1
|
Fontani V, Rinaldi A, Rinaldi S. Neuroregenerative Effects of Radio Electric Asymmetric Conveyer (REAC) Neuroregenerative (RGN-N) Therapy in Pediatric Adrenoleukodystrophy: A Case Report. Cureus 2024; 16:e74197. [PMID: 39583596 PMCID: PMC11585377 DOI: 10.7759/cureus.74197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 11/26/2024] Open
Abstract
This case report presents the use of radio electric asymmetric conveyer (REAC) neuroregenerative (RGN-N) therapy in a pediatric patient with adrenoleukodystrophy (ALD), a progressive neurodegenerative disorder with limited therapeutic options. The patient underwent three REAC RGN-N treatment cycles, each lasting 72 hours, with approximately 6-7 hours of daily sessions. An asymmetric conveyor probe (ACP) was positioned along the spine to channel the interaction of the emitted radio electric field with cellular electro-metabolic alterations, promoting progressive bioelectrical restoration. The treatment parameters were pre-set on the REAC device (BENE 110, ASMED, Scandicci, Italy) and could not be altered by the operator, ensuring consistent therapeutic delivery. Significant functional improvements were observed across the motor, cognitive, and swallowing domains, as assessed by standardized scales. This report aligns with preclinical studies on REAC technology's potential for neuroregeneration and suggests REAC RGN-N therapy as a promising adjunctive intervention in ALD management.
Collapse
Affiliation(s)
- Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, ITA
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, ITA
- Research Department, Rinaldi Fontani Foundation, Florence, ITA
| | - Arianna Rinaldi
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, ITA
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, ITA
- Research Department, Rinaldi Fontani Foundation, Florence, ITA
| | - Salvatore Rinaldi
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, ITA
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, ITA
- Research Department, Rinaldi Fontani Foundation, Florence, ITA
| |
Collapse
|
2
|
Katoli Z, Navaei-Nigjeh M, Mirzababaei S, Sabahi H, Baeeri M, Akrami M, Roshanbinfar K, Engel FB, Abdollahi M. Incorporation of montmorillonite into microfluidics-generated chitosan microfibers enhances neuron-like PC12 cells for application in neural tissue engineering. Carbohydr Polym 2024; 342:122272. [PMID: 39048184 DOI: 10.1016/j.carbpol.2024.122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 07/27/2024]
Abstract
The complexity in structure and function of the nervous system, as well as its slow rate of regeneration, makes it more difficult to treat it compared to other tissues. Neural tissue engineering aims to create an appropriate environment for nerve cell proliferation and differentiation. Fibrous scaffolds with suitable morphology and topography and better mimicry of the extracellular matrix have been promising for the alignment and migration of neural cells. On this premise, to improve the properties of the scaffold, we combined montmorillonite (MMT) with chitosan (CS) polymer and created microfibers with variable diameters and varied concentrations of MMT using microfluidic technology and tested its suitability for the rat pheochromocytoma cell line (PC12). According to the findings, CS/MMT 0.1 % compared to CS/MMT 0 % microfibers showed a 201 MPa increase in Young's modulus, a 68 mS/m increase in conductivity, and a 1.4-fold increase in output voltage. Analysis of cell mitochondrial activity verified the non-toxicity, resulting in good cell morphology with orientation along the microfiber. Overall, the results of this project showed that with a low concentration of MMT, the properties of microfibers can be significantly improved and a suitable scaffold can be designed for neural tissue engineering.
Collapse
Affiliation(s)
- Zahra Katoli
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Soheyl Mirzababaei
- Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Sabahi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Institute of Biomaterials, University of Tehran, Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Tominami K, Kudo TA, Noguchi T, Hayashi Y, Luo YR, Tanaka T, Matsushita A, Izumi S, Sato H, Gengyo-Ando K, Matsuzawa A, Hong G, Nakai J. Physical Stimulation Methods Developed for In Vitro Neuronal Differentiation Studies of PC12 Cells: A Comprehensive Review. Int J Mol Sci 2024; 25:772. [PMID: 38255846 PMCID: PMC10815383 DOI: 10.3390/ijms25020772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
PC12 cells, which are derived from rat adrenal pheochromocytoma cells, are widely used for the study of neuronal differentiation. NGF induces neuronal differentiation in PC12 cells by activating intracellular pathways via the TrkA receptor, which results in elongated neurites and neuron-like characteristics. Moreover, the differentiation requires both the ERK1/2 and p38 MAPK pathways. In addition to NGF, BMPs can also induce neuronal differentiation in PC12 cells. BMPs are part of the TGF-β cytokine superfamily and activate signaling pathways such as p38 MAPK and Smad. However, the brief lifespan of NGF and BMPs may limit their effectiveness in living organisms. Although PC12 cells are used to study the effects of various physical stimuli on neuronal differentiation, the development of new methods and an understanding of the molecular mechanisms are ongoing. In this comprehensive review, we discuss the induction of neuronal differentiation in PC12 cells without relying on NGF, which is already established for electrical, electromagnetic, and thermal stimulation but poses a challenge for mechanical, ultrasound, and light stimulation. Furthermore, the mechanisms underlying neuronal differentiation induced by physical stimuli remain largely unknown. Elucidating these mechanisms holds promise for developing new methods for neural regeneration and advancing neuroregenerative medical technologies using neural stem cells.
Collapse
Affiliation(s)
- Kanako Tominami
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Tada-aki Kudo
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - You-Ran Luo
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Takakuni Tanaka
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Ayumu Matsushita
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoshi Izumi
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hajime Sato
- Division of Pharmacology, Meikai University School of Dentistry, Sakado 350-0283, Japan
| | - Keiko Gengyo-Ando
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Guang Hong
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
4
|
Fontani V, Cruciani S, Santaniello S, Rinaldi S, Maioli M. Impact of REAC Regenerative Endogenous Bioelectrical Cell Reprogramming on MCF7 Breast Cancer Cells. J Pers Med 2023; 13:1019. [PMID: 37374009 DOI: 10.3390/jpm13061019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Human breast adenocarcinoma is a form of cancer which has the tendency to metastasize to other tissues, including bones, lungs, brain, and liver. Several chemotherapeutic drugs are used to treat breast tumors. Their combination is used to simultaneously target different mechanisms involved in cell replication. Radio electric asymmetric conveyer (REAC) technology is an innovative technology, used both in vitro and in vivo, to induce cell reprogramming and counteract senescence processes. Within this context, we treated MCF-7 cells with a regenerative (RGN) REAC treatment for a period ranging between 3 and 7 days. We then analyzed cell viability by trypan blue assays and gene and protein expression by real time-qPCR and confocal microscope, respectively. We also detected the levels of the main proteins involved in tumor progression, DKK1 and SFRP1, by ELISA and cell senescence by β-galactosidase tests. Our results showed the ability of REAC RGN to counteract MCF-7 proliferation, probably inducing autophagy via the upregulation of Beclin-1 and LC3-I, and the modulation of specific tumorigenic biomarkers, such as DKK1 and SPFR1. Our results could suggest the application of the REAC RGN in future in vivo experiments, as an aid for the therapeutic strategies usually applied for breast cancer treatment.
