1
|
Fiorilli V, Martínez-Medina A, Pozo MJ, Lanfranco L. Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:127-156. [PMID: 39251211 DOI: 10.1146/annurev-phyto-121423-042014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.
Collapse
Affiliation(s)
- V Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| | - A Martínez-Medina
- Department of Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain;
| | - L Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| |
Collapse
|
2
|
Bas TG, Sáez ML, Sáez N. Sustainable Development versus Extractivist Deforestation in Tropical, Subtropical, and Boreal Forest Ecosystems: Repercussions and Controversies about the Mother Tree and the Mycorrhizal Network Hypothesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1231. [PMID: 38732447 PMCID: PMC11085170 DOI: 10.3390/plants13091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
This research reviews the phenomenon of extractive deforestation as a possible trigger for cascade reactions that could affect part of the forest ecosystem and its biodiversity (surface, aerial, and underground) in tropical, subtropical, and boreal forests. The controversy and disparities in criteria generated in the international scientific community around the hypothesis of a possible link between "mother trees" and mycorrhizal networks in coopetition for nutrients, nitrogen, and carbon are analyzed. The objective is to promote awareness to generate more scientific knowledge about the eventual impacts of forest extraction. Public policies are emphasized as crucial mediators for balanced sustainable development. Currently, the effects of extractive deforestation on forest ecosystems are poorly understood, which requires caution and forest protection. Continued research to increase our knowledge in molecular biology is advocated to understand the adaptation of biological organisms to the new conditions of the ecosystem both in the face of extractive deforestation and reforestation. The environmental impacts of extractive deforestation, such as the loss of biodiversity, soil degradation, altered water cycles, and the contribution of climate change, remain largely unknown. Long-term and high-quality research is essential to ensure forest sustainability and the preservation of biodiversity for future generations.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| | - Mario Luis Sáez
- Facultad de Humanidades, La Serena University, Coquimbo 1700000, Chile;
| | - Nicolas Sáez
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| |
Collapse
|
3
|
Guerrieri E, Rasmann S. Exposing belowground plant communication. Science 2024; 384:272-273. [PMID: 38635697 DOI: 10.1126/science.adk1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Root exudation could be harnessed for ecological and applied research.
Collapse
Affiliation(s)
- Emilio Guerrieri
- URT- CNR IPSP DISIT Università del Piemonte Orientale, Alessandria, Italy
- Institute for Sustainable Plant Protection, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Sergio Rasmann
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
4
|
Guo H, Liu W, Xie Y, Wang Z, Huang C, Yi J, Yang Z, Zhao J, Yu X, Sibirina LA. Soil microbiome of shiro reveals the symbiotic relationship between Tricholoma bakamatsutake and Quercus mongolica. Front Microbiol 2024; 15:1361117. [PMID: 38601932 PMCID: PMC11004381 DOI: 10.3389/fmicb.2024.1361117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Tricholoma bakamatsutake is a delicious and nutritious ectomycorrhizal fungus. However, its cultivation is hindered owing to limited studies on its symbiotic relationships. The symbiotic relationship between T. bakamatsutake and its host is closely related to the shiro, a complex network composed of mycelium, mycorrhizal roots, and surrounding soil. To explore the symbiotic relationship between T. bakamatsutake and its host, soil samples were collected from T. bakamatsutake shiro (Tb) and corresponding Q. mongolica rhizosphere (CK) in four cities in Liaoning Province, China. The physicochemical properties of all the soil samples were then analyzed, along with the composition and function of the fungal and bacterial communities. The results revealed a significant increase in total potassium, available nitrogen, and sand in Tb soil compared to those in CK soil, while there was a significant decrease in pH, total nitrogen, total phosphorus, available phosphorus, and silt. The fungal community diversity in shiro was diminished, and T. bakamatsutake altered the community structure of its shiro by suppressing other fungi, such as Russula (ectomycorrhizal fungus) and Penicillium (phytopathogenic fungus). The bacterial community diversity in shiro increased, with the aggregation of mycorrhizal-helper bacteria, such as Paenibacillus and Bacillus, and plant growth-promoting bacteria, such as Solirubrobacter and Streptomyces, facilitated by T. bakamatsutake. Microbial functional predictions revealed a significant increase in pathways associated with sugar and fat catabolism within the fungal and bacterial communities of shiro. The relative genetic abundance of carboxylesterase and gibberellin 2-beta-dioxygenase in the fungal community was significantly increased, which suggested a potential symbiotic relationship between T. bakamatsutake and Q. mongolica. These findings elucidate the microbial community and relevant symbiotic environment to better understand the relationship between T. bakamatsutake and Q. mongolica.
