1
|
Castellane TCL, Fernandes CC, Pinheiro DG, Lemos MVF, Varani AM. Exploratory comparative transcriptomic analysis reveals potential gene targets associated with Cry1A.105 and Cry2Ab2 resistance in fall armyworm (Spodoptera frugiperda). Funct Integr Genomics 2024; 24:129. [PMID: 39039331 DOI: 10.1007/s10142-024-01408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Genetically modified (GM) crops, expressing Bacillus thuringiensis (Bt) insecticidal toxins, have substantially transformed agriculture. Despite rapid adoption, their environmental and economic benefits face scrutiny due to unsustainable agricultural practices and the emergence of resistant pests like Spodoptera frugiperda, known as the fall armyworm (FAW). FAW's adaptation to Bt technology in corn and cotton compromises the long-term efficacy of Bt crops. To advance the understanding of the genetic foundations of resistance mechanisms, we conducted an exploratory comparative transcriptomic analysis of two divergent FAW populations. One population exhibited practical resistance to the Bt insecticidal proteins Cry1A.105 and Cry2Ab2, expressed in the genetically engineered MON-89Ø34 - 3 maize, while the other population remained susceptible to these proteins. Differential expression analysis supported that Cry1A.105 and Cry2Ab2 significantly affect the FAW physiology. A total of 247 and 254 differentially expressed genes were identified in the Cry-resistant and susceptible populations, respectively. By integrating our findings with established literature and databases, we underscored 53 gene targets potentially involved in FAW's resistance to Cry1A.105 and Cry2Ab2. In particular, we considered and discussed the potential roles of the differentially expressed genes encoding ABC transporters, G protein-coupled receptors, the P450 enzymatic system, and other Bt-related detoxification genes. Based on these findings, we emphasize the importance of exploratory transcriptomic analyses to uncover potential gene targets involved with Bt insecticidal proteins resistance, and to support the advantages of GM crops in the face of emerging challenges.
Collapse
Affiliation(s)
- Tereza Cristina L Castellane
- Departamento de Biologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil.
| | - Camila C Fernandes
- Instituto de Pesquisa em Bioenergia, Laboratório Multiusuário de Sequenciamento em Larga Escala e Expressão Gênica, IPBEN, 14884-900, Jaboticabal, SP, Brasil
| | - Daniel G Pinheiro
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil
| | - Manoel Victor Franco Lemos
- Departamento de Biologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil
- Instituto de Pesquisa em Bioenergia, Laboratório Multiusuário de Sequenciamento em Larga Escala e Expressão Gênica, IPBEN, 14884-900, Jaboticabal, SP, Brasil
| | - Alessandro M Varani
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil.
| |
Collapse
|
2
|
Wang L, Xu M, He L, Wei W, Xu D, Cong S, Liu K, Wan P. Mutation in PgABCC2 confers low-level resistance to Cry1Ac in pink bollworm. PEST MANAGEMENT SCIENCE 2024; 80:3326-3333. [PMID: 38380740 DOI: 10.1002/ps.8036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND With the increasing incidence of pest resistance to transgenic crops producing Bacillus thuringiensis (Bt) proteins in the field, elucidating the molecular basis of resistance is important for monitoring, delaying and countering pest resistance. Previous work revealed that mutation or down-regulated expression of the cadherin gene (PgCad1) is associated with pink bollworm (Pectinophora gossypiella) resistance to Cry1Ac, and 20 mutant PgCad1 alleles (r1-r20) were characterized. Here, we tested the hypothesis that the ABC transporter PgABCC2 is a functional receptor for the Bt toxin Cry1Ac and that a mutation is associated with resistance. RESULTS We identified and characterized the first resistance allele (rC2) of PgABCC2 in the laboratory-selected Cry1Ac-resistant strain AQ-C2 of pink bollworm. The rC2 allele had a one-base deletion in exon20, resulting in a frameshift and the introduction of a premature stop codon. This resulting PgABCC2 protein had a truncated C-terminus, including the loss of the NBD2 domain. AQ-C2 exhibited 20.2-fold greater resistance to Cry1Ac than the susceptible strain, and its inheritance of Cry1Ac resistance was recessive and genetically linked to PgABCC2. When produced in cultured insect cells, recombinant wild-type and rC2 mutant PgABCC2 proteins localized within the cell plasma membrane, although substantial cytoplasmic retention was also observed for the mutant protein, while the mutant PgABCC2 caused a 13.9-fold decrease in Cry1Ac toxicity versus the wild-type PgABCC2. CONCLUSIONS PgABCC2 is a functional receptor of Cry1Ac and the loss of its carboxyl terminus (including its NBD2 domain) confers low-level resistance to Cry1Ac in both larvae and in cultured cells. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Min Xu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lu He
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wei Wei
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan, China
| | - Dong Xu
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shengbo Cong
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Peng Wan
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
3
|
Amezian D, Nauen R, Van Leeuwen T. The role of ATP-binding cassette transporters in arthropod pesticide toxicity and resistance. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101200. [PMID: 38641174 DOI: 10.1016/j.cois.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/10/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
Pesticide resistance in arthropods threatens agricultural productivity and the control of vector-borne diseases. The ATP-binding cassette (ABC) transporters have emerged as important factors in the toxicity of synthetic pesticides, as well as for Bacillus thuringiensis insecticidal Cry protein binding. Depending on the localization of expression, both higher and lower expression of ABCs have been linked with pesticide resistance. The recent development of genetic-based approaches such as RNAi and CRISPR/Cas9 gene editing in nonmodel species, has greatly contributed to unveil their functional importance in pesticide toxicity and resistance. Using these tools, we are now poised to further unravel the molecular genetic mechanisms of gene regulation uncovering more elusive regulatory resistance genes.
Collapse
Affiliation(s)
- Dries Amezian
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Liu L, He W, Xu P, Wei W, Wang J, Liu K. Contribution of the transcription factor SfGATAe to Bt Cry toxin resistance in Spodoptera frugiperda through reduction of ABCC2 expression. Int J Biol Macromol 2024; 267:131459. [PMID: 38593893 DOI: 10.1016/j.ijbiomac.2024.131459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Insect resistance evolution poses a significant threat to the advantages of biopesticides and transgenic crops utilizing insecticidal Cry-toxins from Bacillus thuringiensis (Bt). However, there is limited research on the relationship between transcriptional regulation of specific toxin receptors in lepidopteran insects and their resistance to Bt toxins. Here, we report the positive regulatory role of the SfGATAe transcription factor on the expression of the ABCC2 gene in Spodoptera frugiperda. DNA regions in the SfABCC2 promoter that are vital for regulation by SfGATAe, utilizing DAP-seq technology and promoter deletion mapping. Through yeast one-hybrid assays, DNA pull-down experiments, and site-directed mutagenesis, we confirmed that the transcription factor SfGATAe regulates the core control site PBS2 in the ABCC2 target gene. Tissue-specific expression analysis has revealed that SfGATAe is involved in the regulation and expression of midgut cells in the fall armyworm. Silencing SfGATAe in fall armyworm larvae resulted in reduced expression of SfABCC2 and decreased sensitivity to Cry1Ac toxin. Overall, this study elucidated the regulatory mechanism of the transcription factor SfGATAe on the expression of the toxin receptor gene SfABCC2 and this transcriptional control mechanism impacts the resistance of the fall armyworm to Bt toxins.
Collapse
Affiliation(s)
- Leilei Liu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China.
| | - Wenfeng He
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Peiwen Xu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Wei
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Jintao Wang
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Sato R. Utilization of Diverse Molecules as Receptors by Cry Toxin and the Promiscuous Nature of Receptor-Binding Sites Which Accounts for the Diversity. Biomolecules 2024; 14:425. [PMID: 38672442 PMCID: PMC11048593 DOI: 10.3390/biom14040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
By 2013, it had been shown that the genes cadherin-like receptor (Cad) and ATP-binding cassette transporter subfamily C2 (ABCC2) were responsible for insect resistance to several Cry1A toxins, acting as susceptibility-determining receptors, and many review articles have been published. Therefore, this review focuses on information about receptors and receptor-binding sites that have been revealed since 2014. Since 2014, studies have revealed that the receptors involved in determining susceptibility vary depending on the Cry toxin subfamily, and that binding affinity between Cry toxins and receptors plays a crucial role. Consequently, models have demonstrated that ABCC2, ABCC3, and Cad interact with Cry1Aa; ABCC2 and Cad with Cry1Ab and Cry1Ac; ABCC2 and ABCC3 with Cry1Fa; ABCB1 with Cry1Ba, Cry1Ia, Cry9Da, and Cry3Aa; and ABCA2 with Cry2Aa and Cry2Ba, primarily in the silkworm, Bombyx mori. Furthermore, since 2017, it has been suggested that the binding sites of BmCad and BmABCC2 on Cry1Aa toxin overlap in the loop region of domain II, indicating that Cry toxins use various molecules as receptors due to their ability to bind promiscuously in this region. Additionally, since 2017, several ABC transporters have been identified as low-efficiency receptors that poorly induce cell swelling in heterologously expressing cultured cells. In 2024, research suggested that multiple molecules from the ABC transporter subfamily, including ABCC1, ABCC2, ABCC3, ABCC4, ABCC10, and ABCC11, act as low-efficiency receptors for a single Cry toxin in the midgut of silkworm larvae. This observation led to the hypothesis that the presence of such low-efficiency receptors contributes to the evolution of Cry toxins towards the generation of highly functional receptors that determine the susceptibility of individual insects. Moreover, this evolutionary process is considered to offer valuable insights for the engineering of Cry toxins to overcome resistance and develop countermeasures against resistance.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
6
|
Iwabuchi K, Miyamoto K, Jouraku A, Takasu Y, Iizuka T, Adegawa S, Li X, Sato R, Watanabe K. ABC transporter subfamily B1 as a susceptibility determinant of Bombyx mori larvae to Cry1Ba, Cry1Ia and Cry9Da toxins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104030. [PMID: 37952901 DOI: 10.1016/j.ibmb.2023.104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
ATP binding cassette (ABC) transporters are a diverse family of transmembrane proteins. Specific subfamily members expressed in the lepidopteran midgut can act as susceptibility determinants for several insecticidal Bt Cry proteins. However, the susceptibility determinants to many Cry toxins still remain unclear. Therefore, we knocked out a series of ABC transporters that are highly expressed in the midgut of Bombyx mori larvae by transcription activator-like effector nuclease (TALEN)-mediated gene editing, and the lineages that became resistant to Cry toxins were searched by toxin overlay bioassay. As a result, the B. mori ABC transporter subfamily B1 (BmABCB1) knockout lineage showed 19.17-fold resistance to Cry1Ba, 876.2-fold resistance to Cry1Ia, and 29.1-fold resistance to Cry9Da, suggesting that BmABCB1 is the determinant of susceptibility to these toxins. BmABCC2 and BmABCC3 have been shown to be susceptibility determinants based on their function as receptors. Therefore, we next heterologously expressed these ABC transporters in HEK293T cells and performed a cell swelling assay to examine whether these molecules could exert receptor functions. As a result, BmABCB1-expressing cells showed swelling response to Cry1Ia and Cry9Da, and cells expressing PxABCB1, which is the Plutella xylostella ortholog of BmABCB1, showed swelling for Cry1Ba, suggesting that ABCB1 is a susceptibility determinant by functioning as a receptor to these toxins. Furthermore, in order to clarify how high binding affinity is based on receptor function, we performed surface plasmon resonance analysis and found that each KD of Cry1Ba, Cry1Ia, and Cry9Da to BmABCB1 were 7.69 × 10-8 M, 2.19 × 10-9 M, and 4.17 × 10-6 M respectively.
Collapse
Affiliation(s)
- Kana Iwabuchi
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Kazuhisa Miyamoto
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yoko Takasu
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Satomi Adegawa
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Xiaoyi Li
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan.
| | - Kenji Watanabe
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
7
|
Rakesh V, Kalia VK, Ghosh A. Diversity of transgenes in sustainable management of insect pests. Transgenic Res 2023; 32:351-381. [PMID: 37573273 DOI: 10.1007/s11248-023-00362-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.