Collapse
Affiliation(s)
- Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, 50144 Florence, Italy
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Sara Cruciani
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Santaniello
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Salvatore Rinaldi
- Department of Regenerative Medicine, Rinaldi Fontani Institute, 50144 Florence, Italy
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Margherita Maioli
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
5
|
Machado VG, Brun ABS, Manffra EF. Effects of the radio electric asymmetric conveyer (REAC) on motor disorders: An integrative review. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1122245. [PMID: 36923595 PMCID: PMC10009233 DOI: 10.3389/fmedt.2023.1122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction The radio electric asymmetric conveyer (REAC) is a technology that has the purpose of restoring the cellular polarity triggering the rebalancing of the endogenous bioelectric field, which considering the neurological dysfunctions, affects the neural communication mechanisms. The studies published so far show that the REAC neuromodulation technology has positive effects in treating these dysfunctions, with the principles of endogenous bioelectricity as a basis to achieve these effects. Objectives This study aims to review the literature that explored the effects of REAC protocols on motor control and to identify which mechanisms would be involved. Materials and methods This integrative review considered studies that used REAC as a therapeutic intervention directed at human motor control and experimental research with animals that applied REAC to obtain effects related to motor behavior. Results Ten articles were included, eight clinical and two experimental studies. The clinical studies used the neuro postural optimization (NPO) protocol in 473 patients, of which 53 were healthy subjects, 91 were Alzheimer's disease patients, 128 were patients with atypical swallowing, 12 subjects with neurological diseases, and 189 were without the specification of disease. The experimental studies used the antalgic neuromodulation and neurodegeneration protocols in animal models. Conclusion The information integrated in this review made it possible to consider REAC technology a promising resource for treating motor control dysfunctions. It is possible to infer that the technology promotes functional optimization of neuronal circuits that may be related to more efficient strategies to perform motor tasks.
Collapse
Affiliation(s)
- Vinícius Gomes Machado
- Health Technology Graduate Program, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
6
|
Maioli M, Rinaldi S, Cruciani S, Necas A, Fontani V, Corda G, Santaniello S, Rinaldi A, Pinheiro Barcessat AR, Necasova A, Castagna A, Filipejova Z, Ventura C, Fozza C. Antisenescence Effect of REAC Biomodulation to Counteract the Evolution of Myelodysplastic Syndrome. Physiol Res 2022. [PMID: 35899943 DOI: 10.33549/physiolres.934903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
About 30 percent of patients diagnosed with myelodysplastic syndromes (MDS) progress to acute myeloid leukemia (AML). The senescence of bone marrow‐derived mesenchymal stem cells (BMSCs) seems to be one of the determining factors in inducing this drift. Research is continuously looking for new methodologies and technologies that can use bioelectric signals to act on senescence and cell differentiation towards the phenotype of interest. The Radio Electric Asymmetric Conveyer (REAC) technology, aimed at reorganizing the endogenous bioelectric activity, has already shown to be able to determine direct cell reprogramming effects and counteract the senescence mechanisms in stem cells. Aim of the present study was to prove if the anti-senescence results previously obtained in different kind of stem cells with the REAC Tissue optimization – regenerative (TO-RGN) treatment, could also be observed in BMSCs, evaluating cell viability, telomerase activity, p19ARF, P21, P53, and hTERT gene expression. The results show that the REAC TO-RGN treatment may be a useful tool to counteract the BMSCs senescence which can be the basis of AML drift. Nevertheless, further clinical studies on humans are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- M Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari (SS) Italy. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rinaldi S, Rinaldi C, Fontani V. Regenerative Radio Electric Asymmetric Conveyer Treatment in Generalized Cerebral and Cerebellar Atrophy to Improve Motor Control: A Case Report. Cureus 2022; 14:e28245. [PMID: 36039125 PMCID: PMC9396963 DOI: 10.7759/cureus.28245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
This report presents a case with a diagnosis rarely described in the literature, that is generalized cerebral-cerebellar atrophy. The patient showed a rapid decline with general cognitive deterioration, memory loss, temporal and spatial disorientation, and ataxic manifestations in voluntary movements. The loss of neurons and synaptic connections can be explained by an alteration of the correct endogenous bioelectrical activity (EBA), the phenomenon which allows all the processes of cellular life, such as differentiation, proliferation, migration, morphogenesis, apoptosis, and neurotransmission. The patient was treated with a specific regenerative neurobiological stimulation treatment applied with the radio electric asymmetric conveyer (REAC) technology, which was designed to recover the correct EBA. The tissue optimization regenerative (TO RGN) treatments used in this case report have already demonstrated the ability to induce neuroregenerative processes. At the follow-up, the patient showed a reduction in ataxia both in walking and running. This case report allows us to learn that the manipulation of the EBA can induce improvements even in clinical cases in which the scientific literature leaves no room for improvement.
Collapse
Affiliation(s)
- Salvatore Rinaldi
- Department of Research, Rinaldi Fontani Foundation, Florence, ITA
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, ITA
| | - Chiara Rinaldi
- Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Florence, ITA
| | - Vania Fontani
- Department of Research, Rinaldi Fontani Foundation, Florence, ITA
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, ITA
| |
Collapse
|
8
|
Fontani V, Coelho Pereira JA, Rinaldi S. Radio Electric Asymmetric Conveyer Tissue Reparative Treatment on Post-surgical Breast Skin Necrosis. A Report of Four Cases. Cureus 2022; 14:e25666. [PMID: 35677738 PMCID: PMC9167639 DOI: 10.7759/cureus.25666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2022] [Indexed: 12/15/2022] Open
Abstract
Breast surgical treatments for both tumors and aesthetic reasons are very frequent. The nipple-areola complex (NAC) ischemia is a possible complication after breast surgery. This lesion can be devastating for the patient in the post-surgical course and can lead to final epidermolysis. The necrosis is generally attributed to vascular compromise or excessive tension of the flaps. Actually, the phenomena that prevent spontaneous repair are due to variations in the endogenous electrical potential at the cellular level. In damaged tissues, the electric potential difference across the epithelium is often profoundly altered. In this manuscript, we are presenting four cases of NAC necrosis that were successfully treated with reparative tissue optimization (TO-RPR) treatment of the Radio Electric Asymmetric Conveyer (REAC) technology. REAC technology was conceived to overcome the limits of exogenous electrical stimulations. Instead of administering an electrical stimulus that imposes itself on the endogenous bioelectric activity (EBA), the REAC technology restores the correct potential difference inside the tissues, which is essential for all reparative and regenerative processes. The REAC treatment applied was able to promote a fast-healing process of the necrosis of the NAC following surgery of the breast.
Collapse
|
9
|
Castagna A, Fontani V, Rinaldi S. Radio Electric Asymmetric Conveyer Reparative Effects on Muscle Injuries: A Report of Two Cases. Cureus 2022; 14:e24904. [PMID: 35572458 PMCID: PMC9093253 DOI: 10.7759/cureus.24904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/11/2022] Open
Abstract
Cells and tissues work like batteries, positively charged by potassium ions and negatively charged by chloride ions. The difference in potential gradient generates an ionic flux, and this, in turn, generates a current that develops endogenous bioelectric fields (EBFs), which are fundamental for all cellular life processes, including reparative phenomena. In damaged tissues, the ionic flow is altered and, consequently, the production of EBFs is altered. This determines an alteration of the reparative processes. In previous studies, the reparative and regenerative treatments of radio electric asymmetric conveyer (REAC) technology have been shown to favor and accelerate the reparative processes of injured tissues, inducing the recovery of ionic flows and EBFs. The purpose of this report is to illustrate the clinical efficacy of REAC treatments for reparative tissue optimization on muscle injuries, even in those with a severity of third degree.