Collapse
Affiliation(s)
- Hongbo Guo
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
- Primorye State Agricultural Academy, Ussuriysk, Russia
| | - Weiye Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Yuqi Xie
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Zhenyu Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Chentong Huang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Jingfang Yi
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Zhaoqian Yang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Jiachen Zhao
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaodan Yu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Lidiya Alekseevna Sibirina
- Primorye State Agricultural Academy, Ussuriysk, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
5
|
Ullah A, Gao D, Wu F. Common mycorrhizal network: the predominant socialist and capitalist responses of possible plant-plant and plant-microbe interactions for sustainable agriculture. Front Microbiol 2024; 15:1183024. [PMID: 38628862 PMCID: PMC11020090 DOI: 10.3389/fmicb.2024.1183024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024] Open
Abstract
Plants engage in a variety of interactions, including sharing nutrients through common mycorrhizal networks (CMNs), which are facilitated by arbuscular mycorrhizal fungi (AMF). These networks can promote the establishment, growth, and distribution of limited nutrients that are important for plant growth, which in turn benefits the entire network of plants. Interactions between plants and microbes in the rhizosphere are complex and can either be socialist or capitalist in nature, and the knowledge of these interactions is equally important for the progress of sustainable agricultural practice. In the socialist network, resources are distributed more evenly, providing benefits for all connected plants, such as symbiosis. For example, direct or indirect transfer of nutrients to plants, direct stimulation of growth through phytohormones, antagonism toward pathogenic microorganisms, and mitigation of stresses. For the capitalist network, AMF would be privately controlled for the profit of certain groups of plants, hence increasing competition between connected plants. Such plant interactions invading by microbes act as saprophytic and cause necrotrophy in the colonizing plants. In the first case, an excess of the nutritional resources may be donated to the receiver plants by direct transfer. In the second case, an unequal distribution of resources occurs, which certainly favor individual groups and increases competition between interactions. This largely depends on which of these responses is predominant ("socialist" or "capitalist") at the moment plants are connected. Therefore, some plant species might benefit from CMNs more than others, depending on the fungal species and plant species involved in the association. Nevertheless, benefits and disadvantages from the interactions between the connected plants are hard to distinguish in nature once most of the plants are colonized simultaneously by multiple fungal species, each with its own cost-benefits. Classifying plant-microbe interactions based on their habitat specificity, such as their presence on leaf surfaces (phyllospheric), within plant tissues (endophytic), on root surfaces (rhizospheric), or as surface-dwelling organisms (epiphytic), helps to highlight the dense and intricate connections between plants and microbes that occur both above and below ground. In these complex relationships, microbes often engage in mutualistic interactions where both parties derive mutual benefits, exemplifying the socialistic or capitalistic nature of these interactions. This review discusses the ubiquity, functioning, and management interventions of different types of plant-plant and plant-microbe interactions in CMNs, and how they promote plant growth and address environmental challenges for sustainable agriculture.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Danmei Gao
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Robinson DG, Ammer C, Polle A, Bauhus J, Aloni R, Annighöfer P, Baskin TI, Blatt MR, Bolte A, Bugmann H, Cohen JD, Davies PJ, Draguhn A, Hartmann H, Hasenauer H, Hepler PK, Kohnle U, Lang F, Löf M, Messier C, Munné-Bosch S, Murphy A, Puettmann KJ, Marchant IQ, Raven PH, Robinson D, Sanders D, Seidel D, Schwechheimer C, Spathelf P, Steer M, Taiz L, Wagner S, Henriksson N, Näsholm T. Mother trees, altruistic fungi, and the perils of plant personification. TRENDS IN PLANT SCIENCE 2024; 29:20-31. [PMID: 37735061 DOI: 10.1016/j.tplants.2023.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023]
Abstract
There are growing doubts about the true role of the common mycorrhizal networks (CMN or wood wide web) connecting the roots of trees in forests. We question the claims of a substantial carbon transfer from 'mother trees' to their offspring and nearby seedlings through the CMN. Recent reviews show that evidence for the 'mother tree concept' is inconclusive or absent. The origin of this concept seems to stem from a desire to humanize plant life but can lead to misunderstandings and false interpretations and may eventually harm rather than help the commendable cause of preserving forests. Two recent books serve as examples: The Hidden Life of Trees and Finding the Mother Tree.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| | - Christian Ammer
- Silvicuture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Jürgen Bauhus
- Chair of Silviculture, University of Freiburg, Tennenbacherstr. 4, 79085 Freiburg im Breisgau, Germany
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Peter Annighöfer
- Forest and Agroforest Systems, Technische Universität München, Hans-Carl-v.-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts, 611 N. Pleasant St, Amherst, MA 01003, USA
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andreas Bolte
- Thünen Institute of Forest Ecosystems, A.-Möller-Str. 1, Haus 41/42, D-16225 Eberswalde, Germany
| | - Harald Bugmann
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Jerry D Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peter J Davies
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andreas Draguhn
- Medical Faculty, Department of Neuro- and Senory Physiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Henrik Hartmann
- Julius Kühn Institute Federal Research Centre for Cultivated Plants, Institute for Forest Protection, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Hubert Hasenauer
- Institute of Silviculture, Department of Forest- and Soil Sciences, BOKU - University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82/II 1190, Wien, Austria
| | - Peter K Hepler
- Department of Biology, University of Massachusetts, 611 N. Pleasant St, Amherst, MA 01003, USA
| | - Ulrich Kohnle
- Department of Forest Growth, Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestraße 4, 79100 Freiburg, Germany
| | - Friederike Lang
- Chair of Soil Ecology, University of Freiburg, Bertholdstr. 17, 79098 Freiburg im Breisgau, Germany
| | - Magnus Löf
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Christian Messier
- University of Quebec in Montréal (UQAM) and in Outaouais (UQO), Quebec, Canada
| | | | - Angus Murphy
- Plant Science and Landscape Architecture, University of Maryland, 5140 Plant Sciences Building 4291 Fieldhouse Drive College Park, MD 20742, USA
| | - Klaus J Puettmann
- Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA
| | - Iván Quiroz Marchant
- Instituto Forestal, Calle Nueva Uno 3570 LT 4 Michaihue, San Pedro de la Paz, Concepción Chile, Chile
| | - Peter H Raven
- President Emeritus, Missouri Botanical Garden, 1037 Cy Ann Drive, Town and Country, MO 63017-8402, USA
| | - David Robinson
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Dale Sanders
- Department of Biology, University of York, Heslington York, YO10 5DD, UK
| | - Dominik Seidel
- Department for Spatial Structures and Digitization of Forests, Georg-August-Universität Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 8, 85354 Freising, Germany
| | - Peter Spathelf
- Applied Silviculture, Eberswalde University for Sustainable Development, Alfred-Möller-Strasse 1, 16225 Eberswalde, Germany
| | - Martin Steer
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lincoln Taiz
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Sven Wagner
- Chair of Silviculture, Technische Universität Dresden, Pienner Str. 8, 01737 Tharandt, Germany
| | - Nils Henriksson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umea, Sweden
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umea, Sweden
| |
Collapse
|
7
|
Klein T, Rog I, Livne-Luzon S, van der Heijden MG, Körner C. Belowground carbon transfer across mycorrhizal networks among trees: Facts, not fantasy. OPEN RESEARCH EUROPE 2023; 3:168. [PMID: 38152158 PMCID: PMC10751480 DOI: 10.12688/openreseurope.16594.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 12/29/2023]
Abstract
The mycorrhizal symbiosis between fungi and plants is among the oldest, ubiquitous and most important interactions in terrestrial life on Earth. Carbon (C) transfer across a common mycorrhizal network (CMN) was demonstrated over half a century ago in the lab ( Reid & Woods, 1969), and later in the field ( Simard et al., 1997a). Recent years have seen ample progress in this research direction, including evidence for ecological significance of carbon transfer ( Klein et al., 2016). Furthermore, specific cases where the architecture of mycorrhizal networks have been mapped ( Beiler et al., 2015) and CMN-C transfer from mature trees to seedlings has been demonstrated ( Orrego, 2018) have suggested that trees in forests are more connected than once thought ( Simard, 2021). In a recent Perspective, Karst et al. (2023) offered a valuable critical review warning of over-interpretation and positive citation bias in CMN research. It concluded that while there is evidence for C movement among plants, the importance of CMNs remains unclear, as noted by others too ( Henriksson et al., 2023). Here we argue that while some of these claims are justified, factual evidence about belowground C transfer across CMNs is solid and accumulating.
Collapse
Affiliation(s)
- Tamir Klein
- Weizmann Institute of Science, Rehovot, Center District, Israel
| | - Ido Rog
- Weizmann Institute of Science, Rehovot, Center District, Israel
- agroscope, Zuerich, Switzerland
| | | | | | | |
Collapse
|
8
|
Enebe MC, Erasmus M. Susceptibility and plant immune control-a case of mycorrhizal strategy for plant colonization, symbiosis, and plant immune suppression. Front Microbiol 2023; 14:1178258. [PMID: 37476663 PMCID: PMC10355322 DOI: 10.3389/fmicb.2023.1178258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Plants and microbes (mycorrhizal fungi to be precise) have evolved together over the past millions of years into an association that is mutualist. The plants supply the fungi with photosynthates and shelter, while the fungi reciprocate by enhancing nutrient and water uptake by the plants as well as, in some cases, control of soil-borne pathogens, but this fungi-plant association is not always beneficial. We argue that mycorrhizal fungi, despite contributing to plant nutrition, equally increase plant susceptibility to pathogens and herbivorous pests' infestation. Understanding of mycorrhizal fungi strategies for suppressing plant immunity, the phytohormones involved and the signaling pathways that aid them will enable the harnessing of tripartite (consisting of three biological systems)-plant-mycorrhizal fungi-microbe interactions for promoting sustainable production of crops.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
9
|
Karst J, Jones MD, Hoeksema JD. Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nat Ecol Evol 2023; 7:501-511. [PMID: 36782032 DOI: 10.1038/s41559-023-01986-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
A common mycorrhizal network (CMN) is formed when mycorrhizal fungal hyphae connect the roots of multiple plants of the same or different species belowground. Recently, CMNs have captured the interest of broad audiences, especially with respect to forest function and management. We are concerned, however, that recent claims in the popular media about CMNs in forests are disconnected from evidence, and that bias towards citing positive effects of CMNs has developed in the scientific literature. We first evaluated the evidence supporting three common claims. The claims that CMNs are widespread in forests and that resources are transferred through CMNs to increase seedling performance are insufficiently supported because results from field studies vary too widely, have alternative explanations or are too limited to support generalizations. The claim that mature trees preferentially send resources and defence signals to offspring through CMNs has no peer-reviewed, published evidence. We next examined how the results from CMN research are cited and found that unsupported claims have doubled in the past 25 years; a bias towards citing positive effects may obscure our understanding of the structure and function of CMNs in forests. We conclude that knowledge on CMNs is presently too sparse and unsettled to inform forest management.
Collapse
Affiliation(s)
- Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada.
| | - Melanie D Jones
- Department of Biology, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
10
|
Busby PE, Newcombe G, Neat AS, Averill C. Facilitating Reforestation Through the Plant Microbiome: Perspectives from the Phyllosphere. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:337-356. [PMID: 35584884 DOI: 10.1146/annurev-phyto-021320-010717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tree planting and natural regeneration contribute to the ongoing effort to restore Earth's forests. Our review addresses how the plant microbiome can enhance the survival of planted and naturally regenerating seedlings and serve in long-term forest carbon capture and the conservation of biodiversity. We focus on fungal leaf endophytes, ubiquitous defensive symbionts that protect against pathogens. We first show that fungal and oomycetous pathogen richness varies greatly for tree species native to the United States (n = 0-876 known pathogens per US tree species), with nearly half of tree species either without pathogens in these major groups or with unknown pathogens. Endophytes are insurance against the poorly known and changing threat of tree pathogens. Next, we review studies of plant phyllosphere feedback, but knowledge gaps prevent us from evaluating whether adding conspecific leaf litter to planted seedlings promotes defensive symbiosis, analogous to adding soil to promote positive feedback. Finally, we discuss research priorities for integrating the plant microbiome into efforts to expand Earth's forests.
