl" functional groups as the most specific chemical moiety for protein immobilization on the electrodes. The GiPEC ink enables capturing the target antibodies on the electrode without any need for extra surface preparation. As a proof of concept, the performance of the non-functionalized ready-to-immobilize strips was assessed for the detection of glial fibrillary acidic protein (GFAP) as a known central nervous system injury blood biomarker. This immuno-biosensor exhibits the limit of detection of 281.7 fg mL-1 (3 signal-to-noise ratio) and the sensitivity of 322.6 Ω mL pg-1 mm-2 within the clinically relevant linear detection range from 1 pg mL-1 to 10 ng mL-1. To showcase its potential PoC application, the bio-ready strip is embedded inside a capillary microfluidic device and automates electrochemical quantification of GFAP spiked in phosphate-buffered saline and the human serum. This new electrochemical biosensing platform can be further adapted for the detection of various protein biomarkers with the application in realizing on-chip immunoassays.
Collapse
Affiliation(s)
- Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Fatemeh Haghayegh
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Sultan Khetani
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mohsen Hassani
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
17
|
Mravljak R, Stantič M, Bizjak O, Podgornik A. Noninvasive method for determination of immobilized protein A. J Chromatogr A 2022; 1671:462976. [DOI: 10.1016/j.chroma.2022.462976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
18
|
Oka Y, Ushiba S, Miyakawa N, Nishio M, Ono T, Kanai Y, Watanabe Y, Tani S, Kimura M, Matsumoto K. Ionic strength-sensitive and pH-insensitive interactions between C-reactive protein (CRP) and an anti-CRP antibody. Biophys Physicobiol 2022; 19:e190003. [PMID: 35958119 PMCID: PMC8926308 DOI: 10.2142/biophysico.bppb-v19.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 12/01/2022] Open
Abstract
C-reactive protein (CRP) is an important biomarker of infection and inflammation, as CRP is one of the most prominent acute-phase proteins. CRP is usually detected using anti-CRP antibodies (Abs), where the intermolecular interactions between CRP and the anti-CRP Ab are largely affected by the pH and ionic strength of environmental solutions. Therefore, it is important to understand the environmental effects of CRP–anti-CRP Ab interactions when designing highly sensitive biosensors. Here, we investigated the efficiency of fluorescently labeled CRP–anti-CRP monoclonal antibody (mAb) interactions at different pHs and ionic strengths. Our results indicate that the affinity was insensitive to pH changes in the range of 5.9 to 8.1, while it was significantly sensitive to ionic strength changes. The binding affinity decreased by 55% at an ionic strength of 1.6 mM, when compared to that under a physiological condition (~150 mM). Based on the isoelectric focusing results, both the labeled CRP and anti-CRP mAb were negatively charged in the studied pH range, which rendered the system insensitive to pH changes, but sensitive to ionic strength changes. The decreased ionic strength led to a significant enhancement of the repulsive force between CRP and the anti-CRP mAb. Although the versality of the findings is not fully studied yet, the results provide insights into designing highly sensitive CRP sensors, especially field-effect transistor-based sensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | | | | | | |
Collapse
|
19
|
Xu J, Suo W, Goulev Y, Sun L, Kerr L, Paulsson J, Zhang Y, Lao T. Handheld Microfluidic Filtration Platform Enables Rapid, Low-Cost, and Robust Self-Testing of SARS-CoV-2 Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104009. [PMID: 34845827 PMCID: PMC8725168 DOI: 10.1002/smll.202104009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/27/2021] [Indexed: 05/17/2023]
Abstract
Here, a novel microfluidic test kit combining ultrahigh throughput hydrodynamic filtration and sandwich immunoassay is reported. Specifically, nano and microbeads coated with two different, noncompetitive antibodies, are used to capture the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) proteins simultaneously, forming larger complexes. Microfluidic filtration discards free nanobeads but retains antigen-bridged complexes in the observation zone, where a display of red color indicates the presence of antigen in the sample. This testing platform exhibits high throughput separation (<30 s) and enrichment of antigen that exceeds the traditional lateral flow assays or microfluidic assays, with a low limit of detection (LoD) < 100 copies mL-1 . In two rounds of clinical trials conducted in December 2020 and August 2021, the assays demonstrate high sensitivities of 95.4% and 100%, respectively, which proves this microfluidic test kit is capable of detecting SARS-CoV-2 virus variants evolved over significant periods of time. Furthermore, the mass-produced chip can be fabricated at a cost of $0.98/test and the robust design allows the chip to be reused for over 50 times. All of these features make the microfluidic test kit particularly suitable for areas with inadequate medical infrastructure and a shortage of laboratory resources.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenhao Suo
- Department of Pathology, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361003, China
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Youlian Goulev
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Lei Sun
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Liam Kerr
- Department of Mechanical Engineering, Center for Intelligent Machines, McGill University, Montreal, QC, H3A0C3, Canada
| | - Johan Paulsson
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Taotao Lao
- Boston Molecules Inc., 564 Main Street, Waltham, MA 02452, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| |
Collapse
|
20
|
Jiang X, Wu M, Albo J, Rao Q. Non-Specific Binding and Cross-Reaction of ELISA: A Case Study of Porcine Hemoglobin Detection. Foods 2021; 10:foods10081708. [PMID: 34441486 PMCID: PMC8394222 DOI: 10.3390/foods10081708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Different types of enzyme-linked immunosorbent assays (ELISA) have been widely used to control food safety and quality. To develop an accurate and reproducible ELISA, false immunodetection results caused by non-specific binding (NSB) and cross-reaction must be prevented. During the case study of sandwich ELISA development for the detection of porcine hemoglobin (PHb), several critical factors leading to NSB and cross-reaction were found. First, to reduce the NSB of the target analyte, the selection of microplate and blocker was discussed. Second, cross-reactions between enzyme-labeled secondary antibodies and sample proteins were demonstrated. In addition, the function of (3-aminopropyl)triethoxysilane (APTES) was evaluated. Overall, this study highlights the essence of both antibody and assay validation to minimize any false-positive/negative immunodetection results.
