1
|
Uršič Valentinuzzi K, Kamenšek U, Kranjc Brezar S, Heranney C, Komel T, Buček S, Čemažar M, Serša G. Electrochemotherapy with bleomycin, oxaliplatin, or cisplatin in mouse tumor models, from tumor ablation to in situ vaccination. Front Immunol 2025; 16:1470432. [PMID: 40007542 PMCID: PMC11850275 DOI: 10.3389/fimmu.2025.1470432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction In addition to its direct cytotoxic effects, ablative therapies as electrochemotherapy (ECT) can elicit indirect antitumor effects by triggering immune system responses. Here, we comprehensively analyzed this dual effectiveness of intratumoral ECT with chemotherapeutic drugs bleomycin (BLM), oxaliplatin (OXA), and cisplatin (CDDP). Our aim was to determine if ECT can act as in situ vaccination and thereby induce an abscopal effect. By evaluating ECT's potential for in situ vaccination, our goal was to pave the way for future advancements for its combination with emerging (immuno)therapies, leading to enhanced responses and outcomes. Methods We employed two mouse tumor models, the immunologically cold B16F10 melanoma and 4T1 mammary carcinoma, to explore both local and systemic (i.e., abscopal) antitumor effects following equieffective intratumoral ECT with BLM, OXA, and CDDP. Through histological analyses and the use of immunodeficient and metastatic (for abscopal effect) mouse models, we identified and compared both the cytotoxic and immunological components of ECT's antitumor efficiency, such as immunologically recognizable cell deaths (immunogenic cell death and necrosis) and immune infiltrate (CD11+, CD4+, CD8+, GrB+). Results Differences in immunological involvement after equieffective intratumoral ECT were highlighted by variable kinetics of immunologically recognizable cell deaths and immune infiltrate across the studied tumor models. Particularly, the 4T1 tumor model exhibited a more pronounced involvement of the immune component compared to the B16F10 tumor model. Variances in the antitumor (immune) response were also detected based on the chemotherapeutic drug used in ECT. Collectively, ECT demonstrated effectiveness in inducing in situ vaccination in both tumor models; however, an abscopal effect was observed in the 4T1 tumor model only. Conclusions This is the first preclinical study systematically comparing the immune involvement in intratumoral ECT's efficiency using three distinct chemotherapeutic drugs in mouse tumor models. The demonstrated variability in immune response to ECT across different tumor models and chemotherapeutic drugs provides a basis for future investigations aimed at enhancing the effectiveness of combined treatments.
Collapse
Affiliation(s)
- Katja Uršič Valentinuzzi
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Chloe Heranney
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biological Engineering Department, Polytech Clermont-Ferrand, Aubiere, France
| | - Tilen Komel
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Izola, Slovenia
| | - Simon Buček
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Pan W, Wang Y, Chen G, Ma X, Min Y. A carrier-free nanovaccine combined with cancer immunotherapy overcomes gemcitabine resistance. Biomaterials 2025; 313:122788. [PMID: 39236628 DOI: 10.1016/j.biomaterials.2024.122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Drug resistance is a significant challenge in cancer chemotherapy and is a primary factor contributing to poor recovery for cancer patients. Although drug-loaded nanoparticles have shown promise in overcoming chemotherapy resistance, they often carry a combination of drugs and require advanced design and manufacturing processes. Furthermore, they seldom approach chemotherapy-resistant tumors from an immunotherapy perspective. In this study, we developed a therapeutic nanovaccine composed solely of chemotherapy-induced resistant tumor antigens (CIRTAs) and the immune adjuvant Toll-like receptor (TLR) 7/8 agonist R848 (CIRTAs@R848). This nanovaccine does not require additional carriers and has a simple production process. It efficiently delivers antigens and immune stimulants to dendritic cells (DCs) simultaneously, promoting DCs maturation. CIRTAs@R848 demonstrated significant tumor suppression, particularly when used in combination with the immune checkpoint blockade (ICB) anti-PD-1 (αPD-1). The combined therapy increased the infiltration of T cells into the tumor while decreasing the proportion of regulatory T cells (Tregs) and modulating the tumor microenvironment, resulting in long-term immune memory. Overall, this study introduces an innovative strategy for treating chemotherapy-resistant tumors from a novel perspective, with potential applications in personalized immunotherapy and precision medicine.
Collapse
Affiliation(s)
- Wen Pan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yangyi Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaopeng Ma
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
TPX2 Amplification-Driven Aberrant Mitosis in Culture Adapted Human Embryonic Stem Cells with gain of 20q11.21. Stem Cell Rev Rep 2023:10.1007/s12015-023-10514-4. [PMID: 36862329 DOI: 10.1007/s12015-023-10514-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Despite highly effective machinery for the maintenance of genome integrity in human embryonic stem cells (hESCs), the frequency of genetic aberrations during in-vitro culture has been a serious issue for future clinical applications. METHOD By passaging hESCs over a broad range of timepoints (up to 6 years), the isogenic hESC lines with different passage numbers with distinct cellular characteristics, were established. RESULT We found that mitotic aberrations, such as the delay of mitosis, multipolar centrosomes, and chromosome mis-segregation, were increased in parallel with polyploidy compared to early-passaged hESCs (EP-hESCs) with normal copy number. Through high-resolution genome-wide approaches and transcriptome analysis, we found that culture adapted-hESCs with a minimal amplicon in chromosome 20q11.21 highly expressed TPX2, a key protein for governing spindle assembly and cancer malignancy. Consistent with these findings, the inducible expression of TPX2 in EP-hESCs reproduced aberrant mitotic events, such as the delay of mitotic progression, spindle stabilization, misaligned chromosomes, and polyploidy. CONCLUSION These studies suggest that the increased transcription of TPX2 in culture adapted hESCs could contribute to an increase in aberrant mitosis due to altered spindle dynamics.
Collapse
|
4
|
Rasé VJ, Hayward R, Haughian JM, Pullen NA. Th17, Th22, and Myeloid-Derived Suppressor Cell Population Dynamics and Response to IL-6 in 4T1 Mammary Carcinoma. Int J Mol Sci 2022; 23:ijms231810299. [PMID: 36142210 PMCID: PMC9498998 DOI: 10.3390/ijms231810299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Immunotherapies relying on type 1 immunity have shown robust clinical responses in some cancers yet remain relatively ineffective in solid breast tumors. Polarization toward type 2 immunity and expansion of myeloid-derived suppressor cells (MDSC) confer resistance to therapy, though it remains unclear whether polarization toward type 3 immunity occurs or has a similar effect. Therefore, we investigated the involvement of type 3 Th17 and Th22 cells and their association with expanding MDSC populations in the 4T1 mouse mammary carcinoma model. Th17 and Th22 were detected in the earliest measurable mass at d 14 and remained present until the final sampling on d 28. In peripheral organs, Th17 populations were significantly higher than the non-tumor bearing control and peaked early at d 7, before a palpable tumor had formed. Peripheral Th22 proportions were also significantly increased, though at later times when tumors were established. To further address the mechanism underlying type 3 immune cell and MDSC recruitment, we used CRISPR-Cas9 to knock out 4T1 tumor production of interleukin-6 (4T1-IL-6-KO), which functions in myelopoiesis, MDSC recruitment, and Th maturation. While 4T1-IL-6-KO tumor growth was similar to the control, the reduced IL-6 significantly expanded the total CD4+ Th population and Th17 in tumors, while Th22 and MDSC were reduced in all tissues; this suggests that clinical IL-6 depletion combined with immunotherapy could improve outcomes. In sum, 4T1 mammary carcinomas secrete IL-6 and other factors, to polarize and reshape Th populations and expand distinct Th17 and Th22 populations, which may facilitate tumor growth and confer immunotherapy resistance.
