1
|
Butera F, Sero JE, Dent LG, Bakal C. Actin networks modulate heterogeneous NF-κB dynamics in response to TNFα. eLife 2024; 13:e86042. [PMID: 39110005 PMCID: PMC11524587 DOI: 10.7554/elife.86042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/05/2024] [Indexed: 11/01/2024] Open
Abstract
The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in pancreatic ductal adenocardinoma (PDAC) tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single-cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single-cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.
Collapse
Affiliation(s)
- Francesca Butera
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Julia E Sero
- Department of Life Sciences, University of BathBathUnited Kingdom
| | - Lucas G Dent
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| |
Collapse
|
2
|
Baro L, Almhassneh RA, Islam A, Juanes MA. Tumor invasiveness is regulated by the concerted function of APC, formins, and Arp2/3 complex. iScience 2024; 27:109687. [PMID: 38680662 PMCID: PMC11053316 DOI: 10.1016/j.isci.2024.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Tumor cell invasion is the initial step in metastasis, the leading cause of death from cancer. Invasion requires protrusive cellular structures that steer the migration of leader cells emanating from the tumor mass toward neighboring tissues. Actin is central to these processes and is therefore the prime target of drugs known as migrastatics. However, the broad effects of general actin inhibitors limit their therapeutic use. Here, we delineate the roles of specific actin nucleators in tuning actin-rich invasive protrusions and pinpoint potential pharmacological targets. We subject colorectal cancer spheroids embedded in collagen matrix-a preclinical model mirroring solid tumor invasiveness-to pharmacologic and/or genetic treatment of specific actin arrays to assess their roles in invasiveness. Our data reveal coordinated yet distinct involvement of actin networks nucleated by adenomatous polyposis coli, formins, and actin-related protein 2/3 complex in the biogenesis and maintenance of invasive protrusions. These findings may open avenues for better targeted therapies.
Collapse
Affiliation(s)
- Lautaro Baro
- Cytoskeletal Dynamics in Cell Migration and Cancer Invasion Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Rabeah A. Almhassneh
- Cytoskeletal Dynamics in Cell Migration and Cancer Invasion Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Asifa Islam
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - M. Angeles Juanes
- Cytoskeletal Dynamics in Cell Migration and Cancer Invasion Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
3
|
Mittal N, Michels EB, Massey AE, Qiu Y, Royer-Weeden SP, Smith BR, Cartagena-Rivera AX, Han SJ. Myosin-independent stiffness sensing by fibroblasts is regulated by the viscoelasticity of flowing actin. COMMUNICATIONS MATERIALS 2024; 5:6. [PMID: 38741699 PMCID: PMC11090405 DOI: 10.1038/s43246-024-00444-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/02/2024] [Indexed: 05/16/2024]
Abstract
The stiffness of the extracellular matrix induces differential tension within integrin-based adhesions, triggering differential mechanoresponses. However, it has been unclear if the stiffness-dependent differential tension is induced solely by myosin activity. Here, we report that in the absence of myosin contractility, 3T3 fibroblasts still transmit stiffness-dependent differential levels of traction. This myosin-independent differential traction is regulated by polymerizing actin assisted by actin nucleators Arp2/3 and formin where formin has a stronger contribution than Arp2/3 to both traction and actin flow. Intriguingly, despite only slight changes in F-actin flow speed observed in cells with the combined inhibition of Arp2/3 and myosin compared to cells with sole myosin inhibition, they show a 4-times reduction in traction than cells with myosin-only inhibition. Our analyses indicate that traditional models based on rigid F-actin are inadequate for capturing such dramatic force reduction with similar actin flow. Instead, incorporating the F-actin network's viscoelastic properties is crucial. Our new model including the F-actin viscoelasticity reveals that Arp2/3 and formin enhance stiffness sensitivity by mechanically reinforcing the F-actin network, thereby facilitating more effective transmission of flow-induced forces. This model is validated by cell stiffness measurement with atomic force microscopy and experimental observation of model-predicted stiffness-dependent actin flow fluctuation.
Collapse
Affiliation(s)
- Nikhil Mittal
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
- Health Research Institute, Michigan Technological University, Houghton, MI, USA
| | - Etienne B. Michels
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Andrew E. Massey
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Yunxiu Qiu
- Department of Biomedical Engineering, Michigan State University, Lansing, MI, USA
| | - Shaina P. Royer-Weeden
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Bryan R. Smith
- Department of Biomedical Engineering, Michigan State University, Lansing, MI, USA
| | - Alexander X. Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Sangyoon J. Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
- Health Research Institute, Michigan Technological University, Houghton, MI, USA
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
4
|
Ruef N, Martínez Magdaleno J, Ficht X, Purvanov V, Palayret M, Wissmann S, Pfenninger P, Stolp B, Thelen F, Barreto de Albuquerque J, Germann P, Sharpe J, Abe J, Legler DF, Stein JV. Exocrine gland-resident memory CD8 + T cells use mechanosensing for tissue surveillance. Sci Immunol 2023; 8:eadd5724. [PMID: 38134242 DOI: 10.1126/sciimmunol.add5724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
Tissue-resident CD8+ T cells (TRM) continuously scan peptide-MHC (pMHC) complexes in their organ of residence to intercept microbial invaders. Recent data showed that TRM lodged in exocrine glands scan tissue in the absence of any chemoattractant or adhesion receptor signaling, thus bypassing the requirement for canonical migration-promoting factors. The signals eliciting this noncanonical motility and its relevance for organ surveillance have remained unknown. Using mouse models of viral infections, we report that exocrine gland TRM autonomously generated front-to-back F-actin flow for locomotion, accompanied by high cortical actomyosin contractility, and leading-edge bleb formation. The distinctive mode of exocrine gland TRM locomotion was triggered by sensing physical confinement and was closely correlated with nuclear deformation, which acts as a mechanosensor via an arachidonic acid and Ca2+ signaling pathway. By contrast, naïve CD8+ T cells or TRM surveilling microbe-exposed epithelial barriers did not show mechanosensing capacity. Inhibition of nuclear mechanosensing disrupted exocrine gland TRM scanning and impaired their ability to intercept target cells. These findings indicate that confinement is sufficient to elicit autonomous T cell surveillance in glands with restricted chemokine expression and constitutes a scanning strategy that complements chemosensing-dependent migration.
Collapse
Affiliation(s)
- Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jose Martínez Magdaleno
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Matthieu Palayret
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Petra Pfenninger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Bettina Stolp
- Department for Infectious Diseases, Integrative Virology, Center for Integrative Infectious Disease Research, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Flavian Thelen
- Department of Medical Oncology and Hematology, University of Zürich and University Hospital Zürich, 8091 Zürich, Switzerland
| | | | - Philipp Germann
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- European Molecular Biology Laboratory (EMBL) Barcelona, 08003 Barcelona, Spain
- Institucio' Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, 78464 Konstanz, Germany
- Theodor Kocher Institute, University of Bern, 3011 Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Collier S, Pietsch E, Dans M, Ling D, Tavella TA, Lopaticki S, Marapana DS, Shibu MA, Andrew D, Tiash S, McMillan PJ, Gilson P, Tilley L, Dixon MWA. Plasmodium falciparum formins are essential for invasion and sexual stage development. Commun Biol 2023; 6:861. [PMID: 37596377 PMCID: PMC10439200 DOI: 10.1038/s42003-023-05233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
The malaria parasite uses actin-based mechanisms throughout its lifecycle to control a range of biological processes including intracellular trafficking, gene regulation, parasite motility and invasion. In this work we assign functions to the Plasmodium falciparum formins 1 and 2 (FRM1 and FRM2) proteins in asexual and sexual blood stage development. We show that FRM1 is essential for merozoite invasion and FRM2 is required for efficient cell division. We also observed divergent functions for FRM1 and FRM2 in gametocyte development. Conditional deletion of FRM1 leads to a delay in gametocyte stage progression. We show that FRM2 controls the actin and microtubule cytoskeletons in developing gametocytes, with premature removal of the protein resulting in a loss of transmissible stage V gametocytes. Lastly, we show that targeting formin proteins with the small molecule inhibitor of formin homology domain 2 (SMIFH2) leads to a multistage block in asexual and sexual stage parasite development.
Collapse
Affiliation(s)
- Sophie Collier
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma Pietsch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Madeline Dans
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Dawson Ling
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Tatyana A Tavella
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sash Lopaticki
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Danushka S Marapana
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Mohini A Shibu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dean Andrew
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Snigdha Tiash
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul J McMillan
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul Gilson
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew W A Dixon
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Innocenti M. Investigating Mammalian Formins with SMIFH2 Fifteen Years in: Novel Targets and Unexpected Biology. Int J Mol Sci 2023; 24:ijms24109058. [PMID: 37240404 DOI: 10.3390/ijms24109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The mammalian formin family comprises fifteen multi-domain proteins that regulate actin dynamics and microtubules in vitro and in cells. Evolutionarily conserved formin homology (FH) 1 and 2 domains allow formins to locally modulate the cell cytoskeleton. Formins are involved in several developmental and homeostatic processes, as well as human diseases. However, functional redundancy has long hampered studies of individual formins with genetic loss-of-function approaches and prevents the rapid inhibition of formin activities in cells. The discovery of small molecule inhibitor of formin homology 2 domains (SMIFH2) in 2009 was a disruptive change that provided a powerful chemical tool to explore formins' functions across biological scales. Here, I critically discuss the characterization of SMIFH2 as a pan-formin inhibitor, as well as growing evidence of unexpected off-target effects. By collating the literature and information hidden in public repositories, outstanding controversies and fundamental open questions about the substrates and mechanism of action of SMIFH2 emerge. Whenever possible, I propose explanations for these discrepancies and roadmaps to address the paramount open questions. Furthermore, I suggest that SMIFH2 be reclassified as a multi-target inhibitor for its appealing activities on proteins involved in pathological formin-dependent processes. Notwithstanding all drawbacks and limitations, SMIFH2 will continue to prove useful in studying formins in health and disease in the years to come.