Collapse
Affiliation(s)
- Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - George Newcombe
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| | - Abigail S Neat
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Colin Averill
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Authier L, Violle C, Richard F. Ectomycorrhizal Networks in the Anthropocene: From Natural Ecosystems to Urban Planning. FRONTIERS IN PLANT SCIENCE 2022; 13:900231. [PMID: 35845640 PMCID: PMC9280895 DOI: 10.3389/fpls.2022.900231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Trees acquire hydric and mineral soil resources through root mutualistic associations. In most boreal, temperate and Mediterranean forests, these functions are realized by a chimeric structure called ectomycorrhizae. Ectomycorrhizal (ECM) fungi are highly diversified and vary widely in their specificity toward plant hosts. Reciprocally, association patterns of ECM plants range from highly specialist to generalist. As a consequence, ECM symbiosis creates interaction networks, which also mediate plant-plant nutrient interactions among different individuals and drive plant community dynamics. Our knowledge of ECM networks essentially relies on a corpus acquired in temperate ecosystems, whereas the below-ground facets of both anthropogenic ECM forests and inter-tropical forests remain poorly investigated. Here, we successively (1) review the current knowledge of ECM networks, (2) examine the content of early literature produced in ECM cultivated forests, (3) analyze the recent progress that has been made in understanding the place of ECM networks in urban soils, and (4) provide directions for future research based on the identification of knowledge gaps. From the examined corpus of knowledge, we reach three main conclusions. First, the emergence of metabarcoding tools has propelled a resurgence of interest in applying network theory to ECM symbiosis. These methods revealed an unexpected interconnection between mutualistic plants with arbuscular mycorrhizal (AM) herbaceous plants, embedding ECM mycelia through root-endophytic interactions. This affinity of ECM fungi to bind VA and ECM plants, raises questions on the nature of the associated functions. Second, despite the central place of ECM trees in cultivated forests, little attention has been paid to these man-made landscapes and in-depth research on this topic is lacking. Third, we report a lag in applying the ECM network theory to urban soils, despite management initiatives striving to interconnect motile organisms through ecological corridors, and the highly challenging task of interconnecting fixed organisms in urban greenspaces is discussed. In particular, we observe a pauperized nature of resident ECM inoculum and a spatial conflict between belowground human pipelines and ECM networks. Finally, we identify the main directions of future research to make the needed link between the current picture of plant functioning and the understanding of belowground ECM networks.
Collapse
Affiliation(s)
- Louise Authier
- CEFE, Univ Montpellier - CNRS - EPHE - IRD, Montpellier, France
- Ilex Paysage + Urbanisme, Lyon, France
| | - Cyrille Violle
- CEFE, Univ Montpellier - CNRS - EPHE - IRD, Montpellier, France
| | - Franck Richard
- CEFE, Univ Montpellier - CNRS - EPHE - IRD, Montpellier, France
| |
Collapse
|
12
|
|
13
|
|
14
|
Liao HL, Bonito G, Hameed K, Wu SH, Chen KH, Labbé J, Schadt CW, Tuskan GA, Martin F, Kuo A, Barry K, Grigoriev IV, Vilgalys R. Heterospecific Neighbor Plants Impact Root Microbiome Diversity and Molecular Function of Root Fungi. Front Microbiol 2021; 12:680267. [PMID: 34803937 PMCID: PMC8601753 DOI: 10.3389/fmicb.2021.680267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Within the forest community, competition and facilitation between adjacent-growing conspecific and heterospecific plants are mediated by interactions involving common mycorrhizal networks. The ability of plants to alter their neighbor's microbiome is well documented, but the molecular biology of plant-fungal interactions during competition and facilitation has not been previously examined. We used a common soil-plant bioassay experiment to study molecular plant-microbial interactions among rhizosphere communities associated with Pinus taeda (native host) and Populus trichocarpa (non-native host). Gene expression of interacting fungal and bacterial rhizosphere communities was compared among three plant-pairs: Populus growing with Populus, Populus with Pinus, and Pinus with Pinus. Our results demonstrate that heterospecific plant partners affect the assembly of root microbiomes, including the changes in the structure of host specific community. Comparative metatranscriptomics reveals that several species of ectomycorrhizal fungi (EMF) and saprotrophic fungi exhibit different patterns of functional and regulatory gene expression with these two plant hosts. Heterospecific plants affect the transcriptional expression pattern of EMF host-specialists (e.g., Pinus-associated Suillus spp.) on both plant species, mainly including the genes involved in the transportation of amino acids, carbohydrates, and inorganic ions. Alteration of root microbiome by neighboring plants may help regulate basic plant physiological processes via modulation of molecular functions in the root microbiome.
Collapse
Affiliation(s)
- Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
- Department of Biology, Duke University, Durham, NC, United States
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Khalid Hameed
- Department of Biology, Duke University, Durham, NC, United States
| | - Steven H. Wu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ko-Hsuan Chen
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Invaio Sciences, Cambridge, MA, United States
| | | | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Francis Martin
- University of Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Champenoux, France
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
15
|
Figueiredo AF, Boy J, Guggenberger G. Common Mycorrhizae Network: A Review of the Theories and Mechanisms Behind Underground Interactions. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:735299. [PMID: 37744156 PMCID: PMC10512311 DOI: 10.3389/ffunb.2021.735299] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 09/26/2023]
Abstract
Most terrestrial plants establish symbiotic associations with mycorrhizal fungi for accessing essential plant nutrients. Mycorrhizal fungi have been frequently reported to interconnect plants via a common mycelial network (CMN), in which nutrients and signaling compounds can be exchanged between the connected plants. Several studies have been performed to demonstrate the potential effects of the CMN mediating resource transfer and its importance for plant fitness. Due to several contrasting results, different theories have been developed to predict benefits or disadvantages for host plants involved in the network and how it might affect plant communities. However, the importance of the mycelium connections for resources translocation compared to other indirect pathways, such as leakage of fungi hyphae and subsequent uptake by neighboring plant roots, is hard to distinguish and quantify. If resources can be translocated via mycelial connections in significant amounts that could affect plant fitness, it would represent an important tactic for plants co-existence and it could shape community composition and dynamics. Here, we report and critically discuss the most recent findings on studies aiming to evaluate and quantify resources translocation between plants sharing a CMN and predict the pattern that drives the movement of such resources into the CMN. We aim to point gaps and define open questions to guide upcoming studies in the area for a prospect better understanding of possible plant-to-plant interactions via CMN and its effect in shaping plants communities. We also propose new experiment set-ups and technologies that could be used to improve previous experiments. For example, the use of mutant lines plants with manipulation of genes involved in the symbiotic associations, coupled with labeling techniques to track resources translocation between connected plants, could provide a more accurate idea about resource allocation and plant physiological responses that are truly accountable to CMN.
