1
|
Yu KM, Park SJ. Tick-borne viruses: Epidemiology, pathogenesis, and animal models. One Health 2024; 19:100903. [PMID: 39391267 PMCID: PMC11465198 DOI: 10.1016/j.onehlt.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Tick-borne viruses, capable of infecting animals and humans, are expanding geographically and increasing in prevalence, posing significant global public health threats. This review explores the current epidemiology of human pathogenic tick-borne viruses, emphasizing their diversity and the spectrum of symptomatic manifestations in humans, which range from mild to severe. We highlight how the infrequent and unpredictable nature of viral outbreaks complicates the precise identification and understanding of these viruses in human infections. Furthermore, we describe the utility of animal models that accurately mimic human clinical symptoms, facilitating the development of effective control strategies. Our comprehensive analysis provides crucial insights into disease progression and emphasizes the urgent need for continued research. This work aims to provide insight into knowledge gaps to mitigate the health burden of tick-borne infections and open an avenue for further study to enhance our understanding of these emerging infectious diseases.
Collapse
Affiliation(s)
- Kwang-Min Yu
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Su-Jin Park
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Chae JB, Rim JM, Han SW, Cho YK, Kang JG, Chae JS. Prevalence, Isolation, and Molecular Characterization of Severe Fever with Thrombocytopenia Syndrome Virus in Cattle from the Republic of Korea. Vector Borne Zoonotic Dis 2024; 24:826-834. [PMID: 39029504 DOI: 10.1089/vbz.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by Bandavirus dabieense. Initially identified in China, this disease has spread throughout Asian countries via tick bites and animal-to-human transmission. However, reports of the prevalence of SFTS virus (SFTSV) in cattle in Korea are lacking. This study aimed to investigate SFTSV infections in grazing cattle in the Republic of Korea (ROK). Materials and Methods: In total, 845 grazing cattle serum samples were collected over 2 years (2019 and 2020) in the ROK, and viral RNA was extracted using a kit. One-step RT-nested PCR was performed to amplify the S-segment of SFTSV. Positive serum samples were used to isolate SFTSV in Vero E6 cells, and the full sequences were analyzed. A phylogenetic tree was constructed using the maximum-likelihood method with MEGA X. In addition, immunoglobulin G antibodies against SFTSV were investigated using an enzyme-linked immunosorbent assay. Results: Here, 4.0% of serum samples (34/845) were positive for SFTSV S-segments, and one virus isolate was cultured in Vero E6 cells. Phylogenetic analysis based on the partial S-segment classified 4 SFTSV isolates as the B-2 genotype, 9 as the B-3 genotype, 18 as an unclassified B genotype, and 3 as the D genotype. One cultured virus was classified as the B-2 genotype based on SFTSV L-, M-, and S-segments. Antibody detection results showed that 21.1% of serum samples (161/763) were positive for SFTSV. Conclusion: To the best of our knowledge, this is the first study performed to identify the prevalence of SFTSV in grazing cattle in the ROK. Our findings indicate the necessity for more intensive and continuous SFTSV monitoring, not only in cattle but also in other animals, to comprehend the genetic diversity of the virus and its potential eco-epidemiological impact on human health.
Collapse
Affiliation(s)
- Jeong-Byoung Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Min Rim
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Kyoung Cho
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Gu Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Chu XJ, Song DD, Chu N, Wu JB, Wu X, Chen XZ, Li M, Li Q, Chen Q, Sun Y, Gong L. Spatial and Temporal Analysis of Severe Fever with Thrombocytopenia Syndrome in Anhui Province from 2011 to 2023. J Epidemiol Glob Health 2024; 14:503-512. [PMID: 39222226 PMCID: PMC11442876 DOI: 10.1007/s44197-024-00235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To analyze the spatial autocorrelation and spatiotemporal clustering characteristics of severe fever with thrombocytopenia syndrome(SFTS) in Anhui Province from 2011 to 2023. METHODS Data of SFTS in Anhui Province from 2011 to 2023 were collected. Spatial autocorrelation analysis was conducted using GeoDa software, while spatiotemporal scanning was performed using SaTScan 10.0.1 software to identify significant spatiotemporal clusters of SFTS. RESULTS From 2011 to 2023, 5720 SFTS cases were reported in Anhui Province, with an average annual incidence rate of 0.7131/100,000. The incidence of SFTS in Anhui Province reached its peak mainly from April to May, with a small peak in October. The spatial autocorrelation results showed that from 2011 to 2023, there was a spatial positive correlation(P < 0.05) in the incidence of SFTS in all counties and districts of Anhui Province. Local autocorrelation high-high clustering areas are mainly located in the south of the Huaihe River. The spatiotemporal scanning results show three main clusters of SFTS in recent years: the first cluster located in the lower reaches of the Yangtze River, the eastern region of Anhui Province; the second cluster primarily focused on the region of the Dabie Mountain range, while the third cluster primarily focused on the region of the Huang Mountain range. CONCLUSIONS The incidence of SFTS in Anhui Province in 2011-2023 was spatially clustered.
Collapse
Affiliation(s)
- Xiu-Jie Chu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Dan-Dan Song
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Na Chu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Jia-Bing Wu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Xiaomin Wu
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Microbiological Laboratory, Public Health Research Institute of Anhui Province, Hefei, China
| | - Xiu-Zhi Chen
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ming Li
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Qing Li
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Qingqing Chen
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Microbiological Laboratory, Public Health Research Institute of Anhui Province, Hefei, China
| | - Yong Sun
- Microbiological Laboratory, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Microbiological Laboratory, Public Health Research Institute of Anhui Province, Hefei, China
| | - Lei Gong
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China.
| |
Collapse
|
4
|
Yan X, Luo C, Yang J, Wang Z, Shao Y, Wang P, Yang S, Li Y, Dai Q, Li W, Yang X, Tao H, Ren S, Li Z, Guo X, Li S, Zhu W, Luo Y, Li J, Li S, Cao R, Zhong W. Antiviral Activity of Selective Estrogen Receptor Modulators against Severe Fever with Thrombocytopenia Syndrome Virus In Vitro and In Vivo. Viruses 2024; 16:1332. [PMID: 39205306 PMCID: PMC11360069 DOI: 10.3390/v16081332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), also known as the Dabie Banda virus, is an emerging tick-borne Bunyavirus that causes severe fever with thrombocytopenia syndrome (SFTS). Currently, symptomatic treatment and antiviral therapy with ribavirin and favipiravir are used in clinical management. However, their therapeutical efficacy is hardly satisfactory in patients with high viral load. In this study, we explored the antiviral effects of selective estrogen receptor modulators (SERMs) on SFTSV infection and the antiviral mechanisms of a representative SERM, bazedoxifene acetate (BZA). Our data show that SERMs potently inhibited SFTSV-induced cytopathic effect (CPE), the proliferation of infectious viral particles, and viral RNA replication and that BZA effectively protected mice from lethal viral challenge. The mode of action analysis reveals that BZA exerts antiviral effects during the post-entry stage of SFTSV infection. The transcriptome analysis reveals that GRASLND and CYP1A1 were upregulated, while TMEM45B and TXNIP were downregulated. Our findings suggest that SERMs have the potential to be used in the treatment of SFTSV infection.
Collapse
Affiliation(s)
- Xintong Yan
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.Y.); (J.Y.); (P.W.); (S.R.); (J.L.)
- Song Li’s Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Yazhou Bay, Sanya 572000, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Chongda Luo
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.Y.); (J.Y.); (P.W.); (S.R.); (J.L.)
- Song Li’s Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Yazhou Bay, Sanya 572000, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Jingjing Yang
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.Y.); (J.Y.); (P.W.); (S.R.); (J.L.)
- Song Li’s Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Yazhou Bay, Sanya 572000, China
| | - Zhuang Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Yunfeng Shao
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.Y.); (J.Y.); (P.W.); (S.R.); (J.L.)
- Song Li’s Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Yazhou Bay, Sanya 572000, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Ping Wang
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.Y.); (J.Y.); (P.W.); (S.R.); (J.L.)
- Song Li’s Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Yazhou Bay, Sanya 572000, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Shaokang Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Yuexiang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Qingsong Dai
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Xiaotong Yang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Huimin Tao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Sichen Ren
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.Y.); (J.Y.); (P.W.); (S.R.); (J.L.)
- Song Li’s Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Yazhou Bay, Sanya 572000, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Zhenyang Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Xiaojia Guo
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Siqi Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Weiyan Zhu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Yan Luo
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.Y.); (J.Y.); (P.W.); (S.R.); (J.L.)
- Song Li’s Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Yazhou Bay, Sanya 572000, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Jiazheng Li
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.Y.); (J.Y.); (P.W.); (S.R.); (J.L.)
- Song Li’s Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Yazhou Bay, Sanya 572000, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Song Li
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (X.Y.); (J.Y.); (P.W.); (S.R.); (J.L.)
- Song Li’s Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Yazhou Bay, Sanya 572000, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Z.W.); (S.Y.); (Y.L.); (Q.D.); (W.L.); (X.Y.); (H.T.); (Z.L.); (X.G.); (S.L.); (W.Z.)
| |
Collapse
|
5
|
Wang W, Liu Y, Zhang R, Sun J, Jiang J, Wang H. Comparison of epidemiological characteristics between hemorrhagic fever with renal syndrome patients and severe fever with thrombocytopenia syndrome patients. J Med Virol 2024; 96:e29845. [PMID: 39119969 DOI: 10.1002/jmv.29845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) and severe fever with thrombocytopenia syndrome (SFTS) are both endemic in rural areas and some characteristics are similar between HFRS and SFTS, which usually lead to misdiagnosis. In this study, we summarized and compared some characteristics of HFRS and SFTS which will provide scientific information for differential diagnosis. From 2011 to 2022, a total of 4336 HFRS cases and 737 SFTS cases were reported in Zhejiang Province. Compared to SFTS, there was a higher proportion of males among HFRS cases (72.46% [3142/4336] vs. 50.88% [375/737], p = 0.000). The median age of all 4336 HFRS cases was 49 (39, 59), while the median age of SFTS cases was 66 (57, 74). In addition, the involved counties of HFRS were more than SFTS, but the number of counties affected by SFTS increased from 2011 to 2022. The majority of SFTS cases occurred in summer (from May to July), but besides summer, HFRS cases also showed a peak in winter. Finally, our results showed that the case fatality rate of SFTS was significantly higher than that of HFRS. Although there were some similarities between HFRS and SFTS, our study found several differences between them, such as gender distribution, age distribution, and seasonal distribution, which will provide scientific information for differential diagnosis of HFRS and SFTS. Further studies should be carried out to explore the mechanism of these differences.
Collapse
Affiliation(s)
- Wen Wang
- Department of Social Medicine of School of Public Health and Department of Pharmacy of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liu
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Rong Zhang
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Jimin Sun
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Jianmin Jiang
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Hongmei Wang
- Department of Social Medicine of School of Public Health and Department of Pharmacy of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Hidaka K, Mitoma S, Norimine J, Shimojima M, Kuroda Y, Hinoura T. Seroprevalence for severe fever with thrombocytopenia syndrome virus among the residents of Miyazaki, Japan: An epidemiological study. J Infect Chemother 2024; 30:481-487. [PMID: 38042299 DOI: 10.1016/j.jiac.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
INTRODUCTION Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease caused by the SFTS virus (SFTSV). The Miyazaki Prefecture has the highest number of SFTS cases in Japan and requires countermeasures for prevention. In this study, we aimed to conduct an epidemiological survey in Miyazaki Prefecture to determine the exposure conditions of SFTSV by measuring the seroprevalence among residents of Miyazaki and to evaluate the factors that influence the endemicity of SFTS. METHODS The survey was conducted between June 2014 and April 2019 in all 26 municipalities in Miyazaki Prefecture. SFTSV antibodies were detected using an enzyme-linked immunosorbent assay in the blood samples of 6013 residents (3184 men and 2829 women). A questionnaire-based survey of the living environment was also conducted. RESULTS Multiple logistic regression analysis revealed that age and occupation were significant factors related to the proportion of participants with an optical density (OD) value > 0.2 and a seroprevalence of 0.9 % (54/6013). Seven seropositive individuals (0.1 %) with an OD value of >0.4 were identified (three men and four women, aged 54-69 years), and all were asymptomatic. One participant had a higher OD than the positive control. CONCLUSION Although SFTS is endemic in Miyazaki Prefecture, Japan, its seroprevalence is relatively low. Since some risk areas in Miyazaki prefecture have been identified, it is important to enhance awareness of SFTS in residences and reduce contact with ticks, especially in high-risk areas.
Collapse
Affiliation(s)
- Kazuhiro Hidaka
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shuya Mitoma
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Junzo Norimine
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Masayuki Shimojima
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiki Kuroda
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takuji Hinoura
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
7
|
Wang Z, Zhang W, Wu T, Lu N, He J, Wang J, Rao J, Gu Y, Cheng X, Li Y, Qi Y. Time series models in prediction of severe fever with thrombocytopenia syndrome cases in Shandong province, China. Infect Dis Model 2024; 9:224-233. [PMID: 38303992 PMCID: PMC10831807 DOI: 10.1016/j.idm.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is crucial for policymakers to develop prevention and control strategies. In this study, we utilized historical incidence data of SFTS (2013-2020) in Shandong Province, China to establish three univariate prediction models based on two time-series forecasting algorithms Autoregressive Integrated Moving Average (ARIMA) and Prophet, as well as a special type of recurrent neural network Long Short-Term Memory (LSTM) algorithm. We then evaluated and compared the performance of these models. All three models demonstrated good predictive capabilities for SFTS cases, with the predicted results closely aligning with the actual cases. Among the models, the LSTM model exhibited the best fitting and prediction performance. It achieved the lowest values for mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). The number of SFTS cases in the subsequent 5 years in this area were also generated using this model. The LSTM model, being simple and practical, provides valuable information and data for assessing the potential risk of SFTS in advance. This information is crucial for the development of early warning systems and the formulation of effective prevention and control measures for SFTS.