Collapse
Affiliation(s)
- Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
7
|
Baro L, Islam A, Brown HM, Bell ZA, Juanes MA. APC-driven actin nucleation powers collective cell dynamics in colorectal cancer cells. iScience 2023; 26:106583. [PMID: 37128612 PMCID: PMC10148130 DOI: 10.1016/j.isci.2023.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Cell remodeling relies on dynamic rearrangements of cell contacts powered by the actin cytoskeleton. The tumor suppressor adenomatous polyposis coli (APC) nucleate actin filaments (F-actin) and localizes at cell junctions. Whether APC-driven actin nucleation acts in cell junction remodeling remains unknown. By combining bioimaging and genetic tools with artificial intelligence algorithms applied to colorectal cancer cell, we found that the APC-dependent actin pool contributes to sustaining levels of F-actin, as well as E-cadherin and occludin protein levels at cell junctions. Moreover, this activity preserved cell junction length and angle, as well as vertex motion and integrity. Loss of this F-actin pool led to larger cells with slow and random cell movement within a sheet. Our findings suggest that APC-driven actin nucleation promotes cell junction integrity and dynamics to facilitate collective cell remodeling and motility. This offers a new perspective to explore the relevance of APC-driven cytoskeletal function in gut morphogenesis.
Collapse
Affiliation(s)
- Lautaro Baro
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Asifa Islam
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Hannah M. Brown
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Zoë A. Bell
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - M. Angeles Juanes
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
8
|
Petri N, Nordbrink R, Tsikolia N, Kremnyov S. Abnormal left-right organizer and laterality defects in Xenopus embryos after formin inhibitor SMIFH2 treatment. PLoS One 2022; 17:e0275164. [PMCID: PMC9639825 DOI: 10.1371/journal.pone.0275164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Left-right symmetry breaking in most studied vertebrates makes use of so-called leftward flow, a mechanism which was studied in detail especially in mouse and Xenopus laevis embryos and is based on rotation of monocilia on specialized epithelial surface designated as left-right organizer or laterality coordinator. However, it has been argued that prior to emergence of leftward flow an additional mechanism operates during early cleavage stages in Xenopus embryo which is based on cytoskeletal processes. Evidence in favour of this early mechanism was supported by left-right abnormalities after chemical inhibition of cytoskeletal protein formin. Here we analyzed temporal dimension of this effect in detail and found that reported abnormalities arise only after treatment at gastrula-neurula stages, i.e. just prior to and during the operation of left-right organizer. Moreover, molecular and morphological analysis of the left-right organizer reveals its abnormal development. Our results strongly indicate that left-right abnormalities reported after formin inhibition cannot serve as support of models based on early symmetry breaking event in Xenopus embryo.
Collapse
Affiliation(s)
- Natalia Petri
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rhea Nordbrink
- Anatomy and Embryology, University Medicine Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Anatomy and Embryology, University Medicine Göttingen, Göttingen, Germany
- * E-mail: (NT); (SK)
| | - Stanislav Kremnyov
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
- * E-mail: (NT); (SK)
| |
Collapse
|
9
|
Thompson SB, Waldman MM, Jacobelli J. Polymerization power: effectors of actin polymerization as regulators of T lymphocyte migration through complex environments. FEBS J 2022; 289:6154-6171. [PMID: 34273243 PMCID: PMC8761786 DOI: 10.1111/febs.16130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
During their life span, T cells are tasked with patrolling the body for potential pathogens. To do so, T cells migrate through numerous distinct anatomical sites and tissue environments with different biophysical characteristics. To migrate through these different environments, T cells use various motility strategies that rely on actin network remodeling to generate shape changes and mechanical forces. In this review, we initially discuss the migratory journey of T cells and then cover the actin polymerization effectors at play in T cells, and finally, we focus on the function of these effectors of actin cytoskeleton remodeling in mediating T-cell migration through diverse tissue environments. Specifically, we will discuss the current state of the field pertaining to our understanding of the roles in T-cell migration played by members of the three main families of actin polymerization machinery: the Arp2/3 complex; formin proteins; and Ena/VASP proteins.
Collapse
Affiliation(s)
- Scott B. Thompson
- Department of Immunology and Microbiology, University of Colorado School of Medicine
| | - Monique M. Waldman
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| |
Collapse
|
10
|
Ahangar P, Cowin AJ. Reforming the Barrier: The Role of Formins in Wound Repair. Cells 2022; 11:cells11182779. [PMID: 36139355 PMCID: PMC9496773 DOI: 10.3390/cells11182779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
The restoration of an intact epidermal barrier after wound injury is the culmination of a highly complex and exquisitely regulated physiological process involving multiple cells and tissues, overlapping dynamic events and protein synthesis and regulation. Central to this process is the cytoskeleton, a system of intracellular proteins that are instrumental in regulating important processes involved in wound repair including chemotaxis, cytokinesis, proliferation, migration, and phagocytosis. One highly conserved family of cytoskeletal proteins that are emerging as major regulators of actin and microtubule nucleation, polymerization, and stabilization are the formins. The formin family includes 15 different proteins categorized into seven subfamilies based on three formin homology domains (FH1, FH2, and FH3). The formins themselves are regulated in different ways including autoinhibition, activation, and localization by a range of proteins, including Rho GTPases. Herein, we describe the roles and effects of the formin family of cytoskeletal proteins on the fundamental process of wound healing and highlight recent advances relating to their important functions, mechanisms, and regulation at the molecular and cellular levels.
Collapse
|
11
|
Orman M, Landis M, Oza A, Nambiar D, Gjeci J, Song K, Huang V, Klestzick A, Hachicho C, Liu SQ, Kamm JM, Bartolini F, Vadakkan JJ, Rojas CM, Vizcarra CL. Alterations to the broad-spectrum formin inhibitor SMIFH2 modulate potency but not specificity. Sci Rep 2022; 12:13520. [PMID: 35941181 PMCID: PMC9360399 DOI: 10.1038/s41598-022-17685-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022] Open
Abstract
SMIFH2 is a small molecule inhibitor of the formin family of cytoskeletal regulators that was originally identified in a screen for suppression of actin polymerization induced by the mouse formin Diaphanous 1 (mDia1). Despite widespread use of this compound, it is unknown whether SMIFH2 inhibits all human formins. Additionally, the nature of protein/inhibitor interactions remains elusive. We assayed SMIFH2 against human formins representing six of the seven mammalian classes and found inhibitory activity against all formins tested. We synthesized a panel of SMIFH2 derivatives and found that, while many alterations disrupt SMIFH2 activity, substitution of an electron-donating methoxy group in place of the bromine along with halogenation of the furan ring increases potency by approximately five-fold. Similar to SMIFH2, the active derivatives are also pan-inhibitors for the formins tested. This result suggests that while potency can be improved, the goal of distinguishing between highly conserved FH2 domains may not be achievable using the SMIFH2 scaffold.