Collapse
Affiliation(s)
- Alessandro Castagna
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, ITA
| | - Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, ITA
| | - Salvatore Rinaldi
- Department of Research, Rinaldi Fontani Foundation, Florence, ITA.,Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, ITA
| |
Collapse
|
10
|
Tassinari R, Cavallini C, Olivi E, Facchin F, Taglioli V, Zannini C, Marcuzzi M, Ventura C. Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code. Int J Mol Sci 2022; 23:ijms23063157. [PMID: 35328576 PMCID: PMC8949133 DOI: 10.3390/ijms23063157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
We discuss emerging views on the complexity of signals controlling the onset of biological shapes and functions, from the nanoarchitectonics arising from supramolecular interactions, to the cellular/multicellular tissue level, and up to the unfolding of complex anatomy. We highlight the fundamental role of physical forces in cellular decisions, stressing the intriguing similarities in early morphogenesis, tissue regeneration, and oncogenic drift. Compelling evidence is presented, showing that biological patterns are strongly embedded in the vibrational nature of the physical energies that permeate the entire universe. We describe biological dynamics as informational processes at which physics and chemistry converge, with nanomechanical motions, and electromagnetic waves, including light, forming an ensemble of vibrations, acting as a sort of control software for molecular patterning. Biomolecular recognition is approached within the establishment of coherent synchronizations among signaling players, whose physical nature can be equated to oscillators tending to the coherent synchronization of their vibrational modes. Cytoskeletal elements are now emerging as senders and receivers of physical signals, "shaping" biological identity from the cellular to the tissue/organ levels. We finally discuss the perspective of exploiting the diffusive features of physical energies to afford in situ stem/somatic cell reprogramming, and tissue regeneration, without stem cell transplantation.
Collapse
Affiliation(s)
- Riccardo Tassinari
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Claudia Cavallini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Elena Olivi
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Valentina Taglioli
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Chiara Zannini
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
| | - Martina Marcuzzi
- INBB, Biostructures and Biosystems National Institute, Viale Medaglie d’Oro 305, 00136 Rome, Italy;
| | - Carlo Ventura
- ELDOR LAB, National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Via Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (E.O.); (V.T.); (C.Z.)
- Correspondence: ; Tel.: +39-347-920-6992
| |
Collapse
|
11
|
Tassinari R, Cavallini C, Olivi E, Taglioli V, Zannini C, Ventura C. Unveiling the morphogenetic code: A new path at the intersection of physical energies and chemical signaling. World J Stem Cells 2021; 13:1382-1393. [PMID: 34786150 PMCID: PMC8567452 DOI: 10.4252/wjsc.v13.i10.1382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/16/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
In this editorial, we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells. In particular, we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways. To this end, the narrative starts from the dawn of the first studies on animal electricity, reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements. We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis, regeneration, or even malignant transformation. We conclude that there is now mounting evidence for the existence of a Morphogenetic Code, and that deciphering this code may lead to unprecedented opportunities for the development of novel paradigms of cure in regenerative and precision medicine.
Collapse
Affiliation(s)
- Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| |
Collapse
|
12
|
Wang ZJ, Yasuhara T. An Examination of Mobile Spinal Cord Stimulators on Treating Parkinson Disease. Brain Circ 2021; 7:8-12. [PMID: 34084970 PMCID: PMC8057101 DOI: 10.4103/bc.bc_6_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/24/2022] Open
Abstract
In animal models of Parkinson disease (PD), spinal cord stimulation (SCS) exhibits neuroprotective effects. Recent advancements in SCS technology, most importantly mobile stimulators, allow for the conventional limitations of SCS such as limited stimulation time and restricted animal movements to be bypassed, offering potential avenues for improved clinical translation to PD patients. Small devices that could deliver continuous SCS to freely moving parkinsonian rats were shown to significantly improve behavior, preserve neurons and fibers in the substantia Nigra/striatum, reduce microglia infiltration, and increase laminin-positive area of the cerebral cortex. Through possible anti-inflammatory and angiogenic mechanisms, it has been demonstrated that there are behavioral and histological benefits to continuous SCS in a time-dependent manner. This review will discuss the benefits of this technology as well as focus on the limitations of current animal models.
Collapse
Affiliation(s)
- Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
Elio C, Fontani V, Rinaldi S, Gasbarro V. REAC-induced endogenous bioelectric currents in the treatment of venous ulcers: a three-arm randomized controlled prospective study. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2020. [DOI: 10.15570/actaapa.2020.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Cruciani S, Garroni G, Ventura C, Danani A, Nečas A, Maioli M. Stem cells and physical energies: can we really drive stem cell fate? Physiol Res 2020; 68:S375-S384. [PMID: 32118467 DOI: 10.33549/physiolres.934388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adult stem cells are undifferentiated elements able to self-renew or differentiate to maintain tissue integrity. Within this context, stem cells are able to divide in a symmetric fashion, feature characterising all the somatic cells, or in an asymmetric way, which leads daughter cells to different fates. It is worth highlighting that cell polarity have a critical role in regulating stem cell asymmetric division and the proper control of cell division depends on different proteins involved in cell development, differentiation and maintenance of tissue homeostasis. Moreover, the interaction between cells and the extracellular matrix are crucial in influencing cell behavior, included in terms of mechanical properties as cytoskeleton plasticity and remodelling, and membrane tension. Finally, the activation of specific transcriptional program and epigenetic modifications contributes to cell fate determination, through modulation of cellular signalling cascades. It is well known that physical and mechanical stimuli are able to influence biological systems, and in this context, the effects of electromagnetic fields (EMFs) have already shown a considerable role, even though there is a lack of knowledge and much remains to be done around this topic. In this review, we summarize the historical background of EMFs applications and the main molecular mechanism involved in cellular remodelling, with particular attention to cytoskeleton elasticity and cell polarity, required for driving stem cell behavior.
Collapse
Affiliation(s)
- S Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Barcessat ARP, Bittencourt MN, Pereira JAC, Castagna A, Fontani V, Rinaldi S. REAC neurobiological treatments in acute post-traumatic knee medial collateral ligament lesion. Heliyon 2020; 6:e04539. [PMID: 32743108 PMCID: PMC7385461 DOI: 10.1016/j.heliyon.2020.e04539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 11/15/2022] Open
Abstract
Objective Physical traumas can lead to unconscious neuropsychical alterations, which can compromise rehabilitation result and functional recovery. Aim of this interventional study is to verify if neurobiological Radio Electric Asymmetric Conveyer (REAC) treatments Neuro Postural Optimization (NPO) and Tissue Optimization (TO) are able respectively to improve neuro psychomotor strategies and facilitate recovery process in medial collateral ligaments (MCL) lesions of the knee. Patients and methods 45 healthy subjects, 32 males and 13 females, with knee MCL lesion, diagnosed with MRI or ultrasound. Within 4 days after the trauma, subjects were clinically evaluated (T0), both through medical and subjective assessments. Clinical evaluation was repeated after the REAC NPO treatment (T1) and at the end of 18 REAC TO treatments (T2) and at the 30 days follow-up (T3). Results In comparison with the results commonly found in clinical practice, all REAC treated patients recovered much faster. They reported functional recovery, pain relief and joint stability, regardless of the severity of the lesion. Conclusion The combined use of REAC NPO and TO can envisage a new rehabilitative approach, which aims not only at recovering the outcomes of the physical trauma, but also at improving the neuropsychical state that can condition the rehabilitation result.