Collapse
Affiliation(s)
- Xingyi Jiang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Meng Wu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang 050081, China;
| | - Jonathan Albo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence: ; Tel.: +1-850-644-1829
| |
Collapse
|
21
|
Ultra-sensitive facile CdS nanocrystals-based electrochemical biosensor to detect myocardial infarction marker troponin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Wang Y, Sun X, Gopinath SCB, Saheed MSM, Wang X. Thyroglobulin determination on silane-antibody functionalized interdigitated dielectrode surface to diagnose thyroid tumor. Biotechnol Appl Biochem 2021; 69:376-382. [PMID: 33538049 DOI: 10.1002/bab.2116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Thyroid cancer appears in endocrine glands and specific to thyroid glands has been reported widely. This work was targeted to identify and quantify thyroglobulin by using antithyroglobulin antibody complexed silane surface on interdigitated electrode (IDE) sensing surface. (3-Aminopropyl)triethoxysilane linker was used to make silane-coupling with antibody and attached on the hydroxylated IDE. This electroanalytical IDE revealed the dose-dependent responses with thyroglobulin concentrations. By getting increments with the thyroglobulin concentrations, the current responses were enhanced concomitantly and the thyroglobulin detection limit was noted as 1 pM on the linear curve [y = 0.1311x + 0.5386; R² = 0.9707] with the sensitivity at lower picomolar range. Moreover, the control experiments with thyroid peroxidase and nonimmune antibody cannot yield any response of current, confirming the specific detection of thyroglobulin. This research set-up is useful to determine and quantify the thyroglobulin and diagnose thyroid cancer.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China
| | - Xia Sun
- Department of Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, Shandong, People's Republic of China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, 01000, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Centre of Innovative Nanostructure & Nanodevices, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Xiaofei Wang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
23
|
Zhao J, Chang W, Liu L, Xing X, Zhang C, Meng H, Gopinath SCB, Lakshmipriya T, Chen Y, Liu Y. Graphene oxide-gold nanoparticle-aptamer complexed probe for detecting amyloid beta oligomer by ELISA-based immunoassay. J Immunol Methods 2020; 489:112942. [PMID: 33333060 DOI: 10.1016/j.jim.2020.112942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022]
Abstract
Highly sensitive and easy detection method for Alzheimer's disease (AD) with a suitable biomarker is mandatory for preventing the factors resulting from AD. This research reports a modified ELISA with graphene for the detection of AD biomarker amyloid beta (Aβ) oligomer. Gold nanoparticle (AuNP) conjugated aptamer was used as the capture probe and attached on ELISA-graphene oxide surface through the amine linker. Antibody was used as the detection molecule to reach the maximum detection of Aβ oligomer. Suitable level of APTMS (2%), size of AuNP (30 nm) and aptamer concentration (2 μM) were optimized. This sandwich pattern of aptamer-Aβ oligomer-antibody helps to reach the detection at 50 pM on the optimized ELISA surface and the control experiments in the absence of Aβ oligomer or anti-Aβ oligomer antibody did not show the significant optical detection at 492 nm, indicting the specific detection. Further, Aβ oligomer spiked artificial cerebrospinal fluid did not interfere the detection of Aβ oligomer, confirming the selective detection. This new and modified ELISA surface helps to reach the lower detection of Aβ oligomer and diagnose AD.
Collapse
Affiliation(s)
- Jing Zhao
- Department of First Neurology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China.
| | - Wenlong Chang
- Endocrine laboratory, Baoding No.1 Central hospital, Baoding, Hebei 071000, China
| | - Lu Liu
- Department of Clinical Psychology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China
| | - Xiaoming Xing
- Department of First Neurology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China
| | - Chao Zhang
- Department of First Neurology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China
| | - Huihong Meng
- Department of First Neurology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia; Institute of Nano Electronic Engineering, 01000 Kangar, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, 01000 Kangar, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yonggang Liu
- Department of First Neurology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China.
| |
Collapse
|
24
|
Bashth OS, Elkhodiry MA, Laroche G, Hoesli CA. Surface grafting of Fc-binding peptides as a simple platform to immobilize and identify antibodies that selectively capture circulating endothelial progenitor cells. Biomater Sci 2020; 8:5465-5475. [PMID: 32902522 DOI: 10.1039/d0bm00650e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibody surface immobilization is a promising strategy to capture cells of interest from circulating fluids in vitro and in vivo. An application of particular interest in vascular interventions is to capture endothelial progenitor cells (EPCs) on the surface of stents to accelerate endothelialization. The clinical impact of EPC capture stents has been limited by the lack of efficient selective cell capture. Here, we describe a simple method to immobilize a variety of immunoglobulin G antibodies through their fragment crystallizable (Fc) regions via surface-conjugated RRGW peptides for cell capture applications. As an EPC capture model, peripheral blood endothelial colony-forming cells suspended in cell culture medium with up to 70% serum were captured by immobilized anti-CD144, anti-CD34 or anti-CD309 antibodies under laminar flow. The endothelial colony-forming cells were successfully enriched from a mixture with peripheral blood mononuclear cells using surfaces with anti-CD309 but not anti-CD45. This antibody immobilization approach holds great promise to engineer vascular biomaterials with improved EPC capture potential. The ease of immobilizing different antibodies using the same Fc-binding peptide surface grafting chemistry renders this platform suitable to screen antibodies that maximize cell capture efficiency and selectivity.