Collapse
Affiliation(s)
- V Rakesh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinay K Kalia
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
8
|
Muthu Lakshmi Bavithra C, Murugan M, Pavithran S, Naveena K. Enthralling genetic regulatory mechanisms meddling insecticide resistance development in insects: role of transcriptional and post-transcriptional events. Front Mol Biosci 2023; 10:1257859. [PMID: 37745689 PMCID: PMC10511911 DOI: 10.3389/fmolb.2023.1257859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Insecticide resistance in insects severely threatens both human health and agriculture, making insecticides less compelling and valuable, leading to frequent pest management failures, rising input costs, lowering crop yields, and disastrous public health. Insecticide resistance results from multiple factors, mainly indiscriminate insecticide usage and mounted selection pressure on insect populations. Insects respond to insecticide stress at the cellular level by modest yet significant genetic propagations. Transcriptional, co-transcriptional, and post-transcriptional regulatory signals of cells in organisms regulate the intricate processes in gene expressions churning the genetic information in transcriptional units into proteins and non-coding transcripts. Upregulation of detoxification enzymes, notably cytochrome P450s (CYPs), glutathione S-transferases (GSTs), esterases [carboxyl choline esterase (CCE), carboxyl esterase (CarE)] and ATP Binding Cassettes (ABC) at the transcriptional level, modification of target sites, decreased penetration, or higher excretion of insecticides are the noted insect physiological responses. The transcriptional regulatory pathways such as AhR/ARNT, Nuclear receptors, CncC/Keap1, MAPK/CREB, and GPCR/cAMP/PKA were found to regulate the detoxification genes at the transcriptional level. Post-transcriptional changes of non-coding RNAs (ncRNAs) such as microRNAs (miRNA), long non-coding RNAs (lncRNA), and epitranscriptomics, including RNA methylation, are reported in resistant insects. Additionally, genetic modifications such as mutations in the target sites and copy number variations (CNV) are also influencing insecticide resistance. Therefore, these cellular intricacies may decrease insecticide sensitivity, altering the concentrations or activities of proteins involved in insecticide interactions or detoxification. The cellular episodes at the transcriptional and post-transcriptional levels pertinent to insecticide resistance responses in insects are extensively covered in this review. An overview of molecular mechanisms underlying these biological rhythms allows for developing alternative pest control methods to focus on insect vulnerabilities, employing reverse genetics approaches like RNA interference (RNAi) technology to silence particular resistance-related genes for sustained insect management.
Collapse
Affiliation(s)
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Kathirvel Naveena
- Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
9
|
Jin M, Shan Y, Li Q, Peng Y, Xiao Y. A novel Cry1A resistance allele of fall armyworm in the new invaded region. Int J Biol Macromol 2023; 244:125392. [PMID: 37321433 DOI: 10.1016/j.ijbiomac.2023.125392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is a devastating pest in its native range Western Hemisphere and has become a major invasive pest around the globe. Transgenic crops producing Bt toxins have been widely used to control S. frugiperda. However, the evolution of resistance threatens the sustainability of Bt crops. Field-evolved S. frugiperda resistance to Bt crops was observed in America, whereas, no case of field-resistance was reported in its newly invaded East Hemisphere. Here we investigated the molecular mechanism of a Cry1Ab-resistant LZ-R strain of S. frugiperda, which selected 27-generations using Cry1Ab after being collected in corn fields from China. Complementation tests between LZ-R strain and SfABCC2-KO strain, which have been knockout SfABCC2 gene and confer 174-fold resistance to Cry1Ab, showed a similar level of resistance in the F1-progeny as their parent stains, indicating that a common locus of SfABCC2 mutation in LZ-R stain. Sequencing of the full length of SfABCC2 cDNA from LZ-R strain, we characterize a novel mutation allele of SfABCC2. Cross-resistance results showed that Cry1Ab-resistance strain also confers >260-fold resistance to Cry1F, with no cross-resistance to Vip3A. These results provided evidence of a novel SfABCC2 mutation allele in the newly invaded East Hemisphere of S. frugiperda.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qi Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
10
|
Tandy P, Lamour K, Placidi de Bortoli C, Nagoshi R, Emrich SJ, Jurat-Fuentes JL. Screening for resistance alleles to Cry1 proteins through targeted sequencing in the native and invasive range of Spodoptera frugiperda (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:935-944. [PMID: 37311017 DOI: 10.1093/jee/toad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 06/15/2023]
Abstract
The fall armyworm, Spodoptera frugiperda (J. E. Smith), is a highly polyphagous pest native to the tropical Americas that has recently spread to become a global super-pest threatening food and fiber production. Transgenic crops producing insecticidal Cry and Vip3Aa proteins from Bacillus thuringiensis (Bt) are used for control of this pest in its native range. The evolution of practical resistance represents the greatest threat to sustainability of this technology and its potential efficacy in the S. frugiperda invasive range. Monitoring for resistance is vital to management approaches delaying S. frugiperda resistance to Bt crops. DNA-based resistance screening provides higher sensitivity and cost-effectiveness than currently used bioassay-based monitoring. So far, practical S. frugiperda resistance to Bt corn-producing Cry1F has been genetically linked to mutations in the SfABCC2 gene, providing a model to develop and test monitoring tools. In this study, we performed targeted SfABCC2 sequencing followed by Sanger sequencing to confirm the detection of known and candidate resistance alleles to Cry1F corn in field-collected S. frugiperda from continental USA, Puerto Rico, Africa (Ghana, Togo, and South Africa), and Southeast Asia (Myanmar). Results confirm that the distribution of a previously characterized resistance allele (SfABCC2mut) is limited to Puerto Rico and identify 2 new candidate SfABCC2 alleles for resistance to Cry1F, one of them potentially spreading along the S. frugiperda migratory route in North America. No candidate resistance alleles were found in samples from the invasive S. frugiperda range. These results provide support for the potential use of targeted sequencing in Bt resistance monitoring programs.
Collapse
Affiliation(s)
- Peter Tandy
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Rodney Nagoshi
- Center for Medical, Agricultural and Veterinary Entomology (CMAVE), United States Department of Agriculture-Agricultural Research Service, Gainesville, FL 32608, USA
| | - Scott J Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Farhan Y, Smith JL, Sovic MG, Michel AP. Genetic mutations linked to field-evolved Cry1Fa-resistance in the European corn borer, Ostrinia nubilalis. Sci Rep 2023; 13:8081. [PMID: 37202428 DOI: 10.1038/s41598-023-35252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
Transgenic corn, Zea mays (L.), expressing insecticidal toxins such as Cry1Fa, from Bacillus thuringiensis (Bt corn) targeting Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) resulted in over 20 years of management success. The first case of practical field-evolved resistance by O. nubilalis to a Bt corn toxin, Cry1Fa, was discovered in Nova Scotia, Canada, in 2018. Laboratory-derived Cry1Fa-resistance by O. nubilalis was linked to a genome region encoding the ATP Binding Cassette subfamily C2 (ABCC2) gene; however, the involvement of ABCC2 and specific mutations in the gene leading to resistance remain unknown. Using a classical candidate gene approach, we report on O. nubilalis ABCC2 gene mutations linked to laboratory-derived and field-evolved Cry1Fa-resistance. Using these mutations, a DNA-based genotyping assay was developed to test for the presence of the Cry1Fa-resistance alleles in O. nubilalis strains collected in Canada. Screening data provide strong evidence that field-evolved Cry1Fa-resistance in O. nubilalis maps to the ABCC2 gene and demonstrates the utility of this assay for detecting the Cry1Fa resistance allele in O. nubilalis. This study is the first to describe mutations linked to Bt resistance in O. nubilalis and provides a DNA-based detection method that can be used for monitoring.
Collapse
Affiliation(s)
- Yasmine Farhan
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, ON, Canada.
| | - Jocelyn L Smith
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, ON, Canada
| | - Michael G Sovic
- Infectious Diseases Institute, The Ohio State University, Pickerington, OH, USA
| | - Andrew P Michel
- Department of Entomology, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
12
|
Guan F, Dai X, Yang Y, Tabashnik BE, Wu Y. Population Genomics of Nonrecessive Resistance to Bt Toxin Cry1Ac in Helicoverpa armigera From Northern China. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:310-320. [PMID: 36610305 DOI: 10.1093/jee/toac182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 05/30/2023]
Abstract
Transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt) have provided control of some key pests since 1996. However, the evolution of resistance by pests reduces the benefits of Bt crops. Resistance to Bt crops that is not recessively inherited is especially challenging to manage. Here we analyzed nonrecessive resistance to Bt toxin Cry1Ac in eight field populations of Helicoverpa armigera sampled in 2018 from northern China, where this global pest has been exposed to Cry1Ac in Bt cotton since 1997. Bioassays revealed 7.5% of field-derived larvae were resistant to Cry1Ac of which 87% had at least one allele conferring nonrecessive resistance. To analyze this nonrecessive resistance, we developed and applied a variant of a genomic mapping approach called quantitative trait locus (QTL)-seq. This analysis identified a region on chromosome 10 associated with nonrecessive resistance to Cry1Ac in all 21 backcross families derived from field-collected moths. Individual sequencing revealed that all 21 field-collected resistant grandparents of the backcross families had a previously identified dominant point mutation in the tetraspanin gene HaTSPAN1 that occurs in the region of chromosome 10 identified by QTL-seq. QTL-seq also revealed a region on chromosome 26 associated with nonrecessive resistance in at most 14% of the backcross families. Overall, the results imply the point mutation in HaTSPAN1 is the primary genetic basis of nonrecessive resistance to Cry1Ac in field populations of H. armigera from northern China. Moreover, because nonrecessive resistance is predominant, tracking the frequency of this point mutation could facilitate resistance monitoring in the region.
Collapse
Affiliation(s)
- Fang Guan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Dai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Xiong L, Liu Z, Li J, Yao S, Li Z, Chen X, Shen L, Zhang Z, Li Y, Hou Q, Zhang Y, You M, Yuchi Z, You S. Analysis of the Effect of Plutella xylostella Polycalin and ABCC2 Transporter on Cry1Ac Susceptibility by CRISPR/Cas9-Mediated Knockout. Toxins (Basel) 2023; 15:toxins15040273. [PMID: 37104211 PMCID: PMC10145054 DOI: 10.3390/toxins15040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Many insects, including the Plutella xylostella (L.), have developed varying degrees of resistance to many insecticides, including Bacillus thuringiensis (Bt) toxins, the bioinsecticides derived from Bt. The polycalin protein is one of the potential receptors for Bt toxins, and previous studies have confirmed that the Cry1Ac toxin can bind to the polycalin protein of P. xylostella, but whether polycalin is associated with the resistance of Bt toxins remains controversial. In this study, we compared the midgut of larvae from Cry1Ac-susceptible and -resistant strains, and found that the expression of the Pxpolycalin gene was largely reduced in the midgut of the resistant strains. Moreover, the spatial and temporal expression patterns of Pxpolycalin showed that it was mainly expressed in the larval stage and midgut tissue. However, genetic linkage experiments showed that the Pxpolycalin gene and its transcript level were not linked to Cry1Ac resistance, whereas both the PxABCC2 gene and its transcript levels were linked to Cry1Ac resistance. The larvae fed on a diet containing the Cry1Ac toxin showed no significant change in the expression of the Pxpolycalin gene in a short term. Furthermore, the knockout of polycalin and ATP-binding cassette transporter subfamily C2 (ABCC2) genes separately by CRISPR/Cas9 technology resulted in resistance to decreased susceptibility to Cry1Ac toxin. Our results provide new insights into the potential role of polycalin and ABCC2 proteins in Cry1Ac resistance and the mechanism underlying the resistance of insects to Bt toxins.