Collapse
Affiliation(s)
- Zixu Wang
- Pest Control Department, Huadong Research Institute for Medicine and Biotechniques, Nanjing, Jiangsu province, 210002, China
- Bengbu Medical College, Bengbu, Anhui province, 233030, China
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Ting Wu
- Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu province, 210002, China
| | - Nianhong Lu
- Pest Control Department, Huadong Research Institute for Medicine and Biotechniques, Nanjing, Jiangsu province, 210002, China
| | - Junyu He
- Ocean College, Zhejiang University, Zhoushan, 316021, China
- Ocean Academy, Zhejiang University, Zhoushan, 316021, China
| | - Junhu Wang
- Pest Control Department, Huadong Research Institute for Medicine and Biotechniques, Nanjing, Jiangsu province, 210002, China
| | - Jixian Rao
- Pest Control Department, Huadong Research Institute for Medicine and Biotechniques, Nanjing, Jiangsu province, 210002, China
| | - Yuan Gu
- Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu province, 210002, China
| | - Xianxian Cheng
- Bengbu Medical College, Bengbu, Anhui province, 233030, China
| | - Yuexi Li
- Pest Control Department, Huadong Research Institute for Medicine and Biotechniques, Nanjing, Jiangsu province, 210002, China
| | - Yong Qi
- Pest Control Department, Huadong Research Institute for Medicine and Biotechniques, Nanjing, Jiangsu province, 210002, China
| |
Collapse
|
8
|
Ding FY, Ge HH, Ma T, Wang Q, Hao MM, Li H, Zhang XA, Maude RJ, Wang LP, Jiang D, Fang LQ, Liu W. Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China. GLOBAL CHANGE BIOLOGY 2023; 29:6647-6660. [PMID: 37846616 DOI: 10.1111/gcb.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/20/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with increasing incidence and geographic extent. The extent to which global climate change affects the incidence of SFTS disease remains obscure. We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in China. The spatial distribution of habitat suitability for the tick Haemaphysalis longicornis was predicted by applying a boosted regression tree model under four alternative climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) for the periods 2030-2039, 2050-2059, and 2080-2089. We incorporate the SFTS cases in the mainland of China from 2010 to 2019 with environmental variables and the projected distribution of H. longicornis into a generalized additive model to explore the current and future spatiotemporal dynamics of SFTS. Our results demonstrate an expanded geographic distribution of H. longicornis toward Northern and Northwestern China, showing a more pronounced change under the RCP8.5 scenario. In contrast, the environmental suitability of H. longicornis is predicted to be reduced in Central and Eastern China. The SFTS incidence in three time periods (2030-2039, 2050-2059, and 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. A heterogeneous trend across provinces, however, was observed, when an increased incidence in Liaoning and Shandong provinces, while decreased incidence in Henan province is predicted. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for tick control and population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas.
Collapse
Affiliation(s)
- Fang-Yu Ding
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Han Ge
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tian Ma
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Meng-Meng Hao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Richard James Maude
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Li-Ping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Diseases, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Dong Jiang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
9
|
Herb H, González J, Ferreira FC, Fonseca DM. Multiple piroplasm parasites (Apicomplexa: Piroplasmida) in northeastern populations of the invasive Asian longhorned tick, Haemaphysalis longicornis Neumann (Ixodida: Ixodidae), in the United States. Parasitology 2023; 150:1063-1069. [PMID: 37791496 PMCID: PMC10801381 DOI: 10.1017/s0031182023000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Piroplasms, which include the agents of cattle fever and human and dog babesiosis, are a diverse group of blood parasites of significant veterinary and medical importance. The invasive Asian longhorned tick, Haemaphysalis longicornis, is a known vector of piroplasms in its native range in East Asia and invasive range in Australasia. In the USA, H. longicornis has been associated with Theileria orientalis Ikeda outbreaks that caused cattle mortality. To survey invasive populations of H. longicornis for a broad range of piroplasms, 667 questing H. longicornis collected in 2021 from 3 sites in New Jersey, USA, were tested with generalist piroplasm primers targeting the 18S small subunit rRNA (395–515 bp, depending on species) and the cytochrome b oxidase loci (1009 bp). Sequences matching Theileria cervi type F (1 adult, 5 nymphs), an unidentified Theileria species (in 1 nymph), an undescribed Babesia sensu stricto (‘true’ Babesia, 2 adults, 2 nymphs), a Babesia sp. Coco (also a ‘true Babesia’, 1 adult, 1 nymph), as well as Babesia microti S837 (1 adult, 4 nymphs) were recovered. Babesia microti S837 is closely related to the human pathogen B. microti US-type. Additionally, a 132 bp sequence matching the cytochrome b locus of deer, Odocoileus virginanus, was obtained from 2 partially engorged H. longicornis. The diverse assemblage of piroplasms now associated with H. longicornis in the USA spans 3 clades in the piroplasm phylogeny and raises concerns of transmission amplification of veterinary pathogens as well as spillover of pathogens from wildlife to humans.
Collapse
Affiliation(s)
- Heidi Herb
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA
| | - Julia González
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Liu B, Zhu J, He T, Zhang Z. Genetic variants of Dabie bandavirus: classification and biological/clinical implications. Virol J 2023; 20:68. [PMID: 37060090 PMCID: PMC10103499 DOI: 10.1186/s12985-023-02033-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by Dabie bandavirus (DBV), a novel Bandavirus in the family Phenuiviridae. The first case of SFTS was reported in China, followed by cases in Japan, South Korea, Taiwan and Vietnam. With clinical manifestations including fever, leukopenia, thrombocytopenia, and gastrointestinal symptoms, SFTS has a fatality rate of approximately 10%. In recent years, an increasing number of viral strains have been isolated and sequenced, and several research groups have attempted to classify the different genotypes of DBV. Additionally, accumulating evidence indicates certain correlations between the genetic makeup and biological/clinical manifestations of the virus. Here, we attempted to evaluate the genetic classification of different groups, align the genotypic nomenclature in different studies, summarize the distribution of different genotypes, and review the biological and clinical implications of DBV genetic variations.
Collapse
Affiliation(s)
- Bingyan Liu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, China
| | - Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, China
| | - Tengfei He
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, China.
| |
Collapse
|
11
|
Liang S, Li Z, Zhang N, Wang X, Qin Y, Xie W, Bao C, Hu J. Epidemiological and spatiotemporal analysis of severe fever with thrombocytopenia syndrome in Eastern China, 2011-2021. BMC Public Health 2023; 23:508. [PMID: 36927782 PMCID: PMC10019416 DOI: 10.1186/s12889-023-15379-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease, which is caused by severe fever with thrombocytopenia syndrome virus (SFTSV) with high fatality. Recently, the incidence of SFTS increased obviously in Jiangsu Province. However, the systematic and complete analysis of spatiotemporal patterns and clusters coupled with epidemiological characteristics of SFTS have not been reported so far. METHODS Data on SFTS cases were collected during 2011-2021. The changing epidemiological characteristics of SFTS were analyzed by adopting descriptive statistical methods. GeoDa 1.18 was applied for spatial autocorrelation analysis, and SaTScan 10.0 was used to identify spatio-temporal clustering of cases. The results were visualized in ArcMap. RESULTS The annual incidence of SFTS increased in Jiangsu Province from 2011 to 2021. Most cases (72.4%) occurred during May and August with the obvious peak months. Elderly farmers accounted for most cases, among which both males and females were susceptible. The spatial autocorrelation and spatio-temporal clustering analysis indicated that the distribution of SFTS was not random but clustered in space and time. The most likely cluster was observed in the western region of Jiangsu Province and covered one county (Xuyi county) (Relative risk = 8.18, Log likelihood ratio = 122.645, P < 0.001) located in southwestern Jiangsu Province from January 1, 2017 to December 31, 2021. The Secondary cluster also covered one county (Lishui county) (Relative risk = 7.70, Log likelihood ratio = 94.938, P < 0.001) from January 1, 2017 to December 31, 2021. CONCLUSIONS The annual number of SFTS cases showed an increasing tendency in Jiangsu Province from 2011 to 2021. Our study elucidated regions with SFTS clusters by means of ArcGIS in combination with spatial analysis. The results demonstrated solid evidences for the orientation of limited sanitary resources, surveillance in high-risk regions and early warning of epidemic seasons in future prevention and control of SFTS in Jiangsu Province.
Collapse
Affiliation(s)
- Shuyi Liang
- Acute Infectious disease control and prevention institute, Jiangsu Provincial center for disease control and prevention, Nanjing, China
| | - Zhifeng Li
- Acute Infectious disease control and prevention institute, Jiangsu Provincial center for disease control and prevention, Nanjing, China
| | - Nan Zhang
- Acute Infectious disease control and prevention institute, Jiangsu Provincial center for disease control and prevention, Nanjing, China
| | - Xiaochen Wang
- Acute Infectious disease control and prevention institute, Jiangsu Provincial center for disease control and prevention, Nanjing, China
| | - Yuanfang Qin
- Acute Infectious disease control and prevention institute, Jiangsu Provincial center for disease control and prevention, Nanjing, China
| | - Wei Xie
- Institute of Food Safety and Assessment, Jiangsu Provincial center for disease control and prevention, Nanjing, China
| | - Changjun Bao
- Acute Infectious disease control and prevention institute, Jiangsu Provincial center for disease control and prevention, Nanjing, China
| | - Jianli Hu
- Acute Infectious disease control and prevention institute, Jiangsu Provincial center for disease control and prevention, Nanjing, China.
| |
Collapse
|
12
|
Rochlin I, Benach JL, Furie MB, Thanassi DG, Kim HK. Rapid invasion and expansion of the Asian longhorned tick (Haemaphysalis longicornis) into a new area on Long Island, New York, USA. Ticks Tick Borne Dis 2023; 14:102088. [PMID: 36436461 PMCID: PMC9898124 DOI: 10.1016/j.ttbdis.2022.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Since its discovery in the United States in 2017, the Asian longhorned tick (Haemaphysalis longicornis) has been detected in most eastern states between Rhode Island and Georgia. Long Island, east of New York City, a recognized high-risk area for tick-borne diseases, is geographically close to New Jersey and New York sites where H. longicornis was originally found. However, extensive tick surveys conducted in 2018 did not identify H. longicornis on Long Island. In stark contrast, our 2022 tick survey suggests that H. longicornis has rapidly invaded and expanded in multiple surveying sites on Long Island (12 out of 17 sites). Overall, the relative abundance of H. longicornis was similar to that of lone star ticks, Amblyomma americanum, a previously recognized tick species abundantly present on Long Island. Interestingly, our survey suggests that H. longicornis has expanded within the Appalachian forest ecological zone of Long Island's north shore compared to the Pine Barrens located on the south shore of Long Island. The rapid invasion and expansion of H. longicornis into an insular environment are different from the historical invasion and expansion of two native tick species, Ixodes scapularis (blacklegged tick or deer tick) and A. americanum, in Long Island. The implications of H. longicornis transmitting or introducing tick-borne pathogens of public health importance remain unknown.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| | - Jorge L Benach
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Martha B Furie
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - David G Thanassi
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Hwan Keun Kim
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
13
|
Xia G, Sun S, Zhou S, Li L, Li X, Zou G, Huang C, Li J, Zhang Z. A new model for predicting the outcome and effectiveness of drug therapy in patients with severe fever with thrombocytopenia syndrome: A multicenter Chinese study. PLoS Negl Trop Dis 2023; 17:e0011158. [PMID: 36877734 PMCID: PMC10019728 DOI: 10.1371/journal.pntd.0011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/16/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND There are a few models for predicting the outcomes of patients with severe fever with thrombocytopenia syndrome (SFTS) based on single-center data, but clinicians need more reliable models based on multicenter data to predict the clinical outcomes and effectiveness of drug therapy. METHODOLOGY/PRINCIPAL FINDINGS This retrospective multicenter study analyzed data from 377 patients with SFTS, including a modeling group and a validation group. In the modeling group, the presence of neurologic symptoms was a strong predictor of mortality (odds ratio: 168). Based on neurologic symptoms and the joint indices score, which included age, gastrointestinal bleeding, and the SFTS virus viral load, patients were divided into double-positive, single-positive, and double-negative groups, which had mortality rates of 79.3%, 6.8%, and 0%, respectively. Validation using data on 216 cases from two other hospitals yielded similar results. A subgroup analysis revealed that ribavirin had a significant effect on mortality in the single-positive group (P = 0.006), but not in the double-positive or double-negative group. In the single-positive group, prompt antibiotic use was associated with reduced mortality (7.2% vs 47.4%, P < 0.001), even in individuals without significant granulocytopenia and infection, and early prophylaxis was associated with reduced mortality (9.0% vs. 22.8%, P = 0.008). The infected group included SFTS patients with pneumonia or sepsis, while the noninfected group included patients with no signs of infection. The white blood cell count and levels of C-reactive protein and procalcitonin differed significantly between the infection and non-infection groups (P = 0.020, P = 0.011, and P = 0.003, respectively), although the absolute difference in the medians were small. CONCLUSIONS/SIGNIFICANCE We developed a simple model to predict mortality in patients with SFTS. Our model may help to evaluate the effectiveness of drugs in these patients. In patients with severe SFTS, ribavirin and antibiotics may reduce mortality.