Collapse
Affiliation(s)
- Marina Orman
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Maya Landis
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Aisha Oza
- Department of Chemistry, Barnard College, New York, NY, USA
| | | | - Joana Gjeci
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Kristen Song
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Vivian Huang
- Department of Chemistry, Barnard College, New York, NY, USA
| | | | - Carla Hachicho
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Su Qing Liu
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Judith M Kamm
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | | | | | | |
Collapse
|
12
|
de Poret A, Dibsy R, Merida P, Trausch A, Inamdar K, Muriaux D. Extracellular vesicles containing the I-BAR protein IRSp53 are released from the cell plasma membrane in an Arp2/3 dependent manner. Biol Cell 2022; 114:259-275. [PMID: 35844059 DOI: 10.1111/boc.202100095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
Extracellular vesicles (EVs) are nanometric membrane vesicles produced by cells and involved in cell-cell communication. Extracellular vesicle formation can occur in endosomal compartments whose budding depends on the ESCRT machinery (i.e., exosomes), or at the cell plasma membrane (ie., EVs or microvesicles). How these extracellular vesicles (EVs) bud from the cell plasma membrane is not completely understood. Membrane curvatures of the plasma membrane towards the exterior are often generated by I-BAR domain proteins. I-BAR proteins are cytosolic proteins that when activated bind to the cell plasma membrane and are involved in protrusion formation including filopodia and lamellipodia. These proteins contain a conserved I-BAR domain that senses curvature and induces negative membrane curvatures at the plasma membrane. I-BAR proteins, such as IRSp53, also interact with actin co-factors to favor membrane protrusions. Here, we explore whether the I-BAR protein IRSp53 is sorting with EVs and if ectopic GFP-tagged I-BAR proteins, such as IRSp53-GFP, as well as related IRTKS-GFP or Pinkbar proteins, can be found in these EVs originated from the cell plasma membrane. We found that a subpopulation of these I-BAR EVs, which are negative for the CD81 exosomal biomarker, are produced from the cell plasma membrane in a TSG101-independent manner but in an Arp2/3-dependent manner. Our results thus reveal that IRSp53 containing EVs represent a subset of plasma membrane EVs whose production depends on branched actin. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aurore de Poret
- Institut de Recherche en Infectiologie de Montpellier, UMR9004 CNRS, Montpellier University, Montpellier, France
| | - Rayane Dibsy
- Institut de Recherche en Infectiologie de Montpellier, UMR9004 CNRS, Montpellier University, Montpellier, France
| | - Peggy Merida
- Institut de Recherche en Infectiologie de Montpellier, UMR9004 CNRS, Montpellier University, Montpellier, France
| | | | - Kaushik Inamdar
- Institut de Recherche en Infectiologie de Montpellier, UMR9004 CNRS, Montpellier University, Montpellier, France
| | - Delphine Muriaux
- Institut de Recherche en Infectiologie de Montpellier, UMR9004 CNRS, Montpellier University, Montpellier, France
| |
Collapse
|
13
|
Huang Y, Winklbauer R. Cell cortex regulation by the planar cell polarity protein Prickle1. J Cell Biol 2022; 221:e202008116. [PMID: 35512799 PMCID: PMC9082893 DOI: 10.1083/jcb.202008116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/18/2022] [Accepted: 04/09/2022] [Indexed: 01/07/2023] Open
Abstract
The planar cell polarity pathway regulates cell polarity, adhesion, and rearrangement. Its cytoplasmic core components Prickle (Pk) and Dishevelled (Dvl) often localize as dense puncta at cell membranes to form antagonizing complexes and establish cell asymmetry. In vertebrates, Pk and Dvl have been implicated in actomyosin cortex regulation, but the mechanism of how these proteins control cell mechanics is unclear. Here we demonstrate that in Xenopus prechordal mesoderm cells, diffusely distributed, cytoplasmic Pk1 up-regulates the F-actin content of the cortex. This counteracts cortex down-regulation by Dvl2. Both factors act upstream of casein kinase II to increase or decrease cortical tension. Thus, cortex modulation by Pk1 and Dvl2 is translated into mechanical force and affects cell migration and rearrangement during radial intercalation in the prechordal mesoderm. Pk1 also forms puncta and plaques, which are associated with localized depletion of cortical F-actin, suggesting opposite roles for diffuse and punctate Pk1.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Mishra S, Levy DL. Nuclear F-actin and Lamin A antagonistically modulate nuclear shape. J Cell Sci 2022; 135:275607. [PMID: 35665815 PMCID: PMC9377710 DOI: 10.1242/jcs.259692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/28/2022] [Indexed: 12/25/2022] Open
Abstract
Nuclear shape influences cell migration, gene expression and cell cycle progression, and is altered in disease states like laminopathies and cancer. What factors and forces determine nuclear shape? We find that nuclei assembled in Xenopus egg extracts in the presence of dynamic F-actin exhibit a striking bilobed nuclear morphology with distinct membrane compositions in the two lobes and accumulation of F-actin at the inner nuclear envelope. The addition of Lamin A (encoded by lmna), which is absent from Xenopus eggs, results in rounder nuclei, suggesting that opposing nuclear F-actin and Lamin A forces contribute to the regulation of nuclear shape. Nuclear F-actin also promotes altered nuclear shape in Lamin A-knockdown HeLa cells and, in both systems, abnormal nuclear shape is driven by formins and not Arp2/3 or myosin. Although the underlying mechanisms might differ in Xenopus and HeLa cells, we propose that nuclear F-actin filaments nucleated by formins impart outward forces that lead to altered nuclear morphology unless Lamin A is present. Targeting nuclear actin dynamics might represent a novel approach to rescuing disease-associated defects in nuclear shape.
Collapse
Affiliation(s)
- Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA,Author for correspondence ()
| |
Collapse
|
15
|
Becker KN, Pettee KM, Sugrue A, Reinard KA, Schroeder JL, Eisenmann KM. The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian Diaphanous-Related (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells. Cells 2022; 11:1559. [PMID: 35563863 PMCID: PMC9103681 DOI: 10.3390/cells11091559] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/21/2022] [Accepted: 04/30/2022] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is a progressive and lethal brain cancer. Malignant control of actin and microtubule cytoskeletal mechanics facilitates two major GBM therapeutic resistance strategies-diffuse invasion and tumor microtube network formation. Actin and microtubule reorganization is controlled by Rho-GTPases, which exert their effects through downstream effector protein activation, including Rho-associated kinases (ROCK) 1 and 2 and mammalian diaphanous-related (mDia) formins (mDia1, 2, and 3). Precise spatial and temporal balancing of the activity between these effectors dictates cell shape, adhesion turnover, and motility. Using small molecules targeting mDia, we demonstrated that global agonism (IMM02) was superior to antagonism (SMIFH2) as anti-invasion strategies in GBM spheroids. Here, we use IDH-wild-type GBM patient-derived cell models and a novel semi-adherent in vitro system to investigate the relationship between ROCK and mDia in invasion and tumor microtube networks. IMM02-mediated mDia agonism disrupts invasion in GBM patient-derived spheroid models, in part by inducing mDia expression loss and tumor microtube network collapse. Pharmacological disruption of ROCK prevented invasive cell-body movement away from GBM spheres, yet induced ultralong, phenotypically abnormal tumor microtube formation. Simultaneously targeting mDia and ROCK did not enhance the anti-invasive/-tumor microtube effects of IMM02. Our data reveal that targeting mDia is a viable GBM anti-invasion/-tumor microtube networking strategy, while ROCK inhibition is contraindicated.
Collapse
Affiliation(s)
- Kathryn N. Becker
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (K.N.B.); (K.M.P.)
| | - Krista M. Pettee
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (K.N.B.); (K.M.P.)
| | - Amanda Sugrue
- Department of Chemistry and Biochemistry, University of Heidelberg, Tiffin, OH 44883, USA;
| | - Kevin A. Reinard
- Division of Neurosurgery, ProMedica Toledo Hospital, Toledo, OH 43606, USA; (K.A.R.); (J.L.S.)
| | - Jason L. Schroeder
- Division of Neurosurgery, ProMedica Toledo Hospital, Toledo, OH 43606, USA; (K.A.R.); (J.L.S.)
- Department of Surgery, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Kathryn M. Eisenmann
- Department of Cell and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614, USA; (K.N.B.); (K.M.P.)
| |
Collapse
|
16
|
Formation of neutrophil extracellular traps requires actin cytoskeleton rearrangements. Blood 2022; 139:3166-3180. [PMID: 35030250 DOI: 10.1182/blood.2021013565] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022] Open
Abstract
Neutrophils are important effector cells in the host defense against invading micro-organisms. One of the mechanisms they employ to eliminate pathogens is the release of neutrophil extracellular traps (NETs). Although NET release and subsequent cell death known as NETosis have been intensively studied, the cellular components and factors determining or facilitating the formation of NETs remain incompletely understood. Using various actin polymerization and myosin II modulators on neutrophils from healthy individuals, we show that intact F-actin dynamics and myosin II function are essential for NET formation when induced by different stimuli, i.e. phorbol 12-myristate 13-acetate, monosodium urate crystals and Candida albicans. The role of actin polymerization in NET formation could not be explained by the lack of reactive oxygen species production or granule release, which were normal or enhanced under the given conditions. Neutrophils from patients with very rare inherited actin polymerization defects by either ARPC1B- or MKL1-deficiency also failed to show NETosis. We found that upon inhibition of actin dynamics there is a lack of translocation of NE to the nucleus, which may well explain the impaired NET formation. Collectively, our data illustrate the essential requirement of an intact and active actin polymerization process, as well as active myosin II to enable the release of nuclear DNA by neutrophils during NET formation.
Collapse
|
17
|
Bourdais A, Dehapiot B, Halet G. Cofilin regulates actin network homeostasis and microvilli length in mouse oocytes. J Cell Sci 2021; 134:273797. [PMID: 34841429 DOI: 10.1242/jcs.259237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
How multiple actin networks coexist in a common cytoplasm while competing for a shared pool of monomers is still an ongoing question. This is exemplified by meiotic maturation in the mouse oocyte, which relies on the dynamic remodeling of distinct cortical and cytoplasmic F-actin networks. Here, we show that the conserved actin-depolymerizing factor cofilin is activated in a switch-like manner upon meiosis resumption from prophase arrest. Interfering with cofilin activation during maturation resulted in widespread elongation of microvilli, while cytoplasmic F-actin was depleted, leading to defects in spindle migration and polar body extrusion. In contrast, cofilin inactivation in metaphase II-arrested oocytes resulted in a shutdown of F-actin dynamics, along with a dramatic overgrowth of the polarized actin cap. However, inhibition of the Arp2/3 complex to promote actin cap disassembly elicited ectopic microvilli outgrowth in the polarized cortex. These data establish cofilin as a key player in actin network homeostasis in oocytes and reveal that microvilli can act as a sink for monomers upon disassembly of a competing network.
Collapse
Affiliation(s)
- Anne Bourdais
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| | - Benoit Dehapiot
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| | - Guillaume Halet
- Institut Génétique et Développement de Rennes , CNRS IGDR UMR 6290, Université de Rennes 1, F-35000 Rennes, France
| |
Collapse
|
18
|
mDia1 Assembles a Linear F-Actin Coat at Membrane Invaginations To Drive Listeria monocytogenes Cell-to-Cell Spreading. mBio 2021; 12:e0293921. [PMID: 34781738 PMCID: PMC8593688 DOI: 10.1128/mbio.02939-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Direct cell-to-cell spreading of Listeria monocytogenes requires the bacteria to induce actin-based finger-like membrane protrusions in donor host cells that are endocytosed through caveolin-rich membrane invaginations by adjacent receiving cells. An actin shell surrounds these endocytic sites; however, its structure, composition, and functional significance remain elusive. Here, we show that the formin mDia1, but surprisingly not the Arp2/3 complex, is enriched at the membrane invaginations generated by L. monocytogenes during HeLa and Jeg-3 cell infections. Electron microscopy reveals a band of linear actin filaments that run along the longitudinal axis of the invagination membrane. Mechanistically, mDia1 expression is vital for the assembly of this F-actin shell. mDia1 is also required for the recruitment of Filamin A, a caveola-associated F-actin cross-linking protein, and caveolin-1 to the invaginations. Importantly, mixed-cell infection assays show that optimal caveolin-based L. monocytogenes cell-to-cell spreading correlates with the formation of the linear actin filament-containing shell by mDia1. IMPORTANCE Listeria monocytogenes spreads from one cell to another to colonize tissues. This cell-to-cell movement requires the propulsive force of an actin-rich comet tail behind the advancing bacterium, which ultimately distends the host plasma membrane into a slender bacterium-containing membrane protrusion. These membrane protrusions induce a corresponding invagination in the membrane of the adjacent host cell. The host cell that receives the protrusion utilizes caveolin-based endocytosis to internalize the structures, and filamentous actin lines these membrane invaginations. Here, we set out to determine the structure and function of this filamentous actin "shell." We demonstrate that the formin mDia1, but not the Arp2/3 complex, localizes to the invaginations. Morphologically, we show that this actin is organized into linear arrays and not branched dendritic networks. Mechanistically, we show that the actin shell is assembled by mDia1 and that mDia1 is required for efficient cell-to-cell transfer of L. monocytogenes.
