1
|
Hsu KY, Shih CT, Chen NY, Lo CC. LYNSU: automated 3D neuropil segmentation of fluorescent images for Drosophila brains. Front Neuroinform 2024; 18:1429670. [PMID: 39135968 PMCID: PMC11317296 DOI: 10.3389/fninf.2024.1429670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The brain atlas, which provides information about the distribution of genes, proteins, neurons, or anatomical regions, plays a crucial role in contemporary neuroscience research. To analyze the spatial distribution of those substances based on images from different brain samples, we often need to warp and register individual brain images to a standard brain template. However, the process of warping and registration may lead to spatial errors, thereby severely reducing the accuracy of the analysis. To address this issue, we develop an automated method for segmenting neuropils in the Drosophila brain for fluorescence images from the FlyCircuit database. This technique allows future brain atlas studies to be conducted accurately at the individual level without warping and aligning to a standard brain template. Our method, LYNSU (Locating by YOLO and Segmenting by U-Net), consists of two stages. In the first stage, we use the YOLOv7 model to quickly locate neuropils and rapidly extract small-scale 3D images as input for the second stage model. This stage achieves a 99.4% accuracy rate in neuropil localization. In the second stage, we employ the 3D U-Net model to segment neuropils. LYNSU can achieve high accuracy in segmentation using a small training set consisting of images from merely 16 brains. We demonstrate LYNSU on six distinct neuropils or structures, achieving a high segmentation accuracy comparable to professional manual annotations with a 3D Intersection-over-Union (IoU) reaching up to 0.869. Our method takes only about 7 s to segment a neuropil while achieving a similar level of performance as the human annotators. To demonstrate a use case of LYNSU, we applied it to all female Drosophila brains from the FlyCircuit database to investigate the asymmetry of the mushroom bodies (MBs), the learning center of fruit flies. We used LYNSU to segment bilateral MBs and compare the volumes between left and right for each individual. Notably, of 8,703 valid brain samples, 10.14% showed bilateral volume differences that exceeded 10%. The study demonstrated the potential of the proposed method in high-throughput anatomical analysis and connectomics construction of the Drosophila brain.
Collapse
Affiliation(s)
- Kai-Yi Hsu
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Tin Shih
- Department of Applied Physics, Tunghai University, Taichung, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan-Yow Chen
- National Applied Research Laboratories, National Center for High-Performance Computing, Hsinchu, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Tycko R. Micron-scale magnetic resonance imaging based on low temperatures and dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:136-149. [PMID: 38065667 PMCID: PMC10710538 DOI: 10.1016/j.pnmrs.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2024]
Abstract
Extension of magnetic resonance imaging (MRI) techniques to the single micron scale has been the goal of research in multiple laboratories over several decades. It has proven difficult to achieve isotropic spatial resolution better than 3.0 μm in inductively-detected MRI near 300 K, even with well-behaved test samples, microcoils, and optimized MRI pulse sequences. This article examines the factors that limit spatial resolution in MRI, especially the inherently low signal-to-noise ratio of nuclear magnetic resonance (NMR), and explains how these limiting factors can be overcome in principle, by acquiring MRI data at low temperatures and using dynamic nuclear polarization (DNP) to enhance signal amplitudes. Recent efforts directed at micron-scale MRI enabled by low-temperature DNP, culminating in images with 1.7 μm isotropic resolution obtained at 5 K, are reviewed. The article concludes with a discussion of areas in which further developments are likely to lead to further improvements in resolution, eventually to 1.0 μm or better.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
3
|
Rodgers G, Bikis C, Janz P, Tanner C, Schulz G, Thalmann P, Haas CA, Müller B. 3D X-ray Histology for the Investigation of Temporal Lobe Epilepsy in a Mouse Model. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1730-1745. [PMID: 37584515 DOI: 10.1093/micmic/ozad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023]
Abstract
The most common form of epilepsy among adults is mesial temporal lobe epilepsy (mTLE), with seizures often originating in the hippocampus due to abnormal electrical activity. The gold standard for the histopathological analysis of mTLE is histology, which is a two-dimensional technique. To fill this gap, we propose complementary three-dimensional (3D) X-ray histology. Herein, we used synchrotron radiation-based phase-contrast microtomography with 1.6 μm-wide voxels for the post mortem visualization of tissue microstructure in an intrahippocampal-kainate mouse model for mTLE. We demonstrated that the 3D X-ray histology of unstained, unsectioned, paraffin-embedded brain hemispheres can identify hippocampal sclerosis through the loss of pyramidal neurons in the first and third regions of the Cornu ammonis as well as granule cell dispersion within the dentate gyrus. Morphology and density changes during epileptogenesis were quantified by segmentations from a deep convolutional neural network. Compared to control mice, the total dentate gyrus volume doubled and the granular layer volume quadrupled 21 days after injecting kainate. Subsequent sectioning of the same mouse brains allowed for benchmarking 3D X-ray histology against well-established histochemical and immunofluorescence stainings. Thus, 3D X-ray histology is a complementary neuroimaging tool to unlock the third dimension for the cellular-resolution histopathological analysis of mTLE.