Collapse
Affiliation(s)
- Guomei Xia
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shanshan Sun
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shijun Zhou
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Lei Li
- Department of Infectious Diseases, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Xu Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guizhou Zou
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- * E-mail:
| |
Collapse
|
14
|
Rochlin I, Egizi A, Narvaez Z, Bonilla DL, Gallagher M, Williams GM, Rainey T, Price DC, Fonseca DM. Microhabitat modeling of the invasive Asian longhorned tick (Haemaphysalis longicornis) in New Jersey, USA. Ticks Tick Borne Dis 2023; 14:102126. [PMID: 36682197 DOI: 10.1016/j.ttbdis.2023.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
The Asian longhorned tick (Haemaphysalis longicornis) is a vector of multiple arboviral and bacterial pathogens in its native East Asia and expanded distribution in Australasia. This species has both bisexual and parthenogenetic populations that can reach high population densities under favorable conditions. Established populations of parthenogenetic H. longicornis were detected in the eastern United States in 2017 and the possible range of this species at the continental level (North America) based on climatic conditions has been modeled. However, little is known about factors influencing the distribution of H. longicornis at geographic scales relevant to local surveillance and control. To examine the importance of local physiogeographic conditions such as geology, soil characteristics, and land cover on the distribution of H. longicornis we employed ecological niche modeling using three machine learning algorithms - Maxent, Random Forest (RF), and Generalized Boosting Method (GBM) to estimate probability of finding H. longicornis in a particular location in New Jersey (USA), based on environmental predictors. The presence of H. longicornis in New Jersey was positively associated with Piedmont physiogeographic province and two soil types - Alfisols and Inceptisols. Soil hydraulic conductivity was the most important predictor explaining H. longicornis habitat suitability, with more permeable sandy soils with higher hydraulic conductivity being less suitable than clay or loam soils. The models were projected over the state of New Jersey creating a probabilistic map of H. longicornis habitat suitability at a high spatial resolution of 90×90 meters. The model's sensitivity was 87% for locations sampled in 2017-2019 adding to the growing evidence of the importance of soil characteristics to the survival of ticks. For the 2020-2022 dataset the model fit was 57%, suggestive of spillover to less optimal habitats or, alternatively, heterogeneity in soil characteristics at the edges of broad physiographic zones. Further modeling should incorporate abundance and life-stage information as well as detailed characterization of the soil at collection sites. Once critical parameters that drive the survival and abundance of H. longicornis are identified they can be used to guide surveillance and control strategies for this invasive species.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA; Department of Microbiology and Immunology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Andrea Egizi
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA; Monmouth County Mosquito Control Division, Tick-borne Disease Program, Tinton Falls, NJ 07724, USA
| | - Zoe Narvaez
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Denise L Bonilla
- USDA/APHIS/Veterinary Services, Strategy and Policy, National Cattle Fever Tick Eradication Program, Fort Collins, CO 80526, USA
| | - Mike Gallagher
- USDA Forest Service Northern Research Station, New Lisbon, NJ 08064, USA
| | | | - Tadhgh Rainey
- Public Health Entomologists LLC, Milford, NJ 08848, USA
| | - Dana C Price
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Dina M Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
15
|
Song L, Zhao Y, Wang G, Zou W, Sai L. Investigation of predictors for invasive pulmonary aspergillosis in patients with severe fever with thrombocytopenia syndrome. Sci Rep 2023; 13:1538. [PMID: 36707667 PMCID: PMC9883384 DOI: 10.1038/s41598-023-28851-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Patients with severe fever with thrombocytopenia syndrome (SFTS) had been confirmed to have immune dysfunction and were prone to invasive pulmonary aspergillosis (IPA), which was directly related to the increased mortality. The aim of this study was to investigate the predictors for IPA in SFTS patients, and the results were expected to be helpful for early identification of IPA and initiation of anti-fungal therapy. The study was performed to review laboratory confirmed SFTS patients in two tertiary hospitals in Shandong province (Qilu Hospital of Shandong University and Shandong Public Health Clinical Center) from April 2021 to August 2022. The enrolled patients were further divided into IPA group and non-IPA group. Demographic characteristics, clinical manifestations and laboratory parameters between IPA group and non-IPA group patients were analyzed and compared to identify the independent predictors for IPA by univariate analysis and multivariable logistic regression analysis. Sensitivity and specificity of independent predictors were evaluated by receiver operating characteristic (ROC) curve analysis. In total, 67 SFTS patients were enrolled with an average age of 64.7 (± 8.4) years old. The incidence of IPA was 32.8% (22/67). Mortality of patients in IPA group was 27.3% (6/22), which was significantly higher than that in non-IPA group. Results of univariate analysis showed that uncontrolled diabetes, central nervous system symptoms, platelet < 40 × 109/L, CD4+ T cell < 300/μL and CD8+ T cell < 400/μL were risk factors for development of IPA. These factors were further analyzed by multivariable logistic regression analysis and the results indicated that uncontrolled diabetes, platelet < 40 × 109/L, CD4+ T cell < 300/μL and CD8+ T cell < 400/μL could be recognized as independent predictors for IPA in SFTS patients. In conclusion, IPA is a serious complication for SFTS patients and increases mortality. It is necessary to early identify predictors of IPA for improving survival of SFTS patients.
Collapse
Affiliation(s)
- Li Song
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Yingjie Zhao
- Department of Rheumatology, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Gang Wang
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Wenlu Zou
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Lintao Sai
- Department of Infectious Diseases, Qilu Hospital of Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China.
| |
Collapse
|
16
|
Li Y, An C, Xue P, Ni L, Yu X, Qu J, Yao Y, Yu C. Clinical Application of Thromboelastography in Patients With Severe Fever With Thrombocytopenia Syndrome. Clin Appl Thromb Hemost 2023; 29:10760296231180170. [PMID: 37321608 DOI: 10.1177/10760296231180170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
AIM To investigate the clinical application of thromboelastography (TEG) in severe fever with thrombocytopenia syndrome (SFTS). METHODS One hundred and fifty-seven patients with SFTS were included in the study. The participants were distributed into 3 groups; A, B, and C. And 103 patients in group A met the clinical criteria as they exhibited slight liver and kidney dysfunction. Group B consisted of 54 patients with SFTS who were critically ill while group C was a healthy control group with 58 participants. RESULTS Patients with SFTS exhibited lower coagulation than the healthy participants. Group B patients exhibited significantly lower coagulation compared to group A. There was no significant difference in platelet count and fibrinogen content between patients in group A and group B, but platelet aggregation function and fibrinogen activity were significantly lower in group B patients. CONCLUSION Our results suggest that it is risky to solely rely on platelet count and the fibrinogen in SFTS. Monitoring of TEG and other coagulation indexes should be emphasized.
Collapse
Affiliation(s)
- Yingbo Li
- Department of Blood Transfusion, Central Hospital of Weihai, Weihai, Shandong Province, China
| | - Changjuan An
- Department of Blood Transfusion, Central Hospital of Weihai, Weihai, Shandong Province, China
| | - Peng Xue
- Department of Blood Transfusion, Central Hospital of Weihai, Weihai, Shandong Province, China
| | - Lina Ni
- Department of Blood Transfusion, Central Hospital of Weihai, Weihai, Shandong Province, China
| | - Xia Yu
- Department of Blood Transfusion, Central Hospital of Weihai, Weihai, Shandong Province, China
| | - Jiangli Qu
- Department of Blood Transfusion, Central Hospital of Weihai, Weihai, Shandong Province, China
| | - Yingjie Yao
- Department of Blood Transfusion, Central Hospital of Weihai, Weihai, Shandong Province, China
| | - Chengyong Yu
- Department of Blood Transfusion, Central Hospital of Weihai, Weihai, Shandong Province, China
| |
Collapse
|
17
|
Zhang A, Li X, Wang T, Liu K, Liu M, Zhang W, Zhao G, Chen J, Zhang X, Miao D, Ma W, Fang L, Yang Y, Liu W. Ecology of Middle East respiratory syndrome coronavirus, 2012-2020: A machine learning modelling analysis. Transbound Emerg Dis 2022; 69:e2122-e2131. [PMID: 35366384 PMCID: PMC9526759 DOI: 10.1111/tbed.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/30/2022]
Abstract
The ongoing enzootic circulation of the Middle East respiratory syndrome coronavirus (MERS-CoV) in the Middle East and North Africa is increasingly raising the concern about the possibility of its recombination with other human-adapted coronaviruses, particularly the pandemic SARS-CoV-2. We aim to provide an updated picture about ecological niches of MERS-CoV and associated socio-environmental drivers. Based on 356 confirmed MERS cases with animal contact reported to the WHO and 63 records of animal infections collected from the literature as of 30 May 2020, we assessed ecological niches of MERS-CoV using an ensemble model integrating three machine learning algorithms. With a high predictive accuracy (area under receiver operating characteristic curve = 91.66% in test data), the ensemble model estimated that ecologically suitable areas span over the Middle East, South Asia and the whole North Africa, much wider than the range of reported locally infected MERS cases and test-positive animal samples. Ecological suitability for MERS-CoV was significantly associated with high levels of bareland coverage (relative contribution = 30.06%), population density (7.28%), average temperature (6.48%) and camel density (6.20%). Future surveillance and intervention programs should target the high-risk populations and regions informed by updated quantitative analyses.
Collapse
Affiliation(s)
- An‐Ran Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of MedicineShandong UniversityJinanChina,State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina,Department of Biostatistics, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA,Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Xin‐Lou Li
- Department of Medical Research, Key Laboratory of Environmental Sense Organ Stress and Health of the Ministry of Environmental ProtectionPLA Strategic Support Force Medical CenterBeijingChina
| | - Tao Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Kun Liu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthAir Force Medical UniversityXi'anChina
| | - Ming‐Jin Liu
- Department of Biostatistics, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA,Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Wen‐Hui Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Guo‐Ping Zhao
- Department of EpidemiologyLogistics College of Chinese People's Armed Police ForcesTianjinChina
| | - Jin‐Jin Chen
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Xiao‐Ai Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Dong Miao
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Li‐Qun Fang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yang Yang
- Department of Biostatistics, College of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA,Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Wei Liu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| |
Collapse
|
18
|
Epidemiological characteristics of severe fever with thrombocytopenia syndrome and its relationship with meteorological factors in Liaoning Province, China. Parasit Vectors 2022; 15:283. [PMID: 35933453 PMCID: PMC9357322 DOI: 10.1186/s13071-022-05395-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS), one kind of tick-borne acute infectious disease, is caused by a novel bunyavirus. The relationship between meteorological factors and infectious diseases is a hot topic of current research. Liaoning Province has reported a high incidence of SFTS in recent years. However, the epidemiological characteristics of SFTS and its relationship with meteorological factors in the province remain largely unexplored. Methods Data on reported SFTS cases were collected from 2011 to 2019. Epidemiological characteristics of SFTS were analyzed. Spearman’s correlation test and generalized linear models (GLM) were used to identify the relationship between meteorological factors and the number of SFTS cases. Results From 2011 to 2019, the incidence showed an overall upward trend in Liaoning Province, with the highest incidence in 2019 (0.35/100,000). The incidence was slightly higher in males (55.9%, 438/783), and there were more SFTS patients in the 60–69 age group (31.29%, 245/783). Dalian City and Dandong City had the largest number of cases of SFTS (87.99%, 689/783). The median duration from the date of illness onset to the date of diagnosis was 8 days [interquartile range (IQR): 4–13 days]. Spearman correlation analysis and GLM showed that the number of SFTS cases was positively correlated with monthly average rainfall (rs = 0.750, P < 0.001; β = 0.285, P < 0.001), monthly average relative humidity (rs = 0.683, P < 0.001; β = 0.096, P < 0.001), monthly average temperature (rs = 0.822, P < 0.001; β = 0.154, P < 0.001), and monthly average ground temperature (rs = 0.810, P < 0.001; β = 0.134, P < 0.001), while negatively correlated with monthly average air pressure (rs = −0.728, P < 0.001; β = −0.145, P < 0.001), and monthly average wind speed (rs = −0.272, P < 0.05; β = −1.048, P < 0.001). By comparing both correlation coefficients and regression coefficients between the number of SFTS cases (dependent variable) and meteorological factors (independent variables), no significant differences were observed when considering immediate cases and cases with lags of 1 to 5 weeks for dependent variables. Based on the forward and backward stepwise GLM regression, the monthly average air pressure, monthly average temperature, monthly average wind speed, and time sequence were selected as relevant influences on the number of SFTS cases. Conclusion The annual incidence of SFTS increased year on year in Liaoning Province. Incidence of SFTS was affected by several meteorological factors, including monthly average air pressure, monthly average temperature, and monthly average wind speed. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05395-4.