Collapse
Affiliation(s)
- Viva J. Rasé
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Reid Hayward
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO 80639, USA
| | - James M. Haughian
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Nicholas A. Pullen
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Correspondence: ; Tel.: +1-970-351-1843; Fax: +1-970-351-2335
| |
Collapse
|
5
|
Sveen A, Johannessen B, Eilertsen IA, Røsok BI, Gulla M, Eide PW, Bruun J, Kryeziu K, Meza-Zepeda LA, Myklebost O, Bjørnbeth BA, Skotheim RI, Nesbakken A, Lothe RA. The expressed mutational landscape of microsatellite stable colorectal cancers. Genome Med 2021; 13:142. [PMID: 34470667 PMCID: PMC8411524 DOI: 10.1186/s13073-021-00955-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/17/2021] [Indexed: 12/09/2022] Open
Abstract
Background Colorectal cancer is the 2nd leading cause of cancer-related deaths with few patients benefiting from biomarker-guided therapy. Mutation expression is essential for accurate interpretation of mutations as biomarkers, but surprisingly, little has been done to analyze somatic cancer mutations on the expression level. We report a large-scale analysis of allele-specific mutation expression. Methods Whole-exome and total RNA sequencing was performed on 137 samples from 121 microsatellite stable colorectal cancers, including multiregional samples of primary and metastatic tumors from 4 patients. Data were integrated with allele-specific resolution. Results were validated in an independent set of 241 colon cancers. Therapeutic associations were explored by pharmacogenomic profiling of 15 cell lines or patient-derived organoids. Results The median proportion of expressed mutations per tumor was 34%. Cancer-critical mutations had the highest expression frequency (gene-wise mean of 58%), independent of frequent allelic imbalance. Systematic deviation from the general pattern of expression levels according to allelic frequencies was detected, including preferential expression of mutated alleles dependent on the mutation type and target gene. Translational relevance was suggested by correlations of KRAS/NRAS or TP53 mutation expression levels with downstream oncogenic signatures (p < 0.03), overall survival among patients with stage II and III cancer (KRAS/NRAS: hazard ratio 6.1, p = 0.0070), and targeted drug sensitivity. The latter was demonstrated for EGFR and MDM2 inhibition in pre-clinical models. Conclusions Only a subset of mutations in microsatellite stable colorectal cancers were expressed, and the “expressed mutation dose” may provide an opportunity for more fine-tuned biomarker interpretations. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00955-2.
Collapse
Affiliation(s)
- Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171 Blindern, NO-0318, Oslo, Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Ina A Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171 Blindern, NO-0318, Oslo, Norway
| | - Bård I Røsok
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, P.O. Box 4950, NO-0424, Oslo, Norway
| | - Marie Gulla
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Peter W Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Kushtrim Kryeziu
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway
| | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Department of Clinical Science, University of Bergen, P.O. Box 7804, NO-5020, Bergen, Norway
| | - Bjørn A Bjørnbeth
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, P.O. Box 4950, NO-0424, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1032 Blindern, NO-0315, Oslo, Norway
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171 Blindern, NO-0318, Oslo, Norway.,Department of Gastrointestinal Surgery, Oslo University Hospital, P.O. Box 4950, NO-0424, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway. .,K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, P.O. Box 4953 Nydalen, NO-0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171 Blindern, NO-0318, Oslo, Norway.
| |
Collapse
|
6
|
Adjuvant oncolytic virotherapy for personalized anti-cancer vaccination. Nat Commun 2021; 12:2626. [PMID: 33976179 PMCID: PMC8113265 DOI: 10.1038/s41467-021-22929-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
By conferring systemic protection and durable benefits, cancer immunotherapies are emerging as long-term solutions for cancer treatment. One such approach that is currently undergoing clinical testing is a therapeutic anti-cancer vaccine that uses two different viruses expressing the same tumor antigen to prime and boost anti-tumor immunity. By providing the additional advantage of directly killing cancer cells, oncolytic viruses (OVs) constitute ideal platforms for such treatment strategy. However, given that the targeted tumor antigen is encoded into the viral genomes, its production requires robust infection and therefore, the vaccination efficiency partially depends on the unpredictable and highly variable intrinsic sensitivity of each tumor to OV infection. In this study, we demonstrate that anti-cancer vaccination using OVs (Adenovirus (Ad), Maraba virus (MRB), Vesicular stomatitis virus (VSV) and Vaccinia virus (VV)) co-administered with antigenic peptides is as efficient as antigen-engineered OVs and does not depend on viral replication. Our strategy is particularly attractive for personalized anti-cancer vaccines targeting patient-specific mutations. We suggest that the use of OVs as adjuvant platforms for therapeutic anti-cancer vaccination warrants testing for cancer treatment. Viruses expressing tumour antigens can prime and boost anti-tumour immunity but the efficiency of this approach depends on the capacity of the virus to infect the host. Here, the authors show that vaccination with oncolytic viruses co-administered with tumour antigenic peptides is as efficient as antigen-engineered oncolytic viruses.
Collapse
|
7
|
Ursic K, Kos S, Kamensek U, Cemazar M, Miceska S, Markelc B, Bucek S, Staresinic B, Kloboves Prevodnik V, Heller R, Sersa G. Potentiation of electrochemotherapy effectiveness by immunostimulation with IL-12 gene electrotransfer in mice is dependent on tumor immune status. J Control Release 2021; 332:623-635. [PMID: 33705828 DOI: 10.1016/j.jconrel.2021.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Electrochemotherapy (ECT) exhibits high therapeutic effectiveness in the clinic, achieving up to 80% local tumor control but without a systemic (abscopal) effect. Therefore, we designed a combination therapy consisting of ECT via intratumoral application of bleomycin, oxaliplatin or cisplatin with peritumoral gene electrotransfer of a plasmid encoding interleukin-12 (p. t. IL-12 GET). Our hypothesis was that p. t. IL-12 GET potentiates the effect of ECT on local and systemic levels and that the potentiation varies depending on tumor immune status. Therefore, the combination therapy was tested in three immunologically different murine tumor models. In poorly immunogenic B16F10 melanoma, IL-12 potentiated the antitumor effect of ECT with biologically equivalent low doses of cisplatin, oxaliplatin or bleomycin. The most pronounced potentiation was observed after ECT using cisplatin, resulting in a complete response rate of 38% and an abscopal effect. Compared to B16F10 melanoma, better responsiveness to ECT was observed in more immunogenic 4 T1 mammary carcinoma and CT26 colorectal carcinoma. In both models, p. t. IL-12 GET did not significantly improve the therapeutic outcome of ECT using any of the chemotherapeutic drugs. Collectively, the effectiveness of the combination therapy depends on tumor immune status. ECT was more effective in more immunogenic tumors, but GET exhibited greater contribution in less immunogenic tumors. Thus, the selection of the therapy, namely, either ECT alone or combination therapy with p. t. IL-12, should be predominantly based on tumor immune status.