Collapse
|
19
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
20
|
Xiao H, Nguyen RY, LaRanger R, Herzog EL, Mak M. Integrated computational and experimental pipeline for quantifying local cell-matrix interactions. Sci Rep 2021; 11:16465. [PMID: 34385554 PMCID: PMC8361134 DOI: 10.1038/s41598-021-95935-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular interactions with the extracellular matrix (ECM) play a key role in modulating biological processes. While studies have identified key molecular factors of these interactions, the mechanical regulation associated with these interactions is not well characterized. To address this, we present an image analysis platform to analyze time-dependent dynamics observed in lung fibroblasts embedded in a 3D collagen matrix. Combining drug studies with quantitative analysis of cell–matrix interactions, our results are able to provide cellular level quantitative insights for mechanical and biophysical phenomena relevant to cell-ECM interactions. This system overall represents an initial pipeline for understanding cell mechanics in a 3D collagen gel and their implications in a physiologically relevant context.
Collapse
Affiliation(s)
- Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ryan Y Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ryan LaRanger
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Erica L Herzog
- Department of Medicine (Pulmonary, Critical Care and Sleep), Yale University School of Medicine, New Haven, CT, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Zhang L, Smertenko T, Fahy D, Koteyeva N, Moroz N, Kuchařová A, Novák D, Manoilov E, Smertenko P, Galva C, Šamaj J, Kostyukova AS, Sedbrook JC, Smertenko A. Analysis of formin functions during cytokinesis using specific inhibitor SMIFH2. PLANT PHYSIOLOGY 2021; 186:945-963. [PMID: 33620500 PMCID: PMC8195507 DOI: 10.1093/plphys/kiab085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.
Collapse
Affiliation(s)
- Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Nuria Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197376, Russia
| | - Natalia Moroz
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Anna Kuchařová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Dominik Novák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Eduard Manoilov
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Petro Smertenko
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Charitha Galva
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Alla S. Kostyukova
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
22
|
Huang S, Lu Y, Li S, Zhou T, Wang J, Xia J, Zhang X, Zhou Z. Key proteins of proteome underlying sperm malformation of rats exposed to low fenvalerate doses are highly related to P53. ENVIRONMENTAL TOXICOLOGY 2021; 36:1181-1194. [PMID: 33656234 DOI: 10.1002/tox.23117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Fenvalerate (Fen) is an endocrine disruptor, capable of interfering with the activity of estrogen and androgen. Our objective was to explore the molecular mechanisms of Fen on sperm in vivo. Adult male Sprague-Dawley rats were orally exposed to 0, 0.00625, 0.125, 2.5, 30 mg/kg/day Fen for 8 weeks. Sperm morphology, differential proteomics of sperm and testes, bioinformatic analysis, western blotting (WB), and RT-PCR were used to explore the mechanism of Fen on sperm. Data showed that low Fen doses significantly induced sperm malformations. In sperm proteomics, 47 differentially expressed (DE) proteins were enriched in biological processes (BPs) related to energy metabolism, response to estrogen, spermatogenesis; and enriched in cellular components (CCs) relating to energy-metabolism, sperm fibrous sheath and their outer dense fibers. In testicular proteomics, 56 DE proteins were highly associated with mRNA splicing, energy metabolism; and enriched in CCs relating to vesicles, myelin sheath, microtubules, mitochondria. WB showed that the expression of selected proteins was identical to their tendency in 2D gels. Literature indicates that key DE proteins in proteomic profiles (such as Trap1, Hnrnpa2b1, Hnrnpk, Hspa8, and Gapdh) are involved in P53-related processes or morphogenesis or spermatogenesis. Also, P53 mRNA and protein levels were significantly increased by Fen; bioinformatic re-analysis showed that 88.5% DE proteins and P53 formed a complex interacting network, and the key DE proteins were coenriched with P53-related BPs. Results indicate that key DE proteins of proteome underlying sperm malformations of rats exposed to low Fen doses are highly related to P53.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Suying Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Central Laboratory, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jing Wang
- Zhong Da Hospital, Southeast University, Nanjing, China
| | - Jiangyan Xia
- Zhong Da Hospital, Southeast University, Nanjing, China
| | - Xinxin Zhang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Burrinha T, Martinsson I, Gomes R, Terrasso AP, Gouras GK, Almeida CG. Up-regulation of APP endocytosis by neuronal aging drives amyloid dependent-synapse loss. J Cell Sci 2021; 134:240244. [PMID: 33910234 DOI: 10.1242/jcs.255752] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal aging increases the risk of late-onset Alzheimer's disease. During normal aging, synapses decline, and β-amyloid (Aβ) accumulates intraneuronally. However, little is known about the underlying cell biological mechanisms. We studied normal neuronal aging using normal aged brain and aged mouse primary neurons that accumulate lysosomal lipofuscin and show synapse loss. We identify the up-regulation of amyloid precursor protein (APP) endocytosis as a neuronal aging mechanism that potentiates APP processing and Aβ production in vitro and in vivo. The increased APP endocytosis may contribute to the observed early endosomes enlargement in the aged brain. Mechanistically, we show that clathrin-dependent APP endocytosis requires F-actin and that clathrin and endocytic F-actin increase with neuronal aging. Finally, Aβ production inhibition reverts synaptic decline in aged neurons while Aβ accumulation, promoted by endocytosis up-regulation in younger neurons, recapitulates aging-related synapse decline. Overall, we identify APP endocytosis up-regulation as a potential mechanism of neuronal aging and, thus, a novel target to prevent late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Tatiana Burrinha
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal
| | - Isak Martinsson
- Experimental Dementia Research Unit, Lund University, 22184 Lund, Sweden
| | - Ricardo Gomes
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal.,iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ana Paula Terrasso
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal.,iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Lund University, 22184 Lund, Sweden
| | - Cláudia Guimas Almeida
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal
| |
Collapse
|
24
|
Nishimura Y, Shi S, Zhang F, Liu R, Takagi Y, Bershadsky AD, Viasnoff V, Sellers JR. The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. J Cell Sci 2021; 134:237818. [PMID: 33589498 PMCID: PMC8121067 DOI: 10.1242/jcs.253708] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The small molecular inhibitor of formin FH2 domains, SMIFH2, is widely used in cell biological studies. It inhibits formin-driven actin polymerization in vitro, but not polymerization of pure actin. It is active against several types of formin from different species. Here, we found that SMIFH2 inhibits retrograde flow of myosin 2 filaments and contraction of stress fibers. We further checked the effect of SMIFH2 on non-muscle myosin 2A and skeletal muscle myosin 2 in vitro, and found that SMIFH2 inhibits activity of myosin ATPase and the ability to translocate actin filaments in the gliding actin in vitro motility assay. Inhibition of non-muscle myosin 2A in vitro required a higher concentration of SMIFH2 compared with that needed to inhibit retrograde flow and stress fiber contraction in cells. We also found that SMIFH2 inhibits several other non-muscle myosin types, including bovine myosin 10, Drosophila myosin 7a and Drosophila myosin 5, more efficiently than it inhibits formins. These off-target inhibitions demand additional careful analysis in each case when solely SMIFH2 is used to probe formin functions. This article has an associated First Person interview with Yukako Nishimura, joint first author of the paper.
Collapse
Affiliation(s)
- Yukako Nishimura
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| | - Shidong Shi
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| | - Fang Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasuharu Takagi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander D Bershadsky
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Virgile Viasnoff
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.,CNRS UMI 3639 BMC, Singapore 117411, Singapore.,Department of Biological Sciences, National university of Singapore, Singapore 117558, Singapore
| | - James R Sellers
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Min S, Choe C, Roh S. AQP3 Increases Intercellular Cohesion in NSCLC A549 Cell Spheroids through Exploratory Cell Protrusions. Int J Mol Sci 2021; 22:ijms22084287. [PMID: 33924231 PMCID: PMC8074759 DOI: 10.3390/ijms22084287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/25/2022] Open
Abstract
Tumor cell aggregation is critical for cell survival following the loss of extracellular matrix attachment and dissemination. However, the underlying mechanotransduction of clustering solitary tumor cells is poorly understood, especially in non-small cell lung cancers (NSCLC). Here, we examined whether cell surface protrusions played an important role in facilitating the physical contact between floating cells detached from a substrate. We employed poly-2-hydroxyethyl methacrylate-based 3D culture methods to mimic in vivo tumor cell cluster formation. The suprastructural analysis of human NSCLC A549 cell spheroids showed that finger-like protrusions clung together via the actin cytoskeleton. Time-lapse holotomography demonstrated that the finger-like protrusions of free-floating cells in 3D culture displayed exploratory coalescence. Global gene expression analysis demonstrated that the genes in the organic hydroxyl transport were particularly enriched in the A549 cell spheroids. Particularly, the knockdown of the water channel aquaporin 3 gene (AQP3) impaired multicellular aggregate formation in 3D culture through the rearrangement of the actomyosin cytoskeleton. Moreover, the cells with reduced levels of AQP3 decreased their transmigration. Overall, these data indicate that cell detachment-upregulated AQP3 contributes to cell surface protrusions through actomyosin cytoskeleton remodeling, causing the aggressive aggregation of free-floating cells dependent on the property of the substratum and collective metastasis.