Collapse
Affiliation(s)
- Lei Xiong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Zhaoxia Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Jingge Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Shuyuan Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Zeyun Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Xuanhao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Lingling Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Zhen Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Yongbin Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Qing Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Yuhang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
14
|
Xie D, Zhu C, Zhang L, Liu Y, Cheng Y, Jiang X. Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in the oriental armyworm, Mythimna separata (Walker). Int J Biol Macromol 2023; 235:123915. [PMID: 36871694 DOI: 10.1016/j.ijbiomac.2023.123915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
The oriental armyworm Mythimna separata is a polyphagous, migratory corn pest in China and other Asian countries. Transgenic Bacillus thuringiensis (Bt) corn may effectively control this insect pest. Several reports have suggested that ATP-binding cassette (ABC) transporter proteins may act as receptors that bind Bt toxins. However, our knowledge about ABC transporter proteins in M. separata is limited. We identified 43 ABC transporter genes in the M. separata genome by bioinformatics prediction. Evolutionary tree analysis grouped these 43 genes into 8 subfamilies, ABCA to ABCH. Among the 13 ABCC subfamily genes, the transcript levels of MsABCC2 and MsABCC3 were upregulated. In addition, RT-qPCR analyses of these two potentials showed that both were predominantly expressed in the midgut tissue. Knock-down of MsABCC2, but not MsABCC3, decreased Cry1Ac susceptibility as indicated by increased larval weight and reduced larval mortality. This suggested that MsABCC2 might play a more important role in Cry1Ac toxicity and that it is a putative Cry1Ac receptor in M. separata. Together, these findings provide unique and valuable information for future elucidating of the role of ABC transporter genes in M. separata, which is highly valuable and important for the long-term application of Bt insecticidal protein.
Collapse
Affiliation(s)
- Dianjie Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cong Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yueqiu Liu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Liao C, Zhang D, Cheng Y, Yang Y, Liu K, Wu K, Xiao Y. Down-regulation of HaABCC3, potentially mediated by a cis-regulatory mechanism, is involved in resistance to Cry1Ac in the cotton bollworm, Helicoverpa armigera. INSECT SCIENCE 2023; 30:135-145. [PMID: 35603737 DOI: 10.1111/1744-7917.13080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 05/29/2023]
Abstract
Evolution of resistance to Cry proteins in multiple pest insects has been threatening the sustainable use of Bacillus thuringiensis (Bt)-transgenic crops. Better understanding about the mechanism of resistance to Cry proteins in insects is needed. Our preliminary study reported that the transcription of HaABCC3 was significantly decreased in a near-isogenic line (LFC2) of a Cry1Ac-resistant strain (LF60) of the global pest Helicoverpa armigera. However, the causality between HaABCC3 downregulation and resistance to Cry1Ac remains to be verified, and the regulatory mechanism underlying the HaABCC3 downregulation is still unclear. In this study, our data showed that both HaABCC3 and HaABCC3 downregulation were genetically linked to resistance to Cry1Ac in LF60. However, no InDels were observed in the coding sequence of HaABCC3 from LF60. Furthermore, F1 offspring from the cross of LF60 and a HaABCC2/3-knockout mutant exhibited moderate resistance to Cry1Ac toxin; this indicated that the high resistance to Cry1Ac toxin in LF60 may have resulted from multiple genetic factors, including HaABCC2 mis-splicing and HaABCC3 downregulation. Results from luciferase reporter assays showed that promoter activity of HaABCC3 in LF60 was significantly lower than that in the susceptible strain, which indicated that HaABCC3 downregulation was likely mediated by promoter variation. Consistently, multiple variations of the GATA- or FoxA-binding sites in the promoter region of HaABCC3 were identified. Collectively, all results in this study suggested that the downregulation of HaABCC3 observed in the H. armigera LF60 strain, which is resistant to Cry1Ac, may be mediated by a cis-regulatory mechanism.
Collapse
Affiliation(s)
- Chongyu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dandan Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongbo Yang
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Kaiyu Liu
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
16
|
Fabrick JA, Heu CC, LeRoy DM, DeGain BA, Yelich AJ, Unnithan GC, Wu Y, Li X, Carrière Y, Tabashnik BE. Knockout of ABC transporter gene ABCA2 confers resistance to Bt toxin Cry2Ab in Helicoverpa zea. Sci Rep 2022; 12:16706. [PMID: 36202979 PMCID: PMC9537329 DOI: 10.1038/s41598-022-21061-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022] Open
Abstract
Evolution of pest resistance reduces the benefits of widely cultivated genetically engineered crops that produce insecticidal proteins derived from Bacillus thuringiensis (Bt). Better understanding of the genetic basis of pest resistance to Bt crops is needed to monitor, manage, and counter resistance. Previous work shows that in several lepidopterans, resistance to Bt toxin Cry2Ab is associated with mutations in the gene encoding the ATP-binding cassette protein ABCA2. The results here show that mutations introduced by CRISPR/Cas9 gene editing in the Helicoverpa zea (corn earworm or bollworm) gene encoding ABCA2 (HzABCA2) can cause resistance to Cry2Ab. Disruptive mutations in HzABCA2 facilitated the creation of two Cry2Ab-resistant strains. A multiple concentration bioassay with one of these strains revealed it had > 200-fold resistance to Cry2Ab relative to its parental susceptible strain. All Cry2Ab-resistant individuals tested had disruptive mutations in HzABCA2. We identified five disruptive mutations in HzABCA2 gDNA. The most common mutation was a 4-bp deletion in the expected Cas9 guide RNA target site. The results here indicate that HzABCA2 is a leading candidate for monitoring Cry2Ab resistance in field populations of H. zea.
Collapse
Affiliation(s)
- Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ, 85138, USA.
| | - Chan C Heu
- USDA ARS, U.S. Arid Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ, 85138, USA
| | - Dannialle M LeRoy
- USDA ARS, U.S. Arid Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ, 85138, USA
| | - Ben A DeGain
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Alex J Yelich
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
17
|
Large genomic deletion linked to field-evolved resistance to Cry1F corn in fall armyworm (Spodoptera frugiperda) from Florida. Sci Rep 2022; 12:13580. [PMID: 35945334 PMCID: PMC9363433 DOI: 10.1038/s41598-022-17603-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
The fall armyworm (Spodoptera frugiperda) is a highly polyphagous lepidopteran pest of relevant food and fiber staple crops. In the Americas, transgenic corn and cotton producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have controlled and reduced the damage caused by S. frugiperda. However, cases of field-evolved S. frugiperda resistance to Bt corn producing the Cry1F insecticidal protein have been documented in North and South America. When characterized, field resistance to Cry1F is linked to insertions and mutations resulting in a modified or truncated ABC transporter subfamily C2 (SfABCC2) protein that serves as Cry1F receptor in susceptible S. frugiperda. In this work, we present detection of a large genomic deletion (~ 8 kb) affecting the SfABCC2 and an ABC transporter gene subfamily 3 –like gene (SfABCC3) as linked to resistance to Cry1F corn in a S. frugiperda strain from Florida (FL39). Monitoring for this genomic deletion using a discriminatory PCR reaction in field-collected S. frugiperda moths detected individuals carrying this allele in Florida, but not in surrounding states. This is the first report of a large genomic deletion being involved in resistance to a Bt insecticidal protein.
Collapse
|
18
|
Shwe SM, Prabu S, Jing D, He K, Wang Z. Synergistic interaction of Cry1Ah and Vip3Aa19 proteins combination with midgut ATP-binding cassette subfamily C receptors of Conogethes punctiferalis (Guenée) (Lepidoptera: Crambidae). Int J Biol Macromol 2022; 213:871-879. [PMID: 35690160 DOI: 10.1016/j.ijbiomac.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022]
Abstract
Bacillus thuringiensis Cry and Vip proteins are highly effective at controlling agricultural pests and could be used in pyramided transgenic crops. However, the molecular mechanism underlying the Cry1Ah and Vip3Aa19 synergistic interaction has never been investigated at the molecular level in Yellow peach moth (YPM) Conogethes punctiferalis. Binding affinity and synergism of Cry1Ah and Vip3Aa19 proteins with ABC transporter subfamily C receptors ABCC1, ABCC2 and ABCC3 proteins from the midgut of YPM larva by using surface plasmon resonance (SPR) and pull-down assays. Both assays revealed that Cry1Ah could interact with ABCC1, ABCC2, and ABCC3, whereas Vip3Aa19 only interacts with ABCC1 and ABCC3, but not with ABCC2. Hence, when compared to the Vip3Aa19 protein, Cry1Ah had a higher binding affinity for ABCC1, ABCC2, and ABCC3. Furthermore, competitive binding assay between Cry1Ah and Vip3Aa19 protein with ABC transporter subfamily C receptors resulted in the final eluted protein samples displaying vibrant blue bands of Cry1Ah and very faint bands of Vip3Aa19. Suggesting that Cry and Vip proteins could deliver a synergistic effect after cleaving the midgut proteases. Therefore, this finding indicated that the Cry1Ah and Vip3Aa19 do not compete for interacting with midgut receptors and thus provide strong synergism against YPM.
Collapse
Affiliation(s)
- Su Mon Shwe
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China
| | - Dapeng Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China.
| |
Collapse
|
19
|
Endo H. Molecular and Kinetic Models for Pore Formation of Bacillus thuringiensis Cry Toxin. Toxins (Basel) 2022; 14:toxins14070433. [PMID: 35878171 PMCID: PMC9321905 DOI: 10.3390/toxins14070433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cry proteins from Bacillus thuringiensis (Bt) and other bacteria are pesticidal pore-forming toxins. Since 2010, when the ABC transporter C2 (ABCC2) was identified as a Cry1Ac protein resistant gene, our understanding of the mode of action of Cry protein has progressed substantially. ABCC2 mediates high Cry1A toxicity because of its high activity for helping pore formation. With the discovery of ABCC2, the classical killing model based on pore formation and osmotic lysis became nearly conclusive. Nevertheless, we are still far from a complete understanding of how Cry proteins form pores in the cell membrane through interactions with their host gut membrane proteins, known as receptors. Why does ABCC2 mediate pore formation with high efficiency unlike other Cry1A-binding proteins? Is the “prepore” formation indispensable for pore formation? What is the mechanism underlying the synergism between ABCC2 and the 12-cadherin domain protein? We examine potential mechanisms of pore formation via receptor interactions in this paper by merging findings from prior studies on the Cry mode of action before and after the discovery of ABC transporters as Cry protein receptors. We also attempt to explain Cry toxicity using Cry–receptor binding affinities, which successfully predicts actual Cry toxicity toward cultured cells coexpressing ABC transporters and cadherin.
Collapse
Affiliation(s)
- Haruka Endo
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
20
|
Wang H, Zhang C, Chen G, Li Y, Yang X, Han L, Peng Y. Downregulation of the CsABCC2 gene is associated with Cry1C resistance in the striped stem borer Chilo suppressalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105119. [PMID: 35715058 DOI: 10.1016/j.pestbp.2022.105119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Chilo suppressalis is a major target pest of transgenic rice expressing the Bacillus thuringiensis (Bt) Cry1C toxin in China. The evolution of resistance of this pest is a major threat to Bt rice. Since Bt functions by binding to receptors in the midgut (MG) of target insects, identification of Bt functional receptors in C. suppressalis is crucial for evaluating potential resistance mechanisms and developing effective management strategies. ATP-binding cassette (ABC) transporters have been vastly reported to interact with Cry1A toxins, as receptors and their mutations cause insect Bt resistance. However, the role of ABC transporters in Cry1C resistance to C. suppressalis remains unknown. Here, we measured CsABCC2 expression in C. suppressalis Cry1C-resistant (Cry1C-R) and Cry1C-susceptible strains (selected in the laboratory) via quantitative real-time PCR (qRT-PCR); the transcript level of CsABCC2 in the Cry1C-R strain was significantly lower than that in the Cry1C-susceptible strain. Furthermore, silencing CsABCC2 in C. suppressalis via RNA interference (RNAi) significantly decreased Cry1C susceptibility. Overall, CsABCC2 participates in Cry1C mode of action, and reduced expression of CsABCC2 is functionally associated with Cry1C resistance in C. suppressalis.