Collapse
|
19
|
Teng AY, Che TL, Zhang AR, Zhang YY, Xu Q, Wang T, Sun YQ, Jiang BG, Lv CL, Chen JJ, Wang LP, Hay SI, Liu W, Fang LQ. Mapping the viruses belonging to the order Bunyavirales in China. Infect Dis Poverty 2022; 11:81. [PMID: 35799306 PMCID: PMC9264531 DOI: 10.1186/s40249-022-00993-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral pathogens belonging to the order Bunyavirales pose a continuous background threat to global health, but the fact remains that they are usually neglected and their distribution is still ambiguously known. We aim to map the geographical distribution of Bunyavirales viruses and assess the environmental suitability and transmission risk of major Bunyavirales viruses in China. METHODS We assembled data on all Bunyavirales viruses detected in humans, animals and vectors from multiple sources, to update distribution maps of them across China. In addition, we predicted environmental suitability at the 10 km × 10 km pixel level by applying boosted regression tree models for two important Bunyavirales viruses, including Crimean-Congo hemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV). Based on model-projected risks and air travel volume, the imported risk of RVFV was also estimated from its endemic areas to the cities in China. RESULTS Here we mapped all 89 species of Bunyavirales viruses in China from January 1951 to June 2021. Nineteen viruses were shown to infect humans, including ten species first reported as human infections. A total of 447,848 cases infected with Bunyavirales viruses were reported, and hantaviruses, Dabie bandavirus and Crimean-Congo hemorrhagic fever virus (CCHFV) had the severest disease burden. Model-predicted maps showed that Xinjiang and southwestern Yunnan had the highest environmental suitability for CCHFV occurrence, mainly related to Hyalomma asiaticum presence, while southern China had the highest environmental suitability for Rift Valley fever virus (RVFV) transmission all year round, mainly driven by livestock density, mean precipitation in the previous month. We further identified three cities including Guangzhou, Beijing and Shanghai, with the highest imported risk of RVFV potentially from Egypt, South Africa, Saudi Arabia and Kenya. CONCLUSIONS A variety of Bunyavirales viruses are widely distributed in China, and the two major neglected Bunyavirales viruses including CCHFV and RVFV, both have the potential for outbreaks in local areas of China. Our study can help to promote the understanding of risk distribution and disease burden of Bunyavirales viruses in China, and the risk maps of CCHFV and RVFV occurrence are crucial to the targeted surveillance and control, especially in seasons and locations at high risk.
Collapse
Affiliation(s)
- Ai-Ying Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Tian-Le Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - An-Ran Zhang
- Department of Research, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Yan-Qun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China
| | - Li-Ping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da Street, Fengtai, Beijing, 100071, People's Republic of China.
| |
Collapse
|
20
|
Wang D, Cao K, Shen X, Zhang B, Chen M, Yu W. Clinical Characteristics and Immune Status of Patients with Severe Fever with Thrombocytopenia Syndrome. Viral Immunol 2022; 35:465-473. [PMID: 35675657 DOI: 10.1089/vim.2021.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a novel infectious disease caused by bunya virus. The purpose of this study was to investigate the clinical characteristics of SFTS patients and their virus-related immune disorders in vivo. Patients with SFTS admitted to Nanjing Drum Tower Hospital from 2017 to 2020 were retrospectively analyzed, and divided into survival group and death group according to the 28-day survival. Clinical characteristics and laboratory examination results of SFTS patients were recorded, and dynamic changes of immune function and inflammatory factors were statistically analyzed. Prolonged activated prothrombin time (APTT) (p = 0.001), high viral load (p = 0.001), and elevated human leukocyte antigen DR (HLA-DR) level (p = 0.002) were independent prognostic risk factors for SFTS patients. Compared to the survival group, the nonsurvival group was more prone to hemorrhagic and neurological symptoms (p < 0.05). Natural kill (NK) cell count, interleukin-10, interferon-α, and tumor necrosis factor-α scores in the nonsurvival group continued to increase after admission, while CD3+ T, CD4+ T, and CD8+ T cell counts continued to decrease. CD3+ T lymphocyte count was negatively correlated with viral load (R = 0.3883, p < 0.001), CD4+ T lymphocyte count was negatively correlated with viral load (R = 0.28933, p < 0.001), CD8+ T lymphocyte count was negatively correlated with viral load (R = 0.781, p < 0.001), and HLA-DR was positively correlated with viral load (R = 0.489, p < 0.001). High viral load, prolonged APTT time, and elevated HLA-DR level are independent prognostic risk factors for SFTS patients. The T lymphocyte subsets of SFTS patients continue to decrease after infection, and the number of T lymphocyte subsets can reflect the severity of the disease.
Collapse
Affiliation(s)
- Dacheng Wang
- Department of Intensive Care, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ke Cao
- Department of Intensive Care, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaofei Shen
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Beiyuan Zhang
- Department of Intensive Care, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Intensive Care, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wenkui Yu
- Department of Intensive Care, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Che TL, Li XL, Tian JB, Wang G, Peng XF, Zhang HY, Chen JH, Zhu Y, Zhang WH, Wang T, Liu BC, Xu Q, Lv CL, Jiang BG, Li ZJ, Fang LQ, Liu W. The role of selenium in severe fever with thrombocytopenia syndrome: an integrative analysis of surveillance data and clinical data. Int J Infect Dis 2022; 122:38-45. [PMID: 35605950 DOI: 10.1016/j.ijid.2022.05.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Selenium deficiency can be associated with increased susceptibility to some viral infections and even more severe diseases. In this study, we aimed to examine whether this association applies to severe fever with thrombocytopenia syndrome (SFTS). METHOD An observational study was conducted based on the data of 13,305 human SFTS cases reported in mainland China from 2010 to 2020. The associations among incidence, case fatality rate of SFTS, and crop selenium concentration at the county level were explored. The selenium level in a cohort of patients with SFTS was tested, and its relationship with clinical outcomes was evaluated. RESULTS The association between selenium-deficient crops and the incidence rate of SFTS was confirmed by multivariate Poisson analysis, with an estimated incidence rate ratio (IRR, 95% confidence interval [CI]) of 4.549 (4.215-4.916) for moderate selenium-deficient counties and 16.002 (14.706-17.431) for severe selenium-deficient counties. In addition, a higher mortality rate was also observed in severe selenium-deficient counties with an IRR of 1.409 (95% CI: 1.061-1.909). A clinical study on 120 patients with SFTS showed an association between serum selenium deficiency and severe SFTS (odds ratio, OR: 2.94; 95% CI: 1.00-8.67) or fatal SFTS (OR: 7.55; 95% CI: 1.14-50.16). CONCLUSION Selenium deficiency is associated with increased susceptibility to SFTS and poor clinical outcomes.
Collapse
Affiliation(s)
- Tian-Le Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xin-Lou Li
- Department of Medical Research, Key Laboratory of Environmental Sense Organ Stress and Health of the Ministry of Environmental Protection, PLA Strategic Support Force Medical Center, Beijing, P. R. China
| | - Jian-Bo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430000, China
| | - Gang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xue-Fang Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Hai-Yang Zhang
- Center for Disease Control and Prevention of Central Theater Command, Beijing, P. R. China
| | - Jia-Hao Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430000, China
| | - Wen-Hui Zhang
- Health Supervision Institute of Dongcheng District, Beijing, P. R. China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Bao-Cheng Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Zhong-Jie Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, P. R. China.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China; Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing 100071, P. R. China; Graduate School of Anhui Medical University, Hefei 230601, P.R. China.
| |
Collapse
|
22
|
Deng B, Rui J, Liang SY, Li ZF, Li K, Lin S, Luo L, Xu J, Liu W, Huang J, Wei H, Yang T, Liu C, Li Z, Li P, Zhao Z, Wang Y, Yang M, Zhu Y, Liu X, Zhang N, Cheng XQ, Wang XC, Hu JL, Chen T. Meteorological factors and tick density affect the dynamics of SFTS in jiangsu province, China. PLoS Negl Trop Dis 2022; 16:e0010432. [PMID: 35533208 PMCID: PMC9119627 DOI: 10.1371/journal.pntd.0010432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/19/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background This study aimed to explore whether the transmission routes of severe fever with thrombocytopenia syndrome (SFTS) will be affected by tick density and meteorological factors, and to explore the factors that affect the transmission of SFTS. We used the transmission dynamics model to calculate the transmission rate coefficients of different transmission routes of SFTS, and used the generalized additive model to uncover how meteorological factors and tick density affect the spread of SFTS. Methods In this study, the time-varying infection rate coefficients of different transmission routes of SFTS in Jiangsu Province from 2017 to 2020 were calculated based on the previous multi-population multi-route dynamic model (MMDM) of SFTS. The changes in transmission routes were summarized by collecting questionnaires from 537 SFTS cases in 2018–2020 in Jiangsu Province. The incidence rate of SFTS and the infection rate coefficients of different transmission routes were dependent variables, and month, meteorological factors and tick density were independent variables to establish a generalized additive model (GAM). The optimal GAM was selected using the generalized cross-validation score (GCV), and the model was validated by the 2016 data of Zhejiang Province and 2020 data of Jiangsu Province. The validated GAMs were used to predict the incidence and infection rate coefficients of SFTS in Jiangsu province in 2021, and also to predict the effect of extreme weather on SFTS. Results The number and proportion of infections by different transmission routes for each year and found that tick-to-human and human-to-human infections decreased yearly, but infections through animal and environmental transmission were gradually increasing. MMDM fitted well with the three-year SFTS incidence data (P<0.05). The best intervention to reduce the incidence of SFTS is to reduce the effective exposure of the population to the surroundings. Based on correlation tests, tick density was positively correlated with air temperature, wind speed, and sunshine duration. The best GAM was a model with tick transmissibility to humans as the dependent variable, without considering lagged effects (GCV = 5.9247E-22, R2 = 96%). Reported incidence increased when sunshine duration was higher than 11 h per day and decreased when temperatures were too high (>28°C). Sunshine duration and temperature had the greatest effect on transmission from host animals to humans. The effect of extreme weather conditions on SFTS was short-term, but there was no effect on SFTS after high temperature and sunshine hours. Conclusions Different factors affect the infection rate coefficients of different transmission routes. Sunshine duration, relative humidity, temperature and tick density are important factors affecting the occurrence of SFTS. Hurricanes reduce the incidence of SFTS in the short term, but have little effect in the long term. The most effective intervention to reduce the incidence of SFTS is to reduce population exposure to high-risk environments. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging vector-borne disease caused by SFTS virus. After the first case was detected in China in 2009, SFTS endemic areas have gradually increased, with more than 23 provinces and cities reporting SFTS cases. In order to explore the transmission mechanism of SFTS and explain the impact of meteorological factors and tick density on the transmission routes of SFTS, this study collected SFTS cases data, meteorological data and tick surveillance data in Jiangsu Province from 2017 to 2019 to investigate the study question. The multi-population and multi-route dynamic model established in the previous study was used to calculate the infection rate coefficients of various transmission routes of SFTS in Jiangsu Province, and the generalized additive model was established to further elaborate the influence of SFTS transmission mechanism.
Collapse
Affiliation(s)
- Bin Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Shu-yi Liang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Zhi-feng Li
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Kangguo Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Shengnan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Jingwen Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Weikang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Jiefeng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Hongjie Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Tianlong Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Chan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Peihua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Meng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Yuanzhao Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
| | - Nan Zhang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Xiao-qing Cheng
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Xiao-chen Wang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, People’s Republic of China
| | - Jian-li Hu
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, People’s Republic of China
- * E-mail: (JlH); (TC)
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, People’s Republic of China
- * E-mail: (JlH); (TC)
| |
Collapse
|
23
|
Raney WR, Perry JB, Hermance ME. Transovarial Transmission of Heartland Virus by Invasive Asian Longhorned Ticks under Laboratory Conditions. Emerg Infect Dis 2022; 28:726-729. [PMID: 35202534 PMCID: PMC8888223 DOI: 10.3201/eid2803.210973] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We demonstrated experimental acquisition and transmission of Heartland bandavirus by Haemaphysalis longicornis ticks. Virus was detected in tick salivary gland and midgut tissues. A total of 80% of mice exposed to 1 infected tick seroconverted, suggesting horizontal transmission. H. longicornis ticks can transmit the virus in the transovarial mode.
Collapse
|
24
|
Li JC, Zhao J, Li H, Fang LQ, Liu W. Epidemiology, clinical characteristics, and treatment of severe fever with thrombocytopenia syndrome. INFECTIOUS MEDICINE 2022; 1:40-49. [PMID: 38074982 PMCID: PMC10699716 DOI: 10.1016/j.imj.2021.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 02/23/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by a novel phlebovirus (SFTS virus, SFTSV) in the family Phenuiviridae of the order Bunyavirales. The disease causes a wide spectrum of clinical signs and symptoms, ranging from mild febrile disease accompanied by thrombocytopenia and/or leukocytopenia to hemorrhagic fever, encephalitis, multiple organ failure, and death. SFTS was first identified in China and was subsequently reported in South Korea and Japan. The case-fatality rate ranges from 2.7% to 45.7%. Older age has been consistently shown to be the most important predictor of adverse disease outcomes. Older age exacerbates disease mainly through dysregulation of host immune cells and uncontrolled inflammatory responses. Tick-to-human transmission is the primary route of human infection with SFTSV, and Haemaphysalis longicornis is the primary tick vector of SFTSV. Despite its high case-fatality rate, vaccines and antiviral therapies for SFTS are not currently available. The therapeutic efficacies of several antiviral agents against SFTSV are currently being evaluated. Ribavirin was initially identified as a potential antiviral therapy for SFTS but was subsequently found to inefficiently improve disease outcomes, especially among patients with high viral loads. Favipiravir (T705) decreased both time to clinical improvement and mortality when administered early in patients with low viral loads. Anti-inflammatory agents including corticosteroids have been proposed to play therapeutic roles. However, the efficacy of other therapeutic modalities, such as convalescent plasma, is not yet clear.