Collapse
Affiliation(s)
- Griffin Rodgers
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Christos Bikis
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Integrierte Psychiatrie Winterthur-Zürcher Unterland, 8408 Winterthur, Switzerland
| | - Philipp Janz
- Faculty of Medicine, Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79106 Freiburg, Germany
| | - Christine Tanner
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
- Core Facility Micro- and Nanotomography, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Peter Thalmann
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Carola A Haas
- Faculty of Medicine, Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79106 Freiburg, Germany
- Center of Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79114 Freiburg, Germany
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
4
|
Hardy BM, Zhu Y, Harkins KD, Dhakal B, Martin JB, Xie J, Xu J, Does MD, Anderson AW, Gore JC. Experimental demonstration of diffusion limitations on resolution and SNR in MR microscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107479. [PMID: 37285709 PMCID: PMC10757347 DOI: 10.1016/j.jmr.2023.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/20/2023] [Accepted: 05/13/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE MR microscopy is in principle capable of producing images at cellular resolution (<10 µm), but various factors limit the quality achieved in practice. A recognized limit on the signal to noise ratio and spatial resolution is the dephasing of transverse magnetization caused by diffusion of spins in strong gradients. Such effects may be reduced by using phase encoding instead of frequency encoding read-out gradients. However, experimental demonstration of the quantitative benefits of phase encoding are lacking, and the exact conditions in which it is preferred are not clearly established. We quantify the conditions where phase encoding outperforms a readout gradient with emphasis on the detrimental effects of diffusion on SNR and resolution. METHODS A 15.2 T Bruker MRI scanner, with 1 T/m gradients, and micro solenoid RF coils < 1 mm in diameter, were used to quantify diffusion effects on resolution and the signal to noise ratio of frequency and phase encoded acquisitions. Frequency and phase encoding's spatial resolution and SNR per square root time were calculated and measured for images at the diffusion limited resolution. The point spread function was calculated and measured for phase and frequency encoding using additional constant time phase gradients with voxels 3-15 µm in dimension. RESULTS The effect of diffusion during the readout gradient on SNR was experimentally demonstrated. The achieved resolutions of frequency and phase encoded acquisitions were measured via the point-spread-function and shown to be lower than the nominal resolution. SNR per square root time and actual resolution were calculated for a wide range of maximum gradient amplitudes, diffusion coefficients, and relaxation properties. The results provide a practical guide on how to choose between phase encoding and a conventional readout. Images of excised rat spinal cord at 10 µm × 10 µm in-plane resolution demonstrate phase encoding's benefits in the form of higher measured resolution and higher SNR than the same image acquired with a conventional readout. CONCLUSION We provide guidelines to determine the extent to which phase encoding outperforms frequency encoding in SNR and resolution given a wide range of voxel sizes, sample, and hardware properties.