Collapse
Affiliation(s)
- Huilin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Geng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaowei Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
21
|
Lv N, Liu Y, Guo T, Liang P, Li R, Liang P, Gao X. The influence of Bt cotton cultivation on the structure and functions of the soil bacterial community by soil metagenomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113452. [PMID: 35366565 DOI: 10.1016/j.ecoenv.2022.113452] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Bt cotton successfully controlled major devastating pests in cotton,such as Helicoverpa armigera and Spodoptera exigua, and led to a drastic decrease in insecticide use in cotton fields, and it has been grown commercially worldwide. However, Bt cotton cultivation left Bt toxin residues in the soil, resulting in a response by its microbiome that caused potential environmental risks. In this research, the metagenomics analysis was performed to investigate the structure and functions of the soil bacterial community in the Bt cotton field from the Binzhou, Shandong province of China, where the Bt cotton has been cultivated for over fifteen years. Analysis of the function genes proved that the receptors of Bt toxins were absent in the soil bacteria and Bt toxins failed to target the soil bacteria. The microbiome structure and function were highly influenced by Bt cotton cultivation, however, no significant change in the total abundance of the bacteria was observed. Proteobacteria was the largest taxonomic group in the soil bacterial (42-52%) and its abundance was significantly increased after Bt cotton cultivation. The increase of Proteobacteria abundance resulted in an increase in ABC transporters gene abundance, indicating the improved ability of detoxification metabolism over Bt cotton cultivation. Xanthomonadales could be a biomarker of the Bt cotton group, whose abundance was significantly increased to contribute to the increase of the genes abundance in ABC transporters. The abundance of apoptosis genes was significantly decreased, and it might be related to the increase of Proteobacteria abundance by Bt cotton cultivation. In addition, Myxococcales was responsible for carotenoid biosynthesis, whoes genes abundance was significantly decreased due to the decrease of Myxococcales abundance by Bt cotton cultivation. These changes in soil bacterial community structure and functions indicate the influence by Bt cotton cultivation, leading to an understanding of the bacteria colonization patterns due to successive years of Bt cotton cultivation. These research results should be significant for the rational risk assessment of Bt cotton cultivation.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tianfeng Guo
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Zhu Q, Hu X, Liu Y, Xie Y, Xu C, Lin M, Pooe OJ, Zhong J, Gao M, Lu L, Liu X, Zhang X. Identification of single domain antibodies with insect cytotoxicity using phage-display antibody library screening and Plutella xylostella ATP-binding cassette transporter subfamily C member 2 (ABCC2) -based insect cell expression system. Int J Biol Macromol 2022; 209:586-596. [PMID: 35346681 DOI: 10.1016/j.ijbiomac.2022.03.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022]
Abstract
It is extremely imminent to study a new strategy to manage agricultural pest like Plutella xylostella (P. xylostella) which is currently resistant to most of pesticides, including three domain-Cry toxins from Bacillus thuringiensis (Bt). In this study, we reported a phage displayed single domain antibody screening from human domain antibody (DAb) library targeted on Spodoptera frugiperda 9 (Sf9) cells expressed Cry1Ac toxin receptor, ATP-dependent binding cassette transporter C2 in P. xylostella (PxABCC2). After three rounds of panning, three cytotoxic antibodies (1D2, 2B7, 3C4) were obtained from thirty-eight antibodies and displayed high binding ability towards PxABCC2-expressed Sf9 cells. Through homology modeling and molecular docking, the interaction mode indicated that the most cytotoxic 1D2 of the three antibodies presented the lowest binding free energy required and had the most hydrogen bond formed with PxABCC2 in molecular docking analysis. Functional assay of key regions in 1D2 via Alanine replacement indicated that complementarity-determining region (CDR) 3 played a crucial role in antibody exerts binding activity and cytotoxicity. This study provides the first trial for discovering of potential cytotoxic antibodies from the human antibody library via specific receptor-expressed insect cell system biopanning.
Collapse
Affiliation(s)
- Qing Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaodan Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, Discipline of Biochemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Yuan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yajing Xie
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Manman Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, Discipline of Biochemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Ofentse Jacob Pooe
- School of Life Sciences, Discipline of Biochemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Jianfeng Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Meijing Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lina Lu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
23
|
Bacillus thuringiensis Cry1Ac Protoxin and Activated Toxin Exert Differential Toxicity Due to a Synergistic Interplay of Cadherin with ABCC Transporters in the Cotton Bollworm. Appl Environ Microbiol 2022; 88:e0250521. [PMID: 35262369 DOI: 10.1128/aem.02505-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacillus thuringiensis Cry proteins are used worldwide for insect control. It was proposed that Cry-protoxins must be converted into activated toxin by proteases to bind midgut cell proteins to kill insects. However, Cry-protoxins also bind to midgut proteins and kill insects that have evolved resistance to activated toxins suggesting an independent toxicity pathway. Cadherin (CAD) and ABCC transporters are recognized as important receptors for Cry proteins. Here we constructed different Helicoverpa armigera mutations in these receptors by CRISPR/Cas9. HaCAD-KO mutant showed much higher resistance to Cry1Ac activated toxin than to Cry1Ac protoxin. In contrast, the HaABCC2-M and HaABCC3-M mutants showed higher resistance to Cry1Ac-protoxin than to activated toxin. However, in the double HaABCC2/3-KO mutant, very high levels of resistance were observed to both Cry1Ac protoxin and activated toxin, supporting that both ABC transporters have redundant functions for these two proteins. In addition, Hi5 cells transfected with HaCAD were susceptible only to the activated toxin but not to protoxin. In contrast, both forms of Cry1Ac were similarly toxic to Hi5 cells expressing HaABCC2 or HaABCC3. Co-expression of HaCAD with HaABCC2 or HaABCC3 revealed a more important synergistic effect for activated toxin compared to protoxin. Overall, our results show that toxicity of Cry1Ac activated toxin involves synergistic interplay of HaCAD with ABCC transporters, while the Cry1Ac protoxin toxicity is mainly mediated by ABCC transporters with little participation of HaCAD. These data help to understand the mode of action of Cry proteins that will be relevant to enhance efficacy and durability of Bt-crops. IMPORTANCE Better understanding of the mode of action of Bacillus thuringiensis toxins is beneficial for the sustainable application of Bt crops. It is generally accepted that Cry-protoxins need to be activated by proteases to bind with midgut cell proteins and exert toxicity against insects. Here, we provide new insights into the toxic pathway of Cry proteins in the cotton bollworm. First, our results demonstrate that Cry1Ac protoxin is able to exert cytotoxicity against the insect cells expressing ABCC transporters. Second, we reveal that CAD plays a critical role in the different toxicity of protoxin and toxin by facilitating a synergistic interplay with ABCC transporters. Our results provide in vivo and in vitro experimental evidence supporting that Cry1Ac protoxin exerts toxicity against H. armigera via different steps from that of toxin. These new findings on the mode of action of Cry proteins could be beneficial for efficacy enhancement and durability of Bt-crops.
Collapse
|
24
|
Franz L, Raming K, Nauen R. Recombinant Expression of ABCC2 Variants Confirms the Importance of Mutations in Extracellular Loop 4 for Cry1F Resistance in Fall Armyworm. Toxins (Basel) 2022; 14:toxins14020157. [PMID: 35202184 PMCID: PMC8878193 DOI: 10.3390/toxins14020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023] Open
Abstract
Fall armyworm (FAW), Spodoptera frugiperda, is a highly destructive and invasive global noctuid pest. Its control is based on insecticide applications and Bacillus thuringiensis (Bt) insecticidal Cry toxins expressed in transgenic crops, such as Cry1F in Bt corn. Continuous selection pressure has resulted in populations that are resistant to Bt corn, particularly in Brazil. FAW resistance to Cry1F was recently shown to be conferred by mutations of ATP-binding cassette transporter C2 (ABCC2), but several mutations, particularly indels in extracellular loop 4 (ECL4), are not yet functionally validated. We addressed this knowledge gap by baculovirus-free insect cell expression of ABCC2 variants (and ABCC3) by electroporation technology and tested their response to Cry1F, Cry1A.105 and Cry1Ab. We employed a SYTOXTM orange cell viability test measuring ABCC2-mediated Bt toxin pore formation. In total, we tested seven different FAW ABCC2 variants mutated in ECL4, two mutants modified in nucleotide binding domain (NBD) 2, including a deletion mutant lacking NBD2, and S. frugiperda ABCC3. All tested ECL4 mutations conferred high resistance to Cry1F, but much less to Cry1A.105 and Cry1Ab, whereas mutations in NBD2 hardly affected Bt toxin activity. Our study confirms the importance of indels in ECL4 for Cry1F resistance in S. frugiperda ABCC2.
Collapse
|
25
|
Sun D, Zhu L, Guo L, Wang S, Wu Q, Crickmore N, Zhou X, Bravo A, Soberón M, Guo Z, Zhang Y. A versatile contribution of both aminopeptidases N and ABC transporters to Bt Cry1Ac toxicity in the diamondback moth. BMC Biol 2022; 20:33. [PMID: 35120513 PMCID: PMC8817492 DOI: 10.1186/s12915-022-01226-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Biopesticides and transgenic crops based on Bacillus thuringiensis (Bt) toxins are extensively used to control insect pests, but the rapid evolution of insect resistance seriously threatens their effectiveness. Bt resistance is often polygenic and complex. Mutations that confer resistance occur in midgut proteins that act as cell surface receptors for the toxin, and it is thought they facilitate its assembly as a membrane-damaging pore. However, the mechanistic details of the action of Bt toxins remain controversial. RESULTS We have examined the contribution of two paralogous ABC transporters and two aminopeptidases N to Bt Cry1Ac toxicity in the diamondback moth, Plutella xylostella, using CRISPR/Cas9 to generate a series of homozygous polygenic knockout strains. A double-gene knockout strain, in which the two paralogous ABC transporters ABCC2 and ABCC3 were deleted, exhibited 4482-fold resistance to Cry1A toxin, significantly greater than that previously reported for single-gene knockouts and confirming the mutual functional redundancy of these ABC transporters in acting as toxin receptors in P. xylostella. A double-gene knockout strain in which APN1 and APN3a were deleted exhibited 1425-fold resistance to Cry1Ac toxin, providing the most direct evidence to date for these APN proteins acting as Cry1Ac toxin receptors, while also indicating their functional redundancy. Genetic crosses of the two double-gene knockouts yielded a hybrid strain in which all four receptor genes were deleted and this resulted in a > 34,000-fold resistance, indicating that while both types of receptor need to be present for the toxin to be fully effective, there is a level of functional redundancy between them. The highly resistant quadruple knockout strain was less fit than wild-type moths, but no fitness cost was detected in the double knockout strains. CONCLUSION Our results provide direct evidence that APN1 and APN3a are important for Cry1Ac toxicity. They support our overarching hypothesis of a versatile mode of action of Bt toxins, which can compensate for the absence of individual receptors, and are consistent with an interplay among diverse midgut receptors in the toxins' mechanism of action in a super pest.
Collapse
Affiliation(s)
- Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, 510642, China
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Le Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton, BN1 9QE, UK
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, México
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, México
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
26
|
Yao X, Liu C, Duan Y, An S, Wei J, Liang G. ABCC2 is a functional receptor of Bacillus thuringiensis Cry1Ca in Spodoptera litura. Int J Biol Macromol 2022; 194:9-16. [PMID: 34861271 DOI: 10.1016/j.ijbiomac.2021.11.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Spodoptera litura is a serious polyphagous pest in the whole world, which has developed resistance to most conventional insecticides and even some Bacillus thuringiensis (Bt) toxins. Cry1Ca has excellent insecticide activity against S. litura with potential application to control S. litura and delay the development of insect resistance. However, the mode of action of Cry1Ca in S. litura is poorly understood. Here, Cry1Ca-binding proteins were identified from S. litura by using pull down assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicated that aminopeptidase-N (APN), ATP binding cassette subfamily C member 2 (ABCC2), polycalin, actin and V-type proton ATPase subunit A may bind with Cry1Ca. Further study confirmed that ABCC2 fragment expressed in vitro can bind to Cry1Ca as demonstrated by Ligand blot and homologous competition experiments. The over-expression of endogenous SlABCC2 in Sf9 cells increased Cry1Ca cytotoxicity. Correspondingly, the vivo loss of function analyses by SlABCC2 small interfering RNAs (siRNAs) in S. litura larvae decreased the toxicity of Cry1Ca to larvae. Altogether, these results show that ABCC2 of S. litura is a functional receptor that is involved in the action mode of Cry1Ca.