Collapse
Affiliation(s)
| | | | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| |
Collapse
|
25
|
Jiang X, Wang Y, Zhang X, Pang B, Yao M, Tian X, Sang S. Factors Associated With Severe Fever With Thrombocytopenia Syndrome in Endemic Areas of China. Front Public Health 2022; 10:844220. [PMID: 35284401 PMCID: PMC8907623 DOI: 10.3389/fpubh.2022.844220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To explore the influence of climatic, environmental and socioeconomic factors on SFTS occurrence in Shandong Province, China. Methods We used generalized additive model to estimate the association between SFTS cases and climatic factors, environmental factors and socioeconomic factors, including annual average temperature, precipitation, land cover, normalized difference vegetation index, altitude, population density, meat production, milk production, and gross domestic product (GDP). Results There were a total of 4,830 cases reported in 100 (70.9%) counties and districts in Shandong Province from 2010 to 2020. The results showed that the annual average temperature, precipitation, forest and grassland coverage rate, altitude and meat production (square root transform) had a reversed “V” relationship with SFTS occurrence, with the inflection points around 12.5–13.0°C in temperature, around 650 mm in precipitation, around 0.3 in forest and grassland coverage rate, around 300 m in altitude, and around 200–300 tons in meat production (square root transform), respectively. SFTS occurrence had a “V” relationship with milk production (square root transform) and GDP (square root transform), with the inflection points around 100–200 tons in milk production (square root transform), and around 150,000–200,000 yuan in GDP (square root transform), respectively. Conclusions Climatic, environmental, and socioeconomic factors contributed to the heterogeneous distribution of SFTS in Shandong Province, and the influence of these factors on SFTS occurrence was nonlinear.
Collapse
Affiliation(s)
- Xiaolin Jiang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, China
- Shandong Key Laboratory of Infectious Diseases, Jinan, China
| | - Yiguan Wang
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Xiaomei Zhang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, China
- Shandong Key Laboratory of Infectious Diseases, Jinan, China
| | - Bo Pang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, China
- Shandong Key Laboratory of Infectious Diseases, Jinan, China
| | - Mingxiao Yao
- Shandong Provincial Center for Disease Control and Prevention, Jinan, China
- Shandong Key Laboratory of Infectious Diseases, Jinan, China
| | - Xueying Tian
- Shandong Provincial Center for Disease Control and Prevention, Jinan, China
- Shandong Key Laboratory of Infectious Diseases, Jinan, China
| | - Shaowei Sang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Shaowei Sang
| |
Collapse
|
26
|
Vectors, Hosts, and the Possible Risk Factors Associated with Severe Fever with Thrombocytopenia Syndrome. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:8518189. [PMID: 34777671 PMCID: PMC8580678 DOI: 10.1155/2021/8518189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a disease caused by infection with the SFTS virus (SFTSV). SFTS has become a crucial public health concern because of the heavy burden, lack of vaccines, effective therapies, and high-fatality rate. Evidence suggests that SFTSV circulates between ticks and animals in nature and is transmitted to humans by tick bites. In particular, ticks have been implicated as vectors of SFTSV, where domestic or wild animals may play as the amplifying hosts. Many studies have identified antigens and antibodies against SFTSV in various animals such as sheep, goats, cattle, and rodents. Besides, person-to-person transmission through contact with blood or mucous of an infected person has also been reported. In this study, we reviewed the literature and summarized the vectors and hosts associated with SFTS and the possible risk factors.
Collapse
|
27
|
Cho G, Lee S, Lee H. Estimating severe fever with thrombocytopenia syndrome transmission using machine learning methods in South Korea. Sci Rep 2021; 11:21831. [PMID: 34750465 PMCID: PMC8575988 DOI: 10.1038/s41598-021-01361-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease in China, Japan, and Korea. This study aimed to estimate the monthly SFTS occurrence and the monthly number of SFTS cases in the geographical area in Korea using epidemiological data including demographic, geographic, and meteorological factors. Important features were chosen through univariate feature selection. Two models using machine learning methods were analyzed: the classification model in machine learning (CMML) and regression model in machine learning (RMML). We developed a novel model incorporating the CMML results into RMML, defined as modified-RMML. Feature importance was computed to assess the contribution of estimating the number of SFTS cases using modified-RMML. Aspect to the accuracy of the novel model, the performance of modified-RMML was improved by reducing the MSE for the test data as 12.6–52.2%, compared to the RMML using five machine learning methods. During the period of increasing the SFTS cases from May to October, the modified-RMML could give more accurate estimation. Computing the feature importance, it is clearly observed that climate factors such as average maximum temperature, precipitation as well as mountain visitors, and the estimation of SFTS occurrence obtained from CMML had high Gini importance. The novel model incorporating CMML and RMML models improves the accuracy of the estimation of SFTS cases. Using the model, climate factors, including temperature, relative humidity, and mountain visitors play important roles in transmitting SFTS in Korea. Our findings highlighted that the guidelines for mountain visitors to prevent SFTS transmissions should be addressed. Moreover, it provides important insights for establishing control interventions that predict early identification of SFTS cases.
Collapse
Affiliation(s)
- Giphil Cho
- Finance·Fishery·Manufacture Industrial Mathematics Center on Big Data, Pusan National University, Busan, 46241, Korea
| | - Seungheon Lee
- Department of Mathematics, Pusan National University, Busan, 46241, Korea
| | - Hyojung Lee
- Department of Statistics, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
28
|
Park S, Nam HS, Na BJ. Evaluating the spatial and temporal patterns of the severe fever thrombocytopenia syndrome in Republic of Korea. GEOSPATIAL HEALTH 2021; 16. [PMID: 34730319 DOI: 10.4081/gh.2021.994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a new infectious disease with a high mortality rate and increased incidence in Republic of Korea since the first case was reported in 2013. The average mortality rate varies by region and year but remains high in Asia. This study aimed to evaluate the spatial and temporal patterns of SFTS cases reported to the national Disease Control and Prevention Agency (KDCA). We analysed the spatial and temporal distribution of SFTS and observed changes in areas vulnerable to the disease. We analysed data concerning 1086 confirmed SFTS patients from 2013 to 2019 categorized according to the 247 district level administrative units. To better understand the epidemiology of SFTS, we carried out spatiotemporal analyses on a yearly basis and also calculated and mapped spatial clusters of domestic SFTS by global (regional) and local Moran's indices. To observe the annual changes in SFTS incidence rate, scan statistics for each city and district were calculated. The incidence rate showed significant clustering in specific regions, which reoccurred annually in some regions. In Republic of Korea, SFTS clusters have been expanding into the southern regions, with annual clusters concentrated between May and October. This pattern allows prediction of SFTS occurrences through spatiotemporal analysis, which makes it possible to guide measures of disease prevention.
Collapse
Affiliation(s)
- Seongwoo Park
- Department of Public Health, Chungnam National University Graduate School, Daejeon; Division of Climate Change and Health Protection, Korea Disease Control and Prevention Agency (KDCA), Chungcheongbuk-do.
| | - Hae-Sung Nam
- Department of Preventive Medicine, Chungnam National University College of Medicine, Daejeon.
| | - Baeg-Ju Na
- Graduate School of Urban Public Health, University of Seoul, Seoul.
| |
Collapse
|
29
|
Zhang N, Cheng XQ, Deng B, Rui J, Qiu L, Zhao Z, Lin S, Liu X, Xu J, Wang Y, Yang M, Zhu Y, Huang J, Liu C, Liu W, Luo L, Li Z, Li P, Yang T, Li ZF, Liang SY, Wang XC, Hu JL, Chen T. Modelling the transmission dynamics of severe fever with thrombocytopenia syndrome in Jiangsu Province, China. Parasit Vectors 2021; 14:237. [PMID: 33957950 PMCID: PMC8100741 DOI: 10.1186/s13071-021-04732-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that is regionally distributed in Asia, with high fatality. Constructing the transmission model of SFTS could help provide clues for disease control and fill the gap in research on SFTS models. METHODS We built an SFTS transmission dynamics model based on the susceptible-exposed-infectious-asymptomatic-recovered (SEIAR) model and the epidemiological characteristics of SFTS in Jiangsu Province. This model was used to evaluate the effect by cutting off different transmission routes and taking different interventions into account, to offer clues for disease prevention and control. RESULTS The transmission model fits the reported data well with a minimum R2 value of 0.29 and a maximum value of 0.80, P < 0.05. Meanwhile, cutting off the environmental transmission route had the greatest effect on the prevention and control of SFTS, while isolation and shortening the course of the disease did not have much effect. CONCLUSIONS The model we have built can be used to simulate the transmission of SFTS to help inform disease control. It is noteworthy that cutting off the environment-to-humans transmission route in the model had the greatest effect on SFTS prevention and control.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China
| | - Xiao-Qing Cheng
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China
| | - Bin Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Luxia Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Shengnan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Jingwen Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Meng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yuanzhao Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Jiefeng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Weikang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Peihua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Tianlong Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhi-Feng Li
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China
| | - Shu-Yi Liang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China
| | - Xiao-Chen Wang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China
| | - Jian-Li Hu
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China.
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
30
|
Zhao GP, Wang YX, Fan ZW, Ji Y, Liu MJ, Zhang WH, Li XL, Zhou SX, Li H, Liang S, Liu W, Yang Y, Fang LQ. Mapping ticks and tick-borne pathogens in China. Nat Commun 2021; 12:1075. [PMID: 33597544 PMCID: PMC7889899 DOI: 10.1038/s41467-021-21375-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding ecological niches of major tick species and prevalent tick-borne pathogens is crucial for efficient surveillance and control of tick-borne diseases. Here we provide an up-to-date review on the spatial distributions of ticks and tick-borne pathogens in China. We map at the county level 124 tick species, 103 tick-borne agents, and human cases infected with 29 species (subspecies) of tick-borne pathogens that were reported in China during 1950-2018. Haemaphysalis longicornis is found to harbor the highest variety of tick-borne agents, followed by Ixodes persulcatus, Dermacentor nutalli and Rhipicephalus microplus. Using a machine learning algorithm, we assess ecoclimatic and socioenvironmental drivers for the distributions of 19 predominant vector ticks and two tick-borne pathogens associated with the highest disease burden. The model-predicted suitable habitats for the 19 tick species are 14‒476% larger in size than the geographic areas where these species were detected, indicating severe under-detection. Tick species harboring pathogens of imminent threats to public health should be prioritized for more active field surveillance.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
- Logistics College of Chinese People's Armed Police Forces, Tianjin, P.R. China
| | - Yi-Xing Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Zheng-Wei Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Yang Ji
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Ming-Jin Liu
- College of Public Health and Health Professions and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Wen-Hui Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Xin-Lou Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Shi-Xia Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Song Liang
- College of Public Health and Health Professions and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China.
| | - Yang Yang
- College of Public Health and Health Professions and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China.
| |
Collapse
|
31
|
Gong L, Zhang L, Wu J, Lu S, Lyu Y, Zhu M, Liu B, Zhu Y, Song D, Su B, Liu Z. Clinical Progress and Risk Factors for Death from Severe Fever with Thrombocytopenia Syndrome: A Multihospital Retrospective Investigation in Anhui, China. Am J Trop Med Hyg 2021; 104:1425-1431. [PMID: 33591933 DOI: 10.4269/ajtmh.20-0270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/31/2020] [Indexed: 11/07/2022] Open
Abstract
Knowledge of the clinical progress of severe fever with thrombocytopenia syndrome (SFTS) and the associated predictors of mortality is important for providing appropriate treatment in severe cases. A multihospital retrospective study was conducted in three SFTS-endemic cities, in 2018. Of the 208 SFTS-confirmed cases, there were 189 survivors and 19 deaths. The median age was 64 years; 104 (50.0%) patients were men, and 188 (90.4%) were farmers. Furthermore, 203 (97.6%) patients reported fever and 70 (33.7%) reported fatigue. Most fatal cases had complications including multiple-organ failure, central nervous syndrome (CNS) abnormalities, and disseminated intravascular coagulation. During the fever phase, alanine transaminase, aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine, D-dimer, glucose, hydroxybutyrate dehydrogenase, lactate dehydrogenase (LDH), procalcitonin, prothrombin time, and uric acid levels were higher in fatal than in nonfatal cases (P < 0.05). Creatine kinase (CK), CK-MB (CKMB), AST, and LDH levels were significantly lower in nonfatal than in fatal cases (P < 0.05). Central nervous syndrome abnormalities (odds ratio [OR] = 20.9, 95% CI: 4.3, 100), body temperature ≥ 38.5°C (OR = 23.2, 95% CI: 3.4, 158), BUN levels ≥ 6.4 mmol/L (OR = 9.9, 95% CI: 2.2, 44), CKMB levels ≥ 100 U/L (OR = 33.2, 95% CI: 5.8, 192), and LDH levels ≥ 1,000 U/L (OR = 8.3, 95% CI: 1.9, 37) were predictors of mortality. Our findings reveal that the presence of specific complications and laboratory parameters may serve as predictors of mortality and aid in early identification of severe SFTS cases in clinical practice.
