1
|
Jiang D, Gong H, Niklas KJ, Wang Z. Allocation of nitrogen and phosphorus in the leaves, stems, and roots of Artemisia: a case study in phylogenetic control. FRONTIERS IN PLANT SCIENCE 2024; 15:1445831. [PMID: 39228835 PMCID: PMC11368724 DOI: 10.3389/fpls.2024.1445831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Introduction The allocation of nitrogen (N) and phosphorus (P) among plant organs is an important strategy affecting growth and development as well as ecological processes in terrestrial ecosystems. However, due to lack of systematic investigation data, the allocation strategies of N and P in the three primary plant organs (e.g., leaves, stems and roots) are still unclear. Methods A total of 912 individuals of 62 Artemisia species were examined across a broad environmental expanse in China, and the N and P concentrations of leaves, stems and roots were measured to explore the allocation strategies in different subgenera, ecosystem types, and local sites. Results and discussion Across all 62 species, the N vs. P scaling exponents for leaves, stems and roots were 0.67, 0.59 and 0.67, respectively. However, these numerical values differed among subgenera, ecosystem types, and local sites. Overall, the numerical values of N vs. P scaling exponents comply with a 2/3-power function for each Artemisia organ-type reflecting a phylogenetically conserved allocation strategy that has nevertheless diversified with respect to local environmental conditions. These results inform our understanding of N and P stoichiometric patterns and responses to abiotic factors in an ecologically broadly distributed angiosperm genus.
Collapse
Affiliation(s)
- Dechun Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Haiyang Gong
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- College of Grassland Resources, Southwest Minzu University, Chengdu, China
| | - Karl J. Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Zhiqiang Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- College of Grassland Resources, Southwest Minzu University, Chengdu, China
| |
Collapse
|
2
|
Wu J, Jiao L, Che X, Zhu X, Yuan X. Nutrient allocation patterns of Picea crassifolia on the eastern margin of the Qinghai-Tibet Plateau. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1155-1167. [PMID: 38499792 DOI: 10.1007/s00484-024-02655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
It can provide a basis for decision making for the conservation and sustainable use of forest ecosystems in mountains to understand the stoichiometric properties and nutrient allocation strategies of major tree species. However, the plant nutrient allocation strategies under different environmental gradients in forest systems of arid and semi-arid mountains are not fully understand. Therefore, three typical regions in the Qilian Mountains on the eastern edge of the Qinghai-Tibet Plateau were selected based on precipitation and temperature gradients, and the stoichiometric characteristics and nutrient allocation strategies of Qinghai spruce (Picea crassifolia) of the dominant tree species under different environmental gradients were investigated. The results showed that (1) the stoichiometric characteristics of plant tissues were different in the three regions. (2) The importance of each tissue in the plant nutrient allocation varied in different regions, showing that the plant roots are more important in the warm-wet region, while the plant leaves, branches and trunks are more important in the transition and hot-dry regions. (3) The influencing factors affecting plant nutrient allocation strategies were inconsistent across regions, which showed that plant nutrient allocation strategies in the warm-wet and transition region were mainly influenced by soil factors, while they were more influenced by climatic factors in the hot-dry region. The patterns of plant nutrient allocation strategies and drivers under different environmental gradients could help us better understand the ecological adaptation mechanism and physiological adjustment mechanism of forest ecosystem in mountains.
Collapse
Affiliation(s)
- Jingjing Wu
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Liang Jiao
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China.
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China.
| | - Xichen Che
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Xuli Zhu
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Xin Yuan
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
3
|
Gong H, Niu Y, Niklas KJ, Huang H, Deng J, Wang Z. Nitrogen and phosphorus allocation in bark across diverse tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168327. [PMID: 37926252 DOI: 10.1016/j.scitotenv.2023.168327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Understanding of nitrogen (N) and phosphorus (P) allocation patterns among various plant organs and tissues is crucial for gaining insights into plant growth and life-history strategies, as well as ecosystem nutrient cycles. However, there is limited information available regarding allocation strategies for N and P in bark (i.e., all tissues external to the vascular cambium), which is an indispensable and specialized secondary tissue system. This study presents analyses of a newly compiled and comprehensive data set comprising 1246 pairwise N-P observations across 335 tree species spanning 557 independent sampling sites worldwide. The aim is to explore the interspecific N and P stoichiometry of bark. The global geometric means for bark N and P concentrations, as well as N:P ratios, were 3.88 mg/g, 0.2 mg/g, and 19.38, respectively. However, these values varied significantly among different functional plant-groups and biomes. Across all 335 species, the N vs. P scaling exponent was 0.69 for bark, which is similar to the 2/3-power scaling relationship observed in leaves and twigs. However, the bark N vs. P scaling exponent differed among functional plant-groups, biomes, and local sites, indicating the absence of a "canonical" scaling exponent. The interactions of soil total N and P collectively accounted for the most significant variation in the bark scaling exponent among local sites. The results indicate that there is no "canonical" bark N vs. P scaling exponent, and that soil nutrient content is the most important factor influencing N and P allocation strategies in bark. These findings may hold significant implications for predicting plant nutrient allocation strategies in response to environmental changes.
Collapse
Affiliation(s)
- Haiyang Gong
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Yuan Niu
- Lanzhou Agro-Technical Research and Popularization Center, Lanzhou 730010, China
| | - Karl J Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Heng Huang
- Division for Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China
| | - Jianming Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zhiqiang Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
4
|
Li S, Yang L, Huang X, Zou Z, Zhang M, Guo W, Addo-Danso SD, Zhou L. Mineral Nutrient Uptake, Accumulation, and Distribution in Cunninghamia lanceolata in Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112140. [PMID: 37299119 DOI: 10.3390/plants12112140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Mineral accumulation in plants under drought stress is essential for drought tolerance. The distribution, survival, and growth of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), an evergreen conifer, can be affected by climate change, particularly seasonal precipitation and drought. Hence, we designed a drought pot experiment, using 1-year-old Chinese fir plantlets, to evaluate drought effects under simulated mild drought, moderate drought, and severe drought, which corresponds to 60%, 50%, and 40% of soil field maximum moisture capacity, respectively. A treatment of 80% of soil field maximum moisture capacity was used as control. Effects of drought stress on mineral uptake, accumulation, and distribution in Chinese fir organs were determined under different drought stress regimes for 0-45 days. Severe drought stress significantly increased phosphorous (P) and potassium (K) uptake at 15, 30 and 45 days, respectively, within fine (diameter < 2 mm), moderate (diameter 2-5 mm), and large (diameter 5-10 mm) roots. Drought stress decreased magnesium (Mg) and manganese (Mn) uptake by fine roots and increased iron (Fe) uptake in fine and moderate roots but decreased Fe uptake in large roots. Severe drought stress increased P, K, calcium (Ca), Fe, sodium (Na), and aluminum (Al) accumulation in leaves after 45 days and increased Mg and Mn accumulation after 15 days. In stems, severe drought stress increased P, K, Ca, Fe, and Al in the phloem, and P, K, Mg, Na, and Al in the xylem. In branches, P, K, Ca, Fe, and Al concentrations increased in the phloem, and P, Mg, and Mn concentrations increased in the xylem under severe drought stress. Taken together, plants develop strategies to alleviate the adverse effects of drought stress, such as promoting the accumulation of P and K in most organs, regulating minerals concentration in the phloem and xylem, to prevent the occurrence of xylem embolism. The important roles of minerals in response to drought stress should be further evaluated.
Collapse
Affiliation(s)
- Shubin Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Li Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiaoyan Huang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Zhiguang Zou
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Maxiao Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjuan Guo
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Shalom Daniel Addo-Danso
- Forest and Climate Change Division, CSIR-Forestry Research Institute of Ghana, Kumasi P.O. Box UP 63 KNUST, Ghana
| | - Lili Zhou
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
5
|
Wu J, Jiao L, Qin H, Che X, Zhu X. Spatial characteristics of nutrient allocation for Picea crassifolia in soil and plants on the eastern margin of the Qinghai-Tibet Plateau. BMC PLANT BIOLOGY 2023; 23:199. [PMID: 37062838 PMCID: PMC10108462 DOI: 10.1186/s12870-023-04214-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Understanding the stoichiometric characteristics and nutrient allocation strategies of dominant tree species in montane forest systems can provide a basis for decision-making in relation to montane system management. Therefore, according to precipitation and temperature gradients, we selected three typical areas in the Qilian Mountains on the eastern margin of the Qinghai-Tibet Plateau to analyse the spatial relations of plant-soil stoichiometric characteristics and nutrient allocation strategies of plant tissues for Qinghai spruce (Picea crassifolia) along different environmental gradients. RESULTS 1) The plant and soil stoichiometric characteristics had similar spatial patterns. The C content of plants and soils tended to decrease with increasing latitude, and the N and P contents and the N:P ratio tended to increase with increasing latitude. 2) The stoichiometric characteristics of the plant tissues also interacted with each other and showed synergistic trade-offs. Nutrient allocation in the eastern section of the Qilian Mountains was similar to that in the western section, while more N and P in the plant stems were allocated to maintain plant growth in the relatively arid western Sect. 3) The nutrient allocation strategies in the plant tissues were mainly regulated by soil and climate. CONCLUSIONS Information on plant-soil stoichiometric characteristics along different gradients can help us better understand the nutrient patterns and dynamics of forest ecosystems under arid and semiarid conditions at a wide geographic scale from the perspective of plant nutrient partitioning.