Collapse
Affiliation(s)
- Omar S Bashth
- Department of Chemical Engineering, McGill University, Canada.
| | | | - Gaétan Laroche
- Centre de Recherche du CHU de Québec & Département de Génie des Mines, des Matériaux et de la Métallurgie, Université Laval, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Canada. and Department of Biomedical Engineering, McGill University, Canada
| |
Collapse
|
25
|
Qiu C, Wang X, Zhang X, Li Z, Zhou Y, Kang J. Sensitive determination of NT-proBNP for diagnosing abdominal aortic aneurysms incidence on interdigitated electrode sensor. Biotechnol Appl Biochem 2020; 68:865-870. [PMID: 32964560 DOI: 10.1002/bab.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease found to have progressive growth in the area of aorta. Rupturing of aorta causes excessive bleeding that leads to health-related issues, which can be fatal sometimes. Therefore, it becomes important to make early diagnosis of AAA and its condition and start immediate treatment. Blood-based biomarker helps to diagnose AAA and to monitor the condition after AAA surgery. N-terminal pro-B-type natriuretic peptide (NT-proBNP) is a hormone produced in the heart in small quantities and increased when the heart needs to work harder. NT-proBNP was proved to be strongly linked with AAA incidence. Moreover, quantifying the level of NT-proBNP helps to determine the risk factors on cardiovascular system after the surgery. This work is quantifying the NT-proBNP on interdigitated electrode sensor by using NT-proBNP binding aptamer. The detection limit of NT-proBNP was calculated as 1 pg/mL on a linear regression curve [y = 0.2148x + 0.8849; R² = 0.9049]. The linear range with dose-dependent analysis was from 0.01 until 100 ng/mL. Moreover, the control experiment with complementary aptamer sequence did not show the current signal, specifying the detection of NT-proBNP. This research benefits to identify the heart condition of patient after the removal of AAA.
Collapse
Affiliation(s)
- Changcheng Qiu
- Department of General Surgery, People's Hospital of Gaomi, Gaomi, Shandong Province, People's Republic of China
| | - Xiao Wang
- Department of Vascular Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, People's Republic of China
| | - Xia Zhang
- Department of General Surgery, People's Hospital of Gaomi, Gaomi, Shandong Province, People's Republic of China
| | - Zhenhuan Li
- Department of general surgery, The 5th Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China
| | - Yiming Zhou
- Aviation Medical Office of Air Force Flight Test Bureau, Xi'an, Shaanxi Province, People's Republic of China
| | - Jie Kang
- Department of Vascular Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, People's Republic of China
| |
Collapse
|
26
|
Huang Y, Zhang L, Li Z, Gopinath SCB, Chen Y, Xiao Y. Aptamer–17β‐estradiol–antibody sandwich ELISA for determination of gynecological endocrine function. Biotechnol Appl Biochem 2020; 68:881-888. [DOI: 10.1002/bab.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/06/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Yue Huang
- Department of Second Gynecology Cangzhou Central Hospital Cangzhou Hebei Province People's Republic of China
| | - Li Zhang
- Department of Endocrinology The Fourth People's Hospital of Jinan City Tianqiao District Jinan Shandong Province People's Republic of China
| | - Zhenzuo Li
- Department of Endocrinology The Fourth People's Hospital of Jinan City Tianqiao District Jinan Shandong Province People's Republic of China
| | - Subash C. B. Gopinath
- School of Bioprocess Engineering Universiti Malaysia Perlis Arau Perlis 02600 Malaysia
- Institute of Nano Electronic Engineering Universiti Malaysia Perlis Kangar Perlis 01000 Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences Faculty of Dentistry University of Malaya Kuala Lumpur Malaysia
| | - Yan Xiao
- Department of Gynecology Endocrinology Maternal and Child Health Care of Shandong Province Jinan Shandong Province People's Republic of China
| |
Collapse
|
27
|
García-Maceira T, García-Maceira FI, González-Reyes JA, Paz-Rojas E. Highly enhanced ELISA sensitivity using acetylated chitosan surfaces. BMC Biotechnol 2020; 20:41. [PMID: 32814567 PMCID: PMC7437170 DOI: 10.1186/s12896-020-00640-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background The enzyme-linked immunosorbent assay (ELISA), is the most widely used and reliable clinical routine method for the detection of important protein markers in healthcare. Improving ELISAs is crucial for detecting biomolecules relates to health disorders and facilitating diagnosis at the early diseases stages. Several methods have been developed to improve the ELISA sensitivity through immobilization of antibodies on the microtiter plates. We have developed a highly sensitive ELISA strategy based on the preparation of acetylated chitosan surfaces in order to improve the antibodies orientation. Results Chitin surfaces were obtained by mixing small quantities of chitosan and acetic anhydride in each well of a microtiter plate. Anti-c-myc 9E10 low affinity antibody fused to ChBD was cloned and expressed in CHO cells obtaining the anti-c-myc-ChBD antibody. We found that anti c-myc-ChBD binds specifically to the chitin surfaces in comparison with anti-c-myc 9E10, which did not. Chitin surface was used to develop a sandwich ELISA to detect the chimeric human protein c-myc-GST-IL8 cloned and expressed in Escherichia coli. The ELISA assays developed on chitin surfaces were 6-fold more sensitive than those performed on standard surface with significant differences (p<0,0001). Conclusions As shown here, acetylated chitosan surfaces improve the antibody orientation on the substrate and constitute a suitable method to replace the standard surfaces given the stability over time and the low cost of its preparation.
Collapse
Affiliation(s)
- Tania García-Maceira
- Canvax Biotech; Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain.
| | - Fé I García-Maceira
- Canvax Biotech; Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Córdoba, Spain
| | - Elier Paz-Rojas
- Canvax Biotech; Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| |
Collapse
|
28
|
Laribi A, Allegra S, Souiri M, Mzoughi R, Othmane A, Girardot F. Legionella pneumophila sg1-sensing signal enhancement using a novel electrochemical immunosensor in dynamic detection mode. Talanta 2020; 215:120904. [PMID: 32312449 DOI: 10.1016/j.talanta.2020.120904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/20/2023]
Abstract
This work presents a comparison between static and dynamic modes of biosensing using a novel microfluidic assay for continuous and quantitative detection of Legionella pneumophila sg1 in artificial water samples. A self-assembled monolayer of 16-amino-1-hexadecanethiol (16-AHT) was covalently linked to a gold substrate, and the resulting modified surface was used to immobilize an anti-Legionella pneumophila monoclonal antibody (mAb). The modified surfaces formed during the biosensor functionalization steps were characterized using electrochemical measurements and microscopic imaging techniques. Under static conditions, the biosensor exhibited a wide linear response range from 10 to 108 CFU/mL and a detection limit of 10 CFU/mL. Using a microfluidic system, the biosensor responses exhibited a linear relationship for low bacterial concentrations ranging from 10 to 103 CFU/mL under dynamic conditions and an enhancement of sensing signals by a factor of 4.5 compared to the sensing signals obtained under static conditions with the same biosensor for the detection of Legionella cells in artificially contaminated samples.