Collapse
Affiliation(s)
- Benjamin M Hardy
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Yue Zhu
- MR Engineering, GE Healthcare, Waukesha, WI 53188, USA
| | - Kevin D Harkins
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Bibek Dhakal
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan B Martin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Jingping Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Junzhong Xu
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark D Does
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - John C Gore
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Handschuh S, Okada CTC, Walter I, Aurich C, Glösmann M. An optimized workflow for
microCT
imaging of formalin‐fixed and paraffin‐embedded (
FFPE
) early equine embryos. Anat Histol Embryol 2022; 51:611-623. [PMID: 35851500 PMCID: PMC9542120 DOI: 10.1111/ahe.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 01/14/2023]
Abstract
Here, we describe a workflow for high‐detail microCT imaging of formalin‐fixed and paraffin‐embedded (FFPE) equine embryos recovered on Day 34 of pregnancy (E34), a period just before placenta formation. The presented imaging methods are suitable for large animals' embryos with intention to study morphological and developmental aspects, but more generally can be adopted for all kinds of FFPE tissue specimens. Microscopic 3D imaging techniques such as microCT are important tools for detecting and studying normal embryogenesis and developmental disorders. To date, microCT imaging of vertebrate embryos was mostly done on embryos that have been stained with an X‐ray dense contrast agent. Here, we describe an alternative imaging procedure that allows to visualize embryo morphology and organ development in unstained FFPE embryos. Two aspects are critical for high‐quality data acquisition: (i) a proper sample mounting leaving as little as possible paraffin around the sample and (ii) an image filtering pipeline that improves signal‐to‐noise ratio in these inherently low‐contrast data sets. The presented workflow allows overview imaging of the whole embryo proper and can be used for determination of organ volumes and development. Furthermore, we show that high‐resolution interior tomographies can provide virtual histology information from selected regions of interest. In addition, we demonstrate that microCT scanned embryos remain intact during the scanning procedure allowing for a subsequent investigation by routine histology and/or immunohistochemistry. This makes the presented workflow applicable also to archival paraffin‐embedded material.
Collapse
Affiliation(s)
- Stephan Handschuh
- VetCore Facility for Research/Imaging Unit University of Veterinary Medicine Vienna Vienna Austria
| | - Carolina T. C. Okada
- Platform Artificial Insemination and Embryo Transfer Department for Small Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Ingrid Walter
- VetCore Facility for Research/VetBiobank University of Veterinary Medicine Vienna Vienna Austria
- Institute of Morphology University of Veterinary Medicine Vienna Vienna Austria
| | - Christine Aurich
- Platform Artificial Insemination and Embryo Transfer Department for Small Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Martin Glösmann
- VetCore Facility for Research/Imaging Unit University of Veterinary Medicine Vienna Vienna Austria
| |
Collapse
|
6
|
Zeng C, Chen Z, Yang H, Fan Y, Fei L, Chen X, Zhang M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int J Biol Sci 2022; 18:552-571. [PMID: 35002509 PMCID: PMC8741851 DOI: 10.7150/ijbs.64373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022] Open
Abstract
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
Collapse
Affiliation(s)
- Chudai Zeng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Lujing Fei
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Xinghang Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| |
Collapse
|
7
|
Shahid SS, Kerskens CM, Burrows M, Witney AG. Elucidating the complex organization of neural micro-domains in the locust Schistocerca gregaria using dMRI. Sci Rep 2021; 11:3418. [PMID: 33564031 PMCID: PMC7873062 DOI: 10.1038/s41598-021-82187-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023] Open
Abstract
To understand brain function it is necessary to characterize both the underlying structural connectivity between neurons and the physiological integrity of these connections. Previous research exploring insect brain connectivity has typically used electron microscopy techniques, but this methodology cannot be applied to living animals and so cannot be used to understand dynamic physiological processes. The relatively large brain of the desert locust, Schistercera gregaria (Forksȧl) is ideal for exploring a novel methodology; micro diffusion magnetic resonance imaging (micro-dMRI) for the characterization of neuronal connectivity in an insect brain. The diffusion-weighted imaging (DWI) data were acquired on a preclinical system using a customised multi-shell diffusion MRI scheme optimized to image the locust brain. Endogenous imaging contrasts from the averaged DWIs and Diffusion Kurtosis Imaging (DKI) scheme were applied to classify various anatomical features and diffusion patterns in neuropils, respectively. The application of micro-dMRI modelling to the locust brain provides a novel means of identifying anatomical regions and inferring connectivity of large tracts in an insect brain. Furthermore, quantitative imaging indices derived from the kurtosis model that include fractional anisotropy (FA), mean diffusivity (MD) and kurtosis anisotropy (KA) can be extracted. These metrics could, in future, be used to quantify longitudinal structural changes in the nervous system of the locust brain that occur due to environmental stressors or ageing.