Collapse
Affiliation(s)
- Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea;
| | - Chungyoul Choe
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea;
- Samsung Medical Center, Samsung Biomedical Research Institute, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (C.C.); (S.R.); Tel.: +82-221487353 (C.C.); Tel.: +82-28802333 (S.R.)
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea;
- Correspondence: (C.C.); (S.R.); Tel.: +82-221487353 (C.C.); Tel.: +82-28802333 (S.R.)
| |
Collapse
|
26
|
Tertrais M, Bigot C, Martin E, Poincloux R, Labrousse A, Maridonneau-Parini I. Phagocytosis is coupled to the formation of phagosome-associated podosomes and a transient disruption of podosomes in human macrophages. Eur J Cell Biol 2021; 100:151161. [PMID: 33836409 DOI: 10.1016/j.ejcb.2021.151161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023] Open
Abstract
Phagocytosis consists in ingestion and digestion of large particles, a process strictly dependent on actin re-organization. Using synchronized phagocytosis of IgG-coated latex beads (IgG-LB), zymosan or serum opsonized-zymosan, we report the formation of actin structures on both phagocytic cups and closed phagosomes in human macrophages. Their lifespan, size, protein composition and organization are similar to podosomes. Thus, we called these actin structures phagosome-associated podosomes (PAPs). Concomitantly to the formation of PAPs, a transient disruption of podosomes occurred at the ventral face of macrophages. Similarly to podosomes, which are targeted by vesicles containing proteases, the presence of PAPs correlated with the maturation of phagosomes into phagolysosomes. The ingestion of LB without IgG did not trigger PAPs formation, did not lead to podosome disruption and maturation to phagolysosomes, suggesting that these events are linked together. Although similar to podosomes, we found that PAPs differed by being resistant to the Arp2/3 inhibitor CK666. Thus, we describe a podosome subtype which forms on phagosomes where it probably serves several tasks of this multifunctional structure.
Collapse
Affiliation(s)
- Margot Tertrais
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Bigot
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Martin
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
27
|
Holjencin CE, Feinberg CR, Hedrick T, Halsey G, Williams RD, Patel PV, Biles E, Cummings JC, Wagner C, Vyavahare N, Jakymiw A. Advancing peptide siRNA-carrier designs through L/D-amino acid stereochemical modifications to enhance gene silencing. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:462-476. [PMID: 33868789 PMCID: PMC8040110 DOI: 10.1016/j.omtn.2021.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
The 599 peptide has been previously shown to effectively deliver small interfering RNAs (siRNAs) to cancer cells, inducing targeted-oncogene silencing, with a consequent inhibition of tumor growth. Although effective, this study was undertaken to advance the 599 peptide siRNA-carrier design through L/D-amino acid stereochemical modifications. Consequently, 599 was modified to generate eight different peptide variants, incorporating either different stereochemical patterns of L/D-amino acids or a specific D-amino acid substitution. Upon analysis of the variants, it was observed that these modifications could, in some instances, increase/decrease the binding, nuclease/serum stability, and complex release of siRNAs, as well as influence the gene-silencing efficiencies of the complex. These modifications were also found to affect cellular uptake and intracellular localization patterns of siRNA cargo, with one particular variant capable of mediating binding of siRNAs to specific cellular projections, identified as filopodia. Interestingly, this variant also exhibited the most enhanced gene silencing in comparison to the parent 599 peptide, thus suggesting a possible connection between filopodia binding and enhanced gene silencing. Together, these data demonstrate the utility of peptide stereochemistry, as well as the importance of a key D-amino acid modification, in advancing the 599 carrier design for the enhancement of gene silencing in cancer cells.
Collapse
Affiliation(s)
- Charles E Holjencin
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Colton R Feinberg
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.,Department of Biology, Swain Family School of Science and Mathematics, The Citadel, Charleston, SC 29409, USA
| | - Travis Hedrick
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Gregory Halsey
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, SC 29634, USA
| | - Robert D Williams
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Priya V Patel
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Evan Biles
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - James C Cummings
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Chance Wagner
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Naren Vyavahare
- Department of Bioengineering, College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, SC 29634, USA
| | - Andrew Jakymiw
- Department of Oral Health Sciences, James B. Edwards College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.,Department of Biochemistry & Molecular Biology, College of Medicine, Hollings Cancer Center, MUSC, Charleston, SC 29425, USA
| |
Collapse
|
28
|
Schneider F, Colin-York H, Fritzsche M. Quantitative Bio-Imaging Tools to Dissect the Interplay of Membrane and Cytoskeletal Actin Dynamics in Immune Cells. Front Immunol 2021; 11:612542. [PMID: 33505401 PMCID: PMC7829180 DOI: 10.3389/fimmu.2020.612542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular function is reliant on the dynamic interplay between the plasma membrane and the actin cytoskeleton. This critical relationship is of particular importance in immune cells, where both the cytoskeleton and the plasma membrane work in concert to organize and potentiate immune signaling events. Despite their importance, there remains a critical gap in understanding how these respective dynamics are coupled, and how this coupling in turn may influence immune cell function from the bottom up. In this review, we highlight recent optical technologies that could provide strategies to investigate the simultaneous dynamics of both the cytoskeleton and membrane as well as their interplay, focusing on current and future applications in immune cells. We provide a guide of the spatio-temporal scale of each technique as well as highlighting novel probes and labels that have the potential to provide insights into membrane and cytoskeletal dynamics. The quantitative biophysical tools presented here provide a new and exciting route to uncover the relationship between plasma membrane and cytoskeletal dynamics that underlies immune cell function.
Collapse
Affiliation(s)
- Falk Schneider
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Huw Colin-York
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Marco Fritzsche
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot, United Kingdom
| |
Collapse
|
29
|
Majmundar AJ, Buerger F, Forbes TA, Klämbt V, Schneider R, Deutsch K, Kitzler TM, Howden SE, Scurr M, Tan KS, Krzeminski M, Widmeier E, Braun DA, Lai E, Ullah I, Amar A, Kolb A, Eddy K, Chen CH, Salmanullah D, Dai R, Nakayama M, Ottlewski I, Kolvenbach CM, Onuchic-Whitford AC, Mao Y, Mann N, Nabhan MM, Rosen S, Forman-Kay JD, Soliman NA, Heilos A, Kain R, Aufricht C, Mane S, Lifton RP, Shril S, Little MH, Hildebrandt F. Recessive NOS1AP variants impair actin remodeling and cause glomerulopathy in humans and mice. SCIENCE ADVANCES 2021; 7:eabe1386. [PMID: 33523862 PMCID: PMC10763988 DOI: 10.1126/sciadv.abe1386] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Nephrotic syndrome (NS) is a leading cause of chronic kidney disease. We found recessive NOS1AP variants in two families with early-onset NS by exome sequencing. Overexpression of wild-type (WT) NOS1AP, but not cDNA constructs bearing patient variants, increased active CDC42 and promoted filopodia and podosome formation. Pharmacologic inhibition of CDC42 or its effectors, formin proteins, reduced NOS1AP-induced filopodia formation. NOS1AP knockdown reduced podocyte migration rate (PMR), which was rescued by overexpression of WT Nos1ap but not by constructs bearing patient variants. PMR in NOS1AP knockdown podocytes was also rescued by constitutively active CDC42Q61L or the formin DIAPH3 Modeling a NOS1AP patient variant in knock-in human kidney organoids revealed malformed glomeruli with increased apoptosis. Nos1apEx3-/Ex3- mice recapitulated the human phenotype, exhibiting proteinuria, foot process effacement, and glomerulosclerosis. These findings demonstrate that recessive NOS1AP variants impair CDC42/DIAPH-dependent actin remodeling, cause aberrant organoid glomerulogenesis, and lead to a glomerulopathy in humans and mice.
Collapse
Affiliation(s)
- Amar J Majmundar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Buerger
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas A Forbes
- Kidney Development, Disease and Regeneration Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Nephrology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Verena Klämbt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronen Schneider
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Konstantin Deutsch
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas M Kitzler
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara E Howden
- Kidney Development, Disease and Regeneration Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle Scurr
- Kidney Development, Disease and Regeneration Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ker Sin Tan
- Kidney Development, Disease and Regeneration Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Mickaël Krzeminski
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eugen Widmeier
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ethan Lai
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ihsan Ullah
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Amar
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy Kolb
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kaitlyn Eddy
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chin Heng Chen
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daanya Salmanullah
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rufeng Dai
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Makiko Nakayama
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabel Ottlewski
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline M Kolvenbach
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Onuchic-Whitford
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Youying Mao
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nina Mann
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marwa M Nabhan
- Department of Pediatrics, Center for Pediatric Nephrology and Transplantation, Kasr Al Ainy Medical School, Cairo University, Cairo, Egypt
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Neveen A Soliman
- Department of Pediatrics, Center for Pediatric Nephrology and Transplantation, Kasr Al Ainy Medical School, Cairo University, Cairo, Egypt
| | - Andreas Heilos
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa H Little
- Kidney Development, Disease and Regeneration Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Actin as a Target to Reduce Cell Invasiveness in Initial Stages of Metastasis. Ann Biomed Eng 2020; 49:1342-1352. [PMID: 33145677 DOI: 10.1007/s10439-020-02679-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
We demonstrate the relative roles of the cell cytoskeleton, and specific importance of actin in facilitating mechanical aspects of metastatic invasion. A crucial step in metastasis, the typically lethal spread of cancer to distant body-sites, is cell invasion through dense tissues composed of extracellular matrix and various non-cancerous cells. Cell invasion requires cell-cytoskeleton remodeling to facilitate dynamic morphological changes and force application. We have previously shown invasive cell subsets in heterogeneous samples can rapidly (2 h) and forcefully indent non-degradable, impenetrable, synthetic gels to cell-scale depths. The amounts of indenting cells and their attained depths provide the mechanical invasiveness of the sample, which as we have shown agrees with the in vitro metastatic potential and the in vivo metastatic risk in humans. To identify invasive force-application mechanisms, we evaluated changes in mechanical invasiveness following chemical perturbations targeting the structure and function of cytoskeleton elements and associated proteins. We evaluate effects on short-term (2-hr) indentations of single, well-spaced or closely situated cells as compared to long-time-scale Boyden chamber migration. We show that actomyosin inhibition may be used to reduce (mechanical) invasiveness of single or collectively invading cells, while actin-disruption may induce escape-response of treated single-cells, which may promote metastasis.