Collapse
Affiliation(s)
- Ahlem Laribi
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France; Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia.
| | - Séverine Allegra
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| | - Mina Souiri
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Ridha Mzoughi
- Regional Laboratory of Hygiene, University Hospital Farhat Hached, 4000 Sousse, Tunisia and Laboratory of Analysis Treatment and Valorization of Pollutants and Products, Faculty of Pharmacy, 5000, Monastir, Tunisia
| | - Ali Othmane
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Françoise Girardot
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| |
Collapse
|
29
|
Detection of C-Reactive Protein Using Histag-HRP Functionalized Nanoconjugate with Signal Amplified Immunoassay. NANOMATERIALS 2020; 10:nano10061240. [PMID: 32604729 PMCID: PMC7353076 DOI: 10.3390/nano10061240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Ultrasensitive detection of biomarkers is highly significant for disease prognosis and public health treatment. Despite wide acceptance in routine laboratory tests, the conventional enzyme-linked immunosorbent assay (ELISA) has been of limited use for early biomarker detection due to insufficient sensitivity and multiple long incubation time. Several nanoprobes have been introduced to circumvent the limitation, however, rapid, simple, and chemical-free nanoprobe synthesis and sensitive detection methods, particularly for ELISA, are still lacking. In this study, we have synthesized a gold nanoprobe, conjugated with multiple 6X-histidine (6X-his) peptide and nickel-horseradish peroxidase (Ni2+-HRP), for enhancing the colorimetric signal in ELISA. The developed nanoprobe has been tested for the detection of immunologically significant C-reactive protein (CRP) in ELISA format. The performance of designed probe is validated by testing standard and serum samples, and the detection limit of 32.0 pg/mL with R2 = 0.98 is confirmed. Furthermore, a comparative analysis of the developed nanoprobe was performed with ELISA developed on conventional guidelines, the proposed immunoassay showed an increase of 12-fold sensitivity for detecting CRP due to the high loading of 6Xhis peptide and binding of multiple Ni2+-HRP on a gold nanoparticle. Additionally, the proposed assay provides a simple, fast, and cost-efficient (not requiring multiple antibodies) detection of CRP with easy nanoprobe synthesis. Moreover, the developed Histag-HRP functionalized nanoconjugate immunoassay is flexible and can be applied to other biomarkers efficiently by using disease specific antibody.
Collapse
|
30
|
Zhand S, Razmjou A, Azadi S, Bazaz SR, Shrestha J, Jahromi MAF, Warkiani ME. Metal–Organic Framework-Enhanced ELISA Platform for Ultrasensitive Detection of PD-L1. ACS APPLIED BIO MATERIALS 2020; 3:4148-4158. [DOI: 10.1021/acsabm.0c00227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amir Razmjou
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 73441-81746, Iran
| | - Shohreh Azadi
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Mahsa Asadnia Fard Jahromi
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow 119991, Russia
| |
Collapse
|
31
|
Shin H, Oh S, Kang D, Choi Y. Protein Quantification and Imaging by Surface-Enhanced Raman Spectroscopy and Similarity Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903638. [PMID: 32537409 PMCID: PMC7284192 DOI: 10.1002/advs.201903638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 05/29/2023]
Abstract
Protein quantification techniques such as immunoassays have been improved considerably, but they have several limitations, including time-consuming procedures, low sensitivity, and extrinsic detection. Because direct surface-enhanced Raman spectroscopy (SERS) can detect intrinsic signals of proteins, it can be used as an effective detection method. However, owing to the complexity and reliability of SERS signals, SERS is rarely adopted for quantification without a purified target protein. This study reports an efficient and effective direct SERS-based immunoassay (SERSIA) technique for protein quantification and imaging. SERSIA relies on the uniform coating of gold nanoparticles (GNPs) on a target-protein-immobilized substrate by simple centrifugation. As centrifugation induces close contact between the GNPs and target proteins, the intrinsic signals of the target protein can be detected. For quantification, the protein levels in a cell lysate are estimated using similarity analysis between antibody-only and protein-conjugated samples. This method reliably estimates the protein level at a sub-picomolar detection limit. Furthermore, this method enables quantitative imaging of immobilized protein at a micrometer range. Because this technique is fast, sensitive, and requires only one type of antibody, this approach can be a useful method to detect proteins in biological samples.
Collapse
Affiliation(s)
- Hyunku Shin
- Department of Bio‐convergence EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Seunghyun Oh
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Daehyeon Kang
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Yeonho Choi
- Department of Bio‐convergence EngineeringKorea UniversitySeoul02841Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
- Department of BioengineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
32
|
Tongdee M, Yamanishi C, Maeda M, Kojima T, Dishinger J, Chantiwas R, Takayama S. One-incubation one-hour multiplex ELISA enabled by aqueous two-phase systems. Analyst 2020; 145:3517-3527. [PMID: 32248215 PMCID: PMC7237315 DOI: 10.1039/d0an00383b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work describes a convenient one-hour enzyme-linked immunosorbent assay (ELISA) formulated with conventional antibodies and horseradish peroxidase (HRP) reagents. The method utilizes aqueous two-phase system (ATPS) droplet formation based on poly(ethylene glycol) (PEG)-containing sample solution-triggered rehydration of dehydrated dextran (DEX) spots that contain all antibody reagents. Key advances in this paper include development of a formulation that allows a quick 1-hour overall incubation time and a procedure where inclusion of the HRP reagent in the PEG solution reduces the number of washing and incubation steps required to perform this assay. As an assay application, a 5-plex cytokine test compares cytokine secretion of differentially-treated human ThP-1 macrophages. Given the use of only readily available reagents and a common Western blot imaging system for the readout, this method is envisioned to be broadly applicable to a variety of multiplex immunoassays. To facilitate broader use, companion image processing software as an ImageJ plugin is also described and provided.