Collapse
|
16
|
Veselá P, Vašutová M, Edwards-Jonášová M, Holub F, Fleischer P, Cudlín P. Management After Windstorm Affects the Composition of Ectomycorrhizal Symbionts of Regenerating Trees but Not Their Mycorrhizal Networks. FRONTIERS IN PLANT SCIENCE 2021; 12:641232. [PMID: 34054889 PMCID: PMC8160286 DOI: 10.3389/fpls.2021.641232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Due to ongoing climate change, forests are expected to face significant disturbances more frequently than in the past. Appropriate management is intended to facilitate forest regeneration. Because European temperate forests mostly consist of trees associated with ectomycorrhizal (ECM) fungi, understanding their role in these disturbances is important to develop strategies to minimize their consequences and effectively restore forests. Our aim was to determine how traditional (EXT) and nonintervention (NEX) management in originally Norway spruce (Picea abies) forests with an admixture of European larch (Larix decidua) affect ECM fungal communities and the potential to interconnect different tree species via ECM networks 15 years after a windstorm. Ten plots in NEX and 10 plots in EXT with the co-occurrences of Norway spruce, European larch, and silver birch (Betula pendula) were selected, and a total of 57 ECM taxa were identified using ITS sequencing from ECM root tips. In both treatments, five ECM species associated with all the studied tree species dominated, with a total abundance of approximately 50% in the examined root samples. Because there were no significant differences between treatments in the number of ECM species associated with different tree species combinations in individual plots, we concluded that the management type did not have a significant effect on networking. However, management significantly affected the compositions of ECM symbionts of Norway spruce and European larch but not those of silver birch. Although this result is explained by the occurrence of seedlings and ECM propagules that were present in the original forest, the consequences are difficult to assess without knowledge of the ecology of different ECM symbionts.
Collapse
Affiliation(s)
- Petra Veselá
- Department of Carbon Storage in the Landscape, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Martina Vašutová
- Department of Carbon Storage in the Landscape, Global Change Research Institute of the Czech Academy of Sciences, České Budějovice, Czechia
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Magda Edwards-Jonášová
- Department of Carbon Storage in the Landscape, Global Change Research Institute of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Filip Holub
- Department of Carbon Storage in the Landscape, Global Change Research Institute of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Peter Fleischer
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Pavel Cudlín
- Department of Carbon Storage in the Landscape, Global Change Research Institute of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
17
|
Sapes G, Demaree P, Lekberg Y, Sala A. Plant carbohydrate depletion impairs water relations and spreads via ectomycorrhizal networks. THE NEW PHYTOLOGIST 2021; 229:3172-3183. [PMID: 33280134 DOI: 10.1111/nph.17134] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Under prolonged drought and reduced photosynthesis, plants consume stored nonstructural carbohydrates (NSCs). Stored NSC depletion may impair the regulation of plant water balance, but the underlying mechanisms are poorly understood, and whether such mechanisms are independent of plant water deficit is not known. If so, carbon costs of fungal symbionts could indirectly influence plant drought tolerance through stored NSC depletion. We connected well-watered Pinus ponderosa seedling pairs via ectomycorrhizal (EM) networks where one seedling was shaded (D) and the other kept illuminated (LD) and compared responses to seedling pairs in full light (L). We measured plant NSCs, osmotic and water potential, and transfer of 13 CO2 through EM to explore mechanisms linking stored NSCs to plant water balance regulation and identify potential tradeoffs between plant water retention and EM fungi under carbon-limiting conditions. NSCs decreased from L to LD to D seedlings. Even without drought, NSC depletion impaired osmoregulation and turgor maintenance, both of which are critical for drought tolerance. Importantly, EM networks propagated NSC depletion and its negative effects on water retention from carbon stressed to nonstressed hosts. We demonstrate that NSC storage depletion influences turgor maintenance independently of plant water deficit and reveal carbon allocation tradeoffs between supporting fungal symbionts and retaining water.
Collapse
Affiliation(s)
- Gerard Sapes
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Patrick Demaree
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Ylva Lekberg
- MPG Ranch, Missoula, MT, 59801, USA
- W.A. Franke College of Forestry & Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
18
|
Kadam SB, Pable AA, Barvkar VT. Mycorrhiza induced resistance (MIR): a defence developed through synergistic engagement of phytohormones, metabolites and rhizosphere. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:880-890. [PMID: 32586416 DOI: 10.1071/fp20035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Plants get phosphorus, water and other soil nutrients at the cost of sugar through mycorrhizal symbiotic association. A common mycorrhizal network (CMN) - a dense network of mycorrhizal hyphae - provides a passage for exchange of chemicals and signals between the plants sharing CMN. Mycorrhisation impact plants at hormonal, physiological and metabolic level and successful symbiosis also regulates ecology of the plant rhizosphere. Apart from nutritional benefits, mycorrhisation provides an induced resistance to the plants known as mycorrhiza induced resistance (MIR). MIR is effective against soil as well as foliar pathogens and pest insects. In this review, molecular mechanisms underlying MIR such as role of phytohormones, their cross talk and priming effect are discussed. Evidence of MIR against economically important pathogens and pest insects in different plants is summarised. Mycorrhiza induces many plant secondary metabolites, many of which have a role in plant defence. Involvement of these secondary metabolites in mycorrhisation and their putative role in MIR are further reviewed. Controversies about MIR are also briefly discussed in order to provide insights on the scope for research about MIR. We have further extended our review with an open ended discussion about the possibilities for transgenerational MIR.