Collapse
Affiliation(s)
- Jingjing Wu
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Liang Jiao
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China.
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China.
| | - Huijun Qin
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Xichen Che
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| | - Xuli Zhu
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
6
|
Zhao W, Xiao C, Li M, Xu L, Li X, He N. Spatial variation and allocation of sulfur among major plant organs in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157155. [PMID: 35798121 DOI: 10.1016/j.scitotenv.2022.157155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Sulfur (S) is a functional element that plays an important role in abiotic stress resistance and environmental adaptation in plants. However, knowledge of the biogeographic patterns of S among major plant organs remains limited. We conducted a methodologically consistent field survey of 2745 plant species across 78 typical communities throughout China. From this, we constructed a new matched database of S content in leaves, twigs, trunks, and roots to explore S allocation strategies in plants to better understand the regulatory mechanisms on a large scale. The average S content in leaves, twigs, trunks, and roots of plants in China was 2.32 ± 0.04, 1.13 ± 0.02, 0.15 ± 0.01, and 1.23 ± 0.02 g kg-1, respectively. S content was significantly higher in leaves than in other organs, and S content of plants in deserts was higher than that of plants in forests and grasslands. S content changed faster in roots and showed divergent allocation relationships among organs across communities at different scales. Climate and soil properties jointly regulated the spatial variation and allocation relationships of S among different organs. This study further broadens our understanding of the biological functions of S and their role in the interactions between plants and the environment.
Collapse
Affiliation(s)
- Wenzong Zhao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunwang Xiao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 10049, China; Center for Ecological Research, Northeast Forestry University, 150040, Harbin, China.
| |
Collapse
|
7
|
Duan X, Jia Z, Li J, Wu S. The influencing factors of leaf functional traits variation of Pinus densiflora Sieb. et Zucc. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Liu J, Gou X, Wang F, Zhang F, Zhang J, Xia J, Wang Y. Nutrient allocation strategies of four conifers from semiarid to extremely arid environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:257-265. [PMID: 35932650 DOI: 10.1016/j.plaphy.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Although the contents of limiting elements in plants, such as nitrogen (N) and phosphorus (P), have been widely studied from subtropical to humid-temperate zones, the strategies used by coniferous species to allocation N and P in arid and semiarid forests remain unclear. In this study, samples of 545 leaves, 194 twigs, and 78 fine roots were collected from four coniferous species (Pinus tabuliformis, Picea wilsonii, Juniperus przewalskii, and Picea crassifolia) of three genera (Pinus, Picea, and Juniperus) in the northeastern Tibetan Plateau, and the contents of C, N, and P were analyzed. Two key parameters, namely the allometric exponent and coefficient of variation, were calculated to illustrate the relative investment of plants to N and P uptake and plasticity (variation of N and P), respectively. The contents of N and P and the N:P ratios were the highest in leaves, but their plasticity was the lowest. This confirmed the hypothesis that the leaves of coniferous species have a high content of limiting nutrients and homeostasis. At the regional level, the allometric exponent of N and P in leaves was 0.68, 0.74 in twigs, and 0.78 in fine roots, which is consistent with the results on a global scale. Thus, this invariant allometric relationship suggests the existence of an important mechanism that constrains the allocation of plant nutrients across broad environmental gradients. However, the allocation strategies for N and P shifted with the species, climate, and soil nutrients. Namely: their preferred nutrient uptake was P when the trees had a better nutritional status (semiarid environments, mean annual precipitations (MAP) > 300 mm), but the investment of N was strengthened when the habitat conditions become more severe (extremely arid environments, MAP <100 mm). Thus, our results can provide a novel perspective to understand the strategies of plant nutrient uptake in arid and semiarid forests.
Collapse
Affiliation(s)
- Jianguo Liu
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, 730333, China
| | - Xiaohua Gou
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, 730333, China.
| | - Fang Wang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, 730333, China
| | - Fen Zhang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, 730333, China
| | - Junzhou Zhang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, 730333, China
| | - Jingqing Xia
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, 730333, China
| | - Yanfang Wang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
9
|
Guo L, Meng H, Teng K, Fan X, Zhang H, Teng W, Yue Y, Wu J. Effects of Nitrogen Forms on the Growth and Nitrogen Accumulation in Buchloe dactyloides Seedlings. PLANTS 2022; 11:plants11162086. [PMID: 36015389 PMCID: PMC9416445 DOI: 10.3390/plants11162086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] has become the most widely cultivated warm-season turfgrass in northern China because of its low-maintenance requirements. Nitrogen (N) can be applied to plants in a range of formulations. However, preference of nitrogen uptake and the effects of N form on plant growth and nitrogen accumulation has not been established in buffalograss. In this study, we evaluated the effects of different inorganic nitrogen forms (NO3−-N, NH4+-N, and NO3−-N: NH4+-N = 1:1) on growth and nitrogen accumulation in buffalograss seedlings. Results showed that supply of three N forms significantly increased buffalograss seedlings growth, biomass, and N contents of all plant organs compared with the seedlings receiving free nitrogen. Plants achieved better growth performance when they received nitrate as the sole N source, which stimulated stolon growth and increased the biomass of ramets, spacers, and aboveground and total plant biomass, and also allocated more biomass to ramets and more N to spacers. Meanwhile, those plants supplied with the treatment +NH4NO3 displayed a significantly greater N content in the ramet, 15N abundance, and 15N accumulation amount in all organs. These data suggest NO3−-N supplied either singly or in mixture increased vegetative propagation and thus facilitates buffalograss establishment. However, applications of ammonium caused detrimental effects on buffalograss seedlings growth, but +NO3− could alleviate NH4+-induced morphological disorders. Thus, recommendations to increase vegetative propagation and biomass accumulation in buffalograss seedlings should consider increasing NO3−-N in a fertility program and avoiding applications of nitrogen as NH4+-N.
Collapse
Affiliation(s)
- Lizhu Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Huizhen Meng
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ke Teng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xifeng Fan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hui Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenjun Teng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuesen Yue
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Juying Wu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence:
| |
Collapse
|
10
|
Ecological Stoichiometry in Pinus massoniana L. Plantation: Increasing Nutrient Limitation in a 48-Year Chronosequence. FORESTS 2022. [DOI: 10.3390/f13030469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) are considered indicators of nutrient status and ultimate ecosystem health. A detailed investigation of these elements in the leaves, branches, forest layer vegetation and soil, depending on stand age, was carried out. We investigated the effects of stand age (9-, 18-, 28-, and 48-year) on the aboveground plant parts (leaf, branch, herb, shrub, plant litter) and belowground pools (soil, roots) of P. massoniana plantations. The CNP stoichiometry of trees was affected by stand age. Mean N content in the aboveground parts in the nine-yr stand was greater than the other stands (18-, 28-, 48-yr), which decreased with increasing stand age. As stands aged, the nutrient demands of the plantations increased as well as their N:P ratios in soil. C content in the soil ranged from 30 to 105, the total N was 0.06 to 1.6, and the total P content ranged from 3.3–6.4 g kg−1. Soil C, N and P contents were greatly influenced by both stand age and soil depth, because surface soil sequester C and N more actively compared to deeper horizons, and more nutrients are released to the topsoil by the plant litter layer. Similarly, the ratios of other layers had a similar pattern as CNP because more nutrients were taken up by the plantations, decreasing nutrient supply in the deeper soil horizons. The green leaves N:P ratios (16) indicate limited growth of P. massoniana, as the range for global nutrient limitation for woody plants oscillated between 14–16, indicating N and P limitation. Young stands were observed to have greater P content and P resorption efficiency (56.9%–67.3%), with lower C:P and N:P ratios (704.4; 14.8). We conclude that with stand development, the nutrient demands of the plantations also increase, and soil N:P stoichiometry shows that these improve soil quality.
