1
|
Pashkova N, Peterson TA, Ptak CP, Winistorfer SC, Guerrero-Given D, Kamasawa N, Ahern CA, Shy ME, Piper RC. Disrupting the transmembrane domain interface between PMP22 and MPZ causes peripheral neuropathy. iScience 2024; 27:110989. [PMID: 39759075 PMCID: PMC11700639 DOI: 10.1016/j.isci.2024.110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 09/16/2024] [Indexed: 01/07/2025] Open
Abstract
Peripheral Myelin Protein 22 (PMP22) and MPZ are abundant myelin membrane proteins in Schwann cells. The MPZ adhesion protein holds myelin wraps together across the intraperiod line. PMP22 is a tetraspan protein belonging to the Claudin superfamily. Loss of either MPZ or PMP22 causes severe demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy, and duplication of PMP22 causes the most common form of CMT, CMT1A. Yet, the molecular functions provided by PMP22 and how its alteration causes CMT are unknown. Here, we find MPZ and PMP22 form a specific complex through interfaces within their transmembrane domains. We also find that the PMP22 A67T patient variant that causes a loss-of-function (hereditary neuropathy with pressure palsies) phenotype maps to this interface, and blocks MPZ association without affecting localization to the plasma membrane or interactions with other proteins. These data define the molecular basis for the MPZ ∼ PMP22 interaction and indicate this complex fulfills an important function in myelinating cells.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tabitha A. Peterson
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher P. Ptak
- Carver College of Medicine NMR Facility, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley C. Winistorfer
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Debbie Guerrero-Given
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael E. Shy
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Pashkova N, Peterson TA, Ptak CP, Winistorfer SC, Guerrero-Given D, Kamasawa N, Ahern CA, Shy ME, Piper RC. Disrupting the transmembrane domain interface between PMP22 and MPZ causes peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573255. [PMID: 38187781 PMCID: PMC10769442 DOI: 10.1101/2023.12.24.573255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
PMP22 and MPZ are abundant myelin membrane proteins in Schwann cells. The MPZ adhesion protein holds myelin wraps together across the intraperiod line. PMP22 is a tetraspan protein belonging to the Claudin superfamily. Loss of either MPZ or PMP22 causes severe demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy, and duplication of PMP22 causes the most common form of CMT, CMT1A. Yet, the molecular functions provided by PMP22 and how its alteration causes CMT are unknown. Here we find MPZ and PMP22 form a specific complex through interfaces within their transmembrane domains. We also find that the PMP22 A67T patient variant that causes a loss-of-function (Hereditary Neuropathy with Pressure Palsies) phenotype maps to this interface, and blocks MPZ association without affecting localization to the plasma membrane or interactions with other proteins. These data define the molecular basis for the MPZ~PMP22 interaction and indicate this complex fulfills an important function in myelinating cells.
Collapse
|
3
|
Liu Y, Theil S, Ibach M, Walter J. DAP12 interacts with RER1 and is retained in the secretory pathway before assembly with TREM2. Cell Mol Life Sci 2024; 81:302. [PMID: 39008111 PMCID: PMC11335228 DOI: 10.1007/s00018-024-05298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024]
Abstract
DNAX-activating protein of 12 kDa (DAP12) is a transmembrane adapter protein expressed in lymphoid and myeloid lineage cells. It interacts with several immunoreceptors forming functional complexes that trigger intracellular signaling pathways. One of the DAP12 associated receptors is the triggering receptor expressed on myeloid cells 2 (TREM2). Mutations in both DAP12 and TREM2 have been linked to neurodegenerative diseases. However, mechanisms involved in the regulation of subcellular trafficking and turnover of these proteins are not well understood. Here, we demonstrate that proteasomal degradation of DAP12 is increased in the absence of TREM2. Interestingly, unassembled DAP12 is also retained in early secretory compartments, including the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC), thereby preventing its transport to the plasma membrane. We also show that unassembled DAP12 interacts with the retention in ER sorting receptor 1 (RER1). The deletion of endogenous RER1 decreases expression of functional TREM2-DAP12 complexes and membrane proximal signaling, and resulted in almost complete inhibition of phagocytic activity in THP-1 differentiated macrophage-like cells. These results indicate that RER1 acts as an important regulator of DAP12 containing immunoreceptor complexes and immune cell function.
Collapse
Affiliation(s)
- Yanxia Liu
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | - Sandra Theil
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | - Melanie Ibach
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, 53127, Germany.
| |
Collapse
|
4
|
Libberecht K, Vangansewinkel T, Van Den Bosch L, Lambrichts I, Wolfs E. Proteostasis plays an important role in demyelinating Charcot Marie Tooth disease. Biochem Pharmacol 2023; 216:115760. [PMID: 37604292 DOI: 10.1016/j.bcp.2023.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Type 1 Charcot-Marie-Tooth disease (CMT1) is the most common demyelinating peripheral neuropathy. Patients suffer from progressive muscle weakness and sensory problems. The underlying disease mechanisms of CMT1 are still unclear and no therapy is currently available, hence patients completely rely on supportive care. Balancing protein levels is a complex multistep process fundamental to maintain cells in their healthy state and a disrupted proteostasis is a hallmark of several neurodegenerative diseases. When protein misfolding occurs, protein quality control systems are activated such as chaperones, the lysosomal-autophagy system and proteasomal degradation to ensure proper degradation. However, in pathological circumstances, these mechanisms are overloaded and thereby become inefficient to clear the load of misfolded proteins. Recent evidence strongly indicates that a disbalance in proteostasis plays an important role in several forms of CMT1. In this review, we present an overview of the protein quality control systems, their role in CMT1, and potential treatment strategies to restore proteostasis.
Collapse
Affiliation(s)
- Karen Libberecht
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Tim Vangansewinkel
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; UHasselt, Biomedical Research Institute (BIOMED), Lab for Histology and Regeneration (HISTOREGEN Lab), Diepenbeek, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ivo Lambrichts
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Histology and Regeneration (HISTOREGEN Lab), Diepenbeek, Belgium
| | - Esther Wolfs
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium.
| |
Collapse
|
5
|
Choi GE, Park JY, Park MR, Yoon JH, Han HJ. Glucocorticoid enhances presenilin1-dependent Aβ production at ER's mitochondrial-associated membrane by downregulating Rer1 in neuronal cells. Redox Biol 2023; 65:102821. [PMID: 37494768 PMCID: PMC10382667 DOI: 10.1016/j.redox.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Stress-induced release of glucocorticoid is an important amyloidogenic factor that upregulates amyloid precursor protein (APP) and β secretase 1 (BACE1) levels. Glucocorticoid also contributes to the pathogenesis of Alzheimer's disease (AD) by increasing ER-mitochondria connectivity, in which amyloid β (Aβ) processing occurs rigorously because of its lipid raft-rich characteristics. However, the mechanism by which glucocorticoid enhances γ-secretase activity in the mitochondrial-associated membrane of ER (MAM) and subsequent accumulation of mitochondrial Aβ is unclear. In this study, we determined how glucocorticoid enhances Aβ production in MAM using SH-SY5Y cells and ICR mice. First, we observed that cortisol-induced Aβ accumulation in mitochondria preceded its extracellular apposition by enhancing γ-secretase activity, which was the result of increased presenilin 1 (PSEN1) localization in MAM. Screening data revealed that cortisol selectively downregulated the ER retrieval protein Rer1, which triggered its maturation and subsequent entry into the endocytic secretory pathway of PSEN1. Accordingly, overexpression of RER1 reversed the deleterious effects of mitochondrial Aβ on mitochondrial respiratory function and neuronal cell viability. Notably, we found that cortisol guided the glucocorticoid receptor (GR) to bind directly to the RER1 promoter, thus trans-repressing its expression. Inhibiting GR function reduced Aβ accumulation at mitochondria and improved the outcome of a spatial memory task in mice exposed to corticosterone. Taken together, glucocorticoid enhances PSEN1-mediated Aβ generation at MAM by downregulating Rer1, which is a potential target at early stages of AD pathogenesis.