Collapse
|
31
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
32
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
33
|
Cangkrama M, Wietecha M, Mathis N, Okumura R, Ferrarese L, Al‐Nuaimi D, Antsiferova M, Dummer R, Innocenti M, Werner S. A paracrine activin A-mDia2 axis promotes squamous carcinogenesis via fibroblast reprogramming. EMBO Mol Med 2020; 12:e11466. [PMID: 32150356 PMCID: PMC7136968 DOI: 10.15252/emmm.201911466] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key regulators of tumorigenesis and promising targets for next-generation therapies. We discovered that cancer cell-derived activin A reprograms fibroblasts into pro-tumorigenic CAFs. Mechanistically, this occurs via Smad2-mediated transcriptional regulation of the formin mDia2, which directly promotes filopodia formation and cell migration. mDia2 also induces expression of CAF marker genes through prevention of p53 nuclear accumulation, resulting in the production of a pro-tumorigenic matrisome and secretome. The translational relevance of this finding is reflected by activin A overexpression in tumor cells and of mDia2 in the stroma of skin cancer and other malignancies and the correlation of high activin A/mDia2 levels with poor patient survival. Blockade of this signaling axis using inhibitors of activin, activin receptors, or mDia2 suppressed cancer cell malignancy and squamous carcinogenesis in 3D organotypic cultures, ex vivo, and in vivo, providing a rationale for pharmacological inhibition of activin A-mDia2 signaling in stratified cancer patients.
Collapse
Affiliation(s)
- Michael Cangkrama
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Mateusz Wietecha
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Nicolas Mathis
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Rin Okumura
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Luca Ferrarese
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Dunja Al‐Nuaimi
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Maria Antsiferova
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
- Present address:
Roche Glycart AGSchlierenSwitzerland
| | - Reinhard Dummer
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Metello Innocenti
- Heidelberg University Biochemistry Center (BZH)Heidelberg UniversityHeidelbergGermany
| | - Sabine Werner
- Department of BiologyInstitute of Molecular Health SciencesETH ZurichZurichSwitzerland
| |
Collapse
|
34
|
Green HLH, Zuidscherwoude M, Alenazy F, Smith CW, Bender M, Thomas SG. SMIFH2 inhibition of platelets demonstrates a critical role for formin proteins in platelet cytoskeletal dynamics. J Thromb Haemost 2020; 18:955-967. [PMID: 31930764 PMCID: PMC7186844 DOI: 10.1111/jth.14735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Reorganization of the actin cytoskeleton is required for proper functioning of platelets following activation in response to vascular damage. Formins are a family of proteins that regulate actin polymerization and cytoskeletal organization via a number of domains including the FH2 domain. However, the role of formins in platelet spreading has not been studied in detail. OBJECTIVES Several formin proteins are expressed in platelets so we used an inhibitor of FH2 domains (SMIFH2) to uncover the role of these proteins in platelet spreading and in maintenance of resting platelet shape. METHODS Washed human and mouse platelets were treated with various concentrations of SMIFH2 and the effects on platelet spreading, platelet size, platelet cytoskeletal dynamics, and organization were analyzed using fluorescence and electron microscopy. RESULTS Pretreatment with SMIFH2 completely blocks platelet spreading in both mouse and human platelets through effects on the organization and dynamics of actin and microtubules. However, platelet aggregation and secretion are unaffected. SMIFH2 also caused a decrease in resting platelet size and disrupted the balance of tubulin post-translational modification. CONCLUSIONS These data therefore demonstrated an important role for formin-mediated actin polymerization in platelet spreading and highlighted the importance of formins in cross-talk between the actin and tubulin cytoskeletons.
Collapse
Affiliation(s)
- Hannah L. H. Green
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Present address:
School of Cardiovascular Medicine & SciencesBHF Centre of Research ExcellenceKing's College LondonLondonUK
| | - Malou Zuidscherwoude
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamMidlandsUK
| | - Fawaz Alenazy
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
| | | | - Markus Bender
- Institute of Experimental Biomedicine – Chair IUniversity Hospital and Rudolf Virchow CenterWürzburgGermany
| | - Steven G. Thomas
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamMidlandsUK
| |
Collapse
|
35
|
Argenzio E, Innocenti M. The chloride intracellular channel protein CLIC4 inhibits filopodium formation induced by constitutively active mutants of formin mDia2. FEBS Lett 2020; 594:1750-1758. [PMID: 32145706 DOI: 10.1002/1873-3468.13766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 11/07/2022]
Abstract
Chloride intracellular channel 4 (CLIC4) functions in diverse actin-dependent processes. Upon Rho activation, CLIC4 reversibly translocates from the cytosol to the plasma membrane to regulate cell adhesion and migration. At the plasma membrane, CLIC4 counters the formation of filopodia, which requires actin assembly by the formin mammalian Diaphanous (mDia)2. To this end, mDia2 must be activated through conversion from the closed to the open conformation. Thus, CLIC4 could harness the activation or the open conformation of mDia2 to inhibit filopodium formation. Here, we find that CLIC4 silencing enhances the filopodia induced by two constitutively active mDia2 mutants. Furthermore, we report that CLIC4 binds the actin-regulatory region of mDia2 in vitro. These results suggest that CLIC4 modulates the activity of the open conformation of mDia2, shedding new light into how cells may control filopodia.
Collapse
Affiliation(s)
- Elisabetta Argenzio
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Metello Innocenti
- Heidelberg University Biochemistry Center (BZH), Heidelberg University, Germany
| |
Collapse
|
36
|
Ecke M, Prassler J, Tanribil P, Müller-Taubenberger A, Körber S, Faix J, Gerisch G. Formins specify membrane patterns generated by propagating actin waves. Mol Biol Cell 2020; 31:373-385. [PMID: 31940262 PMCID: PMC7183788 DOI: 10.1091/mbc.e19-08-0460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Circular actin waves separate two distinct areas on the substrate-attached cell surface from each other: an external area from an inner territory that is circumscribed by the wave. These areas differ in composition of actin-associated proteins and of phosphoinositides in the membrane. At the propagating wave, one area is converted into the other. By photo-conversion of Eos-actin and analysis of actin network structures we show that both in the inner territory and the external area the actin network is subject to continuous turnover. To address the question of whether areas in the wave pattern are specified by particular actin polymerizing machines, we locate five members of the formin family to specific regions of the wave landscape using TIRF microscopy and constitutively active formin constructs tagged with fluorescent protein. Formin ForB favors the actin wave and ForG the inner territory, whereas ForA, ForE, and ForH are more strongly recruited to the external area. Fluctuations of membrane binding peculiar to ForB indicate transient states in the specification of membrane domains before differentiation into ForB decorated and depleted ones. Annihilation of the patterns by 1 µM of the formin inhibitor SMIFH2 supports the implication of formins in their generation.
Collapse
Affiliation(s)
- Mary Ecke
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Munich, Germany
| | - Jana Prassler
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Munich, Germany
| | - Patrick Tanribil
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Munich, Germany
| | - Annette Müller-Taubenberger
- Department of Cell Biology (Anatomy III), Ludwig Maximilian University of Munich, D-82152 Planegg-Martinsried, Munich, Germany
| | - Sarah Körber
- Institute of Biophysical Chemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Jan Faix
- Institute of Biophysical Chemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Günther Gerisch
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Munich, Germany
| |
Collapse
|
37
|
Contractile myosin rings and cofilin-mediated actin disassembly orchestrate ECM nanotopography sensing. Biomaterials 2020; 232:119683. [PMID: 31927180 DOI: 10.1016/j.biomaterials.2019.119683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
The nanotopography and nanoscale geometry of the extra-cellular matrix (ECM) are important regulators of cell adhesion, motility and fate decision. However, unlike the sensing of matrix mechanics and ECM density, the molecular processes regulating the direct sensing of the ECM nanotopography and nanoscale geometry are not well understood. Here, we use nanotopographical patterns generated via electrospun nanofibre lithography (ENL) to investigate the mechanisms of nanotopography sensing by cells. We observe the dysregulation of actin dynamics, resulting in the surprising formation of actin foci. This alteration of actin organisation is regulated by myosin contractility but independent of adapter proteins such as vinculin. This process is highly dependent on differential integrin expression as β3 integrin expressing cells, more sensitive to nanopattern dimensions than β1 integrin expressing cells, also display increased perturbation of actin assembly and actin foci formation. We propose that, in β3 integrin expressing cells, contractility results in the destabilisation of nanopatterned actin networks, collapsing into foci and sequestering regulators of actin dynamics such as cofilin that orchestrate disassembly. Therefore, in contrast to the sensing of substrate mechanics and ECM ligand density, which are directly orchestrated by focal adhesion assembly, we propose that nanotopography sensing is regulated by a long-range sensing mechanism, remote from focal adhesions and mediated by the actin architecture.