Collapse
Affiliation(s)
- Syed Salman Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christian M Kerskens
- Trinity College Institute of Neuroscience, Trinity Centre for Biomedical Engineering, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Malcolm Burrows
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alice G Witney
- Department of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity Centre for Biomedical Engineering, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
8
|
Ghosh S, Harvey P, Simon JC, Jasanoff A. Probing the brain with molecular fMRI. Curr Opin Neurobiol 2018; 50:201-210. [PMID: 29649765 DOI: 10.1016/j.conb.2018.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 01/07/2023]
Abstract
One of the greatest challenges of modern neuroscience is to incorporate our growing knowledge of molecular and cellular-scale physiology into integrated, organismic-scale models of brain function in behavior and cognition. Molecular-level functional magnetic resonance imaging (molecular fMRI) is a new technology that can help bridge these scales by mapping defined microscopic phenomena over large, optically inaccessible regions of the living brain. In this review, we explain how MRI-detectable imaging probes can be used to sensitize noninvasive imaging to mechanistically significant components of neural processing. We discuss how a combination of innovative probe design, advanced imaging methods, and strategies for brain delivery can make molecular fMRI an increasingly successful approach for spatiotemporally resolved studies of diverse neural phenomena, perhaps eventually in people.
Collapse
Affiliation(s)
- Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States
| | - Peter Harvey
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States
| | - Jacob C Simon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Rm. 16-561, Cambridge, MA 02139, United States.
| |
Collapse
|
9
|
Comparison between thaw-mounting and use of conductive tape for sample preparation in ToF-SIMS imaging of lipids in Drosophila microRNA-14 model. Biointerphases 2018; 13:03B414. [PMID: 29602282 DOI: 10.1116/1.5019597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging elucidates molecular distributions in tissue sections, providing useful information about the metabolic pathways linked to diseases. However, delocalization of the analytes and inadequate tissue adherence during sample preparation are among some of the unfortunate phenomena associated with this technique due to their role in the reduction of the quality, reliability, and spatial resolution of the ToF-SIMS images. For these reasons, ToF-SIMS imaging requires a more rigorous sample preparation method in order to preserve the natural state of the tissues. The traditional thaw-mounting method is particularly vulnerable to altered distributions of the analytes due to thermal effects, as well as to tissue shrinkage. In the present study, the authors made comparisons of different tissue mounting methods, including the thaw-mounting method. The authors used conductive tape as the tissue-mounting material on the substrate because it does not require heat from the finger for the tissue section to adhere to the substrate and can reduce charge accumulation during data acquisition. With the conductive-tape sampling method, they were able to acquire reproducible tissue sections and high-quality images without redistribution of the molecules. Also, the authors were successful in preserving the natural states and chemical distributions of the different components of fat metabolites such as diacylglycerol and fatty acids by using the tape-supported sampling in microRNA-14 (miR-14) deleted Drosophila models. The method highlighted here shows an improvement in the accuracy of mass spectrometric imaging of tissue samples.
Collapse
|
10
|
Chen HY, Tycko R. Low-temperature magnetic resonance imaging with 2.8 μm isotropic resolution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 287:47-55. [PMID: 29288890 PMCID: PMC5803441 DOI: 10.1016/j.jmr.2017.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 05/16/2023]
Abstract
We demonstrate the feasibility of high-resolution 1H magnetic resonance imaging (MRI) at low temperatures by obtaining an MRI image of 20 μm diameter glass beads in glycerol/water at 28 K with 2.8 μm isotropic resolution. The experiments use a recently-described MRI apparatus (Moore and Tycko, 2015) with minor modifications. The sample is contained within a radio-frequency microcoil with 150 μm inner diameter. Sensitivity is additionally enhanced by paramagnetic doping, optimization of the sample temperature, three-dimensional phase-encoding of k-space data, pulsed spin-lock detection of 1H nuclear magnetic resonance signals, and spherical sampling of k-space. We verify that the actual image resolution is 2.7 ± 0.3 μm by quantitative comparisons of experimental and calculated images. Our imaging approach is compatible with dynamic nuclear polarization, providing a path to significantly higher resolution in future experiments.