Collapse
Affiliation(s)
- Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Mo Ran Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
6
|
Jeon H, Jang SY, Kwak G, Yi YW, You MH, Park NY, Jo JH, Yang JW, Jang HJ, Jeong SY, Moon SK, Doo HM, Nahm M, Kim D, Chang JW, Choi BO, Hong YB. TGFβ4 alleviates the phenotype of Charcot-Marie-Tooth disease type 1A. Brain 2023; 146:3608-3615. [PMID: 37143322 DOI: 10.1093/brain/awad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFβ4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFβ4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFβ4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFβ4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.
Collapse
Affiliation(s)
- Hyeonjin Jeon
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - So Young Jang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Mi-Hyeon You
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Na Young Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Ju Hee Jo
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Ji Won Yang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Hye Ji Jang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Sun-Young Jeong
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Seung Kee Moon
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Hyun Myung Doo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Donghoon Kim
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Department of Pharmacology, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Jong Wook Chang
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
7
|
Yeh CT, Weng SC, Tsao PN, Shiao SH. The chaperone BiP promotes dengue virus replication and mosquito vitellogenesis in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103930. [PMID: 36921733 DOI: 10.1016/j.ibmb.2023.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 05/10/2023]
Abstract
Binding immunoglobulin protein (BiP, also known as GRP78), a chaperone and master regulator of the unfolded protein response (UPR) pathway, plays an essential role in several flavivirus infections, but its functional role in regulating dengue virus replication in the mosquito remains largely unknown. We here demonstrated the interaction between a dengue virus serotype 2 (DENV2) and BiP in Aedes aegypti and report the discovery of a novel functional role of BiP in mosquito vitellogenesis. Silencing Ae. aegypti BiP (AaBiP) expression resulted in the significant inhibition of DENV2 viral genome replication, viral protein production, and infectious viral particle biogenesis. Co-immunoprecipitation assays showed that the DENV2 non-structural protein 1 (NS1) interacts with the AaBiP protein, and silencing AaBiP expression led to enhanced DENV2 NS1 aggregation, indicating that AaBiP plays a role in viral protein stability. A kinetic study focusing on pulse treatment of MG132, a proteasome inhibitor, in AaBiP-silenced mosquitoes showed that DENV2 NS1 was drastically elevated, which further suggests that AaBiP-mediated viral protein degradation is mediated by proteasomal machinery. Silencing of AaBiP also resulted in a reduction in mosquito fertility and fecundity. Depletion of AaBiP inhibited mosquito vitellogenesis due to the reduction of vitellogenin mRNA and elevated aggregation of vitellogenin protein post blood meal, further suppressing ovary development and fecundity. Overall, our results suggest that AaBiP is a dual-function protein with roles in both the regulation of dengue virus replication and mosquito reproduction. Our findings will be useful in the establishment of more efficient strategies for vector-borne disease control.
Collapse
Affiliation(s)
- Chun-Ting Yeh
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine National Taiwan University, Taipei, Taiwan
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Intisar A, Woo H, Kang HG, Kim WH, Shin HY, Kim MY, Kim YS, Mo YJ, Lee YI, Kim MS. Electroceutical approach ameliorates intracellular PMP22 aggregation and promotes pro-myelinating pathways in a CMT1A in vitro model. Biosens Bioelectron 2023; 224:115055. [PMID: 36630746 DOI: 10.1016/j.bios.2022.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
Charcot-Marie-Tooth disease subtype 1A (CMT1A) is one of the most prevalent demyelinating peripheral neuropathies worldwide, caused by duplication of the peripheral myelin protein 22 (PMP22) gene, which is expressed primarily in Schwann cells (SCs). PMP22 overexpression in SCs leads to intracellular aggregation of the protein, which eventually results in demyelination. Unfortunately, previous biochemical approaches have not resulted in an approved treatment for CMT1A disease, compelling the pursuit for a biophysical approach such as electrical stimulation (ES). However, the effects of ES on CMT1A SCs have remained unexplored. In this study, we established PMP22-overexpressed Schwannoma cells as a CMT1A in vitro model, and investigated the biomolecular changes upon applying ES via a custom-made high-throughput ES platform, screening for the condition that delivers optimal therapeutic effects. While PMP22-overexpressed Schwannoma exhibited intracellular PMP22 aggregation, ES at 20 Hz for 1 h improved this phenomenon, bringing PMP22 distribution closer to healthy condition. ES at this condition also enhanced the expression of the genes encoding myelin basic protein (MBP) and myelin-associated glycoprotein (MAG), which are essential for assembling myelin sheath. Furthermore, ES altered the gene expression for myelination-regulating transcription factors Krox-20, Oct-6, c-Jun and Sox10, inducing pro-myelinating effects in PMP22-overexpressed Schwannoma. While electroceuticals has previously been applied in the peripheral nervous system towards acquired peripheral neuropathies such as pain and nerve injury, this study demonstrates its effectiveness towards ameliorating biomolecular abnormalities in an in vitro model of CMT1A, an inherited peripheral neuropathy. These findings will facilitate the clinical translation of an electroceutical treatment for CMT1A.
Collapse
Affiliation(s)
- Aseer Intisar
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hanwoong Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hyun Gyu Kang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Woon-Hae Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea; CTCELLS Corp., Daegu, 42988, Republic of Korea
| | - Hyun Young Shin
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea; CTCELLS Corp., Daegu, 42988, Republic of Korea; SBCure Corp., Daegu, 43017, Republic of Korea
| | - Min Young Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Yu Seon Kim
- Well Aging Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Yun Jeoung Mo
- Well Aging Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Minseok S Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea; CTCELLS Corp., Daegu, 42988, Republic of Korea; Translational Responsive Medicine Center (TRMC), DGIST, Daegu, 42988, Republic of Korea; New Biology Research Center (NBRC), DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
9
|
Liu X, Zhang L, Zhang H, Liang X, Zhang B, Tu J, Zhao Y. Nedd4-2 Haploinsufficiency in Mice Impairs the Ubiquitination of Rer1 and Increases the Susceptibility to Endoplasmic Reticulum Stress and Seizures. Front Mol Neurosci 2022; 15:919718. [PMID: 35832397 PMCID: PMC9271913 DOI: 10.3389/fnmol.2022.919718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4-2) is an epilepsy-associated gene encoding an E3 ligase that ubiquitinates neuroactive substrates. An involvement of NEDD4-2 in endoplasmic reticulum (ER) stress has been recently found with mechanisms needing further investigations. Herein, Nedd4-2+/− mice were found intolerant to thapsigargin (Tg) to develop ER stress in the brain. Pretreatment of Tg aggravated the pentylenetetrazole (PTZ)-induced seizures. Retention in endoplasmic reticulum 1 (Rer1), an ER retrieval receptor, was upregulated through impaired ubiquitination in Nedd4-2+/− mouse brain. Nedd4-2 interacted with Rer1 more strongly in mice with Tg administration. The negative regulation and NEDD4-2-mediated ubiquitination on RER1 were evaluated in cultured neurocytes and gliacytes by NEDD4-2 knockdown and overexpression. NEDD4-2 interacted with RER1 at higher levels in the cells with Tg treatment. Disruption of the 36STPY39 motif of RER1 attenuated the interaction with NEDD4-2, and the ubiquitinated RER1 underwent proteasomal degradation. Furthermore, the interactome of Rer1 was screened by immunoprecipitation-mass spectrometry in PTZ-induced mouse hippocampus, showing multiple potential ER retrieval cargoes that mediate neuroexcitability. The α1 subunit of the GABAA receptor was validated to interact with Rer1 and retain in ER more heavily in Nedd4-2+/− mouse brain by Endo-H digestion. In conclusion, Nedd4-2 deficiency in mice showed impaired ubiquitination of Rer1 and increased ER stress and seizures. These data indicate a protective effect of NEDD4-2 in ER stress and seizures possibly via RER1. We also provided potential ER retention cargoes of Rer1 awaiting further investigation.