Collapse
Affiliation(s)
| | | | | | - Alessandro Castagna
- Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy.,Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy
| | - Vania Fontani
- Research Department, Rinaldi Fontani Foundation, Florence, Italy.,Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy.,Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy
| | - Salvatore Rinaldi
- Research Department, Rinaldi Fontani Foundation, Florence, Italy.,Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy.,Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy
| |
Collapse
|
16
|
Kuwahara K, Sasaki T, Yasuhara T, Kameda M, Okazaki Y, Hosomoto K, Kin I, Okazaki M, Yabuno S, Kawauchi S, Tomita Y, Umakoshi M, Kin K, Morimoto J, Lee JY, Tajiri N, Borlongan CV, Date I. Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson's Disease. Front Aging Neurosci 2020; 12:164. [PMID: 32612523 PMCID: PMC7309445 DOI: 10.3389/fnagi.2020.00164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Spinal cord stimulation (SCS) exerts neuroprotective effects in animal models of Parkinson's disease (PD). Conventional stimulation techniques entail limited stimulation time and restricted movement of animals, warranting the need for optimizing the SCS regimen to address the progressive nature of the disease and to improve its clinical translation to PD patients. OBJECTIVE Recognizing the limitations of conventional stimulation, we now investigated the effects of continuous SCS in freely moving parkinsonian rats. METHODS We developed a small device that could deliver continuous SCS. At the start of the experiment, thirty female Sprague-Dawley rats received the dopamine (DA)-depleting neurotoxin, 6-hydroxydopamine, into the right striatum. The SCS device was fixed below the shoulder area of the back of the animal, and a line from this device was passed under the skin to an electrode that was then implanted epidurally over the dorsal column. The rats were divided into three groups: control, 8-h stimulation, and 24-h stimulation, and behaviorally tested then euthanized for immunohistochemical analysis. RESULTS The 8- and 24-h stimulation groups displayed significant behavioral improvement compared to the control group. Both SCS-stimulated groups exhibited significantly preserved tyrosine hydroxylase (TH)-positive fibers and neurons in the striatum and substantia nigra pars compacta (SNc), respectively, compared to the control group. Notably, the 24-h stimulation group showed significantly pronounced preservation of the striatal TH-positive fibers compared to the 8-h stimulation group. Moreover, the 24-h group demonstrated significantly reduced number of microglia in the striatum and SNc and increased laminin-positive area of the cerebral cortex compared to the control group. CONCLUSIONS This study demonstrated the behavioral and histological benefits of continuous SCS in a time-dependent manner in freely moving PD animals, possibly mediated by anti-inflammatory and angiogenic mechanisms.
Collapse
Affiliation(s)
- Ken Kuwahara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yosuke Okazaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kakeru Hosomoto
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yousuke Tomita
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
17
|
Canaider S, Facchin F, Tassinari R, Cavallini C, Olivi E, Taglioli V, Zannini C, Bianconi E, Maioli M, Ventura C. Intracrine Endorphinergic Systems in Modulation of Myocardial Differentiation. Int J Mol Sci 2019; 20:ijms20205175. [PMID: 31635381 PMCID: PMC6829321 DOI: 10.3390/ijms20205175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
A wide variety of peptides not only interact with the cell surface, but govern complex signaling from inside the cell. This has been referred to as an "intracrine" action, and the orchestrating molecules as "intracrines". Here, we review the intracrine action of dynorphin B, a bioactive end-product of the prodynorphin gene, on nuclear opioid receptors and nuclear protein kinase C signaling to stimulate the transcription of a gene program of cardiogenesis. The ability of intracrine dynorphin B to prime the transcription of its own coding gene in isolated nuclei is discussed as a feed-forward loop of gene expression amplification and synchronization. We describe the role of hyaluronan mixed esters of butyric and retinoic acids as synthetic intracrines, controlling prodynorphin gene expression, cardiogenesis, and cardiac repair. We also discuss the increase in prodynorphin gene transcription and intracellular dynorphin B afforded by electromagnetic fields in stem cells, as a mechanism of cardiogenic signaling and enhancement in the yield of stem cell-derived cardiomyocytes. We underline the possibility of using the diffusive features of physical energies to modulate intracrinergic systems without the needs of viral vector-mediated gene transfer technologies, and prompt the exploration of this hypothesis in the near future.
Collapse
Affiliation(s)
- Silvia Canaider
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Federica Facchin
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering - Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| |
Collapse
|
18
|
Balzano F, Campesi I, Cruciani S, Garroni G, Bellu E, Dei Giudici S, Angius A, Oggiano A, Rallo V, Capobianco G, Dessole S, Ventura C, Montella A, Maioli M. Epigenetics, Stem Cells, and Autophagy: Exploring a Path Involving miRNA. Int J Mol Sci 2019; 20:ijms20205091. [PMID: 31615086 PMCID: PMC6834298 DOI: 10.3390/ijms20205091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
MiRNAs, a small family of non-coding RNA, are now emerging as regulators of stem cell pluripotency, differentiation, and autophagy, thus controlling stem cell behavior. Stem cells are undifferentiated elements capable to acquire specific phenotype under different kind of stimuli, being a main tool for regenerative medicine. Within this context, we have previously shown that stem cells isolated from Wharton jelly multipotent stem cells (WJ-MSCs) exhibit gender differences in the expression of the stemness related gene OCT4 and the epigenetic modulator gene DNA-Methyltransferase (DNMT1). Here, we further analyze this gender difference, evaluating adipogenic and osteogenic differentiation potential, autophagic process, and expression of miR-145, miR-148a, and miR-185 in WJ-MSCs derived from males and females. These miRNAs were selected since they are involved in OCT4 and DNMT1 gene expression, and in stem cell differentiation. Our results indicate a difference in the regulatory circuit involving miR-148a/DNMT1/OCT4 autophagy in male WJ-MSCs as compared to female cells. Moreover, no difference was detected in the expression of the two-differentiation regulating miRNA (miR-145 and miR-185). Taken together, our results highlight a different behavior of WJ-MSCs from males and females, disclosing the chance to better understand cellular processes as autophagy and stemness, usable for future clinical applications.
Collapse
Affiliation(s)
- Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Silvia Dei Giudici
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy.
| | - Andrea Angius
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy.
| | - Annalisa Oggiano
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, 07100 Sassari, Italy.
| | - Vincenzo Rallo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy.
| | - Giampiero Capobianco
- Department of Medical, Surgical and experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy.
| | - Salvatore Dessole
- Department of Medical, Surgical and experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, 07100 Sassari, Italy.
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Operative Unit of Clinical Genetics and Developmental Biology, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy.
- Center for developmental biology and reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy.