Collapse
Affiliation(s)
- Hsueh-Ying Chen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
11
|
A simple setup for episcopic microtomy and a digital image processing workflow to acquire high-quality volume data and 3D surface models of small vertebrates. ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0386-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Magnetic Resonance Microscopy (MRM) of Single Mammalian Myofibers and Myonuclei. Sci Rep 2017; 7:39496. [PMID: 28045071 PMCID: PMC5206738 DOI: 10.1038/srep39496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
Recently, the first magnetic resonance microscopy (MRM) images at the cellular level in isolated mammalian brain tissues were obtained using microsurface coils. These methods can elucidate the cellular origins of MR signals and describe how these signals change over the course of disease progression and therapy. In this work, we explore the capability of these microimaging techniques to visualize mouse muscle fibers and their nuclei. Isolated myofibers expressing lacZ were imaged with and without a stain for β-galactosidase activity (S-Gal + ferric ammonium citrate) that produces both optical and MR contrast. We found that MRM can be used to image single myofibers with 6-μm resolution. The ability to image single myofibers will serve as a valuable tool to study MR properties attributed to healthy and myopathic cells. The ability to image nuclei tagged with MR/Optical gene markers may also find wide use in cell lineage MRI studies.
Collapse
|
13
|
Sleep Homeostasis and General Anesthesia: Are Fruit Flies Well Rested after Emergence from Propofol? Anesthesiology 2016; 124:404-16. [PMID: 26556728 DOI: 10.1097/aln.0000000000000939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Shared neurophysiologic features between sleep and anesthetic-induced hypnosis indicate a potential overlap in neuronal circuitry underlying both states. Previous studies in rodents indicate that preexisting sleep debt discharges under propofol anesthesia. The authors explored the hypothesis that propofol anesthesia also dispels sleep pressure in the fruit fly. To the authors' knowledge, this constitutes the first time propofol has been tested in the genetically tractable model, Drosophila melanogaster. METHODS Daily sleep was measured in Drosophila by using a standard locomotor activity assay. Propofol was administered by transferring flies onto food containing various doses of propofol or equivalent concentrations of vehicle. High-performance liquid chromatography was used to measure the tissue concentrations of ingested propofol. To determine whether propofol anesthesia substitutes for natural sleep, the flies were subjected to 10-h sleep deprivation (SD), followed by 6-h propofol exposure, and monitored for subsequent sleep. RESULTS Oral propofol treatment causes anesthesia in flies as indicated by a dose-dependent reduction in locomotor activity (n = 11 to 41 flies from each group) and increased arousal threshold (n = 79 to 137). Recovery sleep in flies fed propofol after SD was delayed until after flies had emerged from anesthesia (n = 30 to 48). SD was also associated with a significant increase in mortality in propofol-fed flies (n = 44 to 46). CONCLUSIONS Together, these data indicate that fruit flies are effectively anesthetized by ingestion of propofol and suggest that homologous molecular and neuronal targets of propofol are conserved in Drosophila. However, behavioral measurements indicate that propofol anesthesia does not satisfy the homeostatic need for sleep and may compromise the restorative properties of sleep.
Collapse
|
14
|
Hsu CT, Bhandawat V. Organization of descending neurons in Drosophila melanogaster. Sci Rep 2016; 6:20259. [PMID: 26837716 PMCID: PMC4738306 DOI: 10.1038/srep20259] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
Neural processing in the brain controls behavior through descending neurons (DNs) - neurons which carry signals from the brain to the spinal cord (or thoracic ganglia in insects). Because DNs arise from multiple circuits in the brain, the numerical simplicity and availability of genetic tools make Drosophila a tractable model for understanding descending motor control. As a first step towards a comprehensive study of descending motor control, here we estimate the number and distribution of DNs in the Drosophila brain. We labeled DNs by backfilling them with dextran dye applied to the neck connective and estimated that there are ~1100 DNs distributed in 6 clusters in Drosophila. To assess the distribution of DNs by neurotransmitters, we labeled DNs in flies in which neurons expressing the major neurotransmitters were also labeled. We found DNs belonging to every neurotransmitter class we tested: acetylcholine, GABA, glutamate, serotonin, dopamine and octopamine. Both the major excitatory neurotransmitter (acetylcholine) and the major inhibitory neurotransmitter (GABA) are employed equally; this stands in contrast to vertebrate DNs which are predominantly excitatory. By comparing the distribution of DNs in Drosophila to those reported previously in other insects, we conclude that the organization of DNs in insects is highly conserved.