Collapse
|
10
|
Schwabl S, Teis D. Protein quality control at the Golgi. Curr Opin Cell Biol 2022; 75:102074. [PMID: 35364487 DOI: 10.1016/j.ceb.2022.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
The majority of the proteome in eukaryotic cells is targeted to organelles. To maintain protein homeostasis (proteostasis), distinct protein quality control (PQC) machineries operate on organelles, where they detect misfolded proteins, orphaned and mis-localized proteins and selectively target these proteins into different ubiquitin-dependent or -independent degradation pathways. Thereby, PQC prevents proteotoxic effects that would disrupt organelle integrity and cause cellular damage that leads to diseases. Here, we will discuss emerging mechanisms for PQC machineries at the Golgi apparatus, the central station for the sorting and the modification of proteins that traffic to the endo-lysosomal system, or along the secretory pathway to the PM and to the extracellular space. We will focus on Golgi PQC pathways that (1) retrieve misfolded and orphaned proteins from the Golgi back to the endoplasmic reticulum, (2) extract these proteins from Golgi membranes for proteasomal degradation, (3) or selectively target these proteins to lysosomes for degradation.
Collapse
Affiliation(s)
- Sinead Schwabl
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Austria
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University of Innsbruck, Austria.
| |
Collapse
|
11
|
Hatstat AK, Quan B, Bailey MA, Fitzgerald MC, Reinhart MC, McCafferty DG. Chemoproteomic-enabled characterization of small GTPase Rab1a as a target of an N-arylbenzimidazole ligand's rescue of Parkinson's-associated cell toxicity. RSC Chem Biol 2022; 3:96-111. [PMID: 35128413 PMCID: PMC8729260 DOI: 10.1039/d1cb00103e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
The development of phenotypic models of Parkinson's disease (PD) has enabled screening and identification of phenotypically active small molecules that restore complex biological pathways affected by PD toxicity.
Collapse
Affiliation(s)
| | - Baiyi Quan
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
12
|
Matsuhisa K, Imaizumi K. Loss of Function of Mutant IDS Due to Endoplasmic Reticulum-Associated Degradation: New Therapeutic Opportunities for Mucopolysaccharidosis Type II. Int J Mol Sci 2021; 22:ijms222212227. [PMID: 34830113 PMCID: PMC8618218 DOI: 10.3390/ijms222212227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) results from the dysfunction of a lysosomal enzyme, iduronate-2-sulfatase (IDS). Dysfunction of IDS triggers the lysosomal accumulation of its substrates, glycosaminoglycans, leading to mental retardation and systemic symptoms including skeletal deformities and valvular heart disease. Most patients with severe types of MPS II die before the age of 20. The administration of recombinant IDS and transplantation of hematopoietic stem cells are performed as therapies for MPS II. However, these therapies either cannot improve functions of the central nervous system or cause severe side effects, respectively. To date, 729 pathogenetic variants in the IDS gene have been reported. Most of these potentially cause misfolding of the encoded IDS protein. The misfolded IDS mutants accumulate in the endoplasmic reticulum (ER), followed by degradation via ER-associated degradation (ERAD). Inhibition of the ERAD pathway or refolding of IDS mutants by a molecular chaperone enables recovery of the lysosomal localization and enzyme activity of IDS mutants. In this review, we explain the IDS structure and mechanism of activation, and current findings about the mechanism of degradation-dependent loss of function caused by pathogenetic IDS mutation. We also provide a potential therapeutic approach for MPS II based on this loss-of-function mechanism.
Collapse
Affiliation(s)
- Koji Matsuhisa
- Correspondence: (K.M.); (K.I.); Tel.: +81-82-257-5131 (K.M.); +81-82-257-5130 (K.I.)
| | - Kazunori Imaizumi
- Correspondence: (K.M.); (K.I.); Tel.: +81-82-257-5131 (K.M.); +81-82-257-5130 (K.I.)
| |
Collapse
|
13
|
Marinko JT, Wright MT, Schlebach JP, Clowes KR, Heintzman DR, Plate L, Sanders CR. Glycosylation limits forward trafficking of the tetraspan membrane protein PMP22. J Biol Chem 2021; 296:100719. [PMID: 33933451 PMCID: PMC8191293 DOI: 10.1016/j.jbc.2021.100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) folds and trafficks inefficiently, with only 20% of newly expressed protein trafficking to the cell surface. This behavior is exacerbated in many of the mutants associated with Charcot–Marie–Tooth disease, motivating further study. Here we characterized the role of N-glycosylation in limiting PMP22 trafficking. We first eliminated N-glycosylation using an N41Q mutation, which resulted in an almost 3-fold increase in trafficking efficiency of wildtype (WT) PMP22 and a 10-fold increase for the severely unstable L16P disease mutant in HEK293 cells, with similar results in Schwann cells. Total cellular levels were also much higher for the WT/N41Q mutant, although not for the L16P/N41Q form. Depletion of oligosaccharyltransferase OST-A and OST-B subunits revealed that WT PMP22 is N-glycosylated posttranslationally by OST-B, whereas L16P is cotranslationally glycosylated by OST-A. Quantitative proteomic screens revealed similarities and differences in the interactome for WT, glycosylation-deficient, and unstable mutant forms of PMP22 and also suggested that L16P is sequestered at earlier stages of endoplasmic reticulum quality control. CRISPR knockout studies revealed a role for retention in endoplasmic reticulum sorting receptor 1 (RER1) in limiting the trafficking of all three forms, for UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1) in limiting the trafficking of WT and L16P but not N41Q, and calnexin (CNX) in limiting the trafficking of WT and N41Q but not L16P. This work shows that N-glycosylation is a limiting factor to forward trafficking PMP22 and sheds light on the proteins involved in its quality control.