| |
Collapse
|
19
|
Cruciani S, Santaniello S, Montella A, Ventura C, Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J Stem Cells 2019; 11:464-475. [PMID: 31523367 PMCID: PMC6716083 DOI: 10.4252/wjsc.v11.i8.464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. In vitro manipulation of these cells is focused on understanding stem cell behavior, proliferation and pluripotency. Latest advances in the field of stem cells concern epigenetics and its role in maintaining self-renewal and differentiation capabilities. Chemical and physical stimuli can modulate cell commitment, acting on gene expression of Oct-4, Sox-2 and Nanog, the main stemness markers, and tissue-lineage specific genes. This activation or repression is related to the activity of chromatin-remodeling factors and epigenetic regulators, new targets of many cell therapies. The aim of this review is to afford a view of the current state of in vitro and in vivo stem cell applications, highlighting the strategies used to influence stem cell commitment for current and future cell therapies. Identifying the molecular mechanisms controlling stem cell fate could open up novel strategies for tissue repairing processes and other clinical applications.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Operative Unit of Clinical Genetics and Developmental Biology, Sassari 07100, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari 09042, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
20
|
Facchin F, Canaider S, Tassinari R, Zannini C, Bianconi E, Taglioli V, Olivi E, Cavallini C, Tausel M, Ventura C. Physical energies to the rescue of damaged tissues. World J Stem Cells 2019; 11:297-321. [PMID: 31293714 PMCID: PMC6600852 DOI: 10.4252/wjsc.v11.i6.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores. We discuss the novel perspectives disclosed by mechanobiology, bioelectromagnetism, and photobiomodulation, both in term of fundamental basic science and in light of the biomedical implication of using physical energies to govern (stem) cell fate. We focus on the feasibility of exploiting atomic force microscopy and hyperspectral imaging to detect signatures of nanomotions and electromagnetic radiation (light), respectively, generated by the stem cells across the specification of their multilineage repertoire. The chance is reported of using these signatures and the diffusive features of physical waves to direct specifically the differentiation program of stem cells in situ, where they already are resident in all the tissues of the human body. We discuss how this strategy may pave the way to a regenerative and precision medicine without the needs for (stem) cell or tissue transplantation. We describe a novel paradigm based upon boosting our inherent ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | | | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| |
Collapse
|
21
|
Mazzini L, Ferrari D, Andjus PR, Buzanska L, Cantello R, De Marchi F, Gelati M, Giniatullin R, Glover JC, Grilli M, Kozlova EN, Maioli M, Mitrečić D, Pivoriunas A, Sanchez-Pernaute R, Sarnowska A, Vescovi AL. Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2019; 18:865-881. [PMID: 30025485 DOI: 10.1080/14712598.2018.1503248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a progressive, incurable neurodegenerative disease that targets motoneurons. Cell-based therapies have generated widespread interest as a potential therapeutic approach but no conclusive results have yet been reported either from pre-clinical or clinical studies. AREAS COVERED This is an integrated review of pre-clinical and clinical studies focused on the development of cell-based therapies for ALS. We analyze the biology of stem cell treatments and results obtained from pre-clinical models of ALS and examine the methods and the results obtained to date from clinical trials. We discuss scientific, clinical, and ethical issues and propose some directions for future studies. EXPERT OPINION While data from individual studies are encouraging, stem-cell-based therapies do not yet represent a satisfactory, reliable clinical option. The field will critically benefit from the introduction of well-designed, randomized and reproducible, powered clinical trials. Comparative studies addressing key issues such as the nature, properties, and number of donor cells, the delivery mode and the selection of proper patient populations that may benefit the most from cell-based therapies are now of the essence. Multidisciplinary networks of experts should be established to empower effective translation of research into the clinic.
Collapse
Affiliation(s)
- Letizia Mazzini
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Daniela Ferrari
- b Department of Biotechnology and Biosciences , University Milano Bicocca , Milano , Italy
| | - Pavle R Andjus
- c Center for laser microscopy, Faculty of Biology , University of Belgrade , Belgrade , Serbia
| | - Leonora Buzanska
- d Stem Cell Bioengineering Unit , Mossakowski Medical Research Center, Polish Academy of Sciences , Warsaw , Poland
| | - Roberto Cantello
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Fabiola De Marchi
- a ALS Centre Department of Neurology , "Maggiore della Carità" University Hospital Novara , Novara , Italy
| | - Maurizio Gelati
- e Scientific Direction , IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo , Foggia , Italy.,f Cell Factory e biobanca, Fondazione Cellule Staminali , Terni , Italy
| | - Rashid Giniatullin
- g A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Neulaniementie 2, Kuopio , FINLAND
| | - Joel C Glover
- h Department of Molecular Medicine , Institute of Basic Medical Sciences, University of Oslo and Norwegian Center for Stem Cell Research, Oslo University Hospital , Oslo , Norway
| | - Mariagrazia Grilli
- i Department Pharmaceutical Sciences , Laboratory of Neuroplasticity, University of Piemonte Orientale , Novara , Italy
| | - Elena N Kozlova
- j Department of Neuroscience , Uppsala University Biomedical Centre , Uppsala , Sweden
| | - Margherita Maioli
- k Department of Biomedical Sciences and Center for Developmental Biology and Reprogramming (CEDEBIOR) , University of Sassari, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR) , Sassari , Italy
| | - Dinko Mitrečić
- l Laboratory for Stem Cells, Croatian Institute for Brain Research , University of Zagreb School of Medicine , Zagreb , Croatia
| | - Augustas Pivoriunas
- m Department of Stem Cell Biology , State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| | - Rosario Sanchez-Pernaute
- n Preclinical Research , Andalusian Initiative for Advanced Therapies, Andalusian Health Ministry , Sevilla , Spain
| | - Anna Sarnowska
- d Stem Cell Bioengineering Unit , Mossakowski Medical Research Center, Polish Academy of Sciences , Warsaw , Poland
| | - Angelo L Vescovi
- b Department of Biotechnology and Biosciences , University Milano Bicocca , Milano , Italy.,f Cell Factory e biobanca, Fondazione Cellule Staminali , Terni , Italy
| | | |
Collapse
|
22
|
Basoli V, Santaniello S, Rinaldi S, Fontani V, Pigliaru G, Wieser M, Strajeriu A, Castagna A, Redl H, Ventura C, Grillari R, Maioli M. Physical stimulation by REAC and BMP4/WNT-1 inhibitor synergistically enhance cardiogenic commitment in iPSCs. PLoS One 2019; 14:e0211188. [PMID: 30673752 PMCID: PMC6343882 DOI: 10.1371/journal.pone.0211188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022] Open
Abstract
It is currently known that pluripotent stem cells can be committed in vitro to the cardiac lineage by the modulation of specific signaling pathways, but it is also well known that, despite the significant increase in cardiomyocyte yield provided by the currently available conditioned media, the resulting cardiogenic commitment remains a highly variable process. Previous studies provided evidence that radio electric fields asymmetrically conveyed through the Radio Electric Asymmetric Conveyer (REAC) technology are able to commit R1 embryonic stem cells and human adipose derived stem cells toward a cardiac phenotype. The present study aimed at investigating whether the effect of physical stimulation by REAC in combination with specific chemical inductors enhance the cardiogenic potential in human induced pluripotent stem cells (iPSCs). The appearance of a cardiac-like phenotype in iPSCs cultured in the presence of a cardiogenic medium, based upon BMP4 and a WNT-inhibitor, was consistently increased by REAC treatment used only during the early fate differentiation for the first 72 hours. REAC-exposed iPSCs exhibited an upregulation in the expression of specific cardiogenic transcripts and morphologically in the number of beating clusters, as compared to cells cultured in the cardiogenic medium alone. Our results indicate that physical modulation of cellular dynamics provided by the REAC offers an affordable strategy to mimic iPSC cardiac-like fates in the presence of a cardiogenic milieu.