Collapse
Affiliation(s)
- Lei Gong
- 1Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Lei Zhang
- 2Hefei Municipal Center for Disease Control and Prevention, Hefei, China
| | - Jiabing Wu
- 1Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Siqi Lu
- 1Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Lyu
- 3Lu'an Municipal Center for Disease Control and Prevention, Lu'an, China
| | - Meng Zhu
- 1Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Boxi Liu
- 4Inner Mongolia Autonomous Regional Center for Disease Control and Prevention, Hohhot, China
| | - Yuliang Zhu
- 5Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Dandan Song
- 1Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Bin Su
- 1Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Zhirong Liu
- 1Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
32
|
Sun JM, Wu HX, Lu L, Liu Y, Mao ZY, Ren JP, Yao WW, Qu HH, Liu QY. Factors associated with spatial distribution of severe fever with thrombocytopenia syndrome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141522. [PMID: 32846249 DOI: 10.1016/j.scitotenv.2020.141522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) was firstly identified in mainland China in 2009 and the geographic distribution has expanded in recent years. In this study, we constructed ecological niche models (ENM) of SFTS with meteorological factors, environmental factor, and density of domestic animals using MaxEnt. We found four significant associated factors including altitude, yearly average temperature, yearly accumulated precipitation, and yearly average relative humidity which accounted for 94.1% percent contribution. SFTS occurrence probability was high when altitude was between -100 m and 100 m, and the probability was nearly 0 when altitude was beyond 3000 m. Response curves of SFTS to the yearly average temperature, yearly accumulated precipitation, and yearly average relative humidity were all reversed V-shape. SFTS occurrence probability was high where the yearly average temperature, yearly accumulated precipitation, and yearly relative humidity were 12.5-17.5 °C, 700-2250 mm and 63-82%, respectively. ENMs predicted that the potential high-risk areas were mainly distributed in eastern areas and central areas of China. But there were some predicted potential high-risk areas where no SFTS case was reported up to date. More researches should be done to make clear whether SFTS case had occurred in these areas.
Collapse
Affiliation(s)
- Ji-Min Sun
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Hai-Xia Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
| | - Ying Liu
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, China
| | | | - Jiang-Ping Ren
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Wen-Wu Yao
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, China
| | - Hong-Hua Qu
- Qilu Hospital of Shandong University, China.
| | - Qi-Yong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China.
| |
Collapse
|
33
|
Baseline mapping of severe fever with thrombocytopenia syndrome virology, epidemiology and vaccine research and development. NPJ Vaccines 2020; 5:111. [PMID: 33335100 PMCID: PMC7746727 DOI: 10.1038/s41541-020-00257-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly emergent tick-borne bunyavirus first discovered in 2009 in China. SFTSV is a growing public health problem that may become more prominent owing to multiple competent tick-vectors and the expansion of human populations in areas where the vectors are found. Although tick-vectors of SFTSV are found in a wide geographic area, SFTS cases have only been reported from China, South Korea, Vietnam, and Japan. Patients with SFTS often present with high fever, leukopenia, and thrombocytopenia, and in some cases, symptoms can progress to severe outcomes, including hemorrhagic disease. Reported SFTSV case fatality rates range from ~5 to >30% depending on the region surveyed, with more severe disease reported in older individuals. Currently, treatment options for this viral infection remain mostly supportive as there are no licensed vaccines available and research is in the discovery stage. Animal models for SFTSV appear to recapitulate many facets of human disease, although none of the models mirror all clinical manifestations. There are insufficient data available on basic immunologic responses, the immune correlate(s) of protection, and the determinants of severe disease by SFTSV and related viruses. Many aspects of SFTSV virology and epidemiology are not fully understood, including a detailed understanding of the annual numbers of cases and the vertebrate host of the virus, so additional research on this disease is essential towards the development of vaccines and therapeutics.
Collapse
|
34
|
Li J, Li S, Yang L, Cao P, Lu J. Severe fever with thrombocytopenia syndrome virus: a highly lethal bunyavirus. Crit Rev Microbiol 2020; 47:112-125. [PMID: 33245676 DOI: 10.1080/1040841x.2020.1847037] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel bunyavirus. Since 2007, SFTS disease has been reported in China with high fatality rate up to 30%, which drew high attention from Centre for Disease Control and Prevention and government. SFTSV is endemic in the centra l and eastern China, Korea and Japan. There also have been similar cases reported in Vietnam. The number of SFTSV infection cases has a steady growth in these years. As SFTSV could transmitted from person to person, it will expose the public to infectious risk. In 2018 annual review of the Blueprint list of priority diseases, World Health Organisation has listed SFTSV infection as prioritised diseases for research and development in emergency contexts. However, the pathogenesis of SFTSV remains largely unclear. Currently, there are no specific therapeutics or vaccines to combat infections of SFTSV. This review discusses recent findings of epidemiology, transmission pathway, pathogenesis and treatments of SFTS disease.
Collapse
Affiliation(s)
- Jing Li
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shen Li
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Pengfei Cao
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
35
|
Miao D, Dai K, Zhao GP, Li XL, Shi WQ, Zhang JS, Yang Y, Liu W, Fang LQ. Mapping the global potential transmission hotspots for severe fever with thrombocytopenia syndrome by machine learning methods. Emerg Microbes Infect 2020; 9:817-826. [PMID: 32212956 PMCID: PMC7241453 DOI: 10.1080/22221751.2020.1748521] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with increasing spread. Currently SFTS transmission has expanded beyond Asian countries, however, with definitive global extents and risk patterns remained obscure. Here we established an exhaustive database that included globally reported locations of human SFTS cases and the competent vector, Haemaphysalis longicornis (H. longicornis), as well as the explanatory environmental variables, based on which, the potential geographic range of H. longicornis and risk areas for SFTS were mapped by applying two machine learning methods. Ten predictors were identified contributing to global distribution for H. longicornis with relative contribution ≥1%. Outside contemporary known distribution, we predict high receptivity to H. longicornis across two continents, including northeastern USA, New Zealand, parts of Australia, and several Pacific islands. Eight key drivers of SFTS cases occurrence were identified, including elevation, predicted probability of H. longicornis presence, two temperature-related factors, two precipitation-related factors, the richness of mammals and percentage coverage of water bodies. The globally model-predicted risk map of human SFTS occurrence was created and validated effective for discriminating the actual affected and unaffected areas (median predictive probability 0.74 vs. 0.04, P < 0.001) in three countries with reported cases outside China. The high-risk areas (probability ≥50%) were predicted mainly in east-central China, most parts of the Korean peninsula and southern Japan, and northern New Zealand. Our findings highlight areas where an intensive vigilance for potential SFTS spread or invasion events should be advocated, owing to their high receptibility to H. longicornis distribution.
Collapse
Affiliation(s)
- Dong Miao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Ke Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Guo-Ping Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xin-Lou Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Wen-Qiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Jiu Song Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Yang Yang
- Department of Biostatistics, College of Public Health and Health Professions, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| |
Collapse
|
36
|
Li XK, Dai K, Yang ZD, Yuan C, Cui N, Zhang SF, Hu YY, Wang ZB, Miao D, Zhang PH, Li H, Zhang XA, Huang YQ, Chen WW, Zhang JS, Lu QB, Liu W. Correlation between thrombocytopenia and host response in severe fever with thrombocytopenia syndrome. PLoS Negl Trop Dis 2020; 14:e0008801. [PMID: 33119592 PMCID: PMC7595704 DOI: 10.1371/journal.pntd.0008801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS) is an emerging infectious disease caused by a novel bunyavirus, SFTS virus (SFTSV), with fatal outcome developed in approximately 17% of the cases. Thrombocytopenia is a hallmark feature of SFTS, and associated with a higher risk of fatal outcome, however, the pathophysiological involvement of platelet in the clinical outcome of SFTS remained under-investigated. In the current study, by retrospectively analyzing 1538 confirmed SFTS patients, we observed that thrombocytopenia was associated with enhanced activation of the cytokine network and the vascular endothelium, also with a disturbed coagulation response. The platelet phenotypes were also extensively altered in the process of thrombocytopenia development of SFTS patients. More importantly, all these disturbed host responses were related to the severity of thrombocytopenia, thus were considered to play in a synergistic way to influence the disease outcome. Moreover, the clinical effect of platelet transfusion was assessed by comparing two groups of patients with or without receiving this therapy. As a result, we observed no therapy effect in altering frequencies of fatal outcome, clinical bleeding development, or dynamic change of platelet count during the hospitalization. It’s suggested that platelet supplementation alone acted a minor role in improving disease outcome, therefore new therapeutic intervention to regulate host response should be proposed. The current results revealed some evidence of interrelationship between platelet count and clinical outcome of SFTS disease from the perspective of activation of the cytokine network, the vascular endothelium, and the coagulation/fibrinolysis system. These evaluations might help to attain a better understanding of the pathogenesis and therapy choice in SFTS. Thrombocytopenia in SFTSV is a multifactor-process involving a combination of platelet size or morphology alterations, fibrinolysis activation and coagulation abnormalities, increased inflammatory response and endothelial injury. Platelet supplementation alone shows minor role in improving disease, therefore new therapeutic intervention to regulate host response should be proposed.
Collapse
Affiliation(s)
- Xiao-Kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ke Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Zhen-Dong Yang
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Shihe District, Xinyang, P. R. China
| | - Chun Yuan
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Shihe District, Xinyang, P. R. China
| | - Ning Cui
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Shihe District, Xinyang, P. R. China
| | - Shao-Fei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yuan-Yuan Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Zhi-Bo Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Dong Miao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yan-Qin Huang
- The Shangcheng Center for Disease Control and Prevention, Shangcheng County, Xinyang, P. R. China
| | - Wei-Wei Chen
- Treatment and Research Center for Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, Fengtai District, Beijing, P. R. China
| | - Jiu-Song Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Haidian District, Beijing, P. R. China
- * E-mail: (Q-BL); , (WL)
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
- Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing, People’s Republic of China
- * E-mail: (Q-BL); , (WL)
| |
Collapse
|
37
|
Crump A, Tanimoto T. Severe Fever with Thrombocytopenia Syndrome: Japan under Threat from Life-threatening Emerging Tick-borne Disease. JMA J 2020; 3:295-302. [PMID: 33225100 PMCID: PMC7676996 DOI: 10.31662/jmaj.2019-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 11/09/2022] Open
Abstract
Japan, like many other parts of the world, is under threat from newly emerging, potentially fatal diseases. Severe fever with thrombocytopenia syndrome (SFTS), first clinically identified in 2009, is an emerging tick-borne hemorrhagic viral disease, currently limited in distribution to East Asia. Relatively little is known about the disease with an initial Case Fatality Rate ranging from 5% to 40%. It primarily affects the elderly living in rural areas, which is particularly troublesome given Japan’s rapidly aging population. Control efforts are severely hampered by lack of specific knowledge of the disease and its means of transmission, coupled with the absence of both a vaccine and an effective treatment regime, although some antiviral drugs and blood transfusions are successful in treating the disease. Despite both the causative virus and vector ticks being commonly found throughout Japan, the disease shows a very specific, limited geographical distribution for as yet unknown reasons.
Collapse
|
38
|
He Z, Wang B, Li Y, Du Y, Ma H, Li X, Guo W, Xu B, Huang X. Severe fever with thrombocytopenia syndrome: a systematic review and meta-analysis of epidemiology, clinical signs, routine laboratory diagnosis, risk factors, and outcomes. BMC Infect Dis 2020; 20:575. [PMID: 32758175 PMCID: PMC7409422 DOI: 10.1186/s12879-020-05303-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 07/27/2020] [Indexed: 12/29/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with the high case-fatality rate, and lack of vaccines. We aimed to systematically analysed the epidemiological characteristics, clinical signs, routine laboratory diagnosis, risk factors, and outcomes. Methods Documents on SFTS were collected by searching the Chinese National Knowledge Infrastructure, Wan Fang Data, PubMed, Embase, and Web of Science databases from 2011 to 2018. Meta-analysis was performed by using Review Manager and Stata software. Results Twenty-five articles involving 4143 cases were included. Diarrhea (odds ratio (OR) =1.60, 95% confidence interval (CI): 1.06 to 2.42, P = 0.02), and vomiting (OR = 1.56, 95% CI: 1.01 to 2.39, P = 0.04) on admission were associated with the fatal outcomes of SFTS. Compared to patients with mild symptoms, patients with severe symptoms had significantly elevated levels of lactic acid dehydrogenase (standard mean difference (SMD) =1.27, 95% CI: 0.59 to 1.94), alanine aminotransferase (SMD = 0.55, 95% CI: 0.24 to 0.85), aspirate aminotransferase (SMD = 1.01, 95% CI: 0.69 to 1.32), and creatine kinase (SMD = 1.04, 95% CI: 0.74 to 1.33) but had reduced platelet counts (SMD = -0.87, 95% CI: − 1.16 to − 0.58) and albumin levels (SMD = -1.00, 95% CI: − 1.32 to − 0.68). The risk factors for poor prognosis included age (mean difference (MD) =6.88, 95% CI: 5.41 to 8.35) and farming (OR = 2.01, 95% CI: 1.06 to 3.80). For the risk factors of contracting SFTS, the incidence of SFTS related to tick bites was 24% [95% CI: 0.18 to 0.31]. The pooled case-fatality rate of SFTS patients was 18% [95% CI: 0.16 to 0.21]. Conclusions China is the country with the highest incidence of SFTS. May to July was the peak of the epidemic, and farmers were a high-risk group. The risk factor for SFTS included age (poor prognosis) and tick bites (contracting SFTS). Patients with severe diarrhea and vomiting symptoms on admission should be noted. Clinicians could use routine laboratory parameters and clinical symptoms as references for clinically suspected cases, classification of SFTS, and timely treatment, especially in basic hospitals.