Collapse
Affiliation(s)
- Xue Yao
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Yunpeng Duan
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China.
| |
Collapse
|
27
|
A Novel Reference for Bt-Resistance Mechanism in Plutella xylostella Based on Analysis of the Midgut Transcriptomes. INSECTS 2021; 12:insects12121091. [PMID: 34940179 PMCID: PMC8708430 DOI: 10.3390/insects12121091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Plutella xylostella is a very serious pest to cruciferous vegetables. At present, the control methods used are mainly traditional insecticides and the cultivation of Bt crops. However, with the long-term and large-scale use of insecticides, the diamondback moth has developed strong resistance to many kinds of insecticides and Bt crops. The Cry1S1000 strain of P. xylostella used here is a strain with more than 8000 times resistance to Bt Cry1Ac protoxin. In this paper, we used transcriptome sequencing to determine the midgut transcriptome of the G88-susceptible strain, Cry1S1000-resistant strain and its corresponding toxin-induced strains to find more genes related to Bt resistance. Our results will provide a reference for optimizing the control strategy of diamondback moth resistance and improving the control efficiency of biopesticides and Bt crops. Abstract The diamondback moth, Plutella xylostella, is a lepidopteran insect that mainly harms cruciferous vegetables, with strong resistance to a variety of agrochemicals, including Bacillus thuringiensis (Bt) toxins. This study intended to screen genes associated with Bt resistance in P. xylostella by comparing the midgut transcriptome of Cry1Ac-susceptible and -resistant strains together with two toxin-treated strains 24 h before sampling. A total of 12 samples were analyzed by BGISEQ-500, and each sample obtained an average of 6.35 Gb data. Additionally, 3284 differentially expressed genes (DEGs) were identified in susceptible and resistant strains. Among them, five DEGs for cadherin, 14 for aminopeptidase, zero for alkaline phosphatase, 14 for ATP binding cassette transport, and five heat shock proteins were potentially involved in resistance to Cry1Ac in P. xylostella. Furthermore, DEGs associated with “binding”, “catalytic activity”, “cellular process”, “metabolic process”, and “cellular anatomical entity” were more likely to be responsible for resistance to Bt toxin. Thus, together with other omics data, our results will offer prospective genes for the development of Bt resistance, thereby providing a brand new reference for revealing the resistance mechanism to Bt of P. xylostella.
Collapse
|
28
|
Wang Y, Adegawa S, Miyamoto K, Takasu Y, Iizuka T, Wada S, Mang D, Li X, Kim S, Sato R, Watanabe K. ATP-binding cassette transporter subfamily C members 2, 3 and cadherin protein are susceptibility-determining factors in Bombyx mori for multiple Bacillus thuringiensis Cry1 toxins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103649. [PMID: 34560243 DOI: 10.1016/j.ibmb.2021.103649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Field-evolved resistance of insect pests to Bacillus thuringiensis (Bt) toxins (Cry toxins) is a threat to the efficacy of Bt-based bio-insecticides and transgenic crops. Recent reports have suggested that ATP-binding cassette transporter subfamily C2 (ABCC2) and cadherin-like receptor play important roles in conferring susceptibility to Cry1 toxins. However, the receptors involved in Bt susceptibility in each insect remain unclear. To determine the receptors that are involved in the susceptibility of Bombyx mori to Cry1 toxins (1Ab, 1Ac and 1Fa), we conducted diet overlay bioassay using B. mori strains disrupted with one or two receptor (s) among BmABCC2, BmABCC3, and cadherin-like receptor (BtR175) generated by transcription activator-like effector nuclease (TALEN)-mediated gene editing. The single-knockout strains for BmABCC2 showed resistance to Cry1Ab and Cry1Ac, whereas only strains with double knockout of BmABCC2 and BmABCC3 exhibited high resistance to Cry1Fa. Progeny populations generated from the crossing of heterozygotes for BtR175 knockout allele included 25% theoretical homozygotes for the BtR175 knockout allele and they showed resistance to Cry1Ab and Cry1Ac. Then, through a cell swelling assay using Sf9 cells ectopically expressing the receptor, we analyzed the mechanisms underlying the different contributions of BmABCC2, BmABCC3, and BtR175 to larval susceptibility. The receptor activity of BmABCC2 for Cry1Ab and Cry1Ac was far higher than that of BmABCC3, and BtR175 synergistically enhanced the receptor activity of BmABCC2. This result well explained the important involvement of BmABCC2 and BtR175 in the larval susceptibility to Cry1A toxins. By contrast, the receptor activities of BmABCC2 and BmABCC3 for Cry1Fa were observed at a similar level and synergistic effect of BtR175 was small. This finding explains the equal importance of BmABCC2 and BmABCC3 and very small contribution of BtR175 on larval susceptibility to Cry1Fa. Thus, we demonstrated the different importance of BmABCC2, BmABCC3, and BtR175 to various Cry1 toxins as susceptibility-determining factors in B. mori larvae and the underlying basis for the observed differences. Furthermore, a weak correlation was indicated between the binding affinity and receptor activities of BmABCC2 and BmABCC3 to Cry1 toxins.
Collapse
Affiliation(s)
- Yonghao Wang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Satomi Adegawa
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Kazuhisa Miyamoto
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yoko Takasu
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Sanae Wada
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Dingze Mang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Xiaoyi Li
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Seungwon Kim
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Kenji Watanabe
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
29
|
Zhang D, Jin M, Yang Y, Zhang J, Yang Y, Liu K, Soberón M, Bravo A, Xiao Y, Wu K. Synergistic resistance of Helicoverpa armigera to Bt toxins linked to cadherin and ABC transporters mutations. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103635. [PMID: 34363975 DOI: 10.1016/j.ibmb.2021.103635] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Resistance evolution of target pests reduces efficacy of Bacillus thuringiensis Cry toxins used in insect-pest control. Mutations in Cadherin (CAD) or ATP-binding cassette (ABC) transporters genes are linked to Cry resistance in different pests. Also, it has been shown that ABCC2 and CAD have synergistic interaction on Cry toxicity when co-express in cell lines, which we confirmed here by Helicoverpa armigera HaABCC2 and HaCAD expression in Hi5 cells. To confirm that CAD and ABC transporters interact in vivo, we constructed nearly H. armigera isogenic lines such as LFC2 and 96CAD strains, linked to HaABCC2 and HaCAD mutations that showed 512- and 396-fold Cry1Ac resistance-ratios, respectively. Interestingly, Fusion-1 strain linked to both HaABCC2 and HaCAD mutations, showed 6273-fold resistance-ratio, significantly higher than the single mutant strains. To confirm the interaction of HaABCC2 and CAD in Cry1Ac resistance, we analyzed the Cry1Ac susceptibility in CRISPR/Cas9 knockdown strains, C2-KO (ABCC2-gene knockout-strain) and CAD-KO (CAD-gene knockout-strain), that showed 112- and 531-fold Cry1Ac resistance-ratios, respectively. However, the resistance-ratio of Fusion-2 strain obtained from crossing C2-KO and CAD-KO strains, was only 816-fold. The analysis of HaABCC3 gene transcript levels showed nearly 4-fold lower expression in LFC2 and Fusion-1 strains compared to the susceptible strain, suggesting that additional mutations in these strains resulted in low HaABCC3 expression, which contribute to their enhanced Cry1Ac resistance. Our data show that the CAD and ABCC2/ABCC3 interact synergistically to induce high Cry1Ac resistance in H. armigera. These results can be helpful for Bt resistance monitoring and pest management.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minghui Jin
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanchao Yang
- College of Life Science, Central China Normal University, Wuhan, China
| | - Jianfeng Zhang
- College of Life Science, Central China Normal University, Wuhan, China
| | - Yongbo Yang
- College of Life Science, Central China Normal University, Wuhan, China
| | - Kaiyu Liu
- College of Life Science, Central China Normal University, Wuhan, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Yutao Xiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
30
|
Güney G, Cedden D, Hänniger S, Heckel DG, Coutu C, Hegedus DD, Mutlu DA, Suludere Z, Sezen K, Güney E, Toprak U. Silencing of an ABC transporter, but not a cadherin, decreases the susceptibility of Colorado potato beetle larvae to Bacillus thuringiensis ssp. tenebrionis Cry3Aa toxin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21834. [PMID: 34288075 DOI: 10.1002/arch.21834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), is a major pest of potato plants worldwide and is notorious for its ability to develop resistance to insecticides. Cry3 toxins synthesized by Bacillus thuringiensis ssp. tenebrionis have been used successfully to manage this pest. Resistance to Cry toxins is a concerning problem for many insect pests; therefore, it is important to determine the mechanisms by which insects acquire resistance to these toxins. Cadherin-like and ABC transporter proteins have been implicated in the mode of action of Cry toxins as mutations in these genes render lepidopterans resistant to them; however, clear consensus does not exist on whether these proteins also play a role in Cry3 toxin activity and/or development of resistance in coleopterans. In the current study, we identified the L. decemlineata orthologues of the cadherin (LdCAD) and the ABCB transporter (LdABCB1) that have been implicated in the mode of action of Cry toxins in other coleopterans. Suppression of LdABCB1 via RNA interference reduced toxin-related larval mortality, whereas partial silencing of LdCAD did not. Our results suggest that the ABCB is involved in the mode of action of Cry3Aa toxins; however, no evidence was found to support the role of cadherin as a receptor of Cry3Aa in L. decemlineata.
Collapse
Affiliation(s)
- Gözde Güney
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Doğa Cedden
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | | | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Kazım Sezen
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Ebru Güney
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Umut Toprak
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
31
|
Perera OP, Little NS, Abdelgaffar H, Jurat-Fuentes JL, Reddy GVP. Genetic Knockouts Indicate That the ABCC2 Protein in the Bollworm Helicoverpa zea Is Not a Major Receptor for the Cry1Ac Insecticidal Protein. Genes (Basel) 2021; 12:1522. [PMID: 34680917 PMCID: PMC8535714 DOI: 10.3390/genes12101522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
Members of the insect ATP binding cassette transporter subfamily C2 (ABCC2) in several moth species are known as receptors for the Cry1Ac insecticidal protein from Bacillus thuringiensis (Bt). Mutations that abolish the functional domains of ABCC2 are known to cause resistance to Cry1Ac, although the reported levels of resistance vary widely depending on insect species. In this study, the function of the ABCC2 gene as a putative Cry1Ac receptor in Helicoverpa zea, a major pest of over 300 crops, was evaluated using CRISPR/Cas9 to progressively eliminate different functional ABCC2 domains. Results from bioassays with edited insect lines support that mutations in ABCC2 were associated with Cry1Ac resistance ratios (RR) ranging from 7.3- to 39.8-fold. No significant differences in susceptibility to Cry1Ac were detected between H. zea with partial or complete ABCC2 knockout, although the highest levels of tolerance were observed when knocking out half of ABCC2. Based on >500-1000-fold RRs reported in similar studies for closely related moth species, the low RRs observed in H. zea knockouts support that ABCC2 is not a major Cry1Ac receptor in this insect.
Collapse
Affiliation(s)
- Omaththage P. Perera
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776, USA; (N.S.L.); (G.V.P.R.)
| | - Nathan S. Little
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776, USA; (N.S.L.); (G.V.P.R.)
| | - Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (H.A.); (J.L.J.-F.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (H.A.); (J.L.J.-F.)
| | - Gadi V. P. Reddy
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776, USA; (N.S.L.); (G.V.P.R.)
| |
Collapse
|
32
|
Zhao Z, Elsik CG, E Hibbard B, S Shelby K. Detection of alternative splicing in western corn rootworm (Diabrotica virgifera virgifera LeConte) in association with eCry3.1Ab resistance using RNA-seq and PacBio Iso-Seq. INSECT MOLECULAR BIOLOGY 2021; 30:436-445. [PMID: 33955085 DOI: 10.1111/imb.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Alternative splicing is a common feature in eukaryotes that not only increases the transcript diversity, but also has functional consequences. In insects, alternative splicing has been found associated with resistance to pesticides and Bt toxins. Up to date, the alternative splicing in western corn rootworm (Diabrotica virgifera virgifera LeConte) has not been studied. To investigate its alternative splicing pattern and relation to Bt resistance, we carried out single-molecule real-time (SMRT) transcript sequencing and Iso-seq analysis on resistant, eCry3.1Ab-selected and susceptible, unselected, western corn rootworm neonate midguts which fed on seedling maize with and without eCry3.1Ab for 12 and 24 h. We present transcriptome-wide alternative splicing patterns of western corn rootworm midgut in response to feeding on eCry3.1Ab-expressing corn using a comprehensive approach that combines both RNA-seq and SMRT transcript sequencing techniques. The results showed genes in western corn rootworm are highly alternatively spliced, which happens on 67.73% of multi-exon genes. One of the alternative splicing events we identified was a novel peritrophic matrix protein with two alternative splicing isoforms. Analysis of differential exon usage between resistant and susceptible colonies showed that in eCry3.1Ab-resistant western corn rootworm, expression of one isoform was significantly higher than in the susceptible colony, while no significant differences between colonies were observed with the other isoform. Our results provide the first survey of alternative splicing in western corn rootworm and suggest that the observed alternatively spliced isoforms of peritrophic matrix protein may be associated with eCry3.1Ab resistance in western corn rootworm.