Collapse
Affiliation(s)
- Justin T Marinko
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Katherine R Clowes
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
14
|
Zheng JS, Luan J, Sofianopoulou E, Imamura F, Stewart ID, Day FR, Pietzner M, Wheeler E, Lotta LA, Gundersen TE, Amiano P, Ardanaz E, Chirlaque MD, Fagherazzi G, Franks PW, Kaaks R, Laouali N, Mancini FR, Nilsson PM, Onland-Moret NC, Olsen A, Overvad K, Panico S, Palli D, Ricceri F, Rolandsson O, Spijkerman AMW, Sánchez MJ, Schulze MB, Sala N, Sieri S, Tjønneland A, Tumino R, van der Schouw YT, Weiderpass E, Riboli E, Danesh J, Butterworth AS, Sharp SJ, Langenberg C, Forouhi NG, Wareham NJ. Plasma Vitamin C and Type 2 Diabetes: Genome-Wide Association Study and Mendelian Randomization Analysis in European Populations. Diabetes Care 2021; 44:98-106. [PMID: 33203707 PMCID: PMC7783939 DOI: 10.2337/dc20-1328] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Higher plasma vitamin C levels are associated with lower type 2 diabetes risk, but whether this association is causal is uncertain. To investigate this, we studied the association of genetically predicted plasma vitamin C with type 2 diabetes. RESEARCH DESIGN AND METHODS We conducted genome-wide association studies of plasma vitamin C among 52,018 individuals of European ancestry to discover novel genetic variants. We performed Mendelian randomization analyses to estimate the association of genetically predicted differences in plasma vitamin C with type 2 diabetes in up to 80,983 case participants and 842,909 noncase participants. We compared this estimate with the observational association between plasma vitamin C and incident type 2 diabetes, including 8,133 case participants and 11,073 noncase participants. RESULTS We identified 11 genomic regions associated with plasma vitamin C (P < 5 × 10-8), with the strongest signal at SLC23A1, and 10 novel genetic loci including SLC23A3, CHPT1, BCAS3, SNRPF, RER1, MAF, GSTA5, RGS14, AKT1, and FADS1. Plasma vitamin C was inversely associated with type 2 diabetes (hazard ratio per SD 0.88; 95% CI 0.82, 0.94), but there was no association between genetically predicted plasma vitamin C (excluding FADS1 variant due to its apparent pleiotropic effect) and type 2 diabetes (1.03; 95% CI 0.96, 1.10). CONCLUSIONS These findings indicate discordance between biochemically measured and genetically predicted plasma vitamin C levels in the association with type 2 diabetes among European populations. The null Mendelian randomization findings provide no strong evidence to suggest the use of vitamin C supplementation for type 2 diabetes prevention.
Collapse
Affiliation(s)
- Ju-Sheng Zheng
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jian'an Luan
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Eleni Sofianopoulou
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | - Fumiaki Imamura
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Isobel D Stewart
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Felix R Day
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Maik Pietzner
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Eleanor Wheeler
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Luca A Lotta
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | | | - Pilar Amiano
- Ministry of Health of the Basque Government, Public Health Division of Gipuzkoa, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - María-Dolores Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, Instituto Murciano de Investigatión Biosanitaria (IMIB)-Arrixaca, Murcia University, Murcia, Spain
| | - Guy Fagherazzi
- Digital Epidemiology and e-Health Research Hub, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg, France
- Center of Epidemiology and Population Health UMR 1018, INSERM, Paris South - Paris Saclay University, Gustave Roussy Institute, Villejuif, France
| | - Paul W Franks
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nasser Laouali
- Center of Epidemiology and Population Health UMR 1018, INSERM, Paris South - Paris Saclay University, Gustave Roussy Institute, Villejuif, France
| | - Francesca Romana Mancini
- Center of Epidemiology and Population Health UMR 1018, INSERM, Paris South - Paris Saclay University, Gustave Roussy Institute, Villejuif, France
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aarhus, Denmark
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
- Unit of Epidemiology, Regional Health Service ASL TO3, Grugliasco, Turin, Italy
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | | | | | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Nutrition Science, University of Potsdam, Nuthetal, Germany
| | - Núria Sala
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program and Translational Research Laboratory; Catalan Institute of Oncology - ICO, Group of Research on Nutrition and Cancer, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet of Llobregat, Barcelona, Spain
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano Via Venezian, Milan, Italy
| | - Anne Tjønneland
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Azienda Sanitaria Provinciale (ASP), Ragusa, Italy
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Elio Riboli
- School of Public Health, Imperial College, London, U.K
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, U.K
- British Heart Foundation Center of Research Excellence, University of Cambridge, Cambridge, U.K
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, U.K
- National Institute for Health Research Cambridge Biomedical Research Center, University of Cambridge and Cambridge University Hospitals, Cambridge, U.K
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, U.K
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, U.K
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, U.K
- National Institute for Health Research Cambridge Biomedical Research Center, University of Cambridge and Cambridge University Hospitals, Cambridge, U.K
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, U.K
| | - Stephen J Sharp
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Claudia Langenberg
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Nita G Forouhi
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K.
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K.
| |
Collapse
|
15
|
Annaert W, Kaether C. Bring it back, bring it back, don't take it away from me - the sorting receptor RER1. J Cell Sci 2020; 133:133/17/jcs231423. [PMID: 32873699 DOI: 10.1242/jcs.231423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The quote "bring it back, bring it back, don't take it away from me" from Queen's Love of my life describes the function of the sorting receptor RER1, a 23 kDa protein with four transmembrane domains (TMDs) that localizes to the intermediate compartment and the cis-Golgi. From there it returns escaped proteins that are not supposed to leave the endoplasmic reticulum (ER) back to it. Unique about RER1 is its ability to recognize its ligands through binding motifs in TMDs. Among its substrates are ER-resident proteins, as well as unassembled subunits of multimeric complexes that are retrieved back into the ER, this way guarding the full assembly of their respective complexes. The basic mechanisms for RER1-dependent retrieval have been already elucidated some years ago in yeast. More recently, several important cargoes of RER1 have been described in mammalian cells, and the in vivo role of RER1 is being unveiled by using mouse models. In this Review, we give an overview of the cell biology of RER1 in different models, discuss its controversial role in the brain and provide an outlook on future directions for RER1 research.
Collapse
Affiliation(s)
- Wim Annaert
- VIB Center for Brain and Disease Research & KU Leuven, Department of Neurosciences, Gasthuisberg, B-3000 Leuven, Belgium
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| |
Collapse
|
16
|
Liu X, Duan X, Zhang Y, Fan D. Clinical and Genetic Diversity of PMP22 Mutations in a Large Cohort of Chinese Patients With Charcot-Marie-Tooth Disease. Front Neurol 2020; 11:630. [PMID: 32719652 PMCID: PMC7347970 DOI: 10.3389/fneur.2020.00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited neuropathies. The purpose of this study is to identify the clinical and genetic diversity of peripheral myelin protein 22 (PMP22) in Chinese patients with CMT disease and evaluate their correlations with the clinical manifestations. Using the multiplex ligation-dependent probe amplification (MLPA) technique and Sanger sequencing of PMP22 in a cohort of 465 Chinese families between 2007 and 2019, we identified 137 pedigrees with PMP22 duplications (29.5%), 26 pedigrees with PMP22 deletions (5.6%), and 10 pedigrees with point mutations (2.2%). By comparing our data with the results from other CMT centers in China, we estimate that the frequency of PMP22 mutation in mainland China is ~23.3% (261/1120). We confirmed de novo mutations in 40% (4/10) of PMP22 point mutations. We have also identified two severely affected patients who are compound heterozygotes for recessive PMP22 mutations (novel mutation c.320-1 G>A and R157W mutation) and a 1.5 Mb deletion in 17p11.2-p12, suggesting that c.320-1 G>A might be another recessive allele contributing to DSS in addition to the T118M and R157W mutations. A de novo mutation of S79P in PMP22 was also identified concomitantly with the R94W mutation in mitofusin2 (MFN2). Our study highlights the phenotypic variability associated with PMP22 mutations in mainland China. The results provide valuable insights into the current strategy of genetic testing for CMT disease. NGS technology has increased the potential for efficient detection of variants of unknown significance (VUS) and concurrent causative genes. Greater cooperation between neurologists and molecular biologists is needed in future investigations.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