Collapse
Affiliation(s)
- Katja Ursic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, SI-1000 Ljubljana, Slovenia.
| | - Spela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia.
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, SI-1000 Ljubljana, Slovenia.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Simona Miceska
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Simon Bucek
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - Barbara Staresinic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia.
| | - Veronika Kloboves Prevodnik
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, FL-33612 Tampa, USA.
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
He X, Zhou S, Huang WC, Seffouh A, Mabrouk MT, Morgan MT, Ortega J, Abrams SI, Lovell JF. A Potent Cancer Vaccine Adjuvant System for Particleization of Short, Synthetic CD8 + T Cell Epitopes. ACS NANO 2021; 15:4357-4371. [PMID: 33606514 PMCID: PMC10184788 DOI: 10.1021/acsnano.0c07680] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Short major histocompatibility complex (MHC) class I (MHC-I)-restricted peptides contain the minimal biochemical information to induce antigen (Ag)-specific CD8+ cytotoxic T cell responses but are generally ineffective in doing so. To address this, we developed a cobalt-porphyrin (CoPoP) liposome vaccine adjuvant system that induces rapid particleization of conventional, short synthetic MHC-I epitopes, leading to strong cellular immune responses at nanogram dosing. Along with CoPoP (to induce particle formation of peptides), synthetic monophosphoryl lipid A (PHAD) and QS-21 immunostimulatory molecules were included in the liposome bilayer to generate the "CPQ" adjuvant system. In mice, immunization with a short MHC-I-restricted peptide, derived from glycoprotein 70 (gp70), admixed with CPQ safely generated functional, Ag-specific CD8+ T cells, resulting in the rejection of multiple tumor cell lines, with durable immunity. When cobalt was omitted, the otherwise identical peptide and adjuvant components did not result in peptide binding and were incapable of inducing immune responses, demonstrating the importance of stable particle formation. Immunization with the liposomal vaccine was well-tolerated and could control local and metastatic disease in a therapeutic setting. Mechanistic studies showed that particle-based peptides were better taken up by antigen-presenting cells, where they were putatively released within endosomes and phagosomes for display on MHC-I surfaces. On the basis of the potency of the approach, the platform was demonstrated as a tool for in vivo epitope screening of peptide microlibraries comprising a hundred peptides.
Collapse
Affiliation(s)
- Xuedan He
- Department of Biomedical Engineering. University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Shiqi Zhou
- Department of Biomedical Engineering. University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering. University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec H3A0C7, Canada
| | - Moustafa T. Mabrouk
- Department of Biomedical Engineering. University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec H3A0C7, Canada
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- ,
| | - Jonathan F. Lovell
- Department of Biomedical Engineering. University at Buffalo, State University of New York, Buffalo, NY 14260, USA
- ,
| |
Collapse
|
9
|
Zhou Z, Huang F, Shrivastava I, Zhu R, Luo A, Hottiger M, Bahar I, Liu Z, Cristofanilli M, Wan Y. New insight into the significance of KLF4 PARylation in genome stability, carcinogenesis, and therapy. EMBO Mol Med 2020; 12:e12391. [PMID: 33231937 PMCID: PMC7721363 DOI: 10.15252/emmm.202012391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
KLF4 plays a critical role in determining cell fate responding to various stresses or oncogenic signaling. Here, we demonstrated that KLF4 is tightly regulated by poly(ADP-ribosyl)ation (PARylation). We revealed the subcellular compartmentation for KLF4 is orchestrated by PARP1-mediated PARylation. We identified that PARylation of KLF4 is critical to govern KLF4 transcriptional activity through recruiting KLF4 from soluble nucleus to the chromatin. We mapped molecular motifs on KLF4 and PARP1 that facilitate their interaction and unveiled the pivotal role of the PBZ domain YYR motif (Y430, Y451 and R452) on KLF4 in enabling PARP1-mediated PARylation of KLF4. Disruption of KLF4 PARylation results in failure in DNA damage response. Depletion of KLF4 by RNA interference or interference with PARP1 function by KLF4YYR/AAA (a PARylation-deficient mutant) significantly sensitizes breast cancer cells to PARP inhibitors. We further demonstrated the role of KLF4 in modulating homologous recombination through regulating BRCA1 transcription. Our work points to the synergism between KLF4 and PARP1 in tumorigenesis and cancer therapy, which provides a potential new therapeutic strategy for killing BRCA1-proficient triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Obstetrics and GynecologyDepartment of PharmacologyThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Furong Huang
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Indira Shrivastava
- Department of Computational and Systems BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Rui Zhu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Aiping Luo
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Michael Hottiger
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Ivet Bahar
- Department of Computational and Systems BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Zhihua Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Massimo Cristofanilli
- Lynn Sage Breast Cancer ProgramDepartment of Medicine‐Hematology and OncologyRobert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Yong Wan
- Department of Obstetrics and GynecologyDepartment of PharmacologyThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| |
Collapse
|
10
|
El-Masry OS, Al-Amri AM, Alqatari A, Alsamman K. RNA sequencing-based identification of potential targets in acute myeloid leukemia: A case report. Biomed Rep 2020; 13:42. [PMID: 32934815 PMCID: PMC7469581 DOI: 10.3892/br.2020.1349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) refers to heterogenous types of blood cancer which possess a complicated genomic landscape, and multiple novel mutational alterations are frequently being reported. Herein, a case report of a 37-year old AML patient is presented, who was diagnosed following laboratory investigation after admission. The patient had thrombocytopenia, and three consecutive blast counts of 40, 30 and 41%, respectively. A blood sample was collected for whole-genome RNA sequencing to understand the transcriptomic profile at the time of diagnosis and compared with a matched female control. Gene expression was quantified using the RSEM software package. Bioinformatics analysis revealed a significant number of differentially expressed genes in the patient, suggesting a marked change in the transcriptomic landscape in this patient. By mining the bioinformatics data and screening the highly expressed genes with ≥80% probability of gene expression, four novel genes were highlighted that may serve as potential future targets in AML patients; Rh associated glycoprotein, succinate receptor 1, transmembrane-4 L-six family member-1 and ADGRA3, although further validation of their value is required.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Kingdom of Saudi Arabia
| | - Ali M. Al-Amri
- Department of Internal Medicine/Oncology, College of Medicine, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of The University, Al-Khobar, Eastern Province 34445, Kingdom of Saudi Arabia
| | - Ahlam Alqatari
- Hematology Laboratory/Hematopathology, College of Medicine, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of The University, Al-Khobar, Eastern Province 34445, Kingdom of Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Bialkowski K, Kasprzak KS. A profile of 8-oxo-dGTPase activities in the NCI-60 human cancer panel: Meta-analytic insight into the regulation and role of MTH1 (NUDT1) gene expression in carcinogenesis. Free Radic Biol Med 2020; 148:1-21. [PMID: 31883466 DOI: 10.1016/j.freeradbiomed.2019.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
We measured the specific 8-oxo-dGTPase activity profile of the NCI-60 panel of malignant cell lines, and MTH1 protein levels in a subset of 16 lines. Their 8-oxo-dGTPase activity was compared to twelve publicly accessible MTH1 mRNA expression data bases and their cross-consistency was analyzed. 8-oxo-dGTPase and MTH1 protein levels in these cell lines are generally, but not always, mainly determined by MTH1 mRNA expression levels. The aneuploidy number of MTH1 gene copies only slightly affects its mRNA expression levels. By using the data mining platforms Compare and CellMiner, our 8-oxo-dGTPase profile was compared to five global gene expression datasets to identify genes whose expression levels are directly or inversely associated with 8-oxo-dGTPase. We analyzed effects of SNP within MTH1 on MTH1 mRNA level and enzyme activity. Similar association analysis was performed for five microRNA expression datasets. We identified several proteins and microRNA which might be involved in the regulation of MTH1 expression and we discuss potential mechanisms. Comparison of chemical and natural products sensitivities of the NCI-60 panel suggests seven compounds which are directly or inversely associated with 8-oxo-dGTPase. We provide an integrated picture of MTH1 expression combined from eleven consistent MTH1 mRNA and our 8-oxo-dGTPase activity NCI-60 profiles.