Collapse
Affiliation(s)
- Swapnil B Kadam
- Department of Botany, Savitribai Phule Pune University, Pune-411007, India
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune-411007, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune-411007, India; and Corresponding authors. ;
| |
Collapse
|
19
|
Calvo P, Trewavas A. Cognition and intelligence of green plants. Information for animal scientists. Biochem Biophys Res Commun 2020; 564:78-85. [PMID: 32838964 DOI: 10.1016/j.bbrc.2020.07.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain.
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
20
|
Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science 2020; 367:367/6480/eaba1223. [PMID: 32079744 DOI: 10.1126/science.aba1223] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycorrhizal fungi provide plants with a range of benefits, including mineral nutrients and protection from stress and pathogens. Here we synthesize current information about how the presence and type of mycorrhizal association affect plant communities. We argue that mycorrhizal fungi regulate seedling establishment and species coexistence through stabilizing and equalizing mechanisms such as soil nutrient partitioning, feedback to soil antagonists, differential mycorrhizal benefits, and nutrient trade. Mycorrhizal fungi have strong effects on plant population and community biology, with mycorrhizal type-specific effects on seed dispersal, seedling establishment, and soil niche differentiation, as well as interspecific and intraspecific competition and hence plant diversity.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum of Estonia, Tallinn, Estonia.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
21
|
Calvo P, Gagliano M, Souza GM, Trewavas A. Plants are intelligent, here's how. ANNALS OF BOTANY 2020; 125:11-28. [PMID: 31563953 PMCID: PMC6948212 DOI: 10.1093/aob/mcz155] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 05/07/2023]
Abstract
HYPOTHESES The drive to survive is a biological universal. Intelligent behaviour is usually recognized when individual organisms including plants, in the face of fiercely competitive or adverse, real-world circumstances, change their behaviour to improve their probability of survival. SCOPE This article explains the potential relationship of intelligence to adaptability and emphasizes the need to recognize individual variation in intelligence showing it to be goal directed and thus being purposeful. Intelligent behaviour in single cells and microbes is frequently reported. Individual variation might be underpinned by a novel learning mechanism, described here in detail. The requirements for real-world circumstances are outlined, and the relationship to organic selection is indicated together with niche construction as a good example of intentional behaviour that should improve survival. Adaptability is important in crop development but the term may be complex incorporating numerous behavioural traits some of which are indicated. CONCLUSION There is real biological benefit to regarding plants as intelligent both from the fundamental issue of understanding plant life but also from providing a direction for fundamental future research and in crop breeding.
Collapse
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| | - Monica Gagliano
- Biological Intelligence Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Gustavo M Souza
- Laboratory of Plant Cognition and Electrophysiology, Federal University of Pelotas, Pelotas - RS, Brazil
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Montesinos-Navarro A, Valiente-Banuet A, Verdú M. Plant facilitation through mycorrhizal symbiosis is stronger between distantly related plant species. THE NEW PHYTOLOGIST 2019; 224:928-935. [PMID: 31291473 DOI: 10.1111/nph.16051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
The tendency of closely related plant species to share natural enemies has been suggested to limit their co-occurrence and performance, but we lack a deep understanding on how mutualistic interactions such as the mycorrhizal symbiosis affect plant-plant interactions depending on the phylogenetic relatedness of the interacting plants. We hypothesise that the effect of the mycorrhizal symbiosis on plant-plant facilitative interactions depends on the phylogenetic distance between the nurse and facilitated plants. A recently published meta-analysis compiled the strength of plant facilitative interactions in the presence or absence (or reduced abundance) of mycorrhizal fungi. We use phylogenetically informed Bayesian linear models to test whether the effect size is influenced by the phylogenetic distance between the plant species involved in each plant facilitative interaction. Conspecific facilitative interactions are more strongly enhanced by mycorrhizal fungi than interactions between closely related species. In heterospecific interactions, the effect of the mycorrhizal symbiosis on plant facilitation increases with the phylogenetic distance between the nurse and facilitated plant species. Our result showing that the effect of mycorrhizal symbiosis on the facilitation interactions between plants depends on their phylogenetic relatedness provides new mechanisms to understand how facilitation is assembling ecological communities.
Collapse
Affiliation(s)
- Alicia Montesinos-Navarro
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, Moncada, Valencia, 46113, Spain
| | - Alfonso Valiente-Banuet
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, A.P. 70-275, México, D. F, C. P. 04510, México
- Centro de Ciencias de la Complejidad, Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D. F, 04510, México
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, Moncada, Valencia, 46113, Spain
| |
Collapse
|
23
|
|
24
|
Koide RT, Fernandez CW. The continuing relevance of "older" mycorrhiza literature: insights from the work of John Laker Harley (1911-1990). MYCORRHIZA 2018; 28:577-586. [PMID: 30014212 DOI: 10.1007/s00572-018-0854-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
To new generations of scientists beginning their careers in research, we strongly recommend the practice of reading older literature. To illustrate the value of doing so, we highlight six insights of one of the most influential mycorrhiza researchers of the twentieth century, Jack Harley. These insights concerning mycotrophy, the new niche, the sheath, C cycling, N cycling, and mutualism were published prior to 1975 and so may have escaped the notice of many, but they laid the groundwork for some of the most important research of today.