Collapse
Affiliation(s)
- Valentina Basoli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Research Department, Rinaldi Fontani Foundation, Florence, Italy
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering - National Institute of Biostructures and Biosystems-Eldor Lab, at Innovation Accelerators, CNR, Bologna, Italy
| | - Salvatore Rinaldi
- Research Department, Rinaldi Fontani Foundation, Florence, Italy
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy
- IRF Shanghai Medical Sciences, Shanghai, China
- * E-mail:
| | - Vania Fontani
- Research Department, Rinaldi Fontani Foundation, Florence, Italy
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy
- IRF Shanghai Medical Sciences, Shanghai, China
| | - Gianfranco Pigliaru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering - National Institute of Biostructures and Biosystems-Eldor Lab, at Innovation Accelerators, CNR, Bologna, Italy
| | - Matthias Wieser
- Evercyte GmbH, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Agata Strajeriu
- Evercyte GmbH, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Alessandro Castagna
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering - National Institute of Biostructures and Biosystems-Eldor Lab, at Innovation Accelerators, CNR, Bologna, Italy
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy
| | - Regina Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- IRF Shanghai Medical Sciences, Shanghai, China
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari and National Institute of Biostructures and Biosystems, Sassari, Italy
| |
Collapse
|
23
|
Balzano F, Bellu E, Basoli V, Dei Giudici S, Santaniello S, Cruciani S, Facchin F, Oggiano A, Capobianco G, Dessole F, Ventura C, Dessole S, Maioli M. Lessons from human umbilical cord: gender differences in stem cells from Wharton's jelly. Eur J Obstet Gynecol Reprod Biol 2019; 234:143-148. [PMID: 30690190 DOI: 10.1016/j.ejogrb.2018.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To study the molecular features of mesenchymal stem cells from Wharton Jelly (WJ-MSCs) of umbilical cord to predict their differentiation capacity. DESIGN Comparison of gene expression from mesenchymal stem cells of male and female umbilical cord SETTING: University hospital PATIENT (S): umbilical cords (n = 12, 6 males and 6 females) retrieved from spontaneous full-term vaginal delivery of healthy women INTERVENTION: we analyzed the expression of the stemness related genes C-MYC, OCT4, SOX2 and NANOG and of the epigenetic modulating gene DNA-methyltransferase 1 (DNMT1). MEAN OUTCOME MEASURE WJ-MSCs were isolated by standard procedures and immunophenotypically characterized. Gene expression analysis of stemness related genes and the epigenetic modulating gene DNMT1 were performed by real-time PCR RESULTS: expression of the OCT4 and DNMT1 genes was significantly higher in WJ- MSCs isolated from male subjects, as compared to MSCs isolated from female-derived WJ. The resulting higher expression of OCT4 and DNMT1 in WJ-MSCs from males as compared with female WJ-MSCs for the first time identifies a specific relationship between stemness genes, an epigenetic modulator, and gender differences. CONCLUSION our findings disclose novel biomedical implications in WJ-MSCs related to the sex of the donor, thus providing additional cues to exploit their regenerative potential in allogenic transplantation.
Collapse
Affiliation(s)
- Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Valentina Basoli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Silvia Dei Giudici
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, Sassari 07100, Italy.
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Federica Facchin
- Department of Experimental, Diagnostic and Speciality Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Annalisa Oggiano
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Vienna 2, Sassari 07100, Italy.
| | - Giampiero Capobianco
- Department of Medical, Surgical and experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, Italy.
| | - Francesco Dessole
- Department of Medical, Surgical and experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, Italy.
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Salvatore Dessole
- Department of Medical, Surgical and experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; Center for Developmental Biology and Reprogramming- CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy.
| |
Collapse
|
24
|
Rinaldi A, Rinaldi C, Coelho Pereira JA, Lotti Margotti M, Bittencourt MN, Barcessat ARP, Fontani V, Rinaldi S. Radio electric asymmetric conveyer neuromodulation in depression, anxiety, and stress. Neuropsychiatr Dis Treat 2019; 15:469-480. [PMID: 30858704 PMCID: PMC6387613 DOI: 10.2147/ndt.s195466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The purpose of this study was to assess the efficacy of specific neuromodulation treatments performed with radio electric asymmetric conveyer (REAC) technology in the treatment of the symptomatic triad depression, anxiety, and stress by the use of a specific psychometric test such as the Depression Anxiety Stress Scale-42 items (DASS-42) version, which assesses simultaneously the severity of expression of this triad. PATIENTS AND METHODS The design of this study was planned to compare two populations that performed DASS-42 test twice within a similar period of time. The first population performed the first DASS test before the treatment and the second test about 3 months later, at the end of two specific REAC neuromodulation treatments, neuropostural optimization (NPO) and neuropsychophysical optimization (NPPO), that have previously shown an efficacy in the treatment of depression, anxiety and stress. The second population (untreated), used as the randomized control group, consisted of a similar group by gender and age, who performed the DASS-42 test in an online platform twice, with an interval of about 3 months between the first and second tests, similar to the interval between the two tests in the treated group. RESULTS The comparison between the treated group and the control group points out the REAC treatment efficacy in improving the quality of life. At the second DASS-42 test, self-administered about 3 months after the treatments, treated patients were positioned on average values of much milder severity in all the three clusters, depression, anxiety, and stress, while in untreated patients there was no significant difference between the mean values of the first and second DASS tests. CONCLUSION The results obtained in this study, evaluated with the DASS-42 test, confirm that REAC-NPO and REAC-NPPO neuromodulation treatments can be useful tools for the clinical treatment of depression, anxiety, and stress, as already proven by previous results evaluated with different psychometric tests.
Collapse
Affiliation(s)
- Arianna Rinaldi
- Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy, .,Research Department, Rinaldi Fontani Foundation, Florence, Italy,
| | - Chiara Rinaldi
- Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy, .,Research Department, Rinaldi Fontani Foundation, Florence, Italy,
| | | | - Matteo Lotti Margotti
- Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy, .,Research Department, Rinaldi Fontani Foundation, Florence, Italy,
| | | | | | - Vania Fontani
- Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy, .,Research Department, Rinaldi Fontani Foundation, Florence, Italy,
| | - Salvatore Rinaldi
- Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy, .,Research Department, Rinaldi Fontani Foundation, Florence, Italy,
| |
Collapse
|
25
|
Langasco R, Fancello S, Rassu G, Cossu M, Cavalli R, Galleri G, Giunchedi P, Migheli R, Gavini E. Increasing protective activity of genistein by loading into transfersomes: A new potential adjuvant in the oxidative stress-related neurodegenerative diseases? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:23-31. [PMID: 30599903 DOI: 10.1016/j.phymed.2018.09.207] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Genistein is a soy-derived isoflavone and phytoestrogen with antioxidant and neuroprotective activity. Genistein has intrinsically low oral bioavailability that affects its dose-response activities. PURPOSE Nanotechnologies were used to obtain the delivery of genistein to the brain: lipid-based nanovesicles, transfersomes, loaded with the phytoestrogen were developed as potential therapeutic or preventive strategy against neurodegenerative diseases by intranasal administration. METHODS Phosphatidylcholine from soybean and different edge activators were used to prepare transfersomes. The effect of selected nanovesicles on the oxidative damage was studied in PC12 cell line. RESULTS Suitable nanovesicles as carrier of genistein were obtained; their composition affects deformability, drug permeation behavior and cytotoxicity. In particular, the formulation containing Span 80, GEN-TF2, showed efficiency of internalization into the cell and it was able to attenuate ROS formation and to reduce the amount of apoptotic cells generated by H2O2 treatment compared to genistein. CONCLUSION GEN-TF2 was able to reduce the oxidative damage suggesting a possible antioxidant role of this drug delivery system. These obtained data confer to GEN-TF2 a potential antioxidant activity and then it could be used as adjuvant therapy in oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Rita Langasco
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Silvia Fancello
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Massimo Cossu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Roberta Cavalli
- Department of Science and Technology of Pharmaceutics, University of Torino, 10125 Torino, Italy
| | - Grazia Galleri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Rossana Migheli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy.
| | - Elisabetta Gavini
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy.