Collapse
Affiliation(s)
- Karol Bialkowski
- Department of Clinical Biochemistry, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, 85-092, Poland.
| | - Kazimierz S Kasprzak
- Scientist Emeritus, Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
12
|
Zhong W, Myers JS, Wang F, Wang K, Lucas J, Rosfjord E, Lucas J, Hooper AT, Yang S, Lemon LA, Guffroy M, May C, Bienkowska JR, Rejto PA. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics 2020; 21:2. [PMID: 31898484 PMCID: PMC6941261 DOI: 10.1186/s12864-019-6344-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The clinical success of immune checkpoint inhibitors demonstrates that reactivation of the human immune system delivers durable responses for some patients and represents an exciting approach for cancer treatment. An important class of preclinical in vivo models for immuno-oncology is immunocompetent mice bearing mouse syngeneic tumors. To facilitate translation of preclinical studies into human, we characterized the genomic, transcriptomic, and protein expression of a panel of ten commonly used mouse tumor cell lines grown in vitro culture as well as in vivo tumors. RESULTS Our studies identified a number of genetic and cellular phenotypic differences that distinguish commonly used mouse syngeneic models in our study from human cancers. Only a fraction of the somatic single nucleotide variants (SNVs) in these common mouse cell lines directly match SNVs in human actionable cancer genes. Some models derived from epithelial tumors have a more mesenchymal phenotype with relatively low T-lymphocyte infiltration compared to the corresponding human cancers. CT26, a colon tumor model, had the highest immunogenicity and was the model most responsive to CTLA4 inhibitor treatment, by contrast to the relatively low immunogenicity and response rate to checkpoint inhibitor therapies in human colon cancers. CONCLUSIONS The relative immunogenicity of these ten syngeneic tumors does not resemble typical human tumors derived from the same tissue of origin. By characterizing the mouse syngeneic models and comparing with their human tumor counterparts, this study contributes to a framework that may help investigators select the model most relevant to study a particular immune-oncology mechanism, and may rationalize some of the challenges associated with translating preclinical findings to clinical studies.
Collapse
Affiliation(s)
- Wenyan Zhong
- Oncology Research & Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA.
| | - Jeremy S Myers
- Oncology Research & Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA
| | - Fang Wang
- Oncology Research & Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA
| | - Kai Wang
- Oncology Research & Development, Pfizer Worldwide Research and Development, San Diego, CA, 92121, USA
| | - Justin Lucas
- Oncology Research & Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA
| | - Edward Rosfjord
- Oncology Research & Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA
| | - Judy Lucas
- Oncology Research & Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA
| | - Andrea T Hooper
- Oncology Research & Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA
| | - Sharon Yang
- Oncology Research & Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA
| | - Lu Anna Lemon
- Oncology Research & Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA
| | - Magali Guffroy
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA
| | - Chad May
- Oncology Research & Development, Pfizer Worldwide Research and Development, New York, Pearl River, 10965, USA
| | - Jadwiga R Bienkowska
- Oncology Research & Development, Pfizer Worldwide Research and Development, San Diego, CA, 92121, USA
| | - Paul A Rejto
- Oncology Research & Development, Pfizer Worldwide Research and Development, San Diego, CA, 92121, USA.
| |
Collapse
|
13
|
Grant AD, Vail P, Padi M, Witkiewicz AK, Knudsen ES. Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations. Sci Rep 2019; 9:12766. [PMID: 31484939 PMCID: PMC6726654 DOI: 10.1038/s41598-019-48967-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
Genetic alterations are essential for cancer initiation and progression. However, differentiating mutations that drive the tumor phenotype from mutations that do not affect tumor fitness remains a fundamental challenge in cancer biology. To better understand the impact of a given mutation within cancer, RNA-sequencing data was used to categorize mutations based on their allelic expression. For this purpose, we developed the MAXX (Mutation Allelic Expression Extractor) software, which is highly effective at delineating the allelic expression of both single nucleotide variants and small insertions and deletions. Results from MAXX demonstrated that mutations can be separated into three groups based on their expression of the mutant allele, lack of expression from both alleles, or expression of only the wild-type allele. By taking into consideration the allelic expression patterns of genes that are mutated in PDAC, it was possible to increase the sensitivity of widely used driver mutation detection methods, as well as identify subtypes that have prognostic significance and are associated with sensitivity to select classes of therapeutic agents in cell culture. Thus, differentiating mutations based on their mutant allele expression via MAXX represents a means to parse somatic variants in tumor genomes, helping to elucidate a gene’s respective role in cancer.
Collapse
Affiliation(s)
- Adam D Grant
- University of Arizona Cancer Center, Tucson, AZ, 85719, USA
| | - Paris Vail
- University of Arizona Cancer Center, Tucson, AZ, 85719, USA
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85719, USA
| | | | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
14
|
Batcha AMN, Bamopoulos SA, Kerbs P, Kumar A, Jurinovic V, Rothenberg-Thurley M, Ksienzyk B, Philippou-Massier J, Krebs S, Blum H, Schneider S, Konstandin N, Bohlander SK, Heckman C, Kontro M, Hiddemann W, Spiekermann K, Braess J, Metzeler KH, Greif PA, Mansmann U, Herold T. Allelic Imbalance of Recurrently Mutated Genes in Acute Myeloid Leukaemia. Sci Rep 2019; 9:11796. [PMID: 31409822 PMCID: PMC6692371 DOI: 10.1038/s41598-019-48167-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
The patho-mechanism of somatic driver mutations in cancer usually involves transcription, but the proportion of mutations and wild-type alleles transcribed from DNA to RNA is largely unknown. We systematically compared the variant allele frequencies of recurrently mutated genes in DNA and RNA sequencing data of 246 acute myeloid leukaemia (AML) patients. We observed that 95% of all detected variants were transcribed while the rest were not detectable in RNA sequencing with a minimum read-depth cut-off (10x). Our analysis focusing on 11 genes harbouring recurring mutations demonstrated allelic imbalance (AI) in most patients. GATA2, RUNX1, TET2, SRSF2, IDH2, PTPN11, WT1, NPM1 and CEBPA showed significant AIs. While the effect size was small in general, GATA2 exhibited the largest allelic imbalance. By pooling heterogeneous data from three independent AML cohorts with paired DNA and RNA sequencing (N = 253), we could validate the preferential transcription of GATA2-mutated alleles. Differential expression analysis of the genes with significant AI showed no significant differential gene and isoform expression for the mutated genes, between mutated and wild-type patients. In conclusion, our analyses identified AI in nine out of eleven recurrently mutated genes. AI might be a common phenomenon in AML which potentially contributes to leukaemogenesis.