17
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
18
|
Higuchi Y, Okunushi R, Hara T, Hashiguchi A, Yuan J, Yoshimura A, Murayama K, Ohtake A, Ando M, Hiramatsu Y, Ishihara S, Tanabe H, Okamoto Y, Matsuura E, Ueda T, Toda T, Yamashita S, Yamada K, Koide T, Yaguchi H, Mitsui J, Ishiura H, Yoshimura J, Doi K, Morishita S, Sato K, Nakagawa M, Yamaguchi M, Tsuji S, Takashima H. Mutations in COA7 cause spinocerebellar ataxia with axonal neuropathy. Brain 2019; 141:1622-1636. [PMID: 29718187 PMCID: PMC5972596 DOI: 10.1093/brain/awy104] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Several genes related to mitochondrial functions have been identified as causative genes of neuropathy or ataxia. Cytochrome c oxidase assembly factor 7 (COA7) may have a role in assembling mitochondrial respiratory chain complexes that function in oxidative phosphorylation. Here we identified four unrelated patients with recessive mutations in COA7 among a Japanese case series of 1396 patients with Charcot-Marie-Tooth disease (CMT) or other inherited peripheral neuropathies, including complex forms of CMT. We also found that all four patients had characteristic neurological features of peripheral neuropathy and ataxia with cerebellar atrophy, and some patients showed leukoencephalopathy or spinal cord atrophy on MRI scans. Validated mutations were located at highly conserved residues among different species and segregated with the disease in each family. Nerve conduction studies showed axonal sensorimotor neuropathy. Sural nerve biopsies showed chronic axonal degeneration with a marked loss of large and medium myelinated fibres. An immunohistochemical assay with an anti-COA7 antibody in the sural nerve from the control patient showed the positive expression of COA7 in the cytoplasm of Schwann cells. We also observed mildly elevated serum creatine kinase levels in all patients and the presence of a few ragged-red fibres and some cytochrome c oxidase-negative fibres in a muscle biopsy obtained from one patient, which was suggestive of subclinical mitochondrial myopathy. Mitochondrial respiratory chain enzyme assay in skin fibroblasts from the three patients showed a definitive decrease in complex I or complex IV. Immunocytochemical analysis of subcellular localization in HeLa cells indicated that mutant COA7 proteins as well as wild-type COA7 were localized in mitochondria, which suggests that mutant COA7 does not affect the mitochondrial recruitment and may affect the stability or localization of COA7 interaction partners in the mitochondria. In addition, Drosophila COA7 (dCOA7) knockdown models showed rough eye phenotype, reduced lifespan, impaired locomotive ability and shortened synaptic branches of motor neurons. Our results suggest that loss-of-function COA7 mutation is responsible for the phenotype of the presented patients, and this new entity of disease would be referred to as spinocerebellar ataxia with axonal neuropathy type 3.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryuta Okunushi
- Department of Applied Biology and The Center for Advanced Insect Research, Kyoto Institute of Technology, Japan
| | - Taichi Hara
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama 359-1192, Japan.,Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan.,Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoshi Ishihara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Cardiovascular medicine, Nephrology and Neurology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hajime Tanabe
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takehiro Ueda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kenichiro Yamada
- Department of Pediatrics, Hiratsuka City Hospital, Hiratsuka City, Kanagawa, Japan
| | - Takashi Koide
- Department of Neurology, Hiratsuka City Hospital, Hiratsuka City, Kanagawa, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Brain Center, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Koichiro Doi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Masanori Nakagawa
- Director of North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology and The Center for Advanced Insect Research, Kyoto Institute of Technology, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
19
|
Osaki Y, Matsuhisa K, Che W, Kaneko M, Asada R, Masaki T, Imaizumi K, Saito A. Calnexin promotes the folding of mutant iduronate 2-sulfatase related to mucopolysaccharidosis type II. Biochem Biophys Res Commun 2019; 514:217-223. [PMID: 31029429 DOI: 10.1016/j.bbrc.2019.04.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis type II (MPS II) is one of the most common mucopolysaccharidoses, which is caused by mutation of the gene encoding iduronate 2-sulfatase (IDS). The loss of function of IDS leads to the accumulation of heparan sulfate and dermatan sulfate of glycosaminoglycans throughout the body, resulting in skeletal deformities, mental retardation, rigid joints, and thick skin. Recently, enzyme replacement therapy has become a common strategy for treating this condition. However, its effectiveness on the central nervous system (CNS) is limited because intravenously administered recombinant IDS (rIDS) cannot pass through the blood brain barrier. Therefore, several methods for delivering rIDS to the CNS, using anti-human transferrin receptor antibody and adeno-associated virus 9, have been explored. To investigate additional approaches for treatment, more cognition about the intracellular dynamics of mutant IDS is essential. We have already found that mutant IDS accumulated in the endoplasmic reticulum (ER) and was degraded by ER-associated degradation (ERAD). Although the dynamics of degradation of mutant IDS was revealed, the molecular mechanism related to the folding of mutant IDS in the ER remained unclear. In this research, we confirmed that mutant IDS retained in the ER would be folded by binding with calnexin (CNX). Thus, knockdown of CNX reduced the translocation of mutant IDS from ER to lysosome and its enzyme activity, indicating that the correct folding of this protein via interaction with CNX ensures its functional activity. These findings reveal the possibility that modifying the interaction of mutant IDS and CNX could contribute to alternative therapeutic strategies for MPS II.
Collapse
Affiliation(s)
- Yosuke Osaki
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Wang Che
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
20
|
Li P, Yang S, Hu D, Wei D, Lu J, Zheng H, Nie S, Liu G, Yang H. Enterovirus 71 VP1 promotes mouse Schwann cell autophagy via ER stress‑mediated PMP22 upregulation. Int J Mol Med 2019; 44:759-767. [PMID: 31173167 DOI: 10.3892/ijmm.2019.4218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/28/2019] [Indexed: 12/09/2022] Open
Abstract
Enterovirus 71 (EV71) accounts for the majority of hand, foot and mouth disease‑related deaths due to fatal neurological complications. EV71 structural viral protein 1 (VP1) promotes viral replication by inducing autophagy in neuron cells, but the effect of VP1 on myelin cells is unclear. The present study aimed to investigate the role and mechanism of VP1 in autophagy of mouse Schwann cells. An EV71 VP1‑expressing vector (pEGFP‑C3‑VP1) was generated and transfected into mouse Schwann cells. Transmission electron microscopy and western blot analysis for microtubule‑associated protein 1 light chain 3 α (LC3) II (an autophagy marker) were used to assess autophagy. Reverse transcription‑quantitative PCR and immunofluorescence were performed to determine the expression of peripheral myelin protein 22 (PMP22). Small interfering RNA against PMP22 was used to investigate the role of PMP22 in mouse Schwann cell autophagy. Salubrinal [a selective endoplasmic reticulum (ER) stress inhibitor] was used to determine whether PMP22 expression was affected by ER stress. The present results indicated that VP1 promoted mouse Schwann cell autophagy. Overexpression of VP1 upregulated PMP22. PMP22 deficiency downregulated LC3II and thus inhibited autophagy. Furthermore, PMP22 expression was significantly suppressed by salubrinal. In conclusion, VP1 promoted mouse Schwann cell autophagy through upregulation of ER stress‑mediated PMP22 expression. Therefore, the VP1/ER stress/PMP22 autophagy axis may be a potential therapeutic target for EV71 infection‑induced fatal neuronal damage.