Collapse
Affiliation(s)
- Mintra Tongdee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand and Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
| | - Cameron Yamanishi
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
| | - Midori Maeda
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
| | - Taisuke Kojima
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
| | | | - Rattikan Chantiwas
- Department of Chemistry and Center of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| | - Shuichi Takayama
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, Georgia, USA
| |
Collapse
|
33
|
Gan X, Gong T, Zheng Y, Gopinath SCB, Zhao K. Electroimmunodetection of cardiac C-reactive protein for determining myocardial Injury. Biotechnol Appl Biochem 2020; 68:272-278. [PMID: 32275089 DOI: 10.1002/bab.1921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
C-reactive protein (CRP) is an acute phase reactant to be a marker of inflammation and has been correlated with the cardiac injury. An immunoassay was performed using anti-human CRP antibody on an InterDigitated electrode (IDE) sensor to determine and specify CRP concentration for diagnosing the condition of myocardial inflammation. To promote the detection, gold nanoparticle (GNP) was seeded on the aminated-IDE surface. Anti-CRP was hitched on the GNP-seeded surface and identified the abundance of CRP. The limit of quantification was found as 100 fM, and the higher current response was noticed by increasing CRP concentrations with the sensitivity at 1 pM. Furthermore, CRP-spiked human serum did not interfere the determination of CRP and increased the current response, indicating suitability for a real-life sample. Similarly, the control experiments with nonimmune antibody Troponin I are not showing the definite current responses, proving the selective identification of CRP. This method of diagnosing is needful to determine the cardiovascular injury at the right time.
Collapse
Affiliation(s)
- Xiaoya Gan
- Department of Cardiology, Shandong Provincial Taishan Hospital, Taian, Shandong Province, China
| | - Tao Gong
- Department of Critical Medicine, Pingyi County Hospital of Traditional Chinese Medicine, Pingyi County, Linyi, Shandong Province, China
| | - Yin Zheng
- Department of Cardiology, Hainan Cancer Hospital, Xiuying District, Haikou, Hainan, China.,Hainan Chengmei International Health Management Center, Xiuying District, Haikou, Hainan, China
| | - Subash C B Gopinath
- Universiti Malaysia Perlis, Institute of Nano Electronic Engineering, Kangar, Perlis, Malaysia.,School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Ketong Zhao
- Department of Cardiology, Hainan Cancer Hospital, Xiuying District, Haikou, Hainan, China.,Hainan Chengmei International Health Management Center, Xiuying District, Haikou, Hainan, China
| |
Collapse
|
34
|
|
35
|
Liu W, Liu X, Liu C, Zhang Z, Jin W. Development of a sensitive monoclonal antibody-based sandwich ELISA to detect Vip3Aa in genetically modified crops. Biotechnol Lett 2020; 42:1467-1478. [PMID: 32140882 PMCID: PMC7354279 DOI: 10.1007/s10529-020-02854-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
Abstract
Objectives To develop a sensitive monoclonal antibody-based sandwich enzyme-linked immunosorbent assay (ELISA) to detect Vip3Aa in genetically modified (GM) crops and their products. Results Vegetative insecticidal proteins (Vips) are secreted by Bacillus thuringiensis (Bt) and are known to be toxic to Lepidoptera species. Vip3Aa family proteins, Vip3Aa19 and Vip3Aa20, were successfully applied in GM crops to confer an effective and persistent insecticidal resistance. A sensitive monoclonal antibody-based sandwich ELISA was developed to detect Vip3Aa in GM crops and their products. Two monoclonal antibodies were raised against the overexpressed and purified His-Vip3Aa20, were purified from mouse ascites and characterized. A sandwich ELISA method was developed using the 2G3-1D7 monoclonal antibody for capture and the biotin-labeled 1F9-1F5 monoclonal antibody for detection of Vip3Aa20. The linear detection range of the method was found to be approximately 31.25–500 pg/ml, with a sensitivity of 10.24 pg/ml. Conclusions The established ELISA was effective for detecting Vip3Aa family proteins other than Vip3Aa8, and was successfully applied in the detection of Vip3Aa20 and Vip3Aa19 expressed in transgenic maize and cotton.
Collapse
Affiliation(s)
- Weixiao Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xuri Liu
- Department of Food and Biological Engineering, Handan Polytechnic College, Handan, 056001, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China
| | - Zhe Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
36
|
Vasantham S, Alhans R, Singhal C, Nagabooshanam S, Nissar S, Basu T, Ray SC, Wadhwa S, Narang J, Mathur A. Paper based point of care immunosensor for the impedimetric detection of cardiac troponin I biomarker. Biomed Microdevices 2019; 22:6. [DOI: 10.1007/s10544-019-0463-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Bauer M, Strom M, Hammond DS, Shigdar S. Anything You Can Do, I Can Do Better: Can Aptamers Replace Antibodies in Clinical Diagnostic Applications? Molecules 2019; 24:molecules24234377. [PMID: 31801185 PMCID: PMC6930532 DOI: 10.3390/molecules24234377] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
The mainstay of clinical diagnostics is the use of specialised ligands that can recognise specific biomarkers relating to pathological changes. While protein antibodies have been utilised in these assays for the last 40 years, they have proven to be unreliable due to a number of reasons. The search for the 'perfect' targeting ligand or molecular probe has been slow, though the description of chemical antibodies, also known as aptamers, nearly 30 years ago suggested a replacement reagent. However, uptake has been slow to progress into the clinical environment. In this review, we discuss the issues associated with antibodies and describe some of the applications of aptamers that have relevancy to the clinical diagnostic environment.