Collapse
Affiliation(s)
- Zhiquan He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bohao Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yi Li
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Yanhua Du
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Hongxia Ma
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Xingle Li
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Wanshen Guo
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China
| | - Bianli Xu
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China
| | - Xueyong Huang
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China. .,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China.
| |
Collapse
|
39
|
Abstract
Ticks are the most important vectors of human pathogens, leading to increased public health burdens worldwide. Tick-borne pathogens include viruses (e.g. tick-borne encephalitis and Powassan); bacteria, such as the causative agents of Lyme disease, spotted fever rickettsiosis and human anaplasmosis; and malaria-like protozoan parasites causing babesiosis. Tick-borne diseases are emerging due to the geographical expansion of their tick vectors, especially in the northern hemisphere. Two examples of this phenomenon are Ixodes scapularis and Amblyomma americanum, which have expanded their ranges in the USA in recent decades and are responsible for the continuous emergence of Lyme disease and human ehrlichiosis, respectively. This phenomenon is also occurring worldwide and is reflected by the increasing number of tick-borne encephalitis and haemorrhagic fever cases in Europe and Asia. In this review, we provide a concise synopsis of the most medically important tick-borne pathogen worldwide, with a particular emphasis on emerging public health threats.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA
| | - Alvaro Toledo
- Department of Entomology, Rutgers University, New Brunswick, NJ, USA
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA
| |
Collapse
|
40
|
Mao L, Deng B, Liang Y, Liu Y, Wang Z, Zhang J, Wu W, Yu L, Yao W. Epidemiological and genetic investigation of a cluster of cases of severe fever with thrombocytopenia syndrome bunyavirus. BMC Infect Dis 2020; 20:346. [PMID: 32410583 PMCID: PMC7227288 DOI: 10.1186/s12879-020-05072-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/04/2020] [Indexed: 01/17/2023] Open
Abstract
Background To analyze and discuss the transmission route of a cluster of cases of severe fever with thrombocytopenia syndrome bunyavirus (SFTSV). Method We performed an epidemiological investigation and a genetic analysis of patients with severe fever with thrombocytopenia syndrome (SFTS) caused by SFTSV, their close contacts and the surrounding population. Results We found that all patients had contact with the blood of the first patient. The comparison of gene sequences in the three isolated SFTSV strains showed that the strains were closely related. Six close contacts and nine individuals in the surrounding population were positive for SFTSV IgM antibody. Conclusion We suspect that the cluster outbreak was transmitted via blood and that the natural reservoir host of SFTSV exists in the patients’ environment.
Collapse
Affiliation(s)
- Lingling Mao
- Liaoning Province Center for Disease Control and Prevention, Shenyang, Liaoning Province, China
| | - Baocheng Deng
- Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Yuhong Liang
- Dalian Center for Disease Control and Prevention, Dalian, Liaoning Province, China
| | - Yun Liu
- Liaoning Province Center for Disease Control and Prevention, Shenyang, Liaoning Province, China
| | - Zijiang Wang
- Liaoning Province Center for Disease Control and Prevention, Shenyang, Liaoning Province, China
| | - Jie Zhang
- Liaoning Province Center for Disease Control and Prevention, Shenyang, Liaoning Province, China
| | - Wei Wu
- Dalian Center for Disease Control and Prevention, Dalian, Liaoning Province, China
| | - Lei Yu
- Dalian Center for Disease Control and Prevention, Dalian, Liaoning Province, China
| | - Wenqing Yao
- Liaoning Province Center for Disease Control and Prevention, Shenyang, Liaoning Province, China.
| |
Collapse
|
41
|
Kim-Jeon MD, Jegal S, Jun H, Jung H, Park SH, Ahn SK, Lee J, Gong YW, Joo K, Kwon MJ, Roh JY, Lee WG, Bahk YY, Kim TS. Four Year Surveillance of the Vector Hard Ticks for SFTS, Ganghwa-do, Republic of Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:691-698. [PMID: 31914523 PMCID: PMC6960244 DOI: 10.3347/kjp.2019.57.6.691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/06/2019] [Indexed: 01/26/2023]
Abstract
The seasonal abundance of hard ticks that transmit severe fever with thrombocytopenia syndrome virus was monitored with a collection trap method every April to November during 2015–2018 and with a flagging method every July and August during 2015–2018 in Ganghwa-do (island) of Incheon Metropolitan City, Republic of Korea. This monitoring was performed in a copse, a short grass field, coniferous forest and broad-leaved forest. A total of 17,457 ticks (8,277 larvae, 4,137 nymphs, 3,389 females, and 1,654 males) of the ixodid ticks comprising 3 species (Haemaphysalis longicornis, H. flava, and Ixodes nipponensis) were collected with collection traps. Of the identified ticks, H. longicornis was the most frequently collected ticks (except larval ticks) (94.26%, 8,653/9,180 ticks (nymphs and adults)), followed by H. flava (5.71%, 524/9,180) and Ix. nipponensis (less than 0.04%, 3/9,180). The ticks collected with collecting traps were pooled and assayed for the presence of SFTS virus with negative results. In addition, for monitoring the prevalence of hard ticks, a total of 7,461 ticks (5,529 larvae, 1,272 nymphs, 469 females, and 191 males) of the ixodid ticks comprising 3 species (H. longicornis, H. flava, and Ix. nipponensis) were collected with flagging method. H. longicornis was the highest collected ticks (except larval ticks) (99.53%, 1,908/1,917 ticks (nymphs and adults)), followed by H. flava (1.15%, 22/1,917).
Collapse
Affiliation(s)
- Myung-Deok Kim-Jeon
- Department of Infectious Diseases Diagnosis, Incheon Metropolitan City Institute of Public Health and Environment, Incheon 22320, Korea
| | - Seung Jegal
- Department of Infectious Diseases Diagnosis, Incheon Metropolitan City Institute of Public Health and Environment, Incheon 22320, Korea
| | - Hojong Jun
- Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Korea
| | - Haneul Jung
- Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Korea
| | - Seo Hye Park
- Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Korea
| | - Seong Kyu Ahn
- Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Korea
| | - Jinyoung Lee
- Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Korea
| | - Young Woo Gong
- Department of Infectious Diseases Diagnosis, Incheon Metropolitan City Institute of Public Health and Environment, Incheon 22320, Korea
| | - Kwangsig Joo
- Department of Infectious Diseases Diagnosis, Incheon Metropolitan City Institute of Public Health and Environment, Incheon 22320, Korea
| | - Mun Ju Kwon
- Department of Infectious Diseases Diagnosis, Incheon Metropolitan City Institute of Public Health and Environment, Incheon 22320, Korea
| | - Jong Yul Roh
- Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong 28159, Korea
| | - Wook-Gyo Lee
- Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong 28159, Korea
| | - Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Korea
| |
Collapse
|
42
|
De Novo RNA-seq and Functional Annotation of Haemaphysalis longicornis. Acta Parasitol 2019; 64:807-820. [PMID: 31418165 DOI: 10.2478/s11686-019-00103-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022]
Abstract
PURPOSE Haemaphysalis longicornis (Neumann) is a hematophagous tick widely distributed in northern China. It not only causes enormous economic loss to animal husbandry, but also as a vector and reservoir of various zoonotic pathogens, it spreads natural focal diseases, such as severe fever with thrombocytopenia syndrome, seriously threatening human health. Lack of transcriptomic and genomic data from H. longicornis limits the study of this important medical vector. METHODS The engorged female H. longicornis from Gansu, China, was used for RNA extraction, de novo RNA-seq, functional annotation, and ORF prediction. RESULTS As a result, 53.09 million clean reads (98.88%) with a GC content of 54.29% were obtained. A total of 65,916 Unigenes were assembled, of which 34.59% (23,330) were successfully annotated. Of these Unigenes, 22,587 (34.27%) were annotated to species by NCBI non-redundant protein (nr). Ixodes scapularis, Limulus polyphemus, Parasteatoda tepidariorum, Stegodyphus mimosarum, and Metaseiulus occidentalis were the top BLAST hit species, accounting for 47.23%, 9.58%, 4.11%, 3.50%, and 2.69%, respectively. A total of 29,182 ORFs were predicted, and 35 complete ORFs for functional genes were identified, including ORFs involved in digestion (14), stress responses (8), anticoagulation (3), reproduction (3), antimicrobial (2), drug resistance (2), movement (2), autophagy (1), and immunity (1), respectively. The Unigene ORFs encoding cathepsin and heat shock proteins were further analyzed phylogenetically. CONCLUSION De novo RNA-seq and functional annotation of H. longicornis were successfully completed for the first time, providing a molecular data resource for further research on blood-sucking, pathogen transmission mechanisms, and effective prevention and control strategies.
Collapse
|
43
|
Du Y, Cheng N, Li Y, Wang H, You A, Su J, Nie Y, Ma H, Xu B, Huang X. Seroprevalance of antibodies specific for severe fever with thrombocytopenia syndrome virus and the discovery of asymptomatic infections in Henan Province, China. PLoS Negl Trop Dis 2019; 13:e0007242. [PMID: 31765376 PMCID: PMC6901261 DOI: 10.1371/journal.pntd.0007242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 12/09/2019] [Accepted: 10/04/2019] [Indexed: 12/03/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is a severe emerging disease caused by SFTS virus (SFTSV), and the geographical distribution of SFTS has been increasing throughout China in recent years. To assess SFTSV-specific antibody seroprevalence, a cross-sectional study was conducted for healthy people in high SFTS endemic areas of Henan province in 2016. Methods This study used a stratified random sampling method to select 14 natural villages as the investigation sites. From April to May 2016, participants completed a questionnaire survey and serum samples were collected. All serum samples were subjected to ELISA to detect SFTSV-specific IgM and IgG. All IgM-positive samples were further tested by real-time RT-PCR, and isolation of virus from serum was attempted. Any participant who was IgM-positive was followed up with a month later to confirm health status. Results In total, 1463 healthy people participated in this study. The average seropositive rates for SFTSV-specific IgG and IgM were 10.46% (153/1463) and 0.82% (12/1463), respectively. IgM was detected in 12 individuals, and SFTSV RNA was detected in six of them. Virus was isolated from five of the six SFTSV RNA-positive individuals, and phylogenetic analyses revealed that all five isolates belonged to SFTSV group A. No IgM-positive participants exhibited any symptoms or other signs of illness at the one-month follow up. Conclusions This study identified a relatively high incidence of SFTSV-specific antibody seropositivity in healthy people in Xinyang city. Moreover, our data provide the first evidence for asymptomatic SFTSV infections, which may have significant implications for SFTS outbreak control. Severe fever with thrombocytopenia syndrome (SFTS) is a severe emerging infectious disease caused by SFTS virus (SFTSV) that was first discovered in rural areas of China. Henan province has had the largest number of SFTS cases in China every year since the disease was discovered, however, seropositivity for SFTSV-specific antibodies in healthy people in this region is still not clear. To address this issue, a cross-sectional survey was performed in high endemic areas from April to May 2016. The results showed that SFTSV seroprevalence was relatively high and possibly increasing. Notably, SFTSV RNA, as well as virus itself, was isolated from specimens obtained from healthy people. This study confirmed there are asymptomatic SFTSV infections in humans, and it is the first to report SFTSV isolation from healthy people.