Collapse
Affiliation(s)
- Cynthia T Hsu
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Deparment of Neurobiology, Duke University, Durham, North Carolina 27708, USA
| | - Vikas Bhandawat
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Deparment of Neurobiology, Duke University, Durham, North Carolina 27708, USA.,Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
15
|
Moore E, Tycko R. Micron-scale magnetic resonance imaging of both liquids and solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 260:1-9. [PMID: 26397215 PMCID: PMC4628880 DOI: 10.1016/j.jmr.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 05/16/2023]
Abstract
We describe and demonstrate a novel apparatus for magnetic resonance imaging (MRI), suitable for imaging of both liquid and solid samples with micron-scale isotropic resolution. The apparatus includes a solenoidal radio-frequency microcoil with 170 μm inner diameter and a set of planar gradient coils, all wound by hand and supported on a series of stacked sapphire plates. The design ensures efficient heat dissipation during gradient pulses and also facilitates disassembly, sample changes, and reassembly. To demonstrate liquid state (1)H MRI, we present an image of polystyrene beads within CuSO4-doped water, contained within a capillary tube with 100 μm inner diameter, with 5.0 μm isotropic resolution. To demonstrate solid state (1)H MRI, we present an image of NH4Cl particles within the capillary tube, with 8.0 μm isotropic resolution. High-resolution solid state MRI is enabled by frequency-switched Lee-Goldburg decoupling, with an effective rotating frame field amplitude of 289 kHz. At room temperature, pulsed gradients of 4 T/m (i.e., 170 Hz/μm for (1)H MRI) are achievable in all three directions with currents of 10 A or less. The apparatus is contained within a variable-temperature liquid helium cryostat, which will allow future efforts to obtain MRI images at low temperatures with signal enhancement by dynamic nuclear polarization.
Collapse
Affiliation(s)
- Eric Moore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
16
|
Wang YXJ, Wang J, Deng M, Liu G, Qin L. In vivo three-dimensional magnetic resonance imaging of rat knee osteoarthritis model induced using meniscal transection. J Orthop Translat 2015; 3:134-141. [PMID: 30035050 PMCID: PMC5982389 DOI: 10.1016/j.jot.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 11/25/2022] Open
Abstract
Background/Objective In a rat meniscal tear model of osteoarthritis (OA), a full-thickness cut in the medial meniscus leads to joint instability and progressive development of knee OA. This study evaluated in vivo high-resolution three-dimensional magnetic resonance imaging (3D MRI) in demonstrating the knee joint structural changes of this animal model. Methods A left knee meniscal tear procedure was carried out on 10 rats, and sham surgery was performed on five rats. The joints were MRI scanned 44 days after surgery at 4.7 Tesla. A 3D data set was acquired using a 3D spoiled gradient echo sequence at a resolution of 59 × 117 × 234 μm3. After MRI, microscopic examination of the joints was performed. Results The medial meniscus tear was clearly visible with MRI. Cartilage damage was seen in all animals, with varying degrees of severities, which included a decrease of cartilage thickness and loss of cartilage in some areas, and focal neocartilage proliferation at the joint margin. Damage to the subchondral bone included local osteosclerosis, deformed tibia cortex surface, and osteophytes. The damage to the cartilage and bone was most extensive on the weight-bearing region of the medial tibial plateau. No apparent subchondral bone damage was observed in the epiphysis of the femur. In five animals, single or multiple high MR signal areas were seen within the epiphysis of the tibia, consistent with epiphyseal cyst formation. The knee interarticular space on the media side was slightly increased in two animals. Mild femur–tibia axis misalignment was seen in one animal. Changes seen on MRI were consistent with histopathological changes. Conclusion MRI offers in vivo information on the pathogenesis change of rat knee OA induced with menisectomy. It can serve as a supplement technique to histology, as it is particularly useful for longitudinal follow-up of OA model development.
Collapse
Affiliation(s)
- Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Junqing Wang
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Min Deng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Gang Liu
- Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Ling Qin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|