Collapse
Affiliation(s)
- Roger T Koide
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA.
| | | |
Collapse
|
25
|
Cabral C, Wollenweber B, António C, Rodrigues AM, Ravnskov S. Aphid infestation in the phyllosphere affects primary metabolic profiles in the arbuscular mycorrhizal hyphosphere. Sci Rep 2018; 8:14442. [PMID: 30262837 PMCID: PMC6160425 DOI: 10.1038/s41598-018-32670-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022] Open
Abstract
While effects of (a)biotic stress events in the phyllosphere have been studied intensively, possible influences of stress on the arbuscular mycorrhizal hyphosphere has scarcely been investigated. We hypothesised that stress challenge in the phyllosphere could alter primary metabolite profiles of the hyphosphere - the mycelial network connecting plants. Donor plants, connected to receiver plants by mycelial networks, were aphid-challenged during 84 h. Primary metabolite profiles in the hyphosphere were investigated. Gene-expression of plant defence gene PR1 was measured in one of the receiver plants during the challenge. Hexose levels in the hyphosphere increased when donor plants were aphid-challenged. This change in metabolic profile was influenced by leaf sampling from receiver plant. PR1 expression increased in donor plants 48 h after challenge, and consequently 60 h after, in receiver plants. We conclude that aphid infestation of donor plants modified primary carbon metabolism in the hyphosphere. Plant defence response in receiver plants, occurred 12 h after detection of response in the aphid-challenged donor plants. While this work is the first to reveal primary metabolic profiles of the AM hyphosphere, more work is needed to elucidate the possible role of transient changes of hexose metabolism in stress response and signalling processes in the hyphosphere of connected plants.
Collapse
Affiliation(s)
- Carmina Cabral
- Aarhus University, Department of Agroecology, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Bernd Wollenweber
- Aarhus University, Department of Agroecology, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade NOVA de Lisboa (ITQB NOVA), Avenida da República, 2780-157, Oeiras, Portugal
| | - Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier-Universidade NOVA de Lisboa (ITQB NOVA), Avenida da República, 2780-157, Oeiras, Portugal
| | - Sabine Ravnskov
- Aarhus University, Department of Agroecology, Forsøgsvej 1, DK-4200, Slagelse, Denmark.
| |
Collapse
|
26
|
Fiorilli V, Vannini C, Ortolani F, Garcia-Seco D, Chiapello M, Novero M, Domingo G, Terzi V, Morcia C, Bagnaresi P, Moulin L, Bracale M, Bonfante P. Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci Rep 2018; 8:9625. [PMID: 29941972 PMCID: PMC6018116 DOI: 10.1038/s41598-018-27622-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/29/2018] [Indexed: 01/27/2023] Open
Abstract
Besides improved mineral nutrition, plants colonised by arbuscular mycorrhizal (AM) fungi often display increased biomass and higher tolerance to biotic and abiotic stresses. Notwithstanding the global importance of wheat as an agricultural crop, its response to AM symbiosis has been poorly investigated. We focused on the role of an AM fungus on mineral nutrition of wheat, and on its potential protective effect against Xanthomonas translucens. To address these issues, phenotypical, molecular and metabolomic approaches were combined. Morphological observations highlighted that AM wheat plants displayed an increased biomass and grain yield, as well as a reduction in lesion area following pathogen infection. To elucidate the molecular mechanisms underlying the mycorrhizal phenotype, we investigated changes of transcripts and proteins in roots and leaves during the double (wheat-AM fungus) and tripartite (wheat-AM fungus-pathogen) interaction. Transcriptomic and proteomic profiling identified the main pathways involved in enhancing plant biomass, mineral nutrition and in promoting the bio-protective effect against the leaf pathogen. Mineral and amino acid contents in roots, leaves and seeds, and protein oxidation profiles in leaves, supported the omics data, providing new insight into the mechanisms exerted by AM symbiosis to confer stronger productivity and enhanced resistance to X. translucens in wheat.
Collapse
Affiliation(s)
- Valentina Fiorilli
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy.
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Francesca Ortolani
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Daniel Garcia-Seco
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394, Montpellier, France
| | - Marco Chiapello
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Mara Novero
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Guido Domingo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Valeria Terzi
- CREA-GB, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | - Caterina Morcia
- CREA-GB, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | - Paolo Bagnaresi
- CREA-GB, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | - Lionel Moulin
- IRD, Cirad, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394, Montpellier, France
| | - Marcella Bracale
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| |
Collapse
|
27
|
Abstract
Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.
Collapse
Affiliation(s)
- Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JH, Scotland
| |
Collapse
|
28
|
Abstract
Intelligence is defined for wild plants and its role in fitness identified. Intelligent behaviour exhibited by single cells and systems similarity between the interactome and connectome indicates neural systems are not necessary for intelligent capabilities. Plants sense and respond to many environmental signals that are assessed to competitively optimize acquisition of patchily distributed resources. Situations of choice engender motivational states in goal-directed plant behaviour; consequent intelligent decisions enable efficient gain of energy over expenditure. Comparison of swarm intelligence and plant behaviour indicates the origins of plant intelligence lie in complex communication and is exemplified by cambial control of branch function. Error correction in behaviours indicates both awareness and intention as does the ability to count to five. Volatile organic compounds are used as signals in numerous plant interactions. Being complex in composition and often species and individual specific, they may represent the plant language and account for self and alien recognition between individual plants. Game theory has been used to understand competitive and cooperative interactions between plants and microbes. Some unexpected cooperative behaviour between individuals and potential aliens has emerged. Behaviour profiting from experience, another simple definition of intelligence, requires both learning and memory and is indicated in the priming of herbivory, disease and abiotic stresses.