Collapse
|
11
|
Ahmed B, Shahid M, Syed A, Rajput VD, Elgorban AM, Minkina T, Bahkali AH, Lee J. Drought Tolerant Enterobacter sp./ Leclercia adecarboxylata Secretes Indole-3-acetic Acid and Other Biomolecules and Enhances the Biological Attributes of Vigna radiata (L.) R. Wilczek in Water Deficit Conditions. BIOLOGY 2021; 10:1149. [PMID: 34827142 PMCID: PMC8614786 DOI: 10.3390/biology10111149] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
Drought or water stress is a limiting factor that hampers the growth and yield of edible crops. Drought-tolerant plant growth-promoting rhizobacteria (PGPR) can mitigate water stress in crops by synthesizing multiple bioactive molecules. Here, strain PAB19 recovered from rhizospheric soil was biochemically and molecularly characterized, and identified as Enterobacter sp./Leclercia adecarboxylata (MT672579.1). Strain PAB19 tolerated an exceptionally high level of drought (18% PEG-6000) and produced indole-3-acetic acid (176.2 ± 5.6 µg mL-1), ACC deaminase (56.6 ± 5.0 µg mL-1), salicylic acid (42.5 ± 3.0 µg mL-1), 2,3-dihydroxy benzoic acid (DHBA) (44.3 ± 2.3 µg mL-1), exopolysaccharide (204 ± 14.7 µg mL-1), alginate (82.3 ± 6.5 µg mL-1), and solubilized tricalcium phosphate (98.3 ± 3.5 µg mL-1), in the presence of 15% polyethylene glycol. Furthermore, strain PAB19 alleviated water stress and significantly (p ≤ 0.05) improved the overall growth and biochemical attributes of Vigna radiata (L.) R. Wilczek. For instance, at 2% PEG stress, PAB19 inoculation maximally increased germination, root dry biomass, leaf carotenoid content, nodule biomass, leghaemoglobin (LHb) content, leaf water potential (ΨL), membrane stability index (MSI), and pod yield by 10%, 7%, 14%, 38%, 9%, 17%, 11%, and 11%, respectively, over un-inoculated plants. Additionally, PAB19 inoculation reduced two stressor metabolites, proline and malondialdehyde, and antioxidant enzymes (POD, SOD, CAT, and GR) levels in V. radiata foliage in water stress conditions. Following inoculation of strain PAB19 with 15% PEG in soil, stomatal conductance, intercellular CO2 concentration, transpiration rate, water vapor deficit, intrinsic water use efficiency, and photosynthetic rate were significantly improved by 12%, 8%, 42%, 10%, 9% and 16%, respectively. Rhizospheric CFU counts of PAB19 were 2.33 and 2.11 log CFU g-1 after treatment with 15% PEG solution and 8.46 and 6.67 log CFU g-1 for untreated controls at 40 and 80 DAS, respectively. Conclusively, this study suggests the potential of Enterobacter sp./L. adecarboxylata PAB19 to alleviate water stress by improving the biological and biochemical features and of V. radiata under water-deficit conditions.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.); (A.H.B.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
12
|
Zhang J, Xie H, Biswas A, Shan Y, Qi X, Cao J. Response of different organs’ stoichiometry of Phragmites australis to soil salinity in arid marshes, China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Yang S, Shi Z, Zhang M, Li Y, Gao J, Wang X, Liu D. Stoichiometry of Carbon, Nitrogen and Phosphorus in Shrub Organs Linked Closely With Mycorrhizal Strategy in Northern China. FRONTIERS IN PLANT SCIENCE 2021; 12:687347. [PMID: 34557207 PMCID: PMC8453024 DOI: 10.3389/fpls.2021.687347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/18/2021] [Indexed: 05/31/2023]
Abstract
Mycorrhizal strategies include mycorrhizal statuses and mycorrhizal types, which are important reflections of the functional characteristics of ecosystems. The stoichiometry of carbon, nitrogen, and phosphorus in plant organs is an important part of ecosystem functions, which has an important impact on the nutrient cycle of the ecosystem. The concentration of carbon, nitrogen, and phosphorus played a crucial role in ecosystem functioning and dynamics. The purpose of this study is to provide theoretical basis and data support for improving the properties of global terrestrial ecosystems by exploring the impact of mycorrhizal strategies on the stoichiometry of C, N, and P in different shrub organs. In this study, stoichiometric patterns of carbon (C), nitrogen (N) and phosphorus (P) in different shrub organs under different mycorrhizal status or types were analyzed at 725 samples across Northern China. Results showed that in different mycorrhizal status, the highest carbon concentration in shrub organs appeared in the facultatively mycorrhizal (FM) mycorrhizal status, and the highest nitrogen concentration appeared in the Non-mycorrhizal (NM) mycorrhizal status. Under different mycorrhizal types, the nitrogen concentration in the shrub organs under the arbuscular mycorrhiza (AM) mycorrhizal type was the highest, and the phosphorus concentration under the ecto-mycorrhiza (ECM) mycorrhizal type was the highest. In the OM or FM mycorrhizal status, the concentrations of C, N, and P in the stems and leaves increase with the increase of the concentrations of C, N, and P in the roots. In the NM mycorrhizal status, the N concentration in the stems and leaves increases with the increase of the N concentration in the roots. Under AM, AM+ECM, and ECM mycorrhizal type, the concentrations of C, N, and P are closely related in roots, stems and leaves. The content of plant nutrients in different organs is closely related. It turned out that mycorrhizal statuses or types are able to alter the allocation of C, N, and P in different organs, and the relationships of C, N, and P among different organs are able to present different trend with the varying of mycorrhizal statuses or types.
Collapse
Affiliation(s)
- Shuang Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Menghan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Yang Li
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Jiakai Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Xugang Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Dehong Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China
- Henan Engineering Research Center of Human Settlements, Luoyang, China
| |
Collapse
|
14
|
Liu AN, Zhang Y, Hou ZF, Hui Lü G. Allometric scaling of biomass with nitrogen and phosphorus above- and below-ground in herbaceous plants varies along water-salinity gradients. AOB PLANTS 2021; 13:plab030. [PMID: 34646433 PMCID: PMC8500215 DOI: 10.1093/aobpla/plab030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Biomass allocation affects the ability of plants to acquire resources and nutrients; a limited allocation of nutrients, such as nitrogen and phosphorus, affects ecological processes. However, little research has been conducted on how plant allocation patterns change and on the trade-offs involved in allocation strategies when microhabitat gradients exist. We selected a 3.6 km transect in the Ebinur Lake Wetland Natural Reserve of Xinjiang, China, to investigate the relationships between plant traits (biomass and N and P concentrations) of herbaceous plants and environmental factors (soil moisture, salinity and nutrient content), and to determine the allometric scaling of biomass and stoichiometric traits between the above- and below-ground plant parts. The results show that the biomass and stoichiometric traits of plants reflected both the change of micro-environment and the natural characteristics of plants. With a decrease of the soil water availability and salinity, above- and below-ground N and P concentrations decrease gradually; scaling relationships exist between above- and below-ground plant parts, for biomass and N and P concentrations. Biomass allocation is influenced by soil nutrient ratios, and the allocation strategy tended to be conserved for N and variable for P. Second, the scaling relationships also show interspecific differences; all scaling exponents of Suaeda prostrata are larger than for other species and indicate a 'tolerance' strategy, while other species tend to increase the below-ground biomass and N and P concentrations, i.e. a 'capture' strategy.
Collapse
Affiliation(s)
- An Na Liu
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Education Ministry, Urumqi 830046, China
- Institute of Resources and Environment Sciences, Xinjiang University, Urumqi 8300462, China
- College of Science, Shihezi University, Shehezi 832003, China
| | - Yang Zhang
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Education Ministry, Urumqi 830046, China
- Institute of Resources and Environment Sciences, Xinjiang University, Urumqi 8300462, China
| | - Zhu Feng Hou
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Education Ministry, Urumqi 830046, China
- Institute of Resources and Environment Sciences, Xinjiang University, Urumqi 8300462, China
| | - Guang Hui Lü
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Education Ministry, Urumqi 830046, China
- Institute of Resources and Environment Sciences, Xinjiang University, Urumqi 8300462, China
| |
Collapse
|
15
|
Sun L, Ataka M, Han M, Han Y, Gan D, Xu T, Guo Y, Zhu B. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. THE NEW PHYTOLOGIST 2021; 229:259-271. [PMID: 32772392 DOI: 10.1111/nph.16865] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Root exudation stimulates microbial decomposition and enhances nutrient availability to plants. It remains difficult to measure and predict this carbon flux in natural conditions, especially for mature woody plants. Based on a known conceptual framework of root functional traits coordination, we proposed that root functional traits may predict root exudation. We measured root exudation and other seven root morphological/chemical/physiological traits for 18 coexisting woody species in a deciduous-evergreen mixed forest in subtropical China. Root exudation, respiration, diameter and nitrogen (N) concentration all exhibited significant phylogenetic signals. We found that root exudation positively correlated with competitive traits (root respiration, N concentration) and negatively with a conservative trait (root tissue density). Furthermore, these relationships were independent of phylogenetic signals. A principal component analysis showed that root exudation and morphological traits loaded on two perpendicular axes. Root exudation is a competitive trait in a multidimensional fine-root functional coordination. The metabolic dimension on which root exudation loaded was relatively independent of the morphological dimension, indicating that increasing nutrient availability by root exudation might be a complementary strategy for plant nutrient acquisition. The positive relationship between root exudation and root respiration and N concentration is a promising approach for the future prediction of root exudation.