| |
Collapse
|
26
|
Effect of direct current electrical stimulation on the recovery of facial nerve crush injury. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Facchin F, Bianconi E, Canaider S, Basoli V, Biava PM, Ventura C. Tissue Regeneration without Stem Cell Transplantation: Self-Healing Potential from Ancestral Chemistry and Physical Energies. Stem Cells Int 2018; 2018:7412035. [PMID: 30057626 PMCID: PMC6051063 DOI: 10.1155/2018/7412035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
The human body constantly regenerates after damage due to the self-renewing and differentiating properties of its resident stem cells. To recover the damaged tissues and regenerate functional organs, scientific research in the field of regenerative medicine is firmly trying to understand the molecular mechanisms through which the regenerative potential of stem cells may be unfolded into a clinical application. The finding that some organisms are capable of regenerative processes and the study of conserved evolutionary patterns in tissue regeneration may lead to the identification of natural molecules of ancestral species capable to extend their regenerative potential to human tissues. Such a possibility has also been strongly suggested as a result of the use of physical energies, such as electromagnetic fields and mechanical vibrations in human adult stem cells. Results from scientific studies on stem cell modulation confirm the possibility to afford a chemical manipulation of stem cell fate in vitro and pave the way to the use of natural molecules, as well as electromagnetic fields and mechanical vibrations to target human stem cells in their niche inside the body, enhancing human natural ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Valentina Basoli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300, 20099 Sesto San Giovanni, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) - Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
28
|
Xu Y, Zhi F, Peng Y, Shao N, Khiati D, Balboni G, Yang Y, Xia Y. δ-Opioid Receptor Activation Attenuates Hypoxia/MPP +-Induced Downregulation of PINK1: a Novel Mechanism of Neuroprotection Against Parkinsonian Injury. Mol Neurobiol 2018; 56:252-266. [PMID: 29687347 DOI: 10.1007/s12035-018-1043-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
There is emerging evidence suggesting that neurotoxic insults and hypoxic/ischemic injury are underlying causes of Parkinson's disease (PD). Since PTEN-induced kinase 1 (PINK1) dysfunction is involved in the molecular genesis of PD and since our recent studies have demonstrated that the δ-opioid receptor (DOR) induced neuroprotection against hypoxic and 1-methyl-4-phenyl-pyridimium (MPP+) insults, we sought to explore whether DOR protects neuronal cells from hypoxic and/or MPP+ injury via the regulation of PINK1-related pathways. Using highly differentiated rat PC12 cells exposed to either severe hypoxia (0.5-1% O2) for 24-48 h or varying concentrations of MPP+, we found that both hypoxic and MPP+ stress reduced the level of PINK1 expression, while incubation with the specific DOR agonist UFP-512 reversed this reduction and protected the cells from hypoxia and/or MPP+-induced injury. However, the DOR-mediated cytoprotection largely disappeared after knocking down PINK1 by PINK1 small interfering RNA. Moreover, we examined several important signaling molecules related to cell survival and apoptosis and found that DOR activation attenuated the hypoxic and/or MPP+-induced reduction in phosphorylated Akt and inhibited the activation of cleaved caspase-3, whereas PINK1 knockdown largely deprived the cell of the DOR-induced effects. Our novel data suggests a unique mechanism underlying DOR-mediated cytoprotection against hypoxic and MPP+ stress via a PINK1-mediated regulation of signaling.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Dhiaedin Khiati
- Royal College of Surgeons of Ireland - Medical University of Bahrain, Busaiteen, Bahrain
| | - Gianfranco Balboni
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Yilin Yang
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China. .,Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Coelho Pereira JA, Rinaldi A, Fontani V, Rinaldi S. REAC neuromodulation treatments in subjects with severe socioeconomic and cultural hardship in the Brazilian state of Pará: a family observational pilot study. Neuropsychiatr Dis Treat 2018; 14:1047-1054. [PMID: 29713174 PMCID: PMC5909792 DOI: 10.2147/ndt.s161646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE The purpose of this preliminary observational study was to evaluate the usefulness of a humanitarian initiative, aimed at improving the neuropsychological and behavioral attitude of children with severe socioeconomic and cultural hardship, in the Brazilian state of Pará. This humanitarian initiative was realized through the administration of two neuromodulation protocols, with radioelectric asymmetric conveyor (REAC) technology. During several years of clinical use, the REAC neuromodulation protocols have already proved to be effective in countering the effects of environmental stress on neuropsycho-physical functions. PATIENTS AND METHODS After the preliminary medical examination, all subjects were investigated with the Strengths and Difficulties Questionnaire (SDQ), including the impact supplement with teacher's report. After the SDQ, they received the neuromodulation treatment with REAC technology named neuro postural optimization (NPO), to evaluate their responsiveness. Subsequently, every 3 months all subjects underwent a treatment cycle of neuropsycho-physical optimization (NPPO) with REAC technology, for a total of three cycles. At the end of the last REAC-NPPO treatment cycle, all subjects were investigated once again with the SDQ. For the adequacy of the data, the Wilcoxon and the Signs tests were used. For the subdivision into clusters, the Kruskal-Wallis test was applied for the adequacy of the procedure. For all the applied tests, a statistical significance of p<0.5 was found. RESULTS The results showed that the REAC-NPO and REAC-NPPO neuromodulation protocols are able to improve the quality of life, the scholastic and socialization skills, and the overall state of physical and mental health in children of a family with severe socioeconomic and cultural hardship. CONCLUSION The REAC-NPO and REAC-NPPO neuromodulation protocols, due to their non-invasive characteristics, painlessness, and speed of administration, can be hypothesized as a treatment to improve the overall state of physical and mental health in a large number of people with socioeconomic and cultural discomfort.
Collapse
Affiliation(s)
| | - Arianna Rinaldi
- Research Department, Rinaldi Fontani Foundation, Florence, Italy
- Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy
| | - Vania Fontani
- Research Department, Rinaldi Fontani Foundation, Florence, Italy
- Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy
| | - Salvatore Rinaldi
- Research Department, Rinaldi Fontani Foundation, Florence, Italy
- Department of Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy
| |
Collapse
|
30
|
Radio Electric Asymmetric Conveyer Technology Modulates Neuroinflammation in a Mouse Model of Neurodegeneration. Neurosci Bull 2017; 34:270-282. [PMID: 29124672 DOI: 10.1007/s12264-017-0188-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022] Open
Abstract
In this study, the effects of Radio Electric Asymmetric Conveyer (REAC), a non-invasive physical treatment, on neuroinflammatory responses in a mouse model of parkinsonism induced by intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), were investigated in vivo. We found that the REAC tissue optimization treatment specific for neuro-regenerative purposes (REAC TO-RGN-N) attenuated the inflammatory picture evoked by MPTP-induced nigro-striatal damage in mice, decreasing the levels of pro-inflammatory molecules and increasing anti-inflammatory mediators. Besides, there was a significant reduction of both astrocyte and microglial activation in MPTP-treated mice exposed to REAC TO-RGN-N. These results indicated that REAC TO-RGN-N treatment modulates the pro-inflammatory responses and reduces neuronal damage in MPTP-induced parkinsonism.
Collapse
|
31
|
Sanna Passino E, Rocca S, Caggiu S, Columbano N, Castagna A, Fontani V, Rinaldi S. REAC regenerative treatment efficacy in experimental chondral lesions: a pilot study on ovine animal model. Clin Interv Aging 2017; 12:1471-1479. [PMID: 29066871 PMCID: PMC5604553 DOI: 10.2147/cia.s140976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Radioelectric asymmetric conveyor (REAC) technology is a platform designed to optimize cell polarity. Cell polarity is a universal biological phenomenon that is implicated in cell differentiation, proliferation, morphogenesis, aging, and rejuvenation. In this work, we investigate a timing and administration protocol for tissue optimization regenerative treatment type C, in order to treat aging-related chondral damage or injuries and gain insights into regenerative processes of articular cartilage in humans. The chondral lesion produced in this study in an animal model (6 knee joints of 4 adult sheep) was 6 mm in diameter and about 2 mm deep. These lesions, which did not involve subchondral bone, tend to increase in size and depth and are not completely repaired with normal hyaline articular cartilage since adult articular cartilage is avascular and has a very slow turnover at the cellular and molecular level. Moreover, the hydration of articular cartilage is reduced with aging and with decreased mitotic activity, synthesis, and population size of chondrocytes. Six months posttreatment, lesions appeared filled, though not completely, with newly generated tissue of the light opalescent color of healthy articular cartilage, which otherwise covered the underlying subchondral bone. The newly formed tissue surface appeared to be quite regular. Nearly complete regeneration of subchondral bone occurred, with little vascularization and ossification nuclei almost absent. The results of this study confirm previous data obtained in vitro on the regenerative effects of REAC technology on human normal and osteoarthritic chondrocytes exposed to IL-1β. The present findings indicate that REAC tissue optimization-regenerative treatment type C is a promising therapeutic tool among the other REAC regenerative treatment protocols for the treatment of cartilage lesions.