Collapse
Affiliation(s)
- Peiqing Li
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Sida Yang
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Dandan Hu
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Dan Wei
- Paediatric Intensive Care Unit, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Lu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 511430, P.R. China
| | - Huanying Zheng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 511430, P.R. China
| | - Shushan Nie
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Guangming Liu
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Haomei Yang
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| |
Collapse
|
21
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
22
|
Volpi VG, Ferri C, Fregno I, Del Carro U, Bianchi F, Scapin C, Pettinato E, Solda T, Feltri ML, Molinari M, Wrabetz L, D’Antonio M. Schwann cells ER-associated degradation contributes to myelin maintenance in adult nerves and limits demyelination in CMT1B mice. PLoS Genet 2019; 15:e1008069. [PMID: 30995221 PMCID: PMC6488099 DOI: 10.1371/journal.pgen.1008069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/29/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022] Open
Abstract
In the peripheral nervous system (PNS) myelinating Schwann cells synthesize large amounts of myelin protein zero (P0) glycoprotein, an abundant component of peripheral nerve myelin. In humans, mutations in P0 cause the demyelinating Charcot-Marie-Tooth 1B (CMT1B) neuropathy, one of the most diffused genetic disorders of the PNS. We previously showed that several mutations, such as the deletion of serine 63 (P0-S63del), result in misfolding and accumulation of P0 in the endoplasmic reticulum (ER), with activation of the unfolded protein response (UPR). In addition, we observed that S63del mouse nerves display the upregulation of many ER-associated degradation (ERAD) genes, suggesting a possible involvement of this pathway in the clearance of the mutant P0. In ERAD in fact, misfolded proteins are dislocated from the ER and targeted for proteasomal degradation. Taking advantage of inducible cells that express the ER retained P0, here we show that the P0-S63del glycoprotein is degraded via ERAD. Moreover, we provide strong evidence that the Schwann cell-specific ablation of the ERAD factor Derlin-2 in S63del nerves exacerbates both the myelin defects and the UPR in vivo, unveiling a protective role for ERAD in CMT1B neuropathy. We also found that lack of Derlin-2 affects adult myelin maintenance in normal nerves, without compromising their development, pinpointing ERAD as a previously unrecognized player in preserving Schwann cells homeostasis in adulthood. Finally, we provide evidence that treatment of S63del peripheral nerve cultures with N-Acetyl-D-Glucosamine (GlcNAc), known to enhance protein quality control pathways in C.elegans, ameliorates S63del nerve myelination ex vivo. Overall, our study suggests that potentiating adaptive ER quality control pathways might represent an appealing strategy to treat both conformational and age-related PNS disorders. Charcot-Marie-Tooth neuropathies are a large family of peripheral nerve disorders, showing extensive clinical and genetic heterogeneity. Although strong advances have been made in the identification of genes and mutations involved, effective therapies are still lacking. Intracellular retention of abnormal proteins has been recently suggested as one of the pathogenetic events that might underlie several conformational neuropathies. To limit the toxic effects of accumulated mutant proteins, cells have developed efficient protein quality control systems aimed at optimizing both protein folding and degradation. Here we show that ER-associated degradation limits Schwann cells stress and myelin defects caused by the accumulation of a mutant myelin protein into the ER. In addition, we also describe for the first time the importance of Schwann cells ERAD in preserving myelin integrity in adult nerves, showing that genetic ERAD impairment leads to a late onset, motor-predominant, peripheral neuropathy in vivo. Effort in the design of strategies that potentiate ERAD and ER quality controls is therefore highly desirable.
Collapse
Affiliation(s)
- Vera G. Volpi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Fregno
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Ubaldo Del Carro
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Bianchi
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Scapin
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Pettinato
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tatiana Solda
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - M. Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Maurizio Molinari
- Instuitute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, United States of America
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
23
|
Abstract
Elimination of misfolded proteins by endoplasmic reticulum (ER)-associated protein degradation (ERAD) ensures that proteins proceeding through the secretory pathway are correctly folded and processed, which is critical to minimize ER stress. All ERAD pathways include a protein translocation process termed retrotranslocation, in which ubiquitinated misfolded substrates are extracted from the ER and degraded by the cytosolic 26S proteasome. Despite being integral to ERAD, the retrotranslocation process has been largely obscure. Recently, an explosion of discoveries has provided key mechanistic insights into this novel route of protein transport. These advances were facilitated by the development of in vitro and in vivo assays that utilize components from the yeast Saccharomyces cerevisiae. The assays permit detailed study of the distinct steps in ERAD-linked retrotranslocation, including ubiquitination of selected ERAD substrates, substrate removal from the ER, maintenance of cytosolic substrate solubility in the cytosol, and substrate degradation. Here we provide detailed protocols for these assays that pertain to work on retrotranslocation of integral membrane proteins (ERAD-M substrates), with the expectation that these approaches can be adapted for many related biochemical processes.
Collapse
Affiliation(s)
- Sonya Neal
- Division of Biological Sciences, The Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, United States.
| | - Sascha H Duttke
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Randolph Y Hampton
- Division of Biological Sciences, The Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
24
|
Chen S, Zhang J, Chen J, Wang Y, Zhou S, Huang L, Bai Y, Peng C, Shen B, Chen H, Tian Y. RER1 enhances carcinogenesis and stemness of pancreatic cancer under hypoxic environment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:15. [PMID: 30630537 PMCID: PMC6327509 DOI: 10.1186/s13046-018-0986-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Background Increasing incidence and mortality rates of pancreatic cancer (PC) highlight an urgent need for novel and efficient drugs. Retention in endoplasmic reticulum 1 (RER1) is an important retention factor in the endoplasmic reticulum (ER). However, it remains elusive whether RER1 is involved in the retention of disease-related proteins. Methods We analyzed the expression level of RER1 in PC and adjacent tissues, and also employed Kaplan–Meier’s analysis to identify the correlation between RER1 expression and overall survival rate. Cell proliferation, colony formation, tumor formation, scratch test, and transwell invasion assays were performed in RER1 knockdown cells and negative control cells. Results We hereby reported the important functions of RER1 in tumorigenesis and metastasis of PC, evidenced by inhibitory effects of RER1 knockdown on PC cell proliferation, migration and aggressiveness. Tumor formation was also significantly repressed in RER1 knockdown cells compared to control. Hypoxia-inducible factor (HIF)-1α was found to be an upstream regulator of RER1. Knockdown HIF-1α cells exhibited similar repressive impact on cell proliferation as RER1, and showed diminished migratory and invasive abilities under hypoxic condition. Conclusion The present study has demonstrated that RER1 enhances the progression of PC through promoting cell proliferation, migration and aggressiveness.