Collapse
Affiliation(s)
- Michelle Bauer
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia; (M.B.); (M.S.); (D.S.H.)
| | - Mia Strom
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia; (M.B.); (M.S.); (D.S.H.)
| | - David S Hammond
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia; (M.B.); (M.S.); (D.S.H.)
- Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia
| | - Sarah Shigdar
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia; (M.B.); (M.S.); (D.S.H.)
- Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia
- Correspondence:
| |
Collapse
|
38
|
Wang F, Gopinath SCB, Lakshmipriya T. Aptamer-Antibody Complementation On Multiwalled Carbon Nanotube-Gold Transduced Dielectrode Surfaces To Detect Pandemic Swine Influenza Virus. Int J Nanomedicine 2019; 14:8469-8481. [PMID: 31695375 PMCID: PMC6821056 DOI: 10.2147/ijn.s219976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A pandemic influenza viral strain, influenza A/California/07/2009 (pdmH1N1), has been considered to be a potential issue that needs to be controlled to avoid the seasonal emergence of mutated strains. MATERIALS AND METHODS In this study, aptamer-antibody complementation was implemented on a multiwalled carbon nanotube-gold conjugated sensing surface with a dielectrode to detect pandemic pdmH1N1. Preliminary biomolecular and dielectrode surface analyses were performed by molecular and microscopic methods. A stable anti-pdmH1N1 aptamer sequence interacted with hemagglutinin (HA) and was compared with the antibody interaction. Both aptamer and antibody attachments on the surface as the basic molecule attained the saturation at nanomolar levels. RESULTS Aptamers were found to have higher affinity and electric response than antibodies against HA of pdmH1N1. Linear regression with aptamer-HA interaction displays sensitivity in the range of 10 fM, whereas antibody-HA interaction shows a 100-fold lower level (1 pM). When sandwich-based detection of aptamer-HA-antibody and antibody-HA-aptamer was performed, a higher response of current was observed in both cases. Moreover, the detection strategy with aptamer clearly discriminated the closely related HA of influenza B/Tokyo/53/99 and influenza A/Panama/2007/1999 (H3N2). CONCLUSION The high performance of the abovementioned detection methods was supported by the apparent specificity and reproducibility by the demonstrated sensing system.
Collapse
Affiliation(s)
- Fang Wang
- Department of Infectious Diseases,Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospitality, Zhengzhou450053, People’s Republic of China
| | - Subash CB Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis01000, Malaysia
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis01000, Malaysia
| |
Collapse
|
39
|
Li S, Li G, Du Z, Zhu L, Tian J, Luo Y, Huang K, Xu W. The ultra-sensitive visual biosensor based on thermostatic triple step functional nucleic acid cascade amplification for detecting Zn2+. Food Chem 2019; 290:95-100. [DOI: 10.1016/j.foodchem.2019.03.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/29/2022]
|
40
|
Guo S, Lakshmipriya T, Gopinath SCB, Anbu P, Feng Y. Complementation of ELISA and an Interdigitated Electrode Surface in Gold Nanoparticle Functionalization for Effective Detection of Human Blood Clotting Defects. NANOSCALE RESEARCH LETTERS 2019; 14:222. [PMID: 31267309 PMCID: PMC6606688 DOI: 10.1186/s11671-019-3058-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 05/07/2023]
Abstract
Developing an enhanced diagnosis using biosensors is important for the treatment of patients before disease complications arise. Improving biosensors would enable the detection of various low-abundance disease biomarkers. Efficient immobilization of probes/receptors on the sensing surface is one of the efficient ways to enhance detection. Herein, we introduced the pre-alkaline sensing surface with amine functionalization for capturing gold nanoparticle (GNP) conjugated to human blood clotting factor IX (FIX), and we demonstrated the excellent performance of the strategy. We have chosen the enzyme-linked immunosorbent assay (ELISA) and the interdigitated electrode (IDE), which are widely used, to demonstrate our method. The optimal amount for silanization has been found to be 2.5%, and 15-nm-sized GNPs are ideal and characterized. The limit of FIX detection was attained with ELISA at 100 pM with the premixed GNPs and FIX, which shows 60-fold improvement in sensitivity without biofouling, as compared to the conventional ELISA. Further, FIX was detected with higher specificity in human serum at a 1:1280 dilution, which is equivalent to 120 pM FIX. These results were complemented by the analysis on IDE, where improved detection at 25 pM was achieved, and FIX was detected in human serum at the dilution of 1:640. These optimized surfaces are useful for improving the detection of different diseases on varied sensing surfaces.
Collapse
Affiliation(s)
- Shikui Guo
- Department of General Surgery, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan China
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Periasamy Anbu
- Department of Biological Engineering, College of Engineering, Inha University, Incheon, 402-751 Republic of Korea
| | - Yaoyu Feng
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kumming, 650032 Yunnan China
| |
Collapse
|
41
|
Skjærvø Ø, Solbakk EJ, Halvorsen TG, Reubsaet L. Paper-based immunocapture for targeted protein analysis. Talanta 2019; 195:764-770. [DOI: 10.1016/j.talanta.2018.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/22/2023]
|
42
|
Wang C, Lakshmipriya T, Gopinath SCB. Amine-Aldehyde Chemical Conjugation on a Potassium Hydroxide-Treated Polystyrene ELISA Surface for Nanosensing an HIV-p24 Antigen. NANOSCALE RESEARCH LETTERS 2019; 14:21. [PMID: 30644016 PMCID: PMC6331347 DOI: 10.1186/s11671-018-2848-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
The enzyme-linked immunosorbent assay (ELISA) has been widely used for disease surveillance and drug screening due to its relatively higher accuracy and sensitivity. Fine-tuning the ELISA is mandatory to elevate the specific detection of biomolecules at a lower abundance. Towards this end, higher molecular capture on the polystyrene (PS) ELISA surface is crucial for efficient detection, and it could be attained by immobilizing the molecules in the correct orientation. It is highly challenging to immobilize protein molecules in a well-aligned manner on an ELISA surface due to charge variations. We employed a 3-(aminopropyl) triethoxysilane (APTES)- and glutaraldehyde (GLU)-coupled PS surface chemical strategy to demonstrate the high performance with ELISA. A potassium hydroxide treatment followed by an equal ratio of 1% APTES and GLU attachment was found to be optimal, and a longer incubation with GLU favored maximum sensitivity. p24 is a vital early secreting antigen for diagnosing human immunodeficiency virus (HIV), and it has been used for efficient detection with the above chemistry. Three different procedures were followed, and they led to the improved detection of the HIV-p24 antigen at 1 nM, which is a 30-fold higher level compared to a conventional ELISA surface. The surface chemical functionalization shown here also displays a higher specificity with human serum and HIV-TAT. The above approach with the designed surface chemistry could also be recommended for disease diagnosis on other sensing surfaces involving the interaction of the probe and the analyte in heterogeneous test samples.