Collapse
Affiliation(s)
- Aarif M N Batcha
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany. .,Data Integration for Future Medicine (DiFuture, www.difuture.de), LMU Munich, Munich, Germany.
| | - Stefanos A Bamopoulos
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Paul Kerbs
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Ashwini Kumar
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Vindi Jurinovic
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany.,Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Bianka Ksienzyk
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Julia Philippou-Massier
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, University of Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, University of Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, University of Munich, Munich, Germany
| | - Stephanie Schneider
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Nikola Konstandin
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Caroline Heckman
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mika Kontro
- Department of Haematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Klaus H Metzeler
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp A Greif
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Mansmann
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany.,Data Integration for Future Medicine (DiFuture, www.difuture.de), LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany. .,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany.
| |
Collapse
|
15
|
Fiegle E, Doleschel D, Koletnik S, Rix A, Weiskirchen R, Borkham-Kamphorst E, Kiessling F, Lederle W. Dual CTLA-4 and PD-L1 Blockade Inhibits Tumor Growth and Liver Metastasis in a Highly Aggressive Orthotopic Mouse Model of Colon Cancer. Neoplasia 2019; 21:932-944. [PMID: 31412307 PMCID: PMC6700499 DOI: 10.1016/j.neo.2019.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitors have shown clinical benefit in several cancer entities including metastatic microsatellite instable colorectal carcinomas. However, for the majority of metastatic colorectal carcinomas the potential and limitations of immune checkpoint inhibition is not fully understood. In this study, the effects of sole and dual CTLA-4 and PD-L1 blockade were investigated in a microsatellite stable highly aggressive orthotopic mouse model of colon cancer. Dual CTLA-4 and PD-L1 inhibition resulted in tumor growth stagnation and completely blocked liver metastasis. Sole CTLA-4 and PD-L1 inhibition only moderately reduced metastatic spread of the colon cancer cells, though CTLA-4 blockade being superior to PD-L1 inhibition. Dual immune checkpoint blockade and sole CTLA-4 inhibition significantly increased intratumoral CD8+ and CD4+ T cells and reduced FOXP3+/CD4+ Treg cells. This was associated with increased expression levels of the pro-inflammatory Th1/M1-related cytokines IFN-γ, IL-1α, IL-2, and IL-12. Moreover, tumors treated with combined immune checkpoint blockade showed the strongest increase in intratumoral iNOS+ macrophages, reduction of PD-L1+ and Tie2+ macrophages and the lowest expression of M2/Th2-related IL-4, TARC and COX-2. The assessment of further microenvironmental changes by DCE-MRI and immunohistology revealed no alterations in functional tumor vascularization upon combined immune checkpoint blockade, but a significant increase in intratumoral fibroblasts and collagen I deposition. Thus, the synergistic inhibitory effects of dual immune checkpoint inhibition can be explained by anti-tumorigenic T cell responses mediated by CTLA-4 inhibition and M1 macrophage polarization predominantly induced by PD-L1 blockade. This was accompanied by pronounced fibroblast activation highlighting the interconnection between immunogenicity and desmoplasia.
Collapse
Affiliation(s)
- E Fiegle
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Germany
| | - D Doleschel
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Germany; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Germany
| | - S Koletnik
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Germany
| | - A Rix
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Germany
| | - R Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Germany
| | - E Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Germany
| | - F Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Germany
| | - W Lederle
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Germany.
| |
Collapse
|
16
|
Rabin-Court A, Rodrigues MR, Zhang XM, Perry RJ. Obesity-associated, but not obesity-independent, tumors respond to insulin by increasing mitochondrial glucose oxidation. PLoS One 2019; 14:e0218126. [PMID: 31188872 PMCID: PMC6561592 DOI: 10.1371/journal.pone.0218126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity is associated with increased incidence and worse prognosis of more than one dozen tumor types; however, the molecular mechanisms for this association remain under debate. We hypothesized that insulin, which is elevated in obesity-driven insulin resistance, would increase tumor glucose oxidation in obesity-associated tumors. To test this hypothesis, we applied and validated a stable isotope method to measure the ratio of pyruvate dehydrogenase flux to citrate synthase flux (VPDH/VCS, i.e. the percent of total mitochondrial oxidation fueled by glucose) in tumor cells. Using this method, we found that three tumor cell lines associated with obesity (colon cancer [MC38], breast cancer [4T1], and prostate cancer [TRAMP-C3] cells) increase VPDH/VCS in response to physiologic concentrations of insulin. In contrast, three tumor cell lines that are not associated with obesity (melanoma [YUMM1.7], B cell lymphoma [BCL1 clone 5B1b], and small cell lung cancer [NCI-H69] cells) exhibited no oxidative response to insulin. The observed increase in glucose oxidation in response to insulin correlated with a dose-dependent increase in cell division in obesity-associated tumor cell lines when grown in insulin, whereas no alteration in cell division was seen in tumor types not associated with obesity. These data reveal that a shift in substrate preference in the setting of physiologic insulin may comprise a metabolic signature of obesity-associated tumors that differs from that of those not associated with obesity.