Collapse
Affiliation(s)
- Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JH, Scotland
| |
Collapse
|
29
|
Pickles BJ, Wilhelm R, Asay AK, Hahn AS, Simard SW, Mohn WW. Transfer of 13 C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. THE NEW PHYTOLOGIST 2017; 214:400-411. [PMID: 27870059 DOI: 10.1111/nph.14325] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/08/2016] [Indexed: 05/27/2023]
Abstract
Processes governing the fixation, partitioning, and mineralization of carbon in soils are under increasing scrutiny as we develop a more comprehensive understanding of global carbon cycling. Here we examined fixation by Douglas-fir seedlings and transfer to associated ectomycorrhizal fungi, soil microbes, and full-sibling or nonsibling neighbouring seedlings. Stable isotope probing with 99% 13 C-CO2 was applied to trace 13 C-labelled photosynthate throughout plants, fungi, and soil microbes in an experiment designed to assess the effect of relatedness on 13 C transfer between plant pairs. The fixation and transfer of the 13 C label to plant, fungal, and soil microbial tissue was examined in biomass and phospholipid fatty acids. After a 6 d chase period, c. 26.8% of the 13 C remaining in the system was translocated below ground. Enrichment was proportionally greatest in ectomycorrhizal biomass. The presence of mesh barriers (0.5 or 35 μm) between seedlings did not restrict 13 C transfer. Fungi were the primary recipients of 13 C-labelled photosynthate throughout the system, representing 60-70% of total 13 C-enriched phospholipids. Full-sibling pairs exhibited significantly greater 13 C transfer to recipient roots in two of four Douglas-fir families, representing three- and fourfold increases (+ c. 4 μg excess 13 C) compared with nonsibling pairs. The existence of a root/mycorrhizal exudation-hyphal uptake pathway was supported.
Collapse
Affiliation(s)
- Brian J Pickles
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading, RG6 6AS, UK
| | - Roland Wilhelm
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Amanda K Asay
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Aria S Hahn
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - William W Mohn
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
30
|
Affiliation(s)
- Lucas C R Silva
- Environmental Studies Program, Department of Geography, Institute of Ecology and Evolution, University of Oregon, OR 97405, USA.
| |
Collapse
|
31
|
Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 2016; 41:109-130. [DOI: 10.1093/femsre/fuw040] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2016] [Indexed: 12/13/2022] Open
|
32
|
Padje AV, Whiteside MD, Kiers ET. Signals and cues in the evolution of plant-microbe communication. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:47-52. [PMID: 27348594 DOI: 10.1016/j.pbi.2016.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 05/23/2023]
Abstract
Communication has played a key role in organismal evolution. If sender and receiver have a shared interest in propagating reliable information, such as when they are kin relatives, then effective communication can bring large fitness benefits. However, interspecific communication (among different species) is more prone to dishonesty. Over the last decade, plants and their microbial root symbionts have become a model system for studying interspecific molecular crosstalk. However, less is known about the evolutionary stability of plant-microbe communication. What prevents partners from hijacking or manipulating information to their own benefit? Here, we focus on communication between arbuscular mycorrhizal fungi and their host plants. We ask how partners use directed signals to convey specific information, and highlight research on the problem of dishonest signaling.
Collapse
Affiliation(s)
- Anouk Van't Padje
- Institute of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, Netherlands
| | - Matthew D Whiteside
- Institute of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, Netherlands
| | - E Toby Kiers
- Institute of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, Netherlands.
| |
Collapse
|
33
|
Gilbert L, Johnson D. Plant-mediated 'apparent effects' between mycorrhiza and insect herbivores. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:100-105. [PMID: 26190588 DOI: 10.1016/j.pbi.2015.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/09/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
Plants mediate indirect 'apparent' effects between above-ground herbivores and below-ground mutualistic mycorrhizal fungi. The herbivore-plant-mycorrhiza continuum is further complicated because signals produced by plants in response to herbivores can be transmitted to other plants via shared fungal networks below ground. Insect herbivores, such as aphids, probably affect the functioning of mycorrhizal fungi by changing the supply of recent photosynthate from plants to mycorrhizas, whereas there is evidence that mycorrhizas affect aphid fitness by changing plant signalling pathways, rather than only through improved nutrition. New knowledge of the transfer of signals through fungal networks between plant species means we now need a better understanding of how this process occurs in relation to the feeding preferences of herbivores to shape plant community composition and herbivore behaviour in nature.
Collapse
Affiliation(s)
- Lucy Gilbert
- Ecological Sciences Group, James Hutton Institute, Cragiebuckler, Aberdeen AB15 8QH, UK
| | - David Johnson
- Institute of Biological and Environmental Sciences, Cruickshank Building, University of Aberdeen, Aberdeen AB24 3UU, UK.
| |
Collapse
|
34
|
Gorzelak MA, Asay AK, Pickles BJ, Simard SW. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AOB PLANTS 2015; 7:plv050. [PMID: 25979966 PMCID: PMC4497361 DOI: 10.1093/aobpla/plv050] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/26/2015] [Indexed: 05/03/2023]
Abstract
Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems.
Collapse
Affiliation(s)
- Monika A Gorzelak
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Amanda K Asay
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Brian J Pickles
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
35
|
Resource Transfer Between Plants Through Ectomycorrhizal Fungal Networks. ECOLOGICAL STUDIES 2015. [DOI: 10.1007/978-94-017-7395-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|