Collapse
Affiliation(s)
- Shi Chen
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jiaqiang Zhang
- Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jiangzhi Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yaodong Wang
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Songqiang Zhou
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Long Huang
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yannan Bai
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Chenghong Peng
- Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Baiyong Shen
- Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Huixing Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Yifeng Tian
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
25
|
Hara T, Maejima I, Akuzawa T, Hirai R, Kobayashi H, Tsukamoto S, Tsunoda M, Ono A, Yamakoshi S, Oikawa S, Sato K. Rer1-mediated quality control system is required for neural stem cell maintenance during cerebral cortex development. PLoS Genet 2018; 14:e1007647. [PMID: 30260951 PMCID: PMC6159856 DOI: 10.1371/journal.pgen.1007647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 08/20/2018] [Indexed: 11/18/2022] Open
Abstract
Rer1 is a retrieval receptor for endoplasmic reticulum (ER) retention of various ER membrane proteins and unassembled or immature components of membrane protein complexes. However, its physiological functions during mammalian development remain unclear. This study aimed to investigate the role of Rer1-mediated quality control system in mammalian development. We show that Rer1 is required for the sufficient cell surface expression and activity of γ-secretase complex, which modulates Notch signaling during mouse cerebral cortex development. When Rer1 was depleted in the mouse cerebral cortex, the number of neural stem cells decreased significantly, and malformation of the cerebral cortex was observed. Rer1 loss reduced γ-secretase activity and downregulated Notch signaling in the developing cerebral cortex. In Rer1-deficient cells, a subpopulation of γ-secretase complexes and components was transported to and degraded in lysosomes, thereby significantly reducing the amount of γ-secretase complex on the cell surface. These results suggest that Rer1 maintains Notch signaling by maintaining sufficient expression of the γ-secretase complex on the cell surface and regulating neural stem cell maintenance during cerebral cortex development. We showed that Rer1 functions as an early-Golgi quality control pathway that maintains γ-secretase activity by maintaining sufficient cell surface expression of γ-secretase complex during cerebral cortex development, thereby modulating Notch signaling.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Amyloid Precursor Protein Secretases/metabolism
- Animals
- Behavior, Animal
- CRISPR-Cas Systems/genetics
- Cell Line, Tumor
- Cerebral Cortex/growth & development
- Cerebral Cortex/metabolism
- Chromosome Deletion
- Chromosome Disorders/genetics
- Chromosomes, Human, Pair 1/genetics
- Disease Models, Animal
- Female
- Gene Expression Regulation, Developmental
- Humans
- Lysosomes/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Neural Stem Cells
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Notch/metabolism
Collapse
Affiliation(s)
- Taichi Hara
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Tomoko Akuzawa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Rika Hirai
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Hisae Kobayashi
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
| | - Mika Tsunoda
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Aguri Ono
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Shota Yamakoshi
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Satoshi Oikawa
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- * E-mail:
| |
Collapse
|
26
|
Kim J, Han D, Byun SH, Kwon M, Cho JY, Pleasure SJ, Yoon K. Ttyh1 regulates embryonic neural stem cell properties by enhancing the Notch signaling pathway. EMBO Rep 2018; 19:embr.201745472. [PMID: 30177553 DOI: 10.15252/embr.201745472] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Despite growing evidence linking Drosophila melanogaster tweety-homologue 1 (Ttyh1) to normal mammalian brain development and cell proliferation, its exact role has not yet been determined. Here, we show that Ttyh1 is required for the maintenance of neural stem cell (NSC) properties as assessed by neurosphere formation and in vivo analyses of cell localization after in utero electroporation. We find that enhanced Ttyh1-dependent stemness of NSCs is caused by enhanced γ-secretase activity resulting in increased levels of Notch intracellular domain (NICD) production and activation of Notch targets. This is a unique function of Ttyh1 among all other Ttyh family members. Molecular analyses revealed that Ttyh1 binds to the regulator of γ-secretase activity Rer1 in the endoplasmic reticulum and thereby destabilizes Rer1 protein levels. This is the key step for Ttyh1-dependent enhancement of γ-secretase activity, as Rer1 overexpression completely abolishes the effects of Ttyh1 on NSC maintenance. Taken together, these findings indicate that Ttyh1 plays an important role during mammalian brain development by positively regulating the Notch signaling pathway through the downregulation of Rer1.
Collapse
Affiliation(s)
- Juwan Kim
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Dasol Han
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Sung-Hyun Byun
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Mookwang Kwon
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jae Youl Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Samuel J Pleasure
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Keejung Yoon
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
27
|
Li LX, Dong HL, Xiao BG, Wu ZY. A Novel Missense Mutation in Peripheral Myelin Protein-22 Causes Charcot-Marie-Tooth Disease. Chin Med J (Engl) 2018; 130:1779-1784. [PMID: 28748849 PMCID: PMC5547828 DOI: 10.4103/0366-6999.211539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. A great number of causative genes have been described in CMT, and among them, the heterozygous duplication of peripheral myelin protein-22 (PMP22) is the major cause. Although the missense mutation in PMP22 is rarely reported, it has been demonstrated to be associated with CMT. This study described a novel missense mutation of PMP22 in a Chinese family with CMT phenotype. Methods: Targeted next-generation sequencing (NGS) was used to screen the causative genes in a family featured with an autosomal dominant demyelinating form of CMT. The potential variants identified by targeted NGS were verified by Sanger sequencing and classified according to the American College of Medical Genetics and Genomics standards and guidelines. Further cell transfection studies were performed to characterize the function of the novel variant. Results: Using targeted NGS, a novel heterozygous missense variant in PMP22 (c.320G>A, p.G107D) was identified. In vitro cell functional studies revealed that mutant PMP22 protein carrying p.G107D mutation lost the ability to reach the plasma membrane, was mainly retained in the endoplasmic reticulum, and induced cell apoptosis. Conclusions: This study supported the notion that missense mutations in PMP22 give rise to a CMT phenotype, possibly through a toxic gain-of-function mechanism.
Collapse
Affiliation(s)
- Li-Xi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, The Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Bao-Guo Xiao
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zhi-Ying Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
28
|
Kizhakkedath P, John A, Al-Gazali L, Ali BR. Degradation routes of trafficking-defective VLDLR mutants associated with Dysequilibrium syndrome. Sci Rep 2018; 8:1583. [PMID: 29371607 PMCID: PMC5785505 DOI: 10.1038/s41598-017-19053-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/20/2017] [Indexed: 02/08/2023] Open
Abstract
Low density lipoprotein receptor (LDLR) family members are involved in signaling in the developing brain. Previously we have reported that missense mutations in the Very Low Density Lipoprotein Receptor gene (VLDLR), causing Dysequilibrium syndrome (DES), disrupt ligand-binding, due to endoplasmic reticulum (ER) retention of the mutants. We explored the degradation routes of these VLDLR mutants in cultured cells. Our results indicate that VLDLR mutants are retained in the ER for prolonged periods which could be facilitated by association with the ER-resident chaperone calnexin. The mutants were prone to aggregation and capable of eliciting ER stress. The VLDLR mutants were found to be degraded predominantly by the proteasomal pathway, since ubiquitinated VLDLR was found to accumulate in response to proteasomal inhibition. Further, the mutants were found to interact with the ER degradation adaptor protein SEL1L. The degradation of VLDLR wild type and mutant were delayed in CRISPR/Cas9 edited SEL1L knock-out cells which was reversed by exogenous expression of SEL1L. In summary, ER retention of pathogenic VLDLR mutants involves binding to calnexin, elevated ER stress, and delayed degradation which is dependent on SEL1L. Since core LDLR family members share common structural domains, common mechanisms may be involved in their ER processing.