Collapse
|
38
|
Mohan AS, Dean KM, Isogai T, Kasitinon SY, Murali VS, Roudot P, Groisman A, Reed DK, Welf ES, Han SJ, Noh J, Danuser G. Enhanced Dendritic Actin Network Formation in Extended Lamellipodia Drives Proliferation in Growth-Challenged Rac1 P29S Melanoma Cells. Dev Cell 2020; 49:444-460.e9. [PMID: 31063759 DOI: 10.1016/j.devcel.2019.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/21/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
Abstract
Actin assembly supplies the structural framework for cell morphology and migration. Beyond structure, this actin framework can also be engaged to drive biochemical signaling programs. Here, we describe how the hyperactivation of Rac1 via the P29S mutation (Rac1P29S) in melanoma hijacks branched actin network assembly to coordinate proliferative cues that facilitate metastasis and drug resistance. Upon growth challenge, Rac1P29S-harboring melanoma cells massively upregulate lamellipodia formation by dendritic actin polymerization. These extended lamellipodia form a signaling microdomain that sequesters and phospho-inactivates the tumor suppressor NF2/Merlin, driving Rac1P29S cell proliferation in growth suppressive conditions. These biochemically active lamellipodia require cell-substrate attachment but not focal adhesion assembly and drive proliferation independently of the ERK/MAPK pathway. These data suggest a critical link between cell morphology and cell signaling and reconcile the dichotomy of Rac1's regulation of both proliferation and actin assembly by revealing a mutual signaling axis wherein actin assembly drives proliferation in melanoma.
Collapse
Affiliation(s)
- Ashwathi S Mohan
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stacy Y Kasitinon
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vasanth S Murali
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex Groisman
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dana K Reed
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sangyoon J Han
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
39
|
Christensen JR, Craig EW, Glista MJ, Mueller DM, Li Y, Sees JA, Huang S, Suarez C, Mets LJ, Kovar DR, Avasthi P. Chlamydomonas reinhardtii formin FOR1 and profilin PRF1 are optimized for acute rapid actin filament assembly. Mol Biol Cell 2019; 30:3123-3135. [PMID: 31664873 PMCID: PMC6938247 DOI: 10.1091/mbc.e19-08-0463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
The regulated assembly of multiple filamentous actin (F-actin) networks from an actin monomer pool is important for a variety of cellular processes. Chlamydomonas reinhardtii is a unicellular green alga expressing a conventional and divergent actin that is an emerging system for investigating the complex regulation of actin polymerization. One actin network that contains exclusively conventional F-actin in Chlamydomonas is the fertilization tubule, a mating structure at the apical cell surface in gametes. In addition to two actin genes, Chlamydomonas expresses a profilin (PRF1) and four formin genes (FOR1-4), one of which (FOR1) we have characterized for the first time. We found that unlike typical profilins, PRF1 prevents unwanted actin assembly by strongly inhibiting both F-actin nucleation and barbed-end elongation at equimolar concentrations to actin. However, FOR1 stimulates the assembly of rapidly elongating actin filaments from PRF1-bound actin. Furthermore, for1 and prf1-1 mutants, as well as the small molecule formin inhibitor SMIFH2, prevent fertilization tubule formation in gametes, suggesting that polymerization of F-actin for fertilization tubule formation is a primary function of FOR1. Together, these findings indicate that FOR1 and PRF1 cooperate to selectively and rapidly assemble F-actin at the right time and place.
Collapse
Affiliation(s)
- Jenna R. Christensen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Evan W. Craig
- Department of Anatomy and Cell Biology , University of Kansas Medical Center, Kansas City, KS 66103
| | - Michael J. Glista
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - David M. Mueller
- Department of Anatomy and Cell Biology , University of Kansas Medical Center, Kansas City, KS 66103
| | - Yujie Li
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Jennifer A. Sees
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Shengping Huang
- Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS 66103
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Laurens J. Mets
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Prachee Avasthi
- Department of Anatomy and Cell Biology , University of Kansas Medical Center, Kansas City, KS 66103
- Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS 66103
| |
Collapse
|
40
|
Kita AM, Swider ZT, Erofeev I, Halloran MC, Goryachev AB, Bement WM. Spindle-F-actin interactions in mitotic spindles in an intact vertebrate epithelium. Mol Biol Cell 2019; 30:1645-1654. [PMID: 31091161 PMCID: PMC6727749 DOI: 10.1091/mbc.e19-02-0126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mitotic spindles are well known to be assembled from and dependent on microtubules. In contrast, whether actin filaments (F-actin) are required for or are even present in mitotic spindles has long been controversial. Here we have developed improved methods for simultaneously preserving F-actin and microtubules in fixed samples and exploited them to demonstrate that F-actin is indeed associated with mitotic spindles in intact Xenopus laevis embryonic epithelia. We also find that there is an “F-actin cycle,” in which the distribution and organization of spindle F-actin changes over the course of the cell cycle. Live imaging using a probe for F-actin reveals that at least two pools of F-actin are associated with mitotic spindles: a relatively stable internal network of cables that moves in concert with and appears to be linked to spindles, and F-actin “fingers” that rapidly extend from the cell cortex toward the spindle and make transient contact with the spindle poles. We conclude that there is a robust endoplasmic F-actin network in normal vertebrate epithelial cells and that this network is also a component of mitotic spindles. More broadly, we conclude that there is far more internal F-actin in epithelial cells than is commonly believed.
Collapse
Affiliation(s)
- Angela M Kita
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Zachary T Swider
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ivan Erofeev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53706
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - William M Bement
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
41
|
Targeting the mDia Formin-Assembled Cytoskeleton Is an Effective Anti-Invasion Strategy in Adult High-Grade Glioma Patient-Derived Neurospheres. Cancers (Basel) 2019; 11:cancers11030392. [PMID: 30897774 PMCID: PMC6468841 DOI: 10.3390/cancers11030392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/04/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
High-grade glioma (HGG, WHO Grade III–IV) accounts for the majority of adult primary malignant brain tumors. Failure of current therapies to target invasive glioma cells partly explains the minimal survival advantages: invasive tumors lack easily-defined surgical margins, and are inherently more chemo- and radioresistant. Much work centers upon Rho GTPase-mediated glioma invasion, yet downstream Rho effector roles are poorly understood and represent potential therapeutic targets. The roles for the mammalian Diaphanous (mDia)-related formin family of Rho effectors have emerged in invasive/metastatic disease. mDias assemble linear F-actin to promote protrusive cytoskeletal structures underlying tumor cell invasion. Small molecule mDia intramimic (IMM) agonists induced mDia functional activities including F-actin polymerization. mDia agonism inhibited polarized migration in Glioblastoma (WHO Grade IV) cells in three-dimensional (3D) in vitro and rat brain slice models. Here, we evaluate whether clinically-relevant high-grade glioma patient-derived neuro-sphere invasion is sensitive to formin agonism. Surgical HGG samples were dissociated, briefly grown as monolayers, and spontaneously formed non-adherent neuro-spheres. IMM treatment dramatically inhibited HGG patient neuro-sphere invasion, both at neuro-sphere embedding and mid-invasion assay, inducing an amoeboid morphology in neuro-sphere edge cells, while inhibiting actin- and tubulin-enriched tumor microtube formation. Thus, mDia agonism effectively disrupts multiple aspects of patient-derived HGG neuro-sphere invasion.
Collapse
|
42
|
Isogai T, Danuser G. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0110. [PMID: 29632262 DOI: 10.1098/rstb.2017.0110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 01/06/2023] Open
Abstract
Cell migration is driven by propulsive forces derived from polymerizing actin that pushes and extends the plasma membrane. The underlying actin network is constantly undergoing adaptation to new mechano-chemical environments and intracellular conditions. As such, mechanisms that regulate actin dynamics inherently contain multiple feedback loops and redundant pathways. Given the highly adaptable nature of such a system, studies that use only perturbation experiments (e.g. knockdowns, overexpression, pharmacological activation/inhibition, etc.) are challenged by the nonlinearity and redundancy of the pathway. In these pathway configurations, perturbation experiments at best describe the function(s) of a molecular component in an adapting (e.g. acutely drug-treated) or fully adapted (e.g. permanent gene silenced) cell system, where the targeted component now resides in a non-native equilibrium. Here, we propose how quantitative live-cell imaging and analysis of constitutive fluctuations of molecular activities can overcome these limitations. We highlight emerging actin filament barbed-end biology as a prime example of a complex, nonlinear molecular process that requires a fluctuation analytic approach, especially in an unperturbed cellular system, to decipher functional interactions of barbed-end regulators, actin polymerization and membrane protrusion.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Tadamoto Isogai
- Department of Cell Biology, Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
43
|
Abstract
Formin homology proteins (formins) are a highly conserved family of cytoskeletal remodeling proteins that are involved in a diverse array of cellular functions. Formins are best known for their ability to regulate actin dynamics, but the same functional domains also govern stability and organization of microtubules. It is thought that this dual activity allows them to coordinate the activity of these two major cytoskeletal networks and thereby influence cellular architecture. Golgi ribbon assembly is dependent upon cooperative interactions between actin filaments and cytoplasmic microtubules originating both at the Golgi itself and from the centrosome. Similarly, centrosome assembly, centriole duplication, and centrosome positioning are also reliant on a dialogue between both cytoskeletal networks. As presented in this chapter, a growing body of evidence suggests that multiple formin proteins play essential roles in these central cellular processes.