Collapse
Affiliation(s)
- Yanhua Du
- Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Ningning Cheng
- Kaifeng Center for Disease Control and Prevention, Kaifeng, China
| | - Yi Li
- Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Haifeng Wang
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Aiguo You
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Jia Su
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yifei Nie
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Hongxia Ma
- Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Bianli Xu
- Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
- * E-mail: (BX); (XH)
| | - Xueyong Huang
- Henan Center for Disease Control and Prevention, Zhengzhou, China
- Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, China
- * E-mail: (BX); (XH)
| |
Collapse
|
44
|
Li XK, Lu QB, Chen WW, Xu W, Liu R, Zhang SF, Du J, Li H, Yao K, Zhai D, Zhang PH, Xing B, Cui N, Yang ZD, Yuan C, Zhang XA, Xu Z, Cao WC, Hu Z, Liu W. Arginine deficiency is involved in thrombocytopenia and immunosuppression in severe fever with thrombocytopenia syndrome. Sci Transl Med 2019; 10:10/459/eaat4162. [PMID: 30232226 DOI: 10.1126/scitranslmed.aat4162] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/01/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) caused by a recently identified bunyavirus, SFTSV, is an emerging infectious disease with extensive geographical distribution and high mortality. Progressive viral replication and severe thrombocytopenia are key features of SFTSV infection and fatal outcome, whereas the underlying mechanisms are unknown. We revealed arginine deficiency in SFTS cases by performing metabolomics analysis on two independent patient cohorts, suggesting that arginine metabolism by nitric oxide synthase and arginase is a key pathway in SFTSV infection and consequential death. Arginine deficiency was associated with decreased intraplatelet nitric oxide (Plt-NO) concentration, platelet activation, and thrombocytopenia. An expansion of arginase-expressing granulocytic myeloid-derived suppressor cells was observed, which was related to T cell CD3-ζ chain down-regulation and virus clearance disturbance, implicating a role of arginase activity and arginine depletion in the impaired anti-SFTSV T cell function. Moreover, a comprehensive measurement of arginine bioavailability, global arginine bioavailability ratio, was shown to be a good prognostic marker for fatal prediction in early infection. A randomized controlled trial demonstrated that arginine administration was correlated with enhanced Plt-NO concentration, suppressed platelet activation, and elevated CD3-ζ chain expression and eventually associated with an accelerated virus clearance and thrombocytopenia recovery. Together, our findings revealed the arginine catabolism pathway-associated regulation of platelet homeostasis and T cell dysregulation after SFTSV infection, which not only provided a functional mechanism underlying SFTS pathogenesis but also offered an alternative therapy choice for SFTS.
Collapse
Affiliation(s)
- Xiao-Kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Wei-Wei Chen
- The 302 Hospital, People's Liberation Army, No. 100, West 4th Ring Road, Fengtai District, Beijing 100039, P. R. China
| | - Wen Xu
- The 302 Hospital, People's Liberation Army, No. 100, West 4th Ring Road, Fengtai District, Beijing 100039, P. R. China
| | - Rong Liu
- School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, P. R. China
| | - Shao-Fei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - Juan Du
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Di Zhai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - Bo Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - Ning Cui
- The 154 Hospital, People's Liberation Army, 104 Nan-Hu Road, Shihe District, Xinyang 464000, P. R. China
| | - Zhen-Dong Yang
- The 154 Hospital, People's Liberation Army, 104 Nan-Hu Road, Shihe District, Xinyang 464000, P. R. China
| | - Chun Yuan
- The 154 Hospital, People's Liberation Army, 104 Nan-Hu Road, Shihe District, Xinyang 464000, P. R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, Beijing 100071, P. R. China
| | - Zhe Xu
- The 302 Hospital, People's Liberation Army, No. 100, West 4th Ring Road, Fengtai District, Beijing 100039, P. R. China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, Beijing 100071, P. R. China. .,School of Public Health, Shandong University, Jinan 250012, P.R. China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dongda Street, Fengtai District, Beijing 100071, P. R. China. .,School of Public Health, Shandong University, Jinan 250012, P.R. China.,Microbiology and Epidemiology, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing, P. R. China
| |
Collapse
|
45
|
Maslow JN, Kwon JJ, Mikota SK, Spruill S, Cho Y, Jeong M. Severe fever and thrombocytopenia syndrome virus infection: Considerations for vaccine evaluation of a rare disease. Hum Vaccin Immunother 2019; 15:2249-2257. [PMID: 31215838 PMCID: PMC6816409 DOI: 10.1080/21645515.2019.1633875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 11/03/2022] Open
Abstract
Infection caused by the severe fever and thrombocytopenia syndrome virus (SFTSV) causes a hemorrhagic illness with a mortality between 20% and 40%. Initially recognized in 2009 in China, cases have additionally been documented in Japan and Korea although retrospective studies have documented seroprevalence since 1996. Although case rates have increased due to increased awareness and more widely available diagnostics, SFTSV infection remains rare with the highest rates documented in Korea for Jeju Province (3.5 cases per 100,000 population) and the Inje-gun region (66.2 cases per 100,000). Because of the very low incidence of infection, a placebo-controlled study with 1:1 randomization to evaluate an SFTSV vaccine would require a sample size that is 25% greater than the region of study. We discuss alternatives to licensure. Vaccine effectiveness may be assessed through a registry, comparing rates of infection over time between vaccine recipients versus regional populations. Modeled data can be updated based on actual case rates and population changes over the years of follow-up. Using one model, statistically significant differences are seen after 10 years in Inje-gun and 15 years of follow-up in Jeju. This approach may be applicable to other uncommon infectious diseases for which a standard study design is difficult.
Collapse
Affiliation(s)
- Joel N. Maslow
- GeneOne Life Science, Inc., Seoul, Korea
- Department of Medicine, Morristown Medical Center, Morristown, USA
| | | | | | | | | | | |
Collapse
|
46
|
Huang XY, Du YH, Wang HF, You AG, Li Y, Su J, Nie YF, Ma HX, Xu BL. Prevalence of severe fever with thrombocytopenia syndrome virus in animals in Henan Province, China. Infect Dis Poverty 2019; 8:56. [PMID: 31230595 PMCID: PMC6589873 DOI: 10.1186/s40249-019-0569-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/10/2019] [Indexed: 01/28/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by severe fever with thrombocytopenia syndrome virus (SFTSV). SFTSV has been found in humans, ticks and animals, and SFTS has high mortality and increasing prevalence in East Asia. In the study, the samples (heart, liver, lung, kidney, spleen, brain tissue and serum) were collected from 374 domestic animals and 241 wild animals in Pingqiao District and Xinxian County of Xinyang in Henan Province, China. 275 (44.72%, 275/615) animals were positive for anti-SFTSV antibodies, the anti-SFTSV antibodies positive ratios of domestic and wild animals were 43.58% (163/374) and 46.47% (112/241), respectively. There was no significant difference in domestic and wild animals, but significant differences were detected among different species of animals (χ2 = 112.59, P < 0.0001). Among 615 animals, 105 (17.07%, 105/615) animals were positive for SFTSV RNA, and only one SFTSV strain was isolated from heart tissue of a yellow weasel. The phylogenetic analysis shows that the sequence from animals belonged to the same group with viral sequences obtained from humans. The animals maybe play a reservoir host in maintaining the life cycle of SFTSV in nature.
Collapse
Affiliation(s)
- Xue-Yong Huang
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Yan-Hua Du
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Hai-Feng Wang
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Ai-Guo You
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yi Li
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Jia Su
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yi-Fei Nie
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Hong-Xia Ma
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Bian-Li Xu
- Henan Center for Disease Control and Prevention, Zhengzhou, China. .,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China.
| |
Collapse
|
47
|
Yasuo K, Nishiura H. Spatial epidemiological determinants of severe fever with thrombocytopenia syndrome in Miyazaki, Japan: a GWLR modeling study. BMC Infect Dis 2019; 19:498. [PMID: 31174484 PMCID: PMC6556057 DOI: 10.1186/s12879-019-4111-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Background Cases of severe fever with thrombocytopenia syndrome (SFTS) have increasingly been observed in Miyazaki, southwest Japan. It is critical to identify and elucidate the risk factors of infection at community level. In the present study, we aimed to identify areas with a high risk of SFTS virus infection using a geospatial dataset of SFTS cases in Miyazaki. Methods Using 10 × 10-km mesh data and a geographically weighted logistic regression (GWLR) model, we examined the statistical associations between environmental variables and spatial variation in the risk of SFTS. We collected geospatial and population census data as well as forest and agriculture mesh information. Altitude and farmland were selected as two specific variables for predicting the presence of SFTS cases in a given mesh area. Results Using GWLR, the area under the receiver operating characteristic curve (AUC) was estimated at 73.9%, outperforming the classical logistic regression model (72.4%). The sensitivity and specificity of the GWLR model were estimated at 90.9 and 58.7%, respectively. We identified altitude (odds ratio (OR) = 0.996, 95% confidence interval (CI): 0.994–0.999 per one-meter elevation) and farmland (OR = 0.999, 95% CI: 0.998–1.000 per % increase) as useful negative predictors of SFTS cases in Miyazaki. Conclusions Our study findings revealed that the risk of SFTS is high in geographic areas where farmland area begins to diminish and at mid-level altitudes. Our findings can help to improve the efficiency of ecological and animal surveillance in high-risk areas. Using finer geographic resolution, such surveillance can help raise awareness among local residents in areas with a high risk of SFTS. Electronic supplementary material The online version of this article (10.1186/s12879-019-4111-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kazuhiro Yasuo
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Sapporo, Japan.,Sapporo Higashi Tokushukai Hospital, 3-1 Kita 33 Jo, Higashi 14 Chome, Sapporo, Japan
| | - Hiroshi Nishiura
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Sapporo, Japan.
| |
Collapse
|
48
|
Hu J, Li Z, Cai J, Liu D, Zhang X, Jiang R, Guo X, Liu D, Zhang Y, Cui L, Shen J, Zhu F, Bao C. A Cluster of Bunyavirus-Associated Severe Fever With Thrombocytopenia Syndrome Cases in a Coastal Plain Area in China, 2015: Identification of a Previously Unidentified Endemic Region for Severe Fever With Thrombocytopenia Bunyavirus. Open Forum Infect Dis 2019; 6:ofz209. [PMID: 31211156 PMCID: PMC6559278 DOI: 10.1093/ofid/ofz209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/03/2019] [Indexed: 11/13/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is a typical tick-borne, natural focal disease. The natural foci of SFTS were considered to exist in hilly and mountainous areas before 2015. A cluster of 3 patients exposed to a patient with a fulminant disease consistent with SFTS occurred from July to August 2015 in Dongtai County, which is characterized by alluvial plains; this prompted investigation. Methods The epidemiological, clinical, and laboratory features of 4 patients in the cluster were analyzed. Serum samples from the indigenous healthy population and native domesticated animals were collected to conduct laboratory tests, along with small wild animals and ticks. Results In 3 secondary case patients, high fever, thrombocytopenia and leukopenia developed within 8-13 days after contact with blood or bloody secretions from the index patient; SFTS was then diagnosed by means of reverse-transcription polymerase chain reaction. Genomic sequencing and analysis of S and L segments of 2 viral strains isolated from 2 secondary case patients showed that they shared 99.8%-99.9% homology in nucleotide sequence. The seroprevalences among indigenous healthy population, native livestock, native poultry, and small wild animals was 0.74%, 17.54%, 6.67%, and 1.12%, respectively. Three questing ticks, 61 feeding ticks, and 178 small wild animals were collected in August 2015. Survey on tick density and seasonal fluctuation in 2016 showed that ticks were active from March to October. All ticks were identified as Haemaphysalis longicornis. Severe fever with thrombocytopenia bunyavirus (SFTSV)-specific RNA was detected in the ticks collected in 2016, and the minimum SFTSV infection rate in these ticks was 0.54% (1 of 185).Wild mammals and ticks collected in August 2015 tested negative for SFTSV-specific RNA. Conclusions Aside from hilly or mountainous area, a coastal plain was identified as the natural foci of SFTSV in Dongtai County, China. The involvement of migration in the evolution of SFTSV might lead to a transregional transmission event of SFTSV.
Collapse
Affiliation(s)
- Jianli Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Zhifeng Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Jiaping Cai
- Dongtai County Center for Disease Control and Prevention
| | - Donglin Liu
- Dongtai County Center for Disease Control and Prevention
| | - Xuefeng Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Renjie Jiang
- Yancheng Municipal Center for Disease Control and Prevention, Dongtai, China
| | - Xilin Guo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Dapeng Liu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Yufu Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Lunbiao Cui
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Jinjin Shen
- Yancheng Municipal Center for Disease Control and Prevention, Dongtai, China
| | - Fengcai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Changjun Bao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| |
Collapse
|
49
|
Rochlin I. Modeling the Asian Longhorned Tick (Acari: Ixodidae) Suitable Habitat in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:384-391. [PMID: 30544234 DOI: 10.1093/jme/tjy210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 06/09/2023]
Abstract
Asian longhorned or bush tick (Haemaphysalis longicornis Neumann) is a vector species of considerable medical and veterinary importance within its native range in East Asia, and in introduced areas of Australia and Oceania. Recently, this tick species was detected in several regions of the United States. This study aimed at modeling areas suitable for H. longicornis in North America using maximum entropy distribution modeling or Maxent. Occurrence records of H. longicornis within its present range were obtained from published literature. The Maxent model contained a small number of a priori climatic and ecological variables. Annual temperature, precipitation, and ecological zones were found the most important in creating sensitive and specific model (success rate = 91.8%) that had a good fit to the existing data. The model predicted suitable H. longicornis habitat in most of eastern North America from southern Canada to the Gulf Coast, and in a small temperate area on the West Coast. Coastal areas were among the highest ranked suitable habitat. Another highly suitable region was identified in mid-western and southern United States where Heartland virus transmission takes place. This finding is of concern, since H. longicornis ticks vector a closely related virus in East Asia. Delineation of areas suitable for H. longicornis can facilitate detection, prepare public health authorities, and inform the general public about this potentially pestiferous and medically important species.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, NJ
| |
Collapse
|
50
|
Chen C, Li P, Li KF, Wang HL, Dai YX, Cheng X, Yan JB. Animals as amplification hosts in the spread of severe fever with thrombocytopenia syndrome virus: A systematic review and meta-analysis. Int J Infect Dis 2019; 79:77-84. [DOI: 10.1016/j.ijid.2018.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022] Open
|