Collapse
Affiliation(s)
- Lijuan Sun
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Mioko Ataka
- Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Mengguang Han
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yunfeng Han
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Dayong Gan
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Tianle Xu
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yanpei Guo
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Biao Zhu
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Yin H, Zheng H, Zhang B, Tariq A, Lv G, Zeng F, Graciano C. Stoichiometry of C:N:P in the Roots of Alhagi sparsifolia Is More Sensitive to Soil Nutrients Than Aboveground Organs. FRONTIERS IN PLANT SCIENCE 2021; 12:698961. [PMID: 34712247 PMCID: PMC8545904 DOI: 10.3389/fpls.2021.698961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/06/2021] [Indexed: 05/22/2023]
Abstract
The stoichiometry of carbon, nitrogen, and phosphorus (C:N:P) among leaves, stems, and roots reflects trade-offs in plants for acquiring resources and their growth strategy. The widely distributed plant Alhagi sparsifolia is an ideal species to study the ecological stoichiometry in different organs in response to the availability of nutrients and water in the desert ecosystem. However, which response of organs is most sensitive to environmental conditions is still unclear. To answer this question, we collected samples of plants and soils including not only aboveground leaves and stems, but also underground roots and soils from a wide range of arid areas during the growing season. The C, N, P, C:N, C:P, and N:P ratios in leaves, thorns, stems, and roots were derived to explore their relationship as well as their response mechanisms to nutrients and water spanning 1 m deep in the soil. The results showed that the order of N concentration was leaves > thorns > stems > roots, that the concentration of P in the leaves, thorns, and stems was similar, and that their values were higher than those in the roots. First, the C:N ratios in the leaves and stems were significantly positively correlated with the ratio in roots. The C:N ratios in each organ showed a significant relationship with the soil alkali hydrolyzable nitrogen (SAN) above a depth of 60 cm. In addition to SAN, soil available phosphorus (SAP) and soil organic carbon (SOC) affect the C:N ratio in the roots. Second, the C:P and N:P ratios in aboveground organs showed no correlations with the ratios in roots. The C:P and N:P ratios in the leaves and thorns have no relationship with soil nutrients, while the C:P ratio in roots was influenced by SAN and SOC in all soil layers. Finally, the N:P ratios in roots were also affected by nutrients in different soil depths at 0-20 and 60-80 cm. These results illustrate that the roots were more sensitive to soil nutrients than the aboveground parts. Our study of ecological stoichiometry also suggests a novel systematic approach for analyzing the sensitivity of responses of an organ to environmental conditions.
Collapse
Affiliation(s)
- Hui Yin
- College of Resource and Environment Sciences, Xinjiang University, Urumqi, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Hongwei Zheng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
| | - Bo Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Akash Tariq
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- *Correspondence: Akash Tariq
| | - Guanghui Lv
- College of Resource and Environment Sciences, Xinjiang University, Urumqi, China
- Guanghui Lv
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- Fanjiang Zeng
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
17
|
Rao Q, Su H, Deng X, Xia W, Wang L, Cui W, Ruan L, Chen J, Xie P. Carbon, Nitrogen, and Phosphorus Allocation Strategy Among Organs in Submerged Macrophytes Is Altered by Eutrophication. FRONTIERS IN PLANT SCIENCE 2020; 11:524450. [PMID: 33193470 PMCID: PMC7604295 DOI: 10.3389/fpls.2020.524450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/22/2020] [Indexed: 05/22/2023]
Abstract
The allocation of limiting elements among plant organs is an important aspect of the adaptation of plants to their ambient environment. Although eutrophication can extremely alter light and nutrient availability, little is known about nutrient partitioning among organs of submerged macrophytes in response to eutrophication. Here, we analyzed the stoichiometric scaling of carbon (C), nitrogen (N), and phosphorus (P) concentrations among organs (leaf, stem, and root) of 327 individuals of seven common submerged macrophytes (three growth forms), sampled from 26 Yangtze plain lakes whose nutrient levels differed. Scaling exponents of stem nutrients to leaf (or root) nutrients varied among the growth forms. With increasing water total N (WTN) concentration, the scaling exponents of stem C to leaf (or root) C increased from <1 to >1, however, those of stem P to root P showed the opposite trend. These results indicated that, as plant nutrient content increased, plants growing in low WTN concentration accumulated leaf C (or stem P) at a faster rate, whereas those in high WTN concentration showed a faster increase in their stem C (or root P). Additionally, the scaling exponents of stem N to leaf (or root) N and stem P to leaf P were consistently large than 1, but decreased with a greater WTN concentration. This suggested that plants invested more N and P into stem than leaf tissues, with a higher investment of N in stem than root tissues, but eutrophication would decrease the allocation of N and P to stem. Such shifts in plant nutrient allocation strategies from low to high WTN concentration may be attributed to changed light and nutrient availability. In summary, eutrophication would alter nutrient allocation strategies of submerged macrophytes, which may influence their community structures by enhancing the competitive ability of some species in the process of eutrophication.
Collapse
Affiliation(s)
- Qingyang Rao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haojie Su
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wulai Xia
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lantian Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Cui
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Linwei Ruan
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
18
|
Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize ( Zea mays L.) under water deficit conditions. Heliyon 2020; 6:e05106. [PMID: 33083600 PMCID: PMC7550905 DOI: 10.1016/j.heliyon.2020.e05106] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022] Open
Abstract
Drought is one of the major abiotic stresses that affects crop yield worldwide. An eco-friendly tool that can broadly improve plants' tolerance to water stress is bioionocula comprising plant growth-promoting rhizobacteria (PGPR). In this study, the effect of two PGPR Cupriavidus necator 1C2 (B1) and Pseudomonas fluorescens S3X (B2), singly and/or co-inoculated at two inocula sizes (S1 - 3 × 103 cells g-1 dry weight (dw) soil and S2 - 3 × 106 cells g-1 dw soil), on growth, nutrient uptake, and use efficiency was assessed in maize (Zea mays L.) plants grown at three levels of irrigation (80% of water holding capacity (WHC) - well-watered, 60% of WHC - moderate water deficit stress, and 40% of WHC - severe water deficit stress) in a greenhouse experiment. The impact of water deficit and bioinoculants on soil microbial activity (fluorescein diacetate hydrolysis) was also evaluated. Moderate and severe water deficit negatively affected soil microbial activity, as well as, maize growth, by reducing plants' shoot biomass and increasing root/shoot ratio at 60 and 40% of WHC. Bioinoculants mitigated the negative effects on shoot biomass, especially when PGPR were co-inoculated, increasing up to 89% the aerial biomass of plants exposed to moderate water deficit. Bioinoculation also increased nitrogen (N) and phosphorous (P) use efficiency, which may have led to higher maize growth under water deficit conditions. The size of the inocula applied had marginal influence on biometric and nutrient parameters, although the higher concentration of the mixture of PGPR was the most effective in improving shoot biomass under moderate water deficit. This study shows that rhizobacterial strains are able to increase nutrient use efficiency and to alleviate water stress effects in crops with high water demands and have potential applications to keep up with productivity in water stress scenarios.