Collapse
Affiliation(s)
- Cunzhen Wang
- Department of Intensive Care Unit, Henan Provincial People’s Hospital, Zhengzhou City, 450000 Henan Province China
| | - Thangavel Lakshmipriya
- Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| |
Collapse
|
43
|
Kang J, Yeom G, Ha SJ, Kim MG. Development of a DNA aptamer selection method based on the heterogeneous sandwich form and its application in a colorimetric assay for influenza A virus detection. NEW J CHEM 2019. [DOI: 10.1039/c8nj06458j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we introduce an effective method for selecting aptamer that increases the signal-to-noise ratio in a heterogenous sandwich-type immunosensor and confirm the efficiency of selected aptamer candidates in the colorimetric assay. Using the proposed method, four aptamer candidates withKdvalues ranging from 77.6 nM to 125.7 nM were obtained.
Collapse
Affiliation(s)
- Juyoung Kang
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| | - Gyuho Yeom
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| | - Su-Ji Ha
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| |
Collapse
|
44
|
Jannat M, Yang KL. Immobilization of Enzymes on Flexible Tubing Surfaces for Continuous Bioassays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14226-14233. [PMID: 30383968 DOI: 10.1021/acs.langmuir.8b02991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Immobilized enzymes can be used to catalyze biochemical reactions in a batch process, however, it is more difficult to use them in a continuous process. Herein, we develop an enzyme immobilization technique for flexible tubing surfaces, which can be used to catalyze biochemical reactions in a continuous process. In this technique, the tubing is first treated with (3-aminopropyl)triethoxysilane at 50 °C and baked at 100 °C in vacuum to form a network of reactive amine functional group on the inner tubing surface. Subsequently, dextran polyaldehyde, a polymeric cross-linker, is used to immobilize crude protease extract and catalase for hydrolyzing casein and degrading H2O2, respectively, in a continuous process. The immobilized proteases are highly stable even after a long-term storage at 4 °C. After 12 weeks of storage, 90% of the original protease activity can be preserved. Meanwhile, the immobilized catalase is able to degrade 0.1% H2O2 solution flowing at 5 μL/min. The immobilization technique is potentially useful for bioassays and industrial wastewater treatments when continuous processes are preferred.
Collapse
Affiliation(s)
- Mahbuba Jannat
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117576 , Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117576 , Singapore
| |
Collapse
|
45
|
Lee M, Palanisamy S, Zhou BH, Wang LY, Chen CY, Lee CY, Yuan SSF, Wang YM. Ultrasensitive Electrical Detection of Follicle-Stimulating Hormone Using a Functionalized Silicon Nanowire Transistor Chemosensor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36120-36127. [PMID: 30256613 DOI: 10.1021/acsami.8b11882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The follicle-stimulating hormone (FSH) is a hormone that belongs to a family of glycoprotein hormones. Determination of FSH can help in interpreting various factors that include physiology of the reproductive system, fertility maintenance, and identification or treatment of reproductive disorders. Sialic acids are derivatives of neuraminic acids with negative charges, present at the end of the sugar chains and further linked to the cell surfaces and glycoproteins. The direct measurement of FSH in a human body can be recorded by developing a sensor probe that responds particularly to sialic acids over the other hormones. However, existing diagnostic methods still suffer from many difficulties in terms of complicated handling techniques, expensive instrumentation, etc. Development of accurate, rapid, and low-cost FSH detection chemosensors is important to meet these demands. Herein, we utilized a novel sensing method for accurate and fast FSH detection using a metal-oxide semiconductor silicon nanowire field effect transistor (SiNW-FET) device. This is the first report to demonstrate the boronic acid-functionalized SiNW-FET device in FSH detection. FSH detection has been successfully determined using an assay buffer solution with 0.72 fM detection limit as well as using 20% serum with 1.1. fM detection limit. We also investigated the specificity with other gonadotropins/glycosylated serum proteins. The current measurements on FSH concentrations at different time intervals were also studied. The sensitive, cheap, and miniaturized SiNW-FET device can serve as an effective sensing approach for rapid screening of FSH and menopause diagnosis.