Collapse
Affiliation(s)
- Aviva Rabin-Court
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marcos R. Rodrigues
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Xian-Man Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rachel J. Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
17
|
Valentinuzzi D, Simončič U, Uršič K, Vrankar M, Turk M, Jeraj R. Predicting tumour response to anti-PD-1 immunotherapy with computational modelling. ACTA ACUST UNITED AC 2019; 64:025017. [DOI: 10.1088/1361-6560/aaf96c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Liu Z, Dong X, Li Y. A Genome-Wide Study of Allele-Specific Expression in Colorectal Cancer. Front Genet 2018; 9:570. [PMID: 30538721 PMCID: PMC6277598 DOI: 10.3389/fgene.2018.00570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence from small-scale studies has suggested that allele-specific expression (ASE) plays an important role in tumor initiation and progression. However, little is known about genome-wide ASE in tumors. In this study, we conducted a comprehensive analysis of ASE in individuals with colorectal cancer (CRC) on a genome-wide scale. We identified 5.4 thousand genome-wide ASEs of single nucleotide variations (SNVs) from tumor and normal tissues of 59 individuals with CRC. We observed an increased ASE level in tumor samples and the ASEs enriched as hotspots on the genome. Around 63% of the genes located there were previously reported to contain complex regulatory elements, e.g., human leukocyte antigen (HLA), or were implicated in tumor progression. Focussing on the allelic expression of somatic mutations, we found that 37.5% of them exhibited ASE, and genes harboring such somatic mutations, were enriched in important pathways implicated in cancers. In addition, by comparing the expected and observed ASE events in tumor samples, we identified 50 tumor specific ASEs which possibly contributed to the somatic events in the regulatory regions of the genes and significantly enriched known cancer driver genes. By analyzing CRC ASEs from several perspectives, we provided a systematic understanding of how ASE is implicated in both tumor and normal tissues and will be of critical value in guiding ASE studies in cancer.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiao Dong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yixue Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Tran HT, Ramaraj T, Furtado A, Lee LS, Henry RJ. Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1756-1766. [PMID: 29509991 PMCID: PMC6131422 DOI: 10.1111/pbi.12912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 05/21/2023]
Abstract
Arabica coffee (Coffea arabica) has a small gene pool limiting genetic improvement. Selection for caffeine content within this gene pool would be assisted by identification of the genes controlling this important trait. Sequencing of DNA bulks from 18 genotypes with extreme high- or low-caffeine content from a population of 232 genotypes was used to identify linked polymorphisms. To obtain a reference genome, a whole genome assembly of arabica coffee (variety K7) was achieved by sequencing using short read (Illumina) and long-read (PacBio) technology. Assembly was performed using a range of assembly tools resulting in 76 409 scaffolds with a scaffold N50 of 54 544 bp and a total scaffold length of 1448 Mb. Validation of the genome assembly using different tools showed high completeness of the genome. More than 99% of transcriptome sequences mapped to the C. arabica draft genome, and 89% of BUSCOs were present. The assembled genome annotated using AUGUSTUS yielded 99 829 gene models. Using the draft arabica genome as reference in mapping and variant calling allowed the detection of 1444 nonsynonymous single nucleotide polymorphisms (SNPs) associated with caffeine content. Based on Kyoto Encyclopaedia of Genes and Genomes pathway-based analysis, 65 caffeine-associated SNPs were discovered, among which 11 SNPs were associated with genes encoding enzymes involved in the conversion of substrates, which participate in the caffeine biosynthesis pathways. This analysis demonstrated the complex genetic control of this key trait in coffee.
Collapse
Affiliation(s)
- Hue T.M. Tran
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandSt LuciaQldAustralia
- Western Highlands Agriculture & Forestry Science Institute (WASI)Buon Ma ThuotVietnam
| | | | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandSt LuciaQldAustralia
| | - Leonard Slade Lee
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandSt LuciaQldAustralia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandSt LuciaQldAustralia
| |
Collapse
|
20
|
Lee S, Huh JY, Turner DM, Lee S, Robinson J, Stein JE, Shim SH, Hong CP, Kang MS, Nakagawa M, Kaneko S, Nakanishi M, Rao MS, Kurtz A, Stacey GN, Marsh SGE, Turner ML, Song J. Repurposing the Cord Blood Bank for Haplobanking of HLA-Homozygous iPSCs and Their Usefulness to Multiple Populations. Stem Cells 2018; 36:1552-1566. [PMID: 30004605 DOI: 10.1002/stem.2865] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/17/2018] [Accepted: 05/02/2018] [Indexed: 01/26/2023]
Abstract
Although autologous induced pluripotent stem cells (iPSCs) can potentially be useful for treating patients without immune rejection, in reality it will be extremely expensive and labor-intensive to make iPSCs to realize personalized medicine. An alternative approach is to make use of human leukocyte antigen (HLA) haplotype homozygous donors to provide HLA matched iPSC products to significant numbers of patients. To establish a haplobank of iPSCs, we repurposed the cord blood bank by screening ∼4,200 high resolution HLA typed cord blood samples, and selected those homozygous for the 10 most frequent HLA-A,-B,-DRB1 haplotypes in the Korean population. Following the generation of 10 iPSC lines, we conducted a comprehensive characterization, including morphology, expression of pluripotent markers and cell surface antigens, three-germ layer formation, vector clearance, mycoplasma/microbiological/viral contamination, endotoxin, and short tandem repeat (STR) assays. Various genomic analyses using microarray and comparative genomic hybridization (aCGH)-based single nucleotide polymorphism (SNP) and copy number variation (CNV) were also conducted. These 10 HLA-homozygous iPSC lines match 41.07% of the Korean population. Comparative analysis of HLA population data shows that they are also of use in other Asian populations, such as Japan, with some limited utility in ethnically diverse populations, such as the UK. Taken together, the generation of the 10 most frequent Korean HLA-homozygous iPSC lines serves as a useful pointer for the development of optimal methods for iPSC generation and quality control and indicates the benefits and limitations of collaborative HLA driven selection of donors for future stocking of worldwide iPSC haplobanks. Stem Cells 2018;36:1552-1566.
Collapse
Affiliation(s)
- Suji Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ji Young Huh
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - David M Turner
- Histocompatibility and Immunogenetics Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
- Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Soohyeon Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - James Robinson
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Jeremy E Stein
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK
| | - Sung Han Shim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chang Pyo Hong
- Bioinformatics Team, Theragen Etex Bio Institute, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Myung Seo Kang
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shin Kaneko
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Mahendra S Rao
- New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Andreas Kurtz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, Hertfordshire, UK
| | - Steven G E Marsh
- HLA Informatics Group, Anthony Nolan Research Institute, Royal Free Campus, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Marc L Turner
- Advanced Therapeutics, Scottish National Blood Transfusion Service, Edinburgh, UK
- Global Alliance for iPSC Therapies, The Jack Copland Centre, Edinburgh, UK
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
- Global Alliance for iPSC Therapies, The Jack Copland Centre, Edinburgh, UK
| |
Collapse
|
21
|
Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat Commun 2018; 9:2237. [PMID: 29884866 PMCID: PMC5993831 DOI: 10.1038/s41467-018-04605-x] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
Although great success has been obtained in the clinic, the current immune checkpoint inhibitors still face two challenging problems: low response rate and immune-related adverse effects (irAEs). Here we report the combination of immunogenic chemotherapy and locally expressed PD-L1 trap fusion protein for efficacious and safe cancer immunotherapy. We demonstrate that oxaliplatin (OxP) boosts anti-PD-L1 mAb therapy against murine colorectal cancer. By design of a PD-L1 trap and loading its coding plasmid DNA into a lipid-protamine-DNA nanoparticle, PD-L1 trap is produced transiently and locally in the tumor microenvironment, and synergizes with OxP for tumor inhibition. Significantly, unlike the combination of OxP and anti-PD-L1 mAb, the combination of OxP and PD-L1 trap does not induce obvious Th17 cells accumulation in the spleen, indicating better tolerance and lower tendency to irAEs. The reports here may highlight the potential of applying PD-L1 inhibitor, especially locally expressed PD-L1 trap, in cancer therapy following OxP-based chemotherapy. Microsatellite-stable (MSS) colorectal cancer (CRC) has shown poor response to checkpoint blockade immunotherapy. Here, the authors show that the combination of oxaliplatin with anti-PDL1 mAb is specifically efficient in the treatment of MSS CRC.