Collapse
Affiliation(s)
- Z Zhao
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - C G Elsik
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - B E Hibbard
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
- USDA-ARS Plant Genetics Research Unit, Columbia, MO, USA
| | - K S Shelby
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
- USDA-ARS Biological Control of Insects Research Laboratory, Columbia, MO, USA
| |
Collapse
|
33
|
Xiao Y, Li W, Yang X, Xu P, Jin M, Yuan H, Zheng W, Soberón M, Bravo A, Wilson K, Wu K. Rapid spread of a densovirus in a major crop pest following wide-scale adoption of Bt-cotton in China. eLife 2021; 10:e66913. [PMID: 34263726 PMCID: PMC8324301 DOI: 10.7554/elife.66913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bacillus thuringiensis (Bt) crops have been widely planted and the effects of Bt-crops on populations of the target and non-target insect pests have been well studied. However, the effects of Bt-crops exposure on microorganisms that interact with crop pests have not previously been quantified. Here, we use laboratory and field data to show that infection of Helicoverpa armigera with a densovirus (HaDV2) is associated with its enhanced growth and tolerance to Bt-cotton. Moreover, field monitoring showed a much higher incidence of cotton bollworm infection with HaDV2 in regions cultivated with Bt-cotton than in regions without it, with the rate of densovirus infection increasing with increasing use of Bt-cotton. RNA-seq suggested tolerance to both baculovirus and Cry1Ac were enhanced via the immune-related pathways. These findings suggest that exposure to Bt-crops has selected for beneficial interactions between the target pest and a mutualistic microorganism that enhances its performance on Bt-crops under field conditions.
Collapse
Affiliation(s)
- Yutao Xiao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Wenjing Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural SciencesWuhanChina
| | - Xianming Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
- Lancaster Environment Centre, Lancaster UniversityLancasterUnited Kingdom
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - He Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Weigang Zheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosUnited States
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosUnited States
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Lancaster Environment Centre, Lancaster UniversityLancasterUnited Kingdom
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
34
|
Evaluation of Reference Genes and Expression Level of Genes Potentially Involved in the Mode of Action of Cry1Ac and Cry1F in a Susceptible Reference Strain of Chrysodeixis includens. INSECTS 2021; 12:insects12070598. [PMID: 34209276 PMCID: PMC8304518 DOI: 10.3390/insects12070598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Soybean looper (a moth species) is a major pest of soybean plants in the American continent and its larvae need to be kept under economic damage thresholds to guarantee sustainable yields. Soybean looper control relies mostly on the use of insecticides and genetically modified crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Due to the high selection pressure exerted by these control measures, resistance has developed to different insecticides and Bt proteins. Here, we tested the basal sensitivity of a soybean looper laboratory reference strain against two insecticidal proteins and determined the level of expression of potential receptors of these proteins across all (six) larval stages. Furthermore, we identified stable reference genes across all larval stages to normalize gene expression data obtained by quantitative polymerase chain reaction (qPCR). The results presented in this communication are useful to support future studies on insecticide and insecticidal protein resistance in soybean looper. Abstract Soybean looper (SBL), Chrysodeixis includens (Walker), is one of the major lepidopteran pests of soybean in the American continent. SBL control relies mostly on the use of insecticides and genetically modified crops expressing Bacillus thuringiensis (Bt) insecticidal Cry proteins. Due to the high selection pressure exerted by these control measures, resistance has developed to different insecticides and Bt proteins. Nevertheless, studies on the mechanistic background are still scarce. Here, the susceptibility of the laboratory SBL-Benzon strain to the Bt proteins Cry1Ac and Cry1F was determined in diet overlay assays and revealed a greater activity of Cry1Ac than Cry1F, thus confirming results obtained for other sensitive SBL strains. A reference gene study across larval stages with four candidate genes revealed that RPL10 and EF1 were the most stable genes for normalization of gene expression data obtained by RT-qPCR. Finally, the basal expression levels of eight potential Bt protein receptor genes in six larval instars were analyzed, including ATP-binding cassette (ABC) transporters, alkaline phosphatase, aminopeptidases, and cadherin. The results presented here provide fundamental knowledge to support future SBL resistance studies.
Collapse
|
35
|
Borovsky D, Deckers K, Vanhove AC, Verstraete M, Rougé P, Shatters RG, Powell CA. Cloning and Characterization of Aedes aegypti Trypsin Modulating Oostatic Factor (TMOF) Gut Receptor. Biomolecules 2021; 11:biom11070934. [PMID: 34201823 PMCID: PMC8301768 DOI: 10.3390/biom11070934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
Trypsin Modulating Oostatic Factor (TMOF) receptor was solubilized from the guts of female Ae. Aegypti and cross linked to His6-TMOF and purified by Ni affinity chromatography. SDS PAGE identified two protein bands (45 and 61 kDa). The bands were cut digested and analyzed using MS/MS identifying a protein sequence (1306 amino acids) in the genome of Ae. aegypti. The mRNA of the receptor was extracted, the cDNA sequenced and cloned into pTAC-MAT-2. E. coli SbmA− was transformed with the recombinant plasmid and the receptor was expressed in the inner membrane of the bacterial cell. The binding kinetics of TMOF-FITC was then followed showing that the cloned receptor exhibits high affinity to TMOF (KD = 113.7 ± 18 nM ± SEM and Bmax = 28.7 ± 1.8 pmol ± SEM). Incubation of TMOF-FITC with E. coli cells that express the receptor show that the receptor binds TMOF and imports it into the bacterial cells, indicating that in mosquitoes the receptor imports TMOF into the gut epithelial cells. A 3D modeling of the receptor indicates that the receptor has ATP binding sites and TMOF transport into recombinant E. coli cells is inhibited with ATPase inhibitors Na Arsenate and Na Azide.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
- Correspondence:
| | - Kato Deckers
- Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.D.); (A.C.V.); (M.V.)
| | - Anne Catherine Vanhove
- Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.D.); (A.C.V.); (M.V.)
| | - Maud Verstraete
- Zoological Institute, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (K.D.); (A.C.V.); (M.V.)
| | - Pierre Rougé
- UMR 152 Pharma-Dev, Faculté des Sciences Pharmaceutiques, Institut de Recherche et Développement, Université Toulouse 3, F-31062 Toulouse, France;
| | - Robert G. Shatters
- USDA ARS, Subtropical Horticultural Laboratory, 2001 Rock Road, Ft. Pierce, FL 34945, USA;
| | - Charles A. Powell
- UF-IFAS Indian River Research and Education Center, Fort Pierce, FL 34945, USA;
| |
Collapse
|
36
|
The Essential and Enigmatic Role of ABC Transporters in Bt Resistance of Noctuids and Other Insect Pests of Agriculture. INSECTS 2021; 12:insects12050389. [PMID: 33924857 PMCID: PMC8145640 DOI: 10.3390/insects12050389] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary The insect family, Noctuidae, contains some of the most damaging pests of agriculture, including bollworms, budworms, and armyworms. Transgenic cotton and maize expressing Cry-type insecticidal proteins from Bacillus thuringiensis (Bt) are protected from such pests and greatly reduce the need for chemical insecticides. However, evolution of Bt resistance in the insects threatens the sustainability of this environmentally beneficial pest control strategy. Understanding the interaction between Bt toxins and their targets in the insect midgut is necessary to evaluate the risk of resistance evolution. ABC transporters, which in eukaryotes typically expel small molecules from cells, have recently been proposed as a target for the pore-forming Cry toxins. Here we review the literature surrounding this hypothesis in noctuids and other insects. Appreciation of the critical role of ABC transporters will be useful in discovering counterstrategies to resistance, which is already evolving in some field populations of noctuids and other insects. Abstract In the last ten years, ABC transporters have emerged as unexpected yet significant contributors to pest resistance to insecticidal pore-forming proteins from Bacillus thuringiensis (Bt). Evidence includes the presence of mutations in resistant insects, heterologous expression to probe interactions with the three-domain Cry toxins, and CRISPR/Cas9 knockouts. Yet the mechanisms by which ABC transporters facilitate pore formation remain obscure. The three major classes of Cry toxins used in agriculture have been found to target the three major classes of ABC transporters, which requires a mechanistic explanation. Many other families of bacterial pore-forming toxins exhibit conformational changes in their mode of action, which are not yet described for the Cry toxins. Three-dimensional structures of the relevant ABC transporters, the multimeric pore in the membrane, and other proteins that assist in the process are required to test the hypothesis that the ATP-switch mechanism provides a motive force that drives Cry toxins into the membrane. Knowledge of the mechanism of pore insertion will be required to combat the resistance that is now evolving in field populations of insects, including noctuids.
Collapse
|
37
|
Bacillus thuringiensis Cry1Ab Domain III β-16 Is Involved in Binding to Prohibitin, Which Correlates with Toxicity against Helicoverpa armigera (Lepidoptera: Noctuidae). Appl Environ Microbiol 2021; 87:AEM.01930-20. [PMID: 33127814 DOI: 10.1128/aem.01930-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/24/2020] [Indexed: 01/09/2023] Open
Abstract
Helicoverpa armigera is a major insect pest of several crops worldwide. This insect is susceptible to some Bacillus thuringiensis (Bt) Cry insecticidal proteins expressed in transgenic crops or used in biopesticides. Previously, we identified H. armigera prohibitin (HaPHB) as a Cry1Ac-binding protein. Here, we further analyzed the potential role of PHB as a Cry toxin receptor in comparison to cadherin (CAD), well recognized as a Cry1Ac receptor. HaPHB-2 midgut protein and HaCAD toxin-binding region (TBR) fragment from H. armigera were expressed in Escherichia coli cells, and binding assays with different Cry1 toxins were performed. We demonstrated that Cry1Ab, Cry1Ac, and Cry1Fa toxins bound to HaPHB-2 in a manner similar to that seen with HaCAD-TBR. Different Cry1Ab mutant toxins located in domain II (Cry1AbF371A and Cry1AbG439D) or domain III (Cry1AbL511A and Cry1AbN514A), which were previously characterized and found to be affected in receptor binding, were analyzed regarding their binding interaction with HaPHB-2 and toxicity against H. armigera One β-16 mutant (Cry1AbN514A) showed increased binding to HaPHB-2 that correlated with 6-fold-higher toxicity against H. armigera, whereas the other β-16 mutant (Cry1AbL511A) was affected in binding to HaPHB-2 and lost toxicity against H. armigera Our data indicate that β-16 from domain III of Cry1Ab is involved in interactions with HaPHB-2 and in toxicity. This report identifies a region of Cry1Ab involved in binding to HaPHB-2 from a Lepidoptera insect, suggesting that this protein may participate as a novel receptor in the mechanism of action of the Cry1 toxins in H. armigera IMPORTANCE Helicoverpa armigera is a polyphagous pest that feeds on important crops worldwide. This insect pest is sensitive to different Cry1 toxins from Bacillus thuringiensis In this study, we analyzed the potential role of PHB-2 as a Cry1 toxin receptor in comparison to CAD. We show that different Cry1 toxins bound to HaPHB-2 and HaCAD-TBR similarly and identify β-16 from domain III of Cry1Ab as a binding region involved in the interaction with HaPHB-2 and in toxicity. This report characterized HaPHB-Cry1 binding interaction, providing novel insights into potential target sites for improving Cry1 toxicity against H. armigera.