Collapse
Affiliation(s)
- Mucian Lee
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) , National Chiao Tung University , 75 Bo-Ai Street , Hsinchu 300 , Taiwan
| | - Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) , National Chiao Tung University , 75 Bo-Ai Street , Hsinchu 300 , Taiwan
| | - Bin-Hou Zhou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) , National Chiao Tung University , 75 Bo-Ai Street , Hsinchu 300 , Taiwan
| | - Li-Yu Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) , National Chiao Tung University , 75 Bo-Ai Street , Hsinchu 300 , Taiwan
| | - Chiao-Yun Chen
- Department of Medical Imaging , Kaohsiung Medical University Hospital , Kaohsiung 807 , Taiwan
| | - Chen-Yi Lee
- Department of Electronics Engineering , National Chiao Tung University , Hsinchu 300 , Taiwan
| | | | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) , National Chiao Tung University , 75 Bo-Ai Street , Hsinchu 300 , Taiwan
| |
Collapse
|
46
|
Khetani S, Ozhukil Kollath V, Kundra V, Nguyen MD, Debert C, Sen A, Karan K, Sanati-Nezhad A. Polyethylenimine Modified Graphene-Oxide Electrochemical Immunosensor for the Detection of Glial Fibrillary Acidic Protein in Central Nervous System Injury. ACS Sens 2018. [PMID: 29516727 DOI: 10.1021/acssensors.8b00076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is as an intermediate filament protein expressed by certain cells in the central nervous system (CNS). GFAP has been recognized as a reliable biomarker of CNS injury. However, due to the absence of rapid and easy-to-use assays for the detection of CNS injury biomarkers, measuring GFAP levels to identify CNS injury has not attained widespread clinical implementation. In the present work, we developed a polyethylenimine (PEI) coated graphene screen-printed electrode and used it for highly sensitive immunosensing of GFAP. Covalent binding of GFAP antibody to the PEI-modified electrode surface along with electrochemical impedance spectroscopy was used for detecting the change in the electrical conductivity of the electrodes. A highly linear response was recorded for various GFAP concentrations. Quantitative, selective, and label-free detection was achieved in the dynamic range of 1 pg mL-1 to 100 ng mL-1 for GFAP spiked in phosphate buffer saline, artificial cerebrospinal fluid, and human blood serum. The performance of the immunosensor was further validated and correlated by testing samples with the commercially available enzyme-linked immunosorbent assay method. This functionalized electrode could be used clinically for rapid detection and monitoring of CNS injury.
Collapse
Affiliation(s)
- Sultan Khetani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Vinayaraj Ozhukil Kollath
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Varun Kundra
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Minh Dang Nguyen
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Chantel Debert
- Department of Clinical Neurosciences, Division of Physical Medicine and Rehabilitation, Foothills Medical Centre, University of Calgary, Calgary, Alberta T2H 2T9, Canada
| | - Arindom Sen
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta T2N 1N4, Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
47
|
A novel sandwich enzyme-linked immunosorbent assay with covalently bound monoclonal antibody and gold probe for sensitive and rapid detection of bovine β-lactoglobulin. Anal Bioanal Chem 2018; 410:3693-3703. [DOI: 10.1007/s00216-018-1019-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
|
48
|
In situ protein detection with enhanced specificity using DNA-conjugated antibodies and proximity ligation. Mod Pathol 2018; 31:253-263. [PMID: 28937142 DOI: 10.1038/modpathol.2017.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
Abstract
Antibodies are important tools in anatomical pathology and research, but the quality of in situ protein detection by immunohistochemistry greatly depends on the choice of antibodies and the abundance of the targeted proteins. Many antibodies used in scientific research do not meet requirements for specificity and sensitivity. Accordingly, methods that improve antibody performance and produce quantitative data can greatly advance both scientific investigations and clinical diagnostics based on protein expression and in situ localization. We demonstrate here protocols for antibody labeling that allow specific protein detection in tissues via bright-field in situ proximity ligation assays, where each protein molecule must be recognized by two antibodies. We further demonstrate that single polyclonal antibodies or purified serum preparations can be used for these dual recognition assays. The requirement for protein recognition by pairs of antibody conjugates can significantly improve specificity of protein detection over single-binder assays.
Collapse
|
49
|
Multi-analyte validation in heterogeneous solution by ELISA. Int J Biol Macromol 2017; 105:796-800. [DOI: 10.1016/j.ijbiomac.2017.07.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
|
50
|
Kim KR, Han YD, Chun HJ, Lee KW, Hong DK, Lee KN, C Yoon H. Encapsulation-Stabilized, Europium Containing Nanoparticle as a Probe for Time-Resolved luminescence Detection of Cardiac Troponin I. BIOSENSORS 2017; 7:E48. [PMID: 29057816 PMCID: PMC5746771 DOI: 10.3390/bios7040048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
The use of a robust optical signaling probe with a high signal-to-noise ratio is important in the development of immunoassays. Lanthanide chelates are a promising material for this purpose, which provide time-resolved luminescence (TRL) due to their large Stokes shift and long luminescence lifetime. From this, they have attracted considerable interest in the in vitro diagnostics field. However, the direct use of lanthanide chelates is limited because their luminescent signal can be easily affected by various quenchers. To overcome this drawback, strategies that rely on the entrapment of lanthanide chelates inside nanoparticles, thereby enabling the protection of the lanthanide chelate from water, have been reported. However, the poor stability of the lanthanide-entrapped nanoparticles results in a significant fluctuation in TRL signal intensity, and this still remains a challenging issue. To address this, we have developed a Lanthanide chelate-Encapsulated Silica Nano Particle (LESNP) as a new immunosensing probe. In this approach, the lanthanide chelate is covalently crosslinked within the silane monomer during the silica nanoparticle formation. The resulting LESNP is physically stable and retains TRL properties of the parent lanthanide chelate. Using the probe, a highly sensitive, sandwich-based TRL immunoassay for the cardiac troponin I was conducted, exhibiting a limit of detection of 48 pg/mL. On the basis of the features of the LESNP such as TRL signaling capability, stability, and the ease of biofunctionalization, we expect that the LESNP can be widely applied in the development of TRL-based immunosensing.
Collapse
Affiliation(s)
- Ka Ram Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea.
| | - Yong Duk Han
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea.
| | - Hyeong Jin Chun
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea.
| | - Kyung Won Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea.
| | - Dong-Ki Hong
- Korea Electronics Technology Institute, Seongnam 13509, Korea.
| | - Kook-Nyung Lee
- Korea Electronics Technology Institute, Seongnam 13509, Korea.
| | - Hyun C Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea.
| |
Collapse
|