Collapse
|
22
|
Hulett TW, Jensen SM, Wilmarth PA, Reddy AP, Ballesteros-Merino C, Afentoulis ME, Dubay C, David LL, Fox BA. Coordinated responses to individual tumor antigens by IgG antibody and CD8+ T cells following cancer vaccination. J Immunother Cancer 2018; 6:27. [PMID: 29618380 PMCID: PMC5885379 DOI: 10.1186/s40425-018-0331-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Background One of today’s greatest hurdles for cancer immunotherapy is the absence of information regarding which tumor antigens are already recognized by patients receiving immunotherapies, and whether those therapies then boost or generate an immune response against tumor proteins. For CD8+ T cells in particular, patient-specific immune recognition and responses at the level of individual tumor antigens are rarely characterized. Because of this, some immunologists have turned to serum antibodies as an alternative measure of antigen-specific anti-tumor immunity. In this work, we sought to simultaneously interrogate serum IgG and CD8+ T cell recognition of individual tumor antigens to determine whether antigen-specific serum IgG antibodies provide a window into the behavior of antigen-specific CD8+ T cell responses. Using antibody-based assays to evaluate immune response repertoires and focus T cell antigen exploration could afford substantial advantages for discovering and monitoring the anti-cancer immune responses of patients enrolled on clinical trials. Methods We vaccinated female BALB/c mice with a novel combination of an autophagosome-enriched vaccine derived from 4T1 mammary carcinoma along with poly-I:C adjuvant, then screened serum for IgG binding to arrays of 15mer peptides containing known mutation sites in 4T1. Simultaneously, we primed CD8+ T cell cultures from these same animals with 8-11mer peptides derived from these antigens. These primed T cells were then stimulated to measure recognition of the peptides or live 4T1 cells by IFNγ release. Results Vaccinated animals demonstrate increases in antigen-specific CD8+ T cell recognition of 4T1 tumor cells and peptides. For proteins confirmed in 4T1 cells and vaccine by mass spectrometry, there is a correlation between this increased CD8+ T cell IFNγ release and serum IgG binding to individual peptide antigens. Conclusions These results suggest it is possible to observe some features of a patient’s antigen-specific T cell repertoire via an antibody surrogate, which has implications for tumor antigen discovery and clinical monitoring of antigen-specific anti-tumor immunity. Electronic supplementary material The online version of this article (10.1186/s40425-018-0331-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tyler W Hulett
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, 2N56 North Pavilion, 4805 NE Glisan St., Portland, OR, 97213, USA.,Department of Molecular Microbiology & Immunology, Oregon Health & Science University Portland, Oregon, 97239, USA
| | - Shawn M Jensen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, 2N56 North Pavilion, 4805 NE Glisan St., Portland, OR, 97213, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University Portland, Oregon, 97239, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health & Science University Portland, Oregon, 97239, USA
| | - Carmen Ballesteros-Merino
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, 2N56 North Pavilion, 4805 NE Glisan St., Portland, OR, 97213, USA
| | - Michael E Afentoulis
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, 2N56 North Pavilion, 4805 NE Glisan St., Portland, OR, 97213, USA
| | - Christopher Dubay
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, 2N56 North Pavilion, 4805 NE Glisan St., Portland, OR, 97213, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health & Science University Portland, Oregon, 97239, USA.,Department of Biochemistry and Molecular Biology, Oregon Health & Science University Portland, Oregon, 97239, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Cancer Institute, 2N56 North Pavilion, 4805 NE Glisan St., Portland, OR, 97213, USA. .,Department of Molecular Microbiology & Immunology, Oregon Health & Science University Portland, Oregon, 97239, USA.
| |
Collapse
|
23
|
Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell 2017; 43:418-435.e13. [PMID: 29161592 DOI: 10.1016/j.devcel.2017.10.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/18/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous carcinoma in which various tumor-suppressor genes are lost by mutation, deletion, or silencing. Here we report a tumor-suppressive mode of action for growth-differentiation factor 11 (GDF11) and an unusual mechanism of its inactivation in TNBC. GDF11 promotes an epithelial, anti-invasive phenotype in 3D triple-negative cultures and intraductal xenografts by sustaining expression of E-cadherin and inhibitor of differentiation 2 (ID2). Surprisingly, clinical TNBCs retain the GDF11 locus and expression of the protein itself. GDF11 bioactivity is instead lost because of deficiencies in its convertase, proprotein convertase subtilisin/kexin type 5 (PCSK5), causing inactive GDF11 precursor to accumulate intracellularly. PCSK5 reconstitution mobilizes the latent TNBC reservoir of GDF11 in vitro and suppresses triple-negative mammary cancer metastasis to the lung of syngeneic hosts. Intracellular GDF11 retention adds to the concept of tumor-suppressor inactivation and reveals a cell-biological vulnerability for TNBCs lacking therapeutically actionable mutations.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Chun-Chao Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Institute of Molecular Medicine & Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Michael A Borten
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Elizabeth J Pereira
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
24
|
Allelic imbalance of somatic mutations in cancer genomes and transcriptomes. Sci Rep 2017; 7:1653. [PMID: 28490743 PMCID: PMC5431982 DOI: 10.1038/s41598-017-01966-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/06/2017] [Indexed: 02/06/2023] Open
Abstract
Somatic mutations in cancer genomes often show allelic imbalance (AI) of mutation abundance between the genome and transcriptome, but there is not yet a systematic understanding of AI. In this study, we performed large-scale DNA and RNA AI analyses of >100,000 somatic mutations in >2,000 cancer specimens across five tumor types using the exome and transcriptome sequencing data of the Cancer Genome Atlas consortium. First, AI analysis of nonsense mutations and frameshift indels revealed that nonsense-mediated decay is typical in cancer genomes, and we identified the relationship between the extent of AI and the location of mutations in addition to the well-recognized 50-nt rules. Second, the AI with splice site mutations may reflect the extent of intron retention and is frequently observed in known tumor suppressor genes. For missense mutations, we observed that mutations frequently subject to AI are enriched to genes related to cancer, especially those of apoptosis and the extracellular matrix, and C:G > A:T transversions. Our results suggest that mutations in known cancer-related genes and their transcripts are subjected to different levels of transcriptional or posttranscriptional regulation compared to wildtype alleles and may add an additional regulatory layer to the functions of cancer-relevant genes.
Collapse
|
25
|
Hinz T, Kallen K, Britten CM, Flamion B, Granzer U, Hoos A, Huber C, Khleif S, Kreiter S, Rammensee HG, Sahin U, Singh-Jasuja H, Türeci Ö, Kalinke U. The European Regulatory Environment of RNA-Based Vaccines. Methods Mol Biol 2017; 1499:203-222. [PMID: 27987152 DOI: 10.1007/978-1-4939-6481-9_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist that specifically address mRNA-based vaccines. The existing regulatory framework, however, clearly defines that mRNA-based vaccines in most cases have to be centrally approved. Interestingly, depending on whether RNA-based vaccines are directed against tumors or infectious disease, they are formally considered gene therapy products or not, respectively. Besides an overview on the current clinical use of mRNA vaccines in various therapeutic areas a detailed discussion of the current regulatory situation is provided and regulatory perspectives are discussed.
Collapse
Affiliation(s)
- Thomas Hinz
- Section for Therapeutic Vaccines, Division for Immunology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| | | | | | - Bruno Flamion
- URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Ulrich Granzer
- Granzer, Regulatory Consulting & Services, Munich, Germany
| | - Axel Hoos
- Glaxo Smith Kline, Collegeville, PA, USA
| | | | | | | | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium, DKFZ Partner Site, Tübingen, Germany
| | - Ugur Sahin
- TRON - Translational Oncology at the University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
- Research Center for Immunotherapy (FZI), Mainz, Germany
| | | | - Özlem Türeci
- CI3, Cluster for individualized Immune Intervention, Mainz, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, Twincore, Centre for Experimental and Clinical Infection Research a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7-9, 30625, Hannover, Germany.
| |
Collapse
|
26
|
Harbst K, Lauss M, Cirenajwis H, Isaksson K, Rosengren F, Törngren T, Kvist A, Johansson MC, Vallon-Christersson J, Baldetorp B, Borg Å, Olsson H, Ingvar C, Carneiro A, Jönsson G. Multiregion Whole-Exome Sequencing Uncovers the Genetic Evolution and Mutational Heterogeneity of Early-Stage Metastatic Melanoma. Cancer Res 2016; 76:4765-74. [DOI: 10.1158/0008-5472.can-15-3476] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
|
27
|
Türeci Ö, Vormehr M, Diken M, Kreiter S, Huber C, Sahin U. Targeting the Heterogeneity of Cancer with Individualized Neoepitope Vaccines. Clin Cancer Res 2016; 22:1885-96. [PMID: 27084742 DOI: 10.1158/1078-0432.ccr-15-1509] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/23/2016] [Indexed: 11/16/2022]
Abstract
Somatic mutations binding to the patient's MHC and recognized by autologous T cells (neoepitopes) are ideal cancer vaccine targets. They combine a favorable safety profile due to a lack of expression in healthy tissues with a high likelihood of immunogenicity, as T cells recognizing neoepitopes are not shaped by central immune tolerance. Proteins mutated in cancer (neoantigens) shared by patients have been explored as vaccine targets for many years. Shared ("public") mutations, however, are rare, as the vast majority of cancer mutations in a given tumor are unique for the individual patient. Recently, the novel concept of truly individualized cancer vaccination emerged, which exploits the vast source of patient-specific "private" mutations. Concurrence of scientific advances and technological breakthroughs enables the rapid, cost-efficient, and comprehensive mapping of the "mutanome," which is the entirety of somatic mutations in an individual tumor, and the rational selection of neoepitopes. How to transform tumor mutanome data to actionable knowledge for tailoring individualized vaccines "on demand" has become a novel research field with paradigm-shifting potential. This review gives an overview with particular focus on the clinical development of such vaccines.
Collapse
Affiliation(s)
- Özlem Türeci
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | | | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Kreiter
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Christoph Huber
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Ugur Sahin
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany. Research Center for Immunotherapy (FZI), Mainz, Germany. Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany.
| |
Collapse
|
28
|
Kranz LM, Birtel M, Krienke C, Grunwitz C, Petschenka J, Reuter KC, van de Roemer N, Vascotto F, Vormehr M, Kreiter S, Diken M. CIMT 2015: The right patient for the right therapy - Report on the 13th annual meeting of the Association for Cancer Immunotherapy. Hum Vaccin Immunother 2015; 12:213-21. [PMID: 26186022 PMCID: PMC4962731 DOI: 10.1080/21645515.2015.1068485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lena M Kranz
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- Research Center for Immunotherapy (FZI); University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Matthias Birtel
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Christina Krienke
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- Research Center for Immunotherapy (FZI); University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Christian Grunwitz
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH; Mainz, Germany
| | - Jutta Petschenka
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | | | - Niels van de Roemer
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- Research Center for Immunotherapy (FZI); University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Fulvia Vascotto
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Mathias Vormehr
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- BioNTech RNA Pharmaceuticals GmbH; Mainz, Germany
| | - Sebastian Kreiter
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| |
Collapse
|
29
|
Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, Boegel S, Schrörs B, Vascotto F, Castle JC, Tadmor AD, Schoenberger SP, Huber C, Türeci Ö, Sahin U. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015; 520:692-6. [PMID: 25901682 DOI: 10.1038/nature14426] [Citation(s) in RCA: 949] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
Abstract
Tumour-specific mutations are ideal targets for cancer immunotherapy as they lack expression in healthy tissues and can potentially be recognized as neo-antigens by the mature T-cell repertoire. Their systematic targeting by vaccine approaches, however, has been hampered by the fact that every patient's tumour possesses a unique set of mutations ('the mutanome') that must first be identified. Recently, we proposed a personalized immunotherapy approach to target the full spectrum of a patient's individual tumour-specific mutations. Here we show in three independent murine tumour models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that, unexpectedly, the majority of the immunogenic mutanome is recognized by CD4(+) T cells. Vaccination with such CD4(+) immunogenic mutations confers strong antitumour activity. Encouraged by these findings, we established a process by which mutations identified by exome sequencing could be selected as vaccine targets solely through bioinformatic prioritization on the basis of their expression levels and major histocompatibility complex (MHC) class II-binding capacity for rapid production as synthetic poly-neo-epitope messenger RNA vaccines. We show that vaccination with such polytope mRNA vaccines induces potent tumour control and complete rejection of established aggressively growing tumours in mice. Moreover, we demonstrate that CD4(+) T cell neo-epitope vaccination reshapes the tumour microenvironment and induces cytotoxic T lymphocyte responses against an independent immunodominant antigen in mice, indicating orchestration of antigen spread. Finally, we demonstrate an abundance of mutations predicted to bind to MHC class II in human cancers as well by employing the same predictive algorithm on corresponding human cancer types. Thus, the tailored immunotherapy approach introduced here may be regarded as a universally applicable blueprint for comprehensive exploitation of the substantial neo-epitope target repertoire of cancers, enabling the effective targeting of every patient's tumour with vaccines produced 'just in time'.
Collapse
Affiliation(s)
- Sebastian Kreiter
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Mathias Vormehr
- Research Center for Immunotherapy (FZI), Langenbeckstrasse 1, Building 708, 55131 Mainz, Germany
| | - Niels van de Roemer
- Research Center for Immunotherapy (FZI), Langenbeckstrasse 1, Building 708, 55131 Mainz, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Martin Löwer
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Jan Diekmann
- 1] TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany [2] Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| | - Sebastian Boegel
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Fulvia Vascotto
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - John C Castle
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Arbel D Tadmor
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Stephen P Schoenberger
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | - Christoph Huber
- Research Center for Immunotherapy (FZI), Langenbeckstrasse 1, Building 708, 55131 Mainz, Germany
| | - Özlem Türeci
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Ugur Sahin
- 1] TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany [2] Research Center for Immunotherapy (FZI), Langenbeckstrasse 1, Building 708, 55131 Mainz, Germany [3] Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| |
Collapse
|
30
|
Diken M, Boegel S, Grunwitz C, Kranz LM, Reuter K, van de Roemer N, Vascotto F, Vormehr M, Kreiter S. CIMT 2014: Next waves in cancer immunotherapy - Report on the 12th annual meeting of the Association for Cancer Immunotherapy. Hum Vaccin Immunother 2014; 10:3090-100. [PMID: 25483671 PMCID: PMC5443098 DOI: 10.4161/hv.29767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mustafa Diken
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Sebastian Boegel
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Christian Grunwitz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Lena M. Kranz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | | | - Niels van de Roemer
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Fulvia Vascotto
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Mathias Vormehr
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Sebastian Kreiter
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| |
Collapse
|