Collapse
|
19
|
Chen X, Wang M, Li M, Sun J, Lyu M, Zhong Q, Cheng D. Convergent nitrogen-phosphorus scaling relationships in different plant organs along an elevational gradient. AOB PLANTS 2020; 12:plaa021. [PMID: 32537118 PMCID: PMC7281873 DOI: 10.1093/aobpla/plaa021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/19/2020] [Indexed: 05/05/2023]
Abstract
A general relationship between the nitrogen (N) and phosphorus (P) content of all plant organs (e.g. leaf, stem, and root) is hypothesized to exist according to whole-plant economics spectrum (PES) theory, but the evidence supporting these expected patterns remains scarce. We measured the N and P content of the leaves, twigs and fine roots of 64 species in three different forest communities along an elevational gradient (evergreen broad-leaved forest, 1319 m a.s.l., coniferous and broad-leaved mixed forest, 1697 m a.s.l., and deciduous forest, 1818 m a.s.l.) in the Wuyishan National Nature Reserve, southeastern China. The scaling relationship between the N and P content and the linear regression relationship between the N:P ratio and N and P content were analysed. The leaf N and P content was significantly higher at the high-elevation site than at the low- or middle-elevation sites (P < 0.001). The N and P content followed a power-law relationship with similar scaling slopes between organs. The N (common slope, 1.13) and P (common slope, 1.03) content isometrically covaried among leaves, twigs and roots. The scaling exponents of the N-P relationship were not significantly different from 1.0 in all organs, with a common slope of 1.08. The scaling constants of N-P decreased significantly (P < 0.05) from the highest value in fine roots (β = 1.25), followed by leaves (β = 1.17), to the lowest value in twigs (β = 0.88). Standardized major axis (SMA) analyses and comparisons of 95 % confidence intervals also showed that the numerical values of the scaling slopes and the scaling constants did not differ regardless of elevation. The N content, but not the P content, accounted for a large proportion of the variation in the N:P ratio in leaves (N:P and N: r 2 = 0.31, F = 33.36, P < 0.001) and fine roots (N:P and N: r 2 = 0.15, F = 10.65, P < 0.05). In contrast, the N:P ratio was significantly related to both the N and P content in the twigs (N:P and N: r 2 = 0.20, F = 17.86, P < 0.001; N:P and P: r 2 = 0.34, F = 35.03, P < 0.001, respectively). Our results indicate that different organs of subtropical woody plants share a similar isometric scaling relationship between their N and P content, providing partial support for the PES hypothesis. Moreover, the effects of the N and P content on the N:P ratio differ between metabolic organs (leaves and fine roots) and structural organs (twigs), elucidating the stoichiometric regulatory mechanism of different organs.
Collapse
Affiliation(s)
- Xiaoping Chen
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province, China
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fuzhou, Fujian Province, China
| | - Mantang Wang
- School of City and Architecture Engineering, Zaozhuang University, Zaozhuang, Shandong Province, China
| | - Man Li
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province, China
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fuzhou, Fujian Province, China
| | - Jun Sun
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province, China
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fuzhou, Fujian Province, China
| | - Min Lyu
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province, China
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fuzhou, Fujian Province, China
| | - Quanlin Zhong
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province, China
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fuzhou, Fujian Province, China
| | - Dongliang Cheng
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, Fujian Province, China
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fuzhou, Fujian Province, China
- Corresponding author’s e-mail address:
| |
Collapse
|
20
|
Yu MF, Tao Y, Liu W, Xing W, Liu G, Wang L, Ma L. C, N, and P stoichiometry and their interaction with different plant communities and soils in subtropical riparian wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1024-1034. [PMID: 31820250 DOI: 10.1007/s11356-019-07004-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/10/2019] [Indexed: 05/22/2023]
Abstract
Ecological stoichiometry represents the balance of nutrient elements under ecological interactions, which are crucial for biogeochemical cycles in ecosystems. Little is known about carbon (C), nitrogen (N), and phosphorus (P) ecological stoichiometry in aboveground biomass, roots, and soil, especially in the subtropical riparian wetlands. Here, eight dominate plant communities in riparian wetlands were chosen, and C, N, and P contents, and C:N:P ratios of aboveground biomass, roots, and soil were investigated. The results demonstrated that plant community had remarkable effects on the C:N:P stoichiometry in aboveground biomass, roots, and soil, which varied widely. C, N, and P concentrations in aboveground biomass were mostly higher than that in roots, while no significant difference was detected in C:N:P ratios. Moreover, there were higher soil C, N, and P contents in Cannabis indica plant communities; while lower soil N:P ratios suggested that riparian wetlands were more susceptible to N limitation, rather than P. Pearson correlation analysis and redundancy analysis (RDA) showed that there were strong associations among C, N, and P contents, and C:N:P ratios in aboveground biomass, roots, and soil, indicating that C, N, and P ecological stoichiometry of aboveground biomass were regulated by soil C, N, and P contents through the roots. In addition, the contents of C and N, and N and P exhibited a strong relationship according to linear regression. These findings suggested that the interactions among the C, N, and P stoichiometry were existed in the plant-soil system.
Collapse
Affiliation(s)
- Meng-Fei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, 182 Min Zu Da Dao, Wuhan, 430074, Hubei, China
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology & Hubei Medical Biological International Science and Technology Cooperation Base, College of Life Sciences, South-Central University for Nationalities, 182 Min Zu Da Dao, Wuhan, 430074, Hubei, China
| | - Yongxia Tao
- Yellow River Conservancy Technical Institute, Kaifeng, 475000, Henan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lai Wang
- Yellow River Conservancy Technical Institute, Kaifeng, 475000, Henan, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Lin Ma
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
21
|
Wang Z, Yu K, Lv S, Niklas KJ, Mipam TD, Crowther TW, Umaña MN, Zhao Q, Huang H, Reich PB. The scaling of fine root nitrogen versus phosphorus in terrestrial plants: A global synthesis. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Zhiqiang Wang
- Institute for Advanced Study Chengdu University Chengdu China
| | - Kailiang Yu
- Institute of Integrative Biology ETH Zürich Zürich Switzerland
| | - Shiqi Lv
- State Key Laboratory of Grassland and Agro‐Ecosystems, School of Life Sciences Lanzhou University Lanzhou China
| | - Karl J. Niklas
- Plant Biology Section, School of Integrative Plant Science Cornell University Ithaca NY USA
| | - Tserang Donko Mipam
- Institute of Qinghai‐Tibetan Plateau Southwest Minzu University Chengdu China
- Key Laboratory for Bio‐Resources and Eco‐Environment, College of Life Sciences Sichuan University Chengdu China
| | | | - María N. Umaña
- Department of Plant Biology Michigan University East Lansing MI USA
| | - Qi Zhao
- Institute for Advanced Study Chengdu University Chengdu China
| | - Heng Huang
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
| | - Peter B. Reich
- Department of Forest Resources University of Minnesota St Paul MN USA
- Hawkesbury Institute for the Environment Western Sydney University Sydney NSW Australia
| |
Collapse
|
22
|
Lira-Martins D, Humphreys-Williams E, Strekopytov S, Ishida FY, Quesada CA, Lloyd J. Tropical Tree Branch-Leaf Nutrient Scaling Relationships Vary With Sampling Location. FRONTIERS IN PLANT SCIENCE 2019; 10:877. [PMID: 31333710 PMCID: PMC6625373 DOI: 10.3389/fpls.2019.00877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/20/2019] [Indexed: 05/18/2023]
Abstract
Bivariate relationships between plant tissue nutrient concentration have largely been studied across broad environmental scales regardless of their covariation with soil and climate. Comparing leaf and branch wood concentrations of C, Ca, K, Mg, N, Na, and P for trees growing in tropical forests in Amazonia and Australia we found that the concentrations of most elements varied with sampling location, but with foliar and branch woody tissues varying from site to site in different ways. Using a Mixed Effect Model (MEM) approach it was further found that relationships between branch and leaf concentrations within individual plots differed in terms of both slope and/or significance to the ordinary least squares (OLS) estimates for most elements. Specifically, using MEM we found that within plots only K and Mg were correlated across organs, but with the K cross-organ intercept estimates varying significantly between sites. MEM analyses further showed that within-plot wood density variations were also negatively related to wood K and Na, suggesting a potentially important role for these cations in water transport and/or storage in woody tissues. The OLS method could not detect significant correlations in any of the above cases. By contrast, although Ca, N, and P leaf and wood tissue concentrations showed similar patterns when individual elements were compared across sites, MEM analyses suggested no consistent association within sites. Thus, for all these three elements, strong within-tree scaling relationships were inferred when data were analyzed across sites using OLS, even though there was no relationship within individual sites. Thus (as for Ca, N, and P) not only can a pooling of data across sites result in trait (co)variations attributable to the environment potentially being incorrectly attributed solely to the species and/or individual (the so-called "ecological fallacy"), but in some cases (as was found here for K and Na) the opposite can also sometimes occur with significant within-site covariations being obscured by large site-site variations. We refer to the latter phenomenon as "environmental obfuscation."