Collapse
Affiliation(s)
- Eraldo Sanna Passino
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy.,Comparative Surgery Research Laboratory, University of Sassari, Sassari, Italy
| | - Stefano Rocca
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Sabrina Caggiu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Nicolò Columbano
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy.,Comparative Surgery Research Laboratory, University of Sassari, Sassari, Italy
| | - Alessandro Castagna
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy
| | - Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy.,Research Department, Rinaldi Fontani Foundation, Florence, Italy.,Research Department, IRF Shanghai Biomedical Sciences, Shanghai, People's Republic of China
| | - Salvatore Rinaldi
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Florence, Italy.,Research Department, Rinaldi Fontani Foundation, Florence, Italy.,Research Department, IRF Shanghai Biomedical Sciences, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Berlinguer F, Pasciu V, Succu S, Cossu I, Caggiu S, Addis D, Castagna A, Fontani V, Rinaldi S, Passino ES. REAC technology as optimizer of stallion spermatozoa liquid storage. Reprod Biol Endocrinol 2017; 15:11. [PMID: 28179013 PMCID: PMC5299698 DOI: 10.1186/s12958-017-0229-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/03/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND REAC technology (acronym for Radio Electric Asymmetric Conveyor) is a technology platform for neuro and bio modulation. It has already proven to optimize the ions fluxes at the molecular level and the molecular mechanisms driving cellular asymmetry and polarization. METHODS This study was designed to verify whether this technology could extend spermatozoa life-span during liquid storage, while preserving their functions, DNA integrity and oxidative status. At 0, 24, 48, and 72 h. of storage at 4 °C, a battery of analyses was performed to assess spermatozoa viability, motility parameters, acrosome status, and DNA integrity during REAC treatment. Spermatozoa oxidative status was assessed by determining lipid peroxidation, the activity of superoxide dismutase (SOD), and the total antioxidant capacity. RESULTS During liquid storage REAC treated spermatozoa, while not showing an increased viability nor motility compared to untreated ones, had a higher acrosome (p > 0.001) and DNA integrity (p > 0.01). Moreover, the analysis of the oxidative status indicated that the mean activity of the intracellular superoxide dismutase (SOD) was significantly higher in REAC treated spermatozoa compared to untreated controls (p < 0.05), while the intracellular concentration of malondialdehyde (MDA), an end product of lipid peroxidation, at the end of the REAC treatment was higher in untreated controls (p > 0.05). The REAC efficacy on spermatozoa oxidative status was also evidenced by the higher trolox equivalent antioxidant capacity (TEAC) found in both the cellular extract (p < 0.05) and the storage media of REAC treated spermatozoa compared to untreated controls (p < 0.0001). CONCLUSION The present study demonstrated that REAC treatment during liquid storage preserves spermatozoa acrosome membrane and DNA integrity, likely due to the enhancement of sperm antioxidant defenses. These results open new perspective about the extending of spermatozoa functions in vitro and the clinical management of male infertility.
Collapse
Affiliation(s)
- Fiammetta Berlinguer
- 0000 0001 2097 9138grid.11450.31Department of Veterinary Medicine, University of Sassari, Viale Vienna 43/B, 07100 Sassari, Italy
| | - Valeria Pasciu
- 0000 0001 2097 9138grid.11450.31Department of Veterinary Medicine, University of Sassari, Viale Vienna 43/B, 07100 Sassari, Italy
| | - Sara Succu
- 0000 0001 2097 9138grid.11450.31Department of Veterinary Medicine, University of Sassari, Viale Vienna 43/B, 07100 Sassari, Italy
| | - Ignazio Cossu
- AGRIS, Department of Research for Equine Reproduction, Ozieri, Sassari Italy
| | - Sabrina Caggiu
- 0000 0001 2097 9138grid.11450.31Department of Veterinary Medicine, University of Sassari, Viale Vienna 43/B, 07100 Sassari, Italy
| | - Daniela Addis
- 0000 0001 2097 9138grid.11450.31Department of Veterinary Medicine, University of Sassari, Viale Vienna 43/B, 07100 Sassari, Italy
| | - Alessandro Castagna
- Departments of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
| | - Vania Fontani
- Departments of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
| | - Salvatore Rinaldi
- Departments of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
| | - Eraldo Sanna Passino
- 0000 0001 2097 9138grid.11450.31Department of Veterinary Medicine, University of Sassari, Viale Vienna 43/B, 07100 Sassari, Italy
| |
Collapse
|
33
|
Wu AG, Zeng W, Wong VKW, Zhu YZ, Lo AC, Liu L, Law BYK. Hederagenin and α-hederin promote degradation of proteins in neurodegenerative diseases and improve motor deficits in MPTP-mice. Pharmacol Res 2017; 115:25-44. [DOI: 10.1016/j.phrs.2016.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
|
34
|
Lorenzini L, Giuliani A, Sivilia S, Baldassarro VA, Fernandez M, Lotti Margotti M, Giardino L, Fontani V, Rinaldi S, Calzà L. REAC technology modifies pathological neuroinflammation and motor behaviour in an Alzheimer's disease mouse model. Sci Rep 2016; 6:35719. [PMID: 27775040 PMCID: PMC5075930 DOI: 10.1038/srep35719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 09/26/2016] [Indexed: 11/16/2022] Open
Abstract
The search for new therapeutic approaches to Alzheimer disease (AD) is a major goal in medicine and society, also due to the impressive economic and social costs of this disease. In this scenario, biotechnologies play an important role. Here, it is demonstrated that the Radio Electric Asymmetric Conveyer (REAC), an innovative technology platform for neuro- and bio-modulation, used according to the neuro-regenerative protocol (RGN-N), significantly increases astroglial reaction around the amyloid plaques in an AD mouse model, as evaluated by GFAP-immunoreactivity, and reduces microglia-associated neuroinflammation markers, as evaluated by Iba1-immunoreactivity and mRNA expression level of inflammatory cytokines TREM. IL1beta, iNOS and MRC1 were not affected neither by the genotype or by REAC RGN-N treatment. Also observed was an increase in locomotion in treated animals. The study was performed in 24-month-old male Tg2576 mice and age-matching wild-type animals, tested for Y-maze, contextual fear conditioning and locomotion immediately after the end of a specific REAC treatment administered for 15 hours/day for 15 days. These results demonstrated that REAC RGN-N treatment modifies pathological neuroinflammation, and mitigates part of the complex motor behaviour alterations observed in very old Tg2576 mice.
Collapse
Affiliation(s)
| | | | - Sandra Sivilia
- Department of Veterinary Medical Science, University of Bologna, Italy
| | - Vito Antonio Baldassarro
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR). University of Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Mercedes Fernandez
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR). University of Bologna, Italy
| | - Matteo Lotti Margotti
- Department of Regenerative Medicine and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy.,Research Department, Rinaldi Fontani Foundation, Florence, Italy
| | - Luciana Giardino
- IRET Foundation, Ozzano Emilia, Italy.,Department of Veterinary Medical Science, University of Bologna, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR). University of Bologna, Italy
| | - Vania Fontani
- Department of Regenerative Medicine and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy.,Research Department, Rinaldi Fontani