Collapse
|
38
|
Chen G, Wang Y, Liu Y, Chen F, Han L. Differences in midgut transcriptomes between resistant and susceptible strains of Chilo suppressalis to Cry1C toxin. BMC Genomics 2020; 21:634. [PMID: 32928099 PMCID: PMC7490912 DOI: 10.1186/s12864-020-07051-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background Chilo suppressalis is a widespread rice pest that poses a major threat to food security in China. This pest can develop resistance to Cry toxins from Bacillus thuringiensis (Bt), threatening the sustainable use of insect-resistant transgenic Bt rice. However, the molecular basis for the resistance mechanisms of C. suppressalis to Cry1C toxin remains unknown. This study aimed to identify genes associated with the mechanism of Cry1C resistance in C. suppressalis by comparing the midgut transcriptomic responses of resistant and susceptible C. suppressalis strains to Cry1C toxin and to provide information for insect resistance management. Results A C. suppressalis midgut transcriptome of 139,206 unigenes was de novo assembled from 373 million Illumina HiSeq and Roche 454 clean reads. Comparative analysis identified 5328 significantly differentially expressed unigenes (DEGs) between C. suppressalis Cry1C-resistant and -susceptible strains. DEGs encoding Bt Cry toxin receptors, aminopeptidase-P like protein, the ABC subfamily and alkaline phosphatase were downregulated, suggesting an association with C. suppressalis Cry1C resistance. Additionally, Cry1C resistance in C. suppressalis may be related to changes in the transcription levels of enzymes involved in hydrolysis, digestive, catalytic and detoxification processes. Conclusion Our study identified genes potentially involved in Cry1C resistance in C. suppressalis by comparative transcriptome analysis. The assembled and annotated transcriptome data provide valuable genomic resources for further study of the molecular mechanisms of C. suppressalis resistance to Cry toxins.
Collapse
Affiliation(s)
- Geng Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanhui Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanmin Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lanzhi Han
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
39
|
Resistance to Bacillus thuringiensis Cry1Ac toxin requires mutations in two Plutella xylostella ATP-binding cassette transporter paralogs. PLoS Pathog 2020; 16:e1008697. [PMID: 32776976 PMCID: PMC7446926 DOI: 10.1371/journal.ppat.1008697] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/20/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022] Open
Abstract
The diamondback moth, Plutella xylostella, is a cosmopolitan pest and the first species to develop field resistance to toxins from the gram-positive bacterium Bacillus thuringiensis (Bt). Although previous work has suggested that mutations of ATP-binding cassette transporter subfamily C2 (ABCC2) or C3 (ABCC3) genes can confer Cry1Ac resistance, here we reveal that P. xylostella requires combined mutations in both PxABCC2 and PxABCC3 to achieve high-level Cry1Ac resistance, rather than simply a mutation of either gene. We identified natural mutations of PxABCC2 and PxABCC3 that concurrently occurred in a Cry1Ac-resistant strain (Cry1S1000) of P. xylostella, with a mutation (RA2) causing the mis-splicing of PxABCC2 and another mutation (RA3) leading to the premature termination of PxABCC3. Genetic linkage analysis showed that RA2 and RA3 were tightly linked to Cry1Ac resistance. Introgression of RA2 and RA3 enabled a susceptible strain (G88) of P. xylostella to obtain high resistance to Cry1Ac, confirming that these genes confer resistance. To further support the role of PxABCC2 and PxABCC3 in Cry1Ac resistance, frameshift mutations were introduced into PxABCC2 and PxABCC3 singly and in combination in the G88 strain with CRISPR/Cas9 mediated mutagenesis. Bioassays of CRISPR-based mutant strains, plus genetic complementation tests, demonstrated that the deletion of PxABCC2 or PxABCC3 alone provided < 4-fold tolerance to Cry1Ac, while disruption of both genes together conferred >8,000-fold resistance to Cry1Ac, suggesting the redundant/complementary roles of PxABCC2 and PxABCC3. This work advances our understanding of Bt resistance in P. xylostella by demonstrating mutations within both PxABCC2 and PxABCC3 genes are required for high-level Cry1Ac resistance. Bacillus thuringiensis (Bt) foliar sprays and transgenic crops expressing Bt toxins are used extensively to control insect pests, but the evolution of resistance limits their efficacy. Multiple studies have reported that ATP-binding cassette (ABC) transporters are important Bt receptors, and mutations in either ABCC2 or ABCC3 can lead to Cry1Ac-toxin resistance, although this process is not fully understood. In this study, we applied both forward and reverse genetic analyses to demonstrate that high-level Bt-Cry1Ac resistance in Plutella xylostella requires concurrent mutations in both PxABCC2 and PxABCC3. We identified inactivating mutations in these two genes from a Cry1Ac-resistant strain (Cry1S1000) of P. xylostella and conducted genetic linkage analysis, which supported the role that PxABCC2 and PxABCC3 were the causal genes of Cry1Ac resistance. We then knocked out PxABCC2 and PxABCC3 in a P. xylostella susceptible reference strain (G88) to confirm that high-level Cry1Ac resistance requires mutation of PxABCC2 and PxABCC3, rather than a mutation of either one gene. This finding expands our understanding of complex Bt resistance processes and may be relevant to Bt-Cry1Ac resistance in other lepidopteran insects.
Collapse
|
40
|
Wang J, Zuo Y, Li L, Wang H, Liu S, Yang Y, Wu Y. Knockout of three aminopeptidase N genes does not affect susceptibility of Helicoverpa armigera larvae to Bacillus thuringiensis Cry1A and Cry2A toxins. INSECT SCIENCE 2020; 27:440-448. [PMID: 30767423 PMCID: PMC7277041 DOI: 10.1111/1744-7917.12666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/19/2019] [Accepted: 01/30/2019] [Indexed: 05/31/2023]
Abstract
Bacillus thuringiensis (Bt) insecticidal toxins have been globally utilized for control of agricultural insects through spraying or transgenic crops. Binding of Bt toxins to special receptors on midgut epithelial cells of target insects is a key step in the mode of action. Previous studies suggested aminopeptidase N1 (APN1) as a receptor or putative receptor in several lepidopteran insects including Helicoverpa armigera through evidence from RNA interefence-based gene silencing approaches. In the current study we tested the role of APNs in the mode of action of Bt toxins using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene knockout. Three APN genes (HaAPN1, HaAPN2 and HaAPN5) were individually knocked out in a susceptible strain (SCD) of H. armigera to establish three homozygous knockout strains. Qualitative in vitro binding studies indicated binding of Cry1Ac or Cry2Ab to midgut brush border membrane vesicles was not obviously affected by APN knockout. Bioassay results showed that none of the three knockouts had significant changes in susceptibility to Cry1A or Cry2A toxins when compared with the SCD strain. This suggests that the three HaAPN genes we tested may not be critical in the mode of action of Cry1A or Cry2A toxins in H. armigera.
Collapse
Affiliation(s)
- Jing Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Ya‐Yun Zuo
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Ling‐Li Li
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Hui Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Shao‐Yan Liu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yi‐Hua Yang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yi‐Dong Wu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
41
|
Heckel DG. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21673. [PMID: 32212396 DOI: 10.1002/arch.21673] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 05/29/2023]
Abstract
Three-domain Cry toxins from the bacterium Bacillus thuringiensis (Bt) are increasingly used in agriculture to replace chemical insecticides in pest control. Most chemical insecticides kill pest insects swiftly, but are also toxic to beneficial insects and other species in the agroecosystem. Cry toxins enjoy the advantages of high selectivity and the possibility of the application by sprays or transgenic plants. However, these benefits are offset by the limited host range and the evolution of resistance to Bt toxins by insect pests. Understanding how Bt toxins kill insects will help to understand the nature of both problems. The recent realization that ABC transporters play a central role in the killing mechanism will play an important role in devising solutions.
Collapse
Affiliation(s)
- David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
42
|
Wang B, Wei J, Wang Y, Chen L, Liang G. Polycalin is involved in the toxicity and resistance to Cry1Ac toxin in Helicoverpa armigera (Hübner). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21661. [PMID: 32011765 DOI: 10.1002/arch.21661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/02/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Polycalin has been confirmed as a binding protein of the Cry toxins in a few Lepidoptera insects, but its function in the action mechanism of Cry1Ac and whether it is involved in resistance evolution are still unclear. In this study, Ligand blot and enzyme-linked immunosorbent assays showed that Helicoverpa armigera polycalin could specifically interact with Cry1Ac with a high affinity (Kd = 118.80 nM). Importantly, antisera blocking polycalin in H. armigera larvae decreased the toxicity of Cry1Ac by 31.84%. Furthermore, the relative gene and protein expressions were lower in Cry1Ac-resistant strain (LF60) than that in Cry1Ac-susceptible strain (LF). These findings indicated that H. armigera polycalin was a possible receptor of Cry1Ac and may be contributed to the resistance to Cry1Ac.
Collapse
Affiliation(s)
- Bingjie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management of Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yanan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Wang X, Xu Y, Huang J, Jin W, Yang Y, Wu Y. CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin. Toxins (Basel) 2020; 12:toxins12040246. [PMID: 32290427 PMCID: PMC7232378 DOI: 10.3390/toxins12040246] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
The adoption of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystalline (Cry) proteins has reduced insecticide application, increased yields, and contributed to food safety worldwide. However, the efficacy of transgenic Bt crops is put at risk by the adaptive resistance evolution of target pests. Previous studies indicate that resistance to Bacillus thuringiensis Cry1A and Cry1F toxins was genetically linked with mutations of ATP-binding cassette (ABC) transporter subfamily C gene ABCC2 in at least seven lepidopteran insects. Several strains selected in the laboratory of the Asian corn borer, Ostrinia furnacalis, a destructive pest of corn in Asian Western Pacific countries, developed high levels of resistance to Cry1A and Cry1F toxins. The causality between the O. furnacalisABCC2 (OfABCC2) gene and resistance to Cry1A and Cry1F toxins remains unknown. Here, we successfully generated a homozygous strain (OfC2-KO) of O. furnacalis with an 8-bp deletion mutation of ABCC2 by the CRISPR/Cas9 approach. The 8-bp deletion mutation results in a frame shift in the open reading frame of transcripts, which produced a predicted protein truncated in the TM4-TM5 loop region. The knockout strain OfC2-KO showed much more than a 300-fold resistance to Cry1Fa, and low levels of resistance to Cry1Ab and Cry1Ac (<10-fold), but no significant effects on the toxicities of Cry1Aa and two chemical insecticides (abamectin and chlorantraniliprole), compared to the background NJ-S strain. Furthermore, we found that the Cry1Fa resistance was autosomal, recessive, and significantly linked with the 8-bp deletion mutation of OfABCC2 in the OfC2-KO strain. In conclusion, in vivo functional investigation demonstrates the causality of the OfABCC2 truncating mutation with high-level resistance to the Cry1Fa toxin in O. furnacalis. Our results suggest that the OfABCC2 protein might be a functional receptor for Cry1Fa and reinforces the association of this gene to the mode of action of the Cry1Fa toxin.
Collapse
Affiliation(s)
| | | | | | | | | | - Yidong Wu
- Correspondence: ; Tel.: +86-25-8439-6062
| |
Collapse
|
44
|
NanGong Z, Guo X, Yang Q, Song P, Wang Q, Parajulee MN. Identification of Arylphorin interacting with the insecticidal protein PirAB from Xenorhabdus nematophila by yeast two-hybrid system. World J Microbiol Biotechnol 2020; 36:56. [PMID: 32211973 DOI: 10.1007/s11274-020-02833-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/18/2020] [Indexed: 11/28/2022]
Abstract
PirAB toxin was initially found in the Photorhabdus luminescens TT01 strain and is a demonstrated binary toxin with high insecticidal activity. In this paper, we co-expressed the pirAB gene of Xenorhabdus nematophila HB310 in a prokaryotic expression system, and we found that the PirAB protein showed high hemocoel insecticidal activity against Galleria mellonella, Helicoverpa armigera and Spodoptera exigua. LD50 values were 1.562, 2.003 and 2.17 μg/larvae for G. mellonella, H. armigera, and S. exigua, respectively (p > 0.05). Additionally, PirAB-interaction proteins were identified from G. mellonella by 6 × His Protein Pulldown combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Of which, arylphorin of G. mellonella showed the highest matching rate. A protein domain conservative structure analysis indicated that arylphorin has three domains including Hemocyanin-N, Hemocyanin-M, and Hemocyanin-C. Among these protein domains, Hemocyanin-C has immune and recognition functions. Further, Hemocyanin-C domain of arylphorin was identified to interact with PirA but not PirB by Yeast two-hybrid system. These findings reveal, for the first time, new host protein interacting with PirAB. The identification of interaction protein may serve as the foundation for further study on the function and insecticidal mechanism of this binary toxin from Xenorhabdus.