Collapse
Affiliation(s)
- Praseetha Kizhakkedath
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Anne John
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates. .,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
29
|
Joshi V, Upadhyay A, Kumar A, Mishra A. Gp78 E3 Ubiquitin Ligase: Essential Functions and Contributions in Proteostasis. Front Cell Neurosci 2017; 11:259. [PMID: 28890687 PMCID: PMC5575403 DOI: 10.3389/fncel.2017.00259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/09/2017] [Indexed: 11/26/2022] Open
Abstract
As per the requirement of metabolism and fitness, normal cellular functions are controlled by several proteins, and their interactive molecular and signaling events at multiple levels. Protein quality control (PQC) mechanisms ensure the correct folding and proper utilization of these proteins to avoid their misfolding and aggregation. To maintain the optimum environment of complex proteome PQC system employs various E3 ubiquitin ligases for the selective degradation of aberrant proteins. Glycoprotein 78 (Gp78) is an E3 ubiquitin ligase that prevents multifactorial deleterious accumulation of different misfolded proteins via endoplasmic reticulum-associated degradation (ERAD). However, the precise role of Gp78 under stress conditions to avoid bulk misfolded aggregation is unclear, which can act as a crucial resource to establish the dynamic nature of the proteome. Present article systematically explains the detailed molecular characterization of Gp78 and also addresses its various cellular physiological functions, which could be crucial to achieving protein homeostasis. Here, we comprehensively represent the current findings of Gp78, which shows its PQC roles in different physiological functions and diseases; and thereby propose novel opportunities to better understand the unsolved questions for therapeutic interventions linked with different protein misfolding disorders.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology IndoreIndore, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| |
Collapse
|
30
|
Briant K, Johnson N, Swanton E. Transmembrane domain quality control systems operate at the endoplasmic reticulum and Golgi apparatus. PLoS One 2017; 12:e0173924. [PMID: 28384259 PMCID: PMC5383021 DOI: 10.1371/journal.pone.0173924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/28/2017] [Indexed: 01/14/2023] Open
Abstract
Multiple protein quality control systems operate to ensure that misfolded proteins are efficiently cleared from the cell. While quality control systems that assess the folding status of soluble domains have been extensively studied, transmembrane domain (TMD) quality control mechanisms are poorly understood. Here, we have used chimeras based on the type I plasma membrane protein CD8 in which the endogenous TMD was substituted with transmembrane sequences derived from different polytopic membrane proteins as a mode to investigate the quality control of unassembled TMDs along the secretory pathway. We find that the three TMDs examined prevent trafficking of CD8 to the cell surface via potentially distinct mechanisms. CD8 containing two distinct non-native transmembrane sequences escape the ER and are subsequently retrieved from the Golgi, possibly via Rer1, leading to ER localisation at steady state. A third chimera, containing an altered transmembrane domain, was predominantly localised to the Golgi at steady state, indicating the existence of an additional quality control checkpoint that identifies non-native transmembrane domains that have escaped ER retention and retrieval. Preliminary experiments indicate that protein retained by quality control mechanisms at the Golgi are targeted to lysosomes for degradation.
Collapse
Affiliation(s)
- Kit Briant
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nicholas Johnson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Eileithyia Swanton
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
32
|
Valkova C, Liebmann L, Krämer A, Hübner CA, Kaether C. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels. Sci Rep 2017; 7:41248. [PMID: 28117367 PMCID: PMC5259745 DOI: 10.1038/srep41248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023] Open
Abstract
Rer1 is a sorting receptor in the early secretory pathway that controls the assembly and the cell surface transport of selected multimeric membrane protein complexes. Mice with a Purkinje cell (PC) specific deletion of Rer1 showed normal polarization and differentiation of PCs and normal development of the cerebellum. However, PC-specific loss of Rer1 led to age-dependent motor deficits in beam walk, ladder climbing and gait. Analysis of brain sections revealed a specific degeneration of PCs in the anterior cerebellar lobe in old animals. Electrophysiological recordings demonstrated severe deficits in spontaneous action potential generation. Measurements of resurgent currents indicated decreased surface densities of voltage-gated sodium channels (Nav), but not changes in individual channels. Analysis of mice with a whole brain Rer1-deletion demonstrated a strong down-regulation of Nav1.6 and 1.1 in the absence of Rer1, whereas protein levels of the related Cav2.1 and of Kv3.3 and 7.2 channels were not affected. The data suggest that Rer1 controls the assembly and transport of Nav1.1 and 1.6, the principal sodium channels responsible for recurrent firing, in PCs.
Collapse
Affiliation(s)
- Christina Valkova
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| | - Lutz Liebmann
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Germany
| | - Andreas Krämer
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| | - Christian A Hübner
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| |
Collapse
|
33
|
Volpi VG, Touvier T, D'Antonio M. Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders. Front Mol Neurosci 2017; 9:162. [PMID: 28101003 PMCID: PMC5209374 DOI: 10.3389/fnmol.2016.00162] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022] Open
Abstract
Reaching the correct three-dimensional structure is crucial for the proper function of a protein. The endoplasmic reticulum (ER) is the organelle where secreted and transmembrane proteins are synthesized and folded. To guarantee high fidelity of protein synthesis and maturation in the ER, cells have evolved ER-protein quality control (ERQC) systems, which assist protein folding and promptly degrade aberrant gene products. Only correctly folded proteins that pass ERQC checkpoints are allowed to exit the ER and reach their final destination. Misfolded glycoproteins are detected and targeted for degradation by the proteasome in a process known as endoplasmic reticulum-associated degradation (ERAD). The excess of unstructured proteins in the ER triggers an adaptive signal transduction pathway, called unfolded protein response (UPR), which in turn potentiates ERQC activities in order to reduce the levels of aberrant molecules. When the situation cannot be restored, the UPR drives cells to apoptosis. Myelin-forming cells of the central and peripheral nervous system (oligodendrocytes and Schwann cells) synthesize a large amount of myelin proteins and lipids and therefore are particularly susceptible to ERQC failure. Indeed, deficits in ERQC and activation of ER stress/UPR have been implicated in several myelin disorders, such as Pelizaeus-Merzbacher and Krabbe leucodystrophies, vanishing white matter disease and Charcot-Marie-Tooth neuropathies. Here we discuss recent evidence underlying the importance of proper ERQC functions in genetic disorders of myelinating glia.
Collapse
Affiliation(s)
- Vera G Volpi
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| | - Thierry Touvier
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| | - Maurizio D'Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT Milan, Italy
| |
Collapse
|
34
|
Bello M, Torres MJ, Méndez-Tenorio A, Correa-Basurto J. Conformational changes associated with L16P and T118M mutations in the membrane-embedded PMP22 protein, consequential in CMT-1A. J Biomol Struct Dyn 2016; 35:2880-2894. [PMID: 27609586 DOI: 10.1080/07391102.2016.1234415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral myelin protein 22 (PMP22) resides in the plasma membrane and is required for myelin formation in the peripheral nervous system. Excess PMP22 mutants accumulate in the endoplasmic reticulum (ER) resulting in the inherited neuropathies of Charcot-Marie-Tooth disease. However, there was no evidence of the structure of PMP22 or how mutations affect its folding. Therefore, in this study, we combined bioinformatics and homology modeling approaches to obtain three-dimensional native and mutated PMP22 models and its anchoring to a POPC membrane, submitted to .5-μs MD simulations, to determine how the L16P and T118M mutations affect the conformational behavior of PMP22. In addition, we investigated the ability of the native and mutated species to accumulate in the ER, via interaction with RER1, by combining protein-protein docking and MD simulations, taking the conformations that were most representative of the native and mutated PMP22 systems and RER1 conformations. Principal component analysis over MD simulations revealed that L16P and T118M mutations resulted in increased structural instability compared to the native form, which is consistent with previous experimental findings of increased structural fluctuations along a loop connecting transmembrane α-helix1 and α-helix2. Docking and MD simulations coupled with the MMGBSA approach allowed the identification that the binding interface for the PMP22-RER1 complex takes place through transmembrane α-helix1 and α-helix2, with higher effective binding free energy values between the mutated PMP22 systems and RER1 than for the native PMP22, mainly through van der Waals interactions.
Collapse
Affiliation(s)
- Martiniano Bello
- a Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México C.P. 11340 , México
| | - Mixtli J Torres
- b Laboratorio de biotecnología y bioinformática genómica de la Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n , Col. Santo Tomás, Ciudad de México C.P. 11340 , México
| | - Alfonso Méndez-Tenorio
- b Laboratorio de biotecnología y bioinformática genómica de la Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n , Col. Santo Tomás, Ciudad de México C.P. 11340 , México
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular y Bioinformática de la Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, Ciudad de México C.P. 11340 , México
| |
Collapse
|