Collapse
Affiliation(s)
| | | | | | - Francoise Yoko Ishida
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | - Carlos Alberto Quesada
- Coordination of Environmental Dynamics, National Institute for Amazonia Research, Manaus, Brazil
| | - Jon Lloyd
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, Cairns, QLD, Australia
- Faculdade de Filosofia, Ciencias e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
23
|
Raza MA, Bin Khalid MH, Zhang X, Feng LY, Khan I, Hassan MJ, Ahmed M, Ansar M, Chen YK, Fan YF, Yang F, Yang W. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems. Sci Rep 2019; 9:4947. [PMID: 30894625 PMCID: PMC6426961 DOI: 10.1038/s41598-019-41364-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/22/2019] [Indexed: 11/18/2022] Open
Abstract
Planting patterns affect nitrogen (N), phosphorus (P), and potassium (K) acquisition and distribution in maize and soybean under intercropping conditions. Here we reveal that strip relay-intercropping increases the N, P, and K uptake and distribution across plant organs (root, straw, and seed) of maize and soybean, accelerates the dry-matter production of intercrop-species, and compensates the slight maize yield loss by considerably increasing the soybean yield. In a two-year experiment, soybean was planted with maize in different planting patterns (SI, 50:50 cm and SII, 40:160 cm) of relay-intercropping, both planting patterns were compared with sole cropping of maize (SM) and soybean (SS). As compared to SI, SII increased the N, P, and K accumulation in each organ of soybean by 20, 32, and 18 (root) %, 71, 61, and 76 (straw) %, and 68, 65, and 62 (seed) %, respectively, whereas decreased the N, P, and K accumulation in each organ of maize by 1, 4, and 8 (root) %, 1, 10, and 3 (straw) %, and 5, 10, and 8 (seed) %, respectively. Overall, in SII, relay-cropped soybean accumulated 91% of total nutrient uptake (TNU) of sole soybean plants, and relay-cropped maize accumulated 94% of TNU of sole maize plants.
Collapse
Affiliation(s)
- Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- China Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China
| | - Muhammad Hayder Bin Khalid
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Xia Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- China Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China
| | - Ling Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- China Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China
| | - Imran Khan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Muhammad Jawad Hassan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Mukhtar Ahmed
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Muhammad Ansar
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Yuan Kai Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- China Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China
| | - Yuan Fang Fan
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- China Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- China Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China.
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- China Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China.
| |
Collapse
|
24
|
Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China's terrestrial ecosystems. Proc Natl Acad Sci U S A 2018; 115:4033-4038. [PMID: 29666316 DOI: 10.1073/pnas.1700295114] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant nitrogen (N) and phosphorus (P) content regulate productivity and carbon (C) sequestration in terrestrial ecosystems. Estimates of the allocation of N and P content in plant tissues and the relationship between nutrient content and photosynthetic capacity are critical to predicting future ecosystem C sequestration under global change. In this study, by investigating the nutrient concentrations of plant leaves, stems, and roots across China's terrestrial biomes, we document large-scale patterns of community-level concentrations of C, N, and P. We also examine the possible correlation between nutrient content and plant production as indicated by vegetation gross primary productivity (GPP). The nationally averaged community concentrations of C, N, and P were 436.8, 14.14, and 1.11 mg·g-1 for leaves; 448.3, 3.04 and 0.31 mg·g-1 for stems; and 418.2, 4.85, and 0.47 mg·g-1 for roots, respectively. The nationally averaged leaf N and P productivity was 249.5 g C GPP·g-1 N·y-1 and 3,157.9 g C GPP·g-1 P·y-1, respectively. The N and P concentrations in stems and roots were generally more sensitive to the abiotic environment than those in leaves. There were strong power-law relationships between N (or P) content in different tissues for all biomes, which were closely coupled with vegetation GPP. These findings not only provide key parameters to develop empirical models to scale the responses of plants to global change from a single tissue to the whole community but also offer large-scale evidence of biome-dependent regulation of C sequestration by nutrients.
Collapse
|
25
|
Zhang J, Yan X, Su F, Li Z, Wang Y, Wei Y, Ji Y, Yang Y, Zhou X, Guo H, Hu S. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:440-448. [PMID: 29291558 DOI: 10.1016/j.scitotenv.2017.12.292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/23/2017] [Accepted: 12/24/2017] [Indexed: 05/26/2023]
Abstract
Nitrogen and phosphorus are two important nutrient elements for plants. The current paradigm suggests that the scaling of plant tissue N to P is conserved across environments and plant taxa because these two elements are coupled and coordinately change with each other following a constant allometric trajectory. However, this assumption has not been vigorously examined, particularly in changing N and P environments. We propose that changes in relative availability of N and P in soil alter the N to P relationship in plants. Taking advantage of a 4-yr N and P addition experiment in a Tibetan alpine meadow, we examined changes in plant N and P concentrations of 14 common species. Our results showed that while the scaling of N to P under N additions was similar to the previously reported pattern with a uniform 2/3 slope of the regression between log N and log P, it was significantly different under P additions with a smaller slope. Also, graminoids had different responses from forbs. These results indicate that the relative availability of soil N and P is an important determinant regulating the N and P concentrations in plants. These findings suggest that alterations in the N to P relationships may not only alter plant photosynthate allocation to vegetative or reproductive organs, but also regulate the metabolic and growth rate of plant and promote shifts in plant community composition in a changing nutrient loading environment.
Collapse
Affiliation(s)
- Juanjuan Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuebin Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fanglong Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ying Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yanan Wei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yangguang Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xianhui Zhou
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hui Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
26
|
Zhang J, He N, Liu C, Xu L, Yu Q, Yu G. Allocation strategies for nitrogen and phosphorus in forest plants. OIKOS 2018. [DOI: 10.1111/oik.05517] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling; Inst. of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; CN-100101 Beijing PR China
- College of Resources and Environment; Univ. of Chinese Academy of Sciences; Beijing PR China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling; Inst. of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; CN-100101 Beijing PR China
- College of Resources and Environment; Univ. of Chinese Academy of Sciences; Beijing PR China
- Inst. of Grassland Science; Northeast Normal Univ., and Key Laboratory of Vegetation Ecology, Ministry of Education; Changchun PR China
| | - Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modeling; Inst. of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; CN-100101 Beijing PR China
- College of Resources and Environment; Univ. of Chinese Academy of Sciences; Beijing PR China
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling; Inst. of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; CN-100101 Beijing PR China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station/Inst. of Agricultural Resources and Regional Planning; Chinese Academy of Agricultural Sciences; Beijing PR China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling; Inst. of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; CN-100101 Beijing PR China
- College of Resources and Environment; Univ. of Chinese Academy of Sciences; Beijing PR China
| |
Collapse
|
27
|
Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species. FORESTS 2018. [DOI: 10.3390/f9030110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Xu B, Xu W, Wang Z, Chen Z, Palta JA, Chen Y. Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:165. [PMID: 29487611 PMCID: PMC5816928 DOI: 10.3389/fpls.2018.00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/30/2018] [Indexed: 05/07/2023]
Abstract
Water and fertilizers affect the nitrogen (N) and phosphorus (P) acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root) and plant level of Lespedeza davurica (C3 legume), were examined when intercropped with Bothriochloa ischaemum (C4 grass). The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC), -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica, but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1-17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica. The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering rehabilitating degraded grassland via fertilization application in semiarid Loess Plateau region.
Collapse
Affiliation(s)
- Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Weizhou Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- School of Life Sciences, Yulin University, Yulin, China
| | - Zhi Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Zhifei Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jairo A. Palta
- CSIRO Agriculture and Food, Wembley, WA, Australia
- Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
29
|
Xu B, Xu W, Wang Z, Chen Z, Palta JA, Chen Y. Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 29487611 DOI: 10.1007/s11104-015-2714-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Water and fertilizers affect the nitrogen (N) and phosphorus (P) acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root) and plant level of Lespedeza davurica (C3 legume), were examined when intercropped with Bothriochloa ischaemum (C4 grass). The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC), -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica, but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1-17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica. The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering rehabilitating degraded grassland via fertilization application in semiarid Loess Plateau region.