Collapse
Affiliation(s)
- Ziyan NanGong
- Plant Protection College, Hebei Agricultural University, Baoding, 071000, China.
| | - Xiaoxiao Guo
- Plant Protection College, Hebei Agricultural University, Baoding, 071000, China
| | - Qing Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Ping Song
- Plant Protection College, Hebei Agricultural University, Baoding, 071000, China
| | - Qinying Wang
- Plant Protection College, Hebei Agricultural University, Baoding, 071000, China
| | - Megha N Parajulee
- Texas A&M AgriLife Research and Extension Center, Lubbock, TX, 79403, USA
| |
Collapse
|
45
|
Wei W, Pan S, Ma Y, Xiao Y, Yang Y, He S, Bravo A, Soberón M, Liu K. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103306. [PMID: 31843687 DOI: 10.1016/j.ibmb.2019.103306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) are powerful tools for insect control. Cry toxin receptors such as cadherin (CAD), ABCC2 transporter and alkaline phosphatase (ALP), located on insect midgut cells, are needed for Cry toxicity. Although insect cell lines are useful experimental models for elucidating toxin action mechanism, most of them show low expression of Cry-receptors genes. The GATA transcription factor family plays important roles in regulating development and differentiation of intestine stem cells. Here, we investigated whether GATAs transcription factors are involved in the expression of Cry1Ac-receptors genes, using multiple insect cell lines. Four GATA genes were identified in the transcriptome of the midgut tissue from the lepidopteran larvae Helicoverpa armigera. These HaGATA genes were transiently expressed in three lepidopteran cell lines, Spodoptera frugiperda Sf9, H. armigera QB-Ha-E5 and Trichoplusia ni Hi5. Analysis of transcription activity using transcriptional gene-fusions showed that only H. armigera GATAe (HaGATAe) significantly increased the transcription of CAD, ABCC2 and ALP receptors genes in all insect cell lines. Key DNA regions for HaGATAe regulation were identified in the promoter sequence of these Cry-receptors genes by using promoter deletion mapping. The transient expression of HaGATAe in these cell lines, conferred sensitivity to Cry1Ac toxin, although in Hi5 cells the susceptibility to Cry1Ac was lower than in other two cell lines. High sensitivity to Cry1Ac correlated with simultaneous transcription of ABCC2 and CAD genes in Sf9 and QB-Ha-E5 cells. Our results reveal that HaGATAe enhances transcription of several lepidopteran Cry1Ac receptor genes in cultured insect cells.
Collapse
Affiliation(s)
- Wei Wei
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Shuang Pan
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Yuemin Ma
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Sijia He
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico.
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China.
| |
Collapse
|
46
|
Wang J, Ma H, Zhao S, Huang J, Yang Y, Tabashnik BE, Wu Y. Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLoS Pathog 2020; 16:e1008427. [PMID: 32191775 PMCID: PMC7108736 DOI: 10.1371/journal.ppat.1008427] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/31/2020] [Accepted: 02/21/2020] [Indexed: 01/20/2023] Open
Abstract
Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Better understanding of the genetic basis of resistance is needed to more effectively monitor, manage, and counter pest resistance to Bt toxins. Here we used CRISPR/Cas9 gene editing to clarify the genetics of Bt resistance and the associated effects on susceptibility to other microbial insecticides in one of the world's most damaging pests, the cotton bollworm (Helicoverpa armigera). We discovered that CRISPR-mediated knockouts of ATP-binding cassette (ABC) transporter genes HaABCC2 and HaABCC3 together caused >15,000-fold resistance to Bt toxin Cry1Ac, whereas knocking out either HaABCC2 or HaABCC3 alone had little or no effect. Inheritance of resistance was autosomal and recessive. Bioassays of progeny from interstrain crosses revealed that one wild type allele of either HaABCC2 or HaABCC3 is sufficient to sustain substantial susceptibility to Cry1Ac. In contrast with previous results, susceptibility to two insecticides derived from bacteria other than Bt (abamectin and spinetoram), was not affected by knocking out HaABCC2, HaABCC3, or both. The results here provide the first evidence that either HaABCC2 or HaABCC3 protein is sufficient to confer substantial susceptibility to Cry1Ac. The functional redundancy of these two proteins in toxicity of Cry1Ac to H. armigera is expected to reduce the likelihood of field-evolved resistance relative to disruption of a toxic process where mutations affecting a single protein can confer resistance.
Collapse
Affiliation(s)
- Jing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huanhuan Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shan Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianlei Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bruce E. Tabashnik
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
47
|
Shabbir MZ, Zhang T, Prabu S, Wang Y, Wang Z, Bravo A, Soberón M, He K. Identification of Cry1Ah-binding proteins through pull down and gene expression analysis in Cry1Ah-resistant and susceptible strains of Ostrinia furnacalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:200-208. [PMID: 31973858 DOI: 10.1016/j.pestbp.2019.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Bacillus thuringiensis produces insecticidal Cry toxins used in the control of multiple insect pests. Evolution of insect resistance to Bt toxins endangers the use of Cry toxins for pest control. Analysis of the Cry1Ah-binding proteins from brush border membrane vesicles (BBMV) of Ostrinia furnacalis, Asian corn borer (ACB) from the Cry1Ah-resistant (ACB-AhR) and susceptible (ACB-BtS) strains was performed by an improved pull down assay that includes coupling Cry1Ah to NHS-activated Sepharose combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our data show that Cry1Ah bound to alkaline phosphatase (ALP), cadherin-like (CAD), actin, aminopeptidase-N (APN), prophenoloxidase (proPO), serine proteinase inhibitor (SPI), immulectin, and V-ATPase and to other proteins that were not previously characterized as Cry-binding proteins in ACB-BtS strain. Analysis of Cry1Ah-pulled down proteins of the BBMV from ACB-AhR revealed that Cry1Ah toxin did not bind to ALP in ACB-AhR strain, suggesting that this protein may correlate with the resistant phenotype of this strain. Additionally, we analyzed the expression of representative genes coding for Cry1Ah-binding proteins such as ALP, APN, CAD, proPO, SPI, and immulectin by qRT-PCR. ACB-AhR showed increased expression levels of proPO (7.5 fold), ALP (6.2 fold) and APN (1.4 fold) in comparison to ACB-BtS strain. In contrast, the cad gene showed slight decreased expression in ACB-AhR strain (0.7 fold) compared with ACB-BtS strain. Our data suggest that differences in the susceptibility to Cry1Ah toxin in the ACB-AhR strain may be associated with reduced ALP binding sites and with an increased immune response. This study also brings evidence of a possible binding interaction of Cry1Ah toxin to immune related proteins like proPO.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shabbir
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
48
|
Liu S, Wang S, Wu S, Wu Y, Yang Y. Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. PLoS One 2020; 15:e0228159. [PMID: 32004347 PMCID: PMC6994024 DOI: 10.1371/journal.pone.0228159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
Proteolytic processing of Bacillus thuringiensis (Bt) Cry protoxins by insect midgut proteases is critical to their insecticidal activities against target insects. Although transgenic Bt cotton expressing Cry1Ac and Cry2Ab proteins have been widely used for control of the cotton bollworm (Helicoverpa armigera) in the field, the proteolytic cleavage sites in the two protoxins targeted by H. armigera midgut proteases are still not clear. In this study, the proteolysis of Cry1Ac and Cry2Ab protoxins by midgut juice prepared from midgut tissue of H. armigera larvae was investigated. Cleavage of Cry1Ac protoxin by midgut proteases formed a major protein fragment of ~65 kDa, and N-terminal sequencing revealed that cleavage occurred at Arg28 in the fore-end of helix α-1 in domain I of Cry1Ac. Cleavage of Cry2Ab protoxin by midgut juice proteases produced a major protein fragment of ~50 kDa, and the cleavage occurred at Arg139 between helices α-3 and α-4 in domain I of Cry2Ab. The amino acids Arg28 of Cry1Ac and Arg139 of Cry2Ab were predicted as putative trypsin cleavage sites. Bioassay data showed that the toxicities (LC50s) of Cry1Ac and Cry2Ab protoxins were equivalent to those of their respective midgut juice-activated toxins in the susceptible SCD strain of H. armigera. Identification of the exact sites of N-terminal activation of Cry1Ac and Cry2Ab protoxins will provide a basis for a better understanding of the mode of action and resistance mechanisms based on aberrant activation of these protoxins in H. armigera.
Collapse
Affiliation(s)
- Shaoyan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuo Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
49
|
Sun Y, Yang P, Jin H, Liu H, Zhou H, Qiu L, Lin Y, Ma W. Knockdown of the aminopeptidase N genes decreases susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:36-42. [PMID: 31836052 DOI: 10.1016/j.pestbp.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Bacillus thuringiensis (Bt) insecticide is currently the most widely used bioinsecticide. Bt expressing cry genes are some of the most successful foreign-genome-inserting genes used in transgenic insect-resistant crop development. Cry toxins are resistant to lepidopteran pests, such as Chilo suppressalis, a major insect pest of rice worldwide. Since Cry toxins exert their activity by binding to specific receptors in the midgut of target insects, identification of functional Cry toxin receptors in the midgut of C. suppressalis larvae is crucial to evaluate potential resistance mechanisms and develop effective strategies for inhibiting insect resistance. In this study, we isolated two aminopeptidase N genes (APN6 and APN8) from C. suppressalis and determined that they were expressed in the foregut. APN6 was highly expressed at the fourth instar, and APN8 was highly expressed in adult and pupa. Knockdown of CsAPN6 and CsAPN8 by RNA interference resulted in significantly decreased susceptibility of larvae to Bt rice varieties TT51 (expressing cry1Ac/cry1Ab fusion genes) and T1C-19 (expressing cry1Ca), but not T2A-1 (expressing cry2Aa). These findings suggest that both APN6 and APN8 are involved in the toxicity of Cry1Ac/Cry1Ab and Cry1Ca toxins.
Collapse
Affiliation(s)
- Yajie Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Pan Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huihui Jin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hui Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
50
|
Xu J, Wang Z, Wang Y, Ma H, Zhu H, Liu J, Zhou Y, Deng X, Zhou X. ABCC2 participates in the resistance of Plutella xylostella to chemical insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:52-59. [PMID: 31836054 DOI: 10.1016/j.pestbp.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The ABCC2 protein of Plutella xylostella is an important target of Cry1A toxins from Bacillus thuringiensis (Bt), but whether this protein is involved in the resistance of P. xylostella to other insecticides remains unclear. In this study, the abcc2 gene of P. xylostella was cloned and the expression levels of Pxabcc2 in susceptible and resistant strains were investigated. ABCC2 was found to be expressed 3.2-6.7-fold higher in the resistant strain than in the susceptible strain; in the surviving P. xylostella, ABCC2 levels were significantly higher when treated with indoxacarb, avermectin, and beta-cypermethrin. We constructed a stable ABCC2-expressing HEK-293 cell line to reveal the contribution of ABCC2 to insecticide resistance. The avermectin and chlorfenapyr sensitivities of the stably-transfected cell line were significantly lower than those of the control cells. The intracellular avermectin concentration was significantly lower in the stably-transfected cell line than in the control cells after four hours of exposure. This study shows that up-regulated ABCC2 expression is related to insecticide resistance in P. xylostella. Moreover, we used RNA interference technology to reduce ABCC2 levels in P. xylostella. Down-regulating ABCC2 expression did not significantly affect avermectin or chlorfenapyr resistance in P. xylostella. We speculate that increased ABCC2 expression can enhance metabolic resistance in P. xylostella. This study also provides new insights into cross-resistance between B. thuringiensis toxins and chemical insecticides.
Collapse
Affiliation(s)
- Jie Xu
- College of Plant Protection, Graduate School of Hunan Agricultural University, Changsha 410128, China
| | - Zanyong Wang
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yafei Wang
- College of Plant Protection, Graduate School of Hunan Agricultural University, Changsha 410128, China
| | - Haihao Ma
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Hang Zhu
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jia Liu
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yong Zhou
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xile Deng
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaomao Zhou
- Hunan Province Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; College of Plant Protection, Graduate School of Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|