Collapse
Affiliation(s)
- John Copeland
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
44
|
Argenzio E, Klarenbeek J, Kedziora KM, Nahidiazar L, Isogai T, Perrakis A, Jalink K, Moolenaar WH, Innocenti M. Profilin binding couples chloride intracellular channel protein CLIC4 to RhoA-mDia2 signaling and filopodium formation. J Biol Chem 2018; 293:19161-19176. [PMID: 30381396 PMCID: PMC6302171 DOI: 10.1074/jbc.ra118.002779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a cytosolic protein implicated in diverse actin-based processes, including integrin trafficking, cell adhesion, and tubulogenesis. CLIC4 is rapidly recruited to the plasma membrane by RhoA-activating agonists and then partly colocalizes with β1 integrins. Agonist-induced CLIC4 translocation depends on actin polymerization and requires conserved residues that make up a putative binding groove. However, the mechanism and significance of CLIC4 trafficking have been elusive. Here, we show that RhoA activation by either lysophosphatidic acid (LPA) or epidermal growth factor is necessary and sufficient for CLIC4 translocation to the plasma membrane and involves regulation by the RhoA effector mDia2, a driver of actin polymerization and filopodium formation. We found that CLIC4 binds the G-actin–binding protein profilin-1 via the same residues that are required for CLIC4 trafficking. Consistently, shRNA-induced profilin-1 silencing impaired agonist-induced CLIC4 trafficking and the formation of mDia2-dependent filopodia. Conversely, CLIC4 knockdown increased filopodium formation in an integrin-dependent manner, a phenotype rescued by wild-type CLIC4 but not by the trafficking-incompetent mutant CLIC4(C35A). Furthermore, CLIC4 accelerated LPA-induced filopodium retraction. We conclude that through profilin-1 binding, CLIC4 functions in a RhoA–mDia2–regulated signaling network to integrate cortical actin assembly and membrane protrusion. We propose that agonist-induced CLIC4 translocation provides a feedback mechanism that counteracts formin-driven filopodium formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Anastassis Perrakis
- Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
45
|
Pfanzelter J, Mostowy S, Way M. Septins suppress the release of vaccinia virus from infected cells. J Cell Biol 2018; 217:2911-2929. [PMID: 29921601 PMCID: PMC6080921 DOI: 10.1083/jcb.201708091] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 04/08/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Septins are conserved components of the cytoskeleton that play important roles in many fundamental cellular processes including division, migration, and membrane trafficking. Septins can also inhibit bacterial infection by forming cage-like structures around pathogens such as Shigella We found that septins are recruited to vaccinia virus immediately after its fusion with the plasma membrane during viral egress. RNA interference-mediated depletion of septins increases virus release and cell-to-cell spread, as well as actin tail formation. Live cell imaging reveals that septins are displaced from the virus when it induces actin polymerization. Septin loss, however, depends on the recruitment of the SH2/SH3 adaptor Nck, but not the activity of the Arp2/3 complex. Moreover, it is the recruitment of dynamin by the third Nck SH3 domain that displaces septins from the virus in a formin-dependent fashion. Our study demonstrates that septins suppress vaccinia release by "entrapping" the virus at the plasma membrane. This antiviral effect is overcome by dynamin together with formin-mediated actin polymerization.
Collapse
Affiliation(s)
- Julia Pfanzelter
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, England, UK
| | - Serge Mostowy
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, England, UK,Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, England, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, England, UK
| |
Collapse
|
46
|
Innocenti M. New insights into the formation and the function of lamellipodia and ruffles in mesenchymal cell migration. Cell Adh Migr 2018. [PMID: 29513145 DOI: 10.1080/19336918.2018.1448352] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lamellipodia and ruffles are veil-shaped cell protrusions composed of a highly branched actin filament meshwork assembled by the Arp2/3 complex. These structures not only hallmark the leading edge of cells adopting the adhesion-based mesenchymal mode of migration but are also thought to drive cell movement. Although regarded as textbook knowledge, the mechanism of formation of lamellipodia and ruffles has been revisited in the last years leveraging new technologies. Furthermore, recent observations have also challenged our current view of the function of lamellipodia and ruffles in mesenchymal cell migration. Here, I review this literature and compare it with older studies to highlight the controversies and the outstanding open issues in the field. Moreover, I outline simple and plausible explanations to reconcile conflicting results and conclusions. Finally, I integrate the mechanisms regulating actin-based protrusion in a unifying model that accounts for random and ballistic mesenchymal cell migration.
Collapse
Affiliation(s)
- Metello Innocenti
- a Division of Molecular Genetics, The Netherlands Cancer Institute , Plesmanlaan 121, Amsterdam , CX , The Netherlands
| |
Collapse
|
47
|
LeCorgne H, Tudosie AM, Lavik K, Su R, Becker KN, Moore S, Walia Y, Wisner A, Koehler D, Alberts AS, Williams FE, Eisenmann KM. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish. Front Pharmacol 2018; 9:340. [PMID: 29692731 PMCID: PMC5902741 DOI: 10.3389/fphar.2018.00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5–10 μM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10–20 and 50 μM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach.
Collapse
Affiliation(s)
- Hunter LeCorgne
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Andrew M Tudosie
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Kari Lavik
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Robin Su
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Kathryn N Becker
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Sara Moore
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Yashna Walia
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| | - Alexander Wisner
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Daniel Koehler
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Arthur S Alberts
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, University of Toledo Health Science, Toledo, OH, United States
| | - Kathryn M Eisenmann
- Department of Cancer Biology, University of Toledo Health Science, Toledo, OH, United States
| |
Collapse
|
48
|
Dvorak KM, Pettee KM, Rubinic-Minotti K, Su R, Nestor-Kalinoski A, Eisenmann KM. Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2). PLoS One 2018; 13:e0195278. [PMID: 29596520 PMCID: PMC5875872 DOI: 10.1371/journal.pone.0195278] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) promotes tumor cell invasion and metastasis. An important step in the shift to a pro-cancerous microenvironment is the transformation of normal stromal fibroblasts to carcinoma-associated fibroblasts (CAFs). CAFs are present in a majority of solid tumors and can directly promote tumor cell motility via cytokine, chemokine and growth factor secretion into the TME. The exact effects that the TME has upon cytoskeletal regulation in motile tumor cells remain enigmatic. The conserved formin family of cytoskeleton regulating proteins plays an essential role in the assembly and/or bundling of unbranched actin filaments. Mammalian Diaphanous-related formin 2 (mDia2/DIAPH3/Drf3/Dia) assembles a dynamic F-actin cytoskeleton that underlies tumor cell migration and invasion. We therefore sought to understand whether CAF-derived chemokines impact breast tumor cell motility through modification of the formin-assembled F-actin cytoskeleton. In MDA-MB-231 cells, conditioned media (CM) from WS19T CAFs, a human breast tumor-adjacent CAF line, significantly and robustly increased wound closure and invasion relative to normal human mammary fibroblast (HMF)-CM. WS19T-CM also promoted proteasome-mediated mDia2 degradation in MDA-MB-231 cells relative to control HMF-CM and WS21T CAF-CM, a breast CAF cell line that failed to promote robust MDA-MB-231 migration. Cytokine array analysis of CM identified up-regulated secreted factors in WS19T relative to control WS21T CM. We identified CXCL12 as a CM factor influencing loss of mDia2 protein while increasing MDA-MB-231 cell migration. Our data suggest a mechanism whereby CAFs promote tumor cell migration and invasion through CXCL12 secretion to regulate the mDia2-directed cytoskeleton in breast tumor cells.
Collapse
Affiliation(s)
- Kaitlyn M. Dvorak
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Krista M. Pettee
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Kaitlin Rubinic-Minotti
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Robin Su
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Andrea Nestor-Kalinoski
- Department of Surgery, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
| | - Kathryn M. Eisenmann
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
49
|
van der Kammen R, Song JY, de Rink I, Janssen H, Madonna S, Scarponi C, Albanesi C, Brugman W, Innocenti M. Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Development 2017; 144:4588-4603. [PMID: 29113991 DOI: 10.1242/dev.156323] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022]
Abstract
The Arp2/3 complex assembles branched actin filaments, which are key to many cellular processes, but its organismal roles remain poorly understood. Here, we employed conditional Arpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis. We found that depletion of the Arp2/3 complex by knockout of Arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of Arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2 target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistent with this, we revealed that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocyte shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis.
Collapse
Affiliation(s)
- Rob van der Kammen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Hans Janssen
- Division of Cell Biology II, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Fondazione Luigi Maria Monti - Istituto Dermopatico dell'Immacolata (IDI) - IRCCS, 00167 Rome, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology, Fondazione Luigi Maria Monti - Istituto Dermopatico dell'Immacolata (IDI) - IRCCS, 00167 Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, Fondazione Luigi Maria Monti - Istituto Dermopatico dell'Immacolata (IDI) - IRCCS, 00167 Rome, Italy
| | - Wim Brugman
- Genomics Core Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Metello Innocenti
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
50
|
New nuclear and perinuclear functions of formins. Biochem Soc Trans 2017; 44:1701-1708. [PMID: 27913680 DOI: 10.1042/bst20160187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022]
Abstract
Formin family proteins (formins) represent an evolutionary conserved protein family encoded in the genome of a wide range of eukaryotes. Formins are hallmarked by a formin homology 1 (FH1) domain juxtaposed to an FH2 domain whereby they control actin and microtubule dynamics. Not surprisingly, formins are best known as key regulators of the cytoskeleton in a variety of morphogenetic processes. However, mounting evidence implicates several formins in the assembly and organization of actin within and around the nucleus. In addition, actin-independent roles for formins have recently been discovered. In this mini-review, we summarize these findings and highlight the novel nuclear and perinulcear functions of formins. In light of the emerging new biology of formins, we also discuss the fundamental principles governing the versatile activity and multimodal regulation of these proteins.
Collapse
|