Collapse
Affiliation(s)
- Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Weizhou Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- School of Life Sciences, Yulin University, Yulin, China
| | - Zhi Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Zhifei Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jairo A Palta
- CSIRO Agriculture and Food, Wembley, WA, Australia
- Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
30
|
Guo Y, Yang X, Schöb C, Jiang Y, Tang Z. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs. FRONTIERS IN PLANT SCIENCE 2017; 8:1662. [PMID: 29018468 PMCID: PMC5622988 DOI: 10.3389/fpls.2017.01662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/11/2017] [Indexed: 05/04/2023]
Abstract
Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N2-fixing legume shrubs and non-N2-fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of taxonomy and environmental variables, these two functional groups differed considerably in nutrient regulation. N concentrations and N:P ratios were higher in legume shrubs than in non-N2-fixing shrubs. N concentrations were positively correlated between the plants and soil for non-N2-fixing shrubs, but not for legume shrubs, indicating a stronger stoichiometric homeostasis in legume shrubs than in non-N2-fixing shrubs. N concentrations were positively correlated among three tissue types for non-N2-fixing shrubs, but not between leaves and non-leaf tissues for legume shrubs, demonstrating that N concentrations were more dependent among tissues for non-N2-fixing shrubs than for legume shrubs. N and P concentrations were correlated within all tissues for both functional groups, but the regression slopes were flatter for legume shrubs than non-N2-fixing shrubs, implying that legume shrubs were more P limited than non-N2-fixing shrubs. These results address significant differences in stoichiometry between legume shrubs and non-N2-fixing shrubs, and indicate the influence of symbiotic nitrogen fixation (SNF) on plant stoichiometry. Overall, N2-fixing legume shrubs are higher and more stoichiometrically homeostatic in N concentrations. However, due to excess uptake of N, legumes may suffer from potential P limitation. With their N advantage, legume shrubs could be good nurse plants in restoration sites with degraded soil, but their P supply should be taken care of during management according to our results.
Collapse
Affiliation(s)
- Yanpei Guo
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes, Peking University, Beijing, China
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Xian Yang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes, Peking University, Beijing, China
- School of Biology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Christian Schöb
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Youxu Jiang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes, Peking University, Beijing, China
- Institute of Forest Ecological Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Zhiyao Tang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes, Peking University, Beijing, China
| |
Collapse
|
31
|
Zhang J, Zhao N, Liu C, Yang H, Li M, Yu G, Wilcox K, Yu Q, He N. C:N:P stoichiometry in China's forests: From organs to ecosystems. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12979] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiahui Zhang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| | - Ning Zhao
- Key Laboratory of Remote Sensing of Gansu ProvinceCold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of Sciences Lanzhou China
| | - Congcong Liu
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Hao Yang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Meiling Li
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
| | - Kevin Wilcox
- Department of Microbiology and Plant BiologyUniversity of Oklahoma Norman OK USA
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station/Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural Sciences Beijing China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of Sciences Beijing China
- College of Resources and EnvironmentUniversity of Chinese Academy of Sciences Beijing China
- Institute of Grassland ScienceNortheast Normal University and Key Laboratory of Vegetation EcologyMinistry of Education Changchun China
| |
Collapse
|
32
|
Zhang K, Su Y, Yang R. Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China. JOURNAL OF PLANT RESEARCH 2017; 130:699-708. [PMID: 28401322 DOI: 10.1007/s10265-017-0940-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
The allocation of biomass and nutrients in plants is a crucial factor in understanding the process of plant structures and dynamics to different environmental conditions. In this study, we present a comprehensive scaling analysis of data from a desert ecosystem to determine biomass and nutrient (carbon (C), nitrogen (N), and phosphorus (P)) allocation strategies of desert plants from 40 sites in the Hexi Corridor. We found that the biomass and levels of C, N, and P storage were higher in shoots than in roots. Roots biomass and nutrient storage were concentrated at a soil depth of 0-30 cm. Scaling relationships of biomass, C storage, and P storage between shoots and roots were isometric, but that of N storage was allometric. Results of a redundancy analysis (RDA) showed that soil nutrient densities were the primary factors influencing biomass and nutrient allocation, accounting for 94.5% of the explained proportion. However, mean annual precipitation was the primary factor influencing the roots biomass/shoots biomass (R/S) ratio. Furthermore, Pearson's correlations and regression analyses demonstrated that although the biomass and nutrients that associated with functional traits primarily depended on soil conditions, mean annual precipitation and mean annual temperature had greater effects on roots biomass and nutrient storage.
Collapse
Affiliation(s)
- Ke Zhang
- Linze Inland River Basin Research Station, Northwest Institute of Eco-Environment and Resources, CAS/Key Laboratory of Eco-Hydrology in Inland River Basin, CAS, No. 320, Donggang West Road, Lanzhou, 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, People's Republic of China
| | - YongZhong Su
- Linze Inland River Basin Research Station, Northwest Institute of Eco-Environment and Resources, CAS/Key Laboratory of Eco-Hydrology in Inland River Basin, CAS, No. 320, Donggang West Road, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Rong Yang
- Linze Inland River Basin Research Station, Northwest Institute of Eco-Environment and Resources, CAS/Key Laboratory of Eco-Hydrology in Inland River Basin, CAS, No. 320, Donggang West Road, Lanzhou, 730000, Gansu, People's Republic of China
| |
Collapse
|
33
|
Borer ET, Laine AL, Seabloom EW. A Multiscale Approach to Plant Disease Using the Metacommunity Concept. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:397-418. [PMID: 27296140 DOI: 10.1146/annurev-phyto-080615-095959] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plant disease arises from the interaction of processes occurring at multiple spatial and temporal scales. With new tools such as next-generation sequencing, we are learning about the diversity of microbes circulating within and among plant populations and often coinhabiting host individuals. The proliferation of pathogenic microbes depends on single-species dynamics and multispecies interactions occurring within and among host cells, the spatial organization and genetic landscape of hosts, the frequency and mode of transmission among hosts and host populations, and the abiotic environmental context. Here, we examine empirical evidence from these multiple scales to assess the utility of metacommunity theory, a theoretical framework developed for free-living organisms to further our understanding of and assist in predicting plant-pathogen infection and spread. We suggest that deeper understanding of disease dynamics can arise through the application of this conceptual framework at scales ranging from individual cells to landscapes. In addition, we use this multiscale theoretical perspective to synthesize existing knowledge, generate novel hypotheses, and point toward promising future opportunities for the study of plant pathogens in natural populations.
Collapse
Affiliation(s)
- Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108; ,
| | - Anna-Liisa Laine
- Centre of Excellence in Metapopulation Biology, Department of Biosciences, University of Helsinki, FI-00014, Finland;
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108; ,
| |
Collapse
|
34
|
Zhao N, Yu G, He N, Xia F, Wang Q, Wang R, Xu Z, Jia Y. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient. JOURNAL OF PLANT RESEARCH 2016; 129:647-657. [PMID: 26943163 DOI: 10.1007/s10265-016-0805-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/18/2016] [Indexed: 05/11/2023]
Abstract
Nitrogen (N) to phosphorus (P) allocation in plant organs is of particular interest, as both elements are important to regulate plant growth. We analyzed the scaling relationship of N and P in leaves, stems and fine roots of 224 plant species along an altitudinal transect (500-2,300 m) on the northern slope of Changbai Mountain, China. We tested whether the scaling relationships of N and P were conserved in response to environmental variations. We found that the N and P concentrations of the leaves, stems and fine roots decreased, whereas the N:P ratios increased with increasing altitude. Allometric scaling relationships of N and P were found in the leaves, stems and fine roots, with allometric exponents of 0.78, 0.71 and 0.87, respectively. An invariant allometric scaling of N and P in the leaves, stems and fine roots was detected for woody plants along the altitudinal gradient. These results may advance our understanding of plant responses to climate change, and provide a basis for practical implication of various ecological models.
Collapse
Affiliation(s)
- Ning Zhao
- Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guirui Yu
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Nianpeng He
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fucai Xia
- Foresty College of Beihua University, Jilin, 132013, China
| | - Qiufeng Wang
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruili Wang
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiwei Xu
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanlong Jia
- Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
35
|
Nie X, Yang Y, Yang L, Zhou G. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau. PLoS One 2016; 11:e0154251. [PMID: 27119379 PMCID: PMC4847786 DOI: 10.1371/journal.pone.0154251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011-2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level.
Collapse
Affiliation(s)
- Xiuqing Nie
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Science, Xining 810008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lucun Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Science, Xining 810008, China
| | - Guoying Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Science, Xining 810008, China
| |
Collapse
|
36
|
Yan Z, Guan H, Han W, Han T, Guo Y, Fang J. Reproductive organ and young tissues show constrained elemental composition in Arabidopsis thaliana. ANNALS OF BOTANY 2016; 117:431-9. [PMID: 26811314 PMCID: PMC4765545 DOI: 10.1093/aob/mcv190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS The identification of stoichiometric homeostasis is crucial for understanding plant adaptive strategies under a changing environment. However, current knowledge of plant stoichiometric homeostasis has mainly been obtained from mature leaves, with little from other organs across different developmental stages. METHODS We conducted a greenhouse nitrogen (N) and phosphorus (P) addition experiment to evaluate the strength of stoichiometric homeostasis across different organs and developmental stages of Arabidopsis thaliana. KEY RESULTS Homeostatic regulation coefficients (H) for N (HN), P (HP) and N : P ratio (HNP) were highest in reproductive tissue, followed by stem and leaf at the same stage. All H parameters in the same organ decreased significantly over the developmental stages. Leaf HN, HP and HNP were highest at stage 1, followed by stages 2 and 3. Both stem and silique at stage 2 relative to stage 3 had higher HN, HP and HNP. These results suggested that reproductive tissue relative to other organs and young tissue relative to old tissue showed more constrained elemental composition in response to nutrient availabilities, and such trends were also evidenced by stoichiometric scaling relationships. CONCLUSIONS Our findings highlight that stoichiometric homeostasis is tightly related to the ontogenesis of plant tissue. These results could have a strong implication for diagnosing relative availabilities of N and P in ecosystems, suggesting that the N and P stoichiometry of old tissues might be stronger indicators of nutrient status for plants, but further study is needed to test the generality across species with more distinguishable functional traits.
Collapse
Affiliation(s)
- Zhengbing Yan
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hanyue Guan
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxuan Han
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China and
| | - Tingshen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingyun Fang
- Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China,
| |
Collapse
|
37
|
Yan Z, Li P, Chen Y, Han W, Fang J. Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Sci Rep 2016; 6:20099. [PMID: 26848020 PMCID: PMC4742826 DOI: 10.1038/srep20099] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/17/2015] [Indexed: 11/09/2022] Open
Abstract
Allocation of limited nutrients, such as nitrogen (N) and phosphorus (P), among plant organs reflects the influences of evolutionary and ecological processes on functional traits of plants, and thus is related to functional groups and environmental conditions. In this study, we tested this hypothesis by exploring the stoichiometric scaling of N and P concentrations between twig stems and leaves of 335 woody species from 12 forest sites across eastern China. Scaling exponents of twig stem N (or P) to leaf N (or P) varied among functional groups. With increasing latitude, these scaling exponents significantly decreased from >1 at low latitude to <1 at high latitude across the study area. These results suggested that, as plant nutrient concentration increased, plants at low latitudes showed a faster increase in twig stem nutrient concentration, whereas plants at high latitudes presented a faster increase in leaf nutrient concentration. Such shifts in nutrient allocation strategy from low to high latitudes may be controlled by temperature. Overall, our findings provide a new approach to explore plant nutrient allocation strategies by analysing the stoichiometric scaling of nutrients among organs, which could broaden our understanding of the interactions between plants and their environments.
Collapse
Affiliation(s)
- Zhengbing Yan
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China 100871
| | - Peng Li
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China 100871
| | - Yahan Chen
- Institute of Botany, Chinese Academy of Sciences, Beijing, China 100093
| | - Wenxuan Han
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China 100193
| | - Jingyun Fang
- Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China 100871
| |
Collapse
|
38
|
He M, Song X, Tian F, Zhang K, Zhang Z, Chen N, Li X. Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert. Sci Rep 2016; 6:20124. [PMID: 26818575 PMCID: PMC4730183 DOI: 10.1038/srep20124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/21/2015] [Indexed: 11/10/2022] Open
Abstract
Desert shrubs, a dominant component of desert ecosystems, need to maintain sufficient levels of nutrients in their different organs to ensure operation of various physiological functions for the purpose of survival and reproduction. In the present study, we analyzed 10 elements in leaves, stems, and roots of 24 dominant shrub species from 52 sites across a temperate desert ecosystem in northwestern China. We found that concentrations of all 10 elements were higher in leaves than in stems and roots, that non-legumes had higher levels of leaf Na and Mg than did legumes, and that Na was more concentrated in C4 leaves than in C3 leaves. Scaling relationships of elements between the photosynthetic organ (leaf) and non-photosynthetic organs (stem and root) were allometric. Results of principal components analysis (PCA) highlighted the important role of the elements responsible for osmoregulation (K and Na) in water utilization of desert shrubs. Soil properties and taxonomy explained most variation of element concentrations in desert shrubs. Desert shrubs may not be particularly susceptible to future change in climate factors, because most elements (including N, P, K, Ca, Mn, Zn, and Cu) associated with photosynthesis, osmoregulation, enzyme activity, and water use efficiency primarily depend on soil conditions.
Collapse
Affiliation(s)
- Mingzhu He
- Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, 730000, China
| | - Xin Song
- Department of Environmental Sciences, Centre for Carbon, Water and Food, The University of Sydney, Camden, NSW 2570, Australia
| | - Fuping Tian
- The Lanzhou Scientific Observation and Experiment Field Station of Ministry of Agriculture for Ecological System in the Loess Plateau Area, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Ke Zhang
- Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, 730000, China
| | - Zhishan Zhang
- Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, 730000, China
| | - Ning Chen
- Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, 730000, China
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
39
|
Chen FS, Niklas KJ, Liu Y, Fang XM, Wan SZ, Wang H. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. TREE PHYSIOLOGY 2015; 35:1106-17. [PMID: 26358049 DOI: 10.1093/treephys/tpv076] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/18/2015] [Indexed: 05/25/2023]
Abstract
It is unclear how or even if phosphorus (P) input alters the influence of nitrogen (N) deposition in a forest. In theory, nutrients in leaves and twigs differing in age may show different responses to elevated nutrient input. To test this possibility, we selected Chinese fir (Cunninghamia lanceolata) for a series of N and P addition experiments using treatments of +N1 - P (50 kg N ha(-1) year(-1)), +N2 - P (100 kg N ha(-1) year(-1)), -N + P (50 kg P ha(-1) year(-1)), +N1 + P, +N2 + P and -N - P (without N and P addition). Soil samples were analyzed for mineral N and available P concentrations. Leaves and twigs in summer and their litters in winter were classified as and sorted into young and old components to measure N and P concentrations. Soil mineral N and available P increased with N and P additions, respectively. Nitrogen addition increased leaf and twig N concentrations in the second year, but not in the first year; P addition increased leaf and twig P concentrations in both years and enhanced young but not old leaf and twig N accumulations. Nitrogen and P resorption proficiencies in litters increased in response to N and P additions, but N and P resorption efficiencies were not significantly altered. Nitrogen resorption efficiency was generally higher in leaves than in twigs and in young vs old leaves and twigs. Phosphorus resorption efficiency showed a minimal variation from 26.6 to 47.0%. Therefore, P input intensified leaf and twig N enrichment with N addition, leaf and twig nutrients were both gradually resorbed with aging, and organ and age effects depended on the extent of nutrient limitation.
Collapse
Affiliation(s)
- Fu-Sheng Chen
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Karl Joseph Niklas
- Plant Biology Section, School of Integrative Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yu Liu
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiang-Min Fang
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Song-Ze Wan
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huimin Wang
- Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
40
|
Biogeographic patterns of structural traits and C:N:P stoichiometry of tree twigs in China's forests. PLoS One 2015; 10:e0116391. [PMID: 25664764 PMCID: PMC4321987 DOI: 10.1371/journal.pone.0116391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 12/09/2014] [Indexed: 11/19/2022] Open
Abstract
There have been a number of studies on biogeographic patterns of plant leaf functional traits; however, the variations in traits of other plant organs such as twigs are rarely investigated. In this study, we sampled current-year twigs of 335 tree species from 12 forest sites across a latitudinal span of 32 degrees in China, and measured twig specific density (TSD), twig dry matter content (TDMC), and carbon (C), nitrogen (N) and phosphorous (P) contents, to explore the latitudinal and environmental patterns of these twig traits. The overall mean of TSD and TDMC was 0.37 g cm(-3) and 41%, respectively; mean twig C, N and P was 472 mg g(-1), 9.8 mg g-1 and 1.15 mg g(-1), respectively, and mean N:P mass ratio was 10.6. TSD was positively correlated with TDMC which was positively associated with twig C but negatively with twig N and P. There were no significant differences in TSD between conifer, deciduous-broadleaf and evergreen-broadleaf plants, but evergreen-broadleaf plants had the lowest and conifers the highest TDMC. Conifer twigs were lowest in C, N, P and N:P, whereas deciduous-plant twigs were highest in N and P and evergreen-plant twigs were highest in C and N:P. As latitude increased or temperature/precipitation dropped, TDMC and P increased, but N:P ratio decreased. Our results also showed that the patterns of twig P and N:P stoichiometry were consistent with those reported for leaves, but no significant trends in twig N were observed along the gradient of latitude, climate and soils. This study provides the first large-scale patterns of the twig traits and will improve our understanding of the biogeochemistry of carbon and other key nutrients in forest ecosystems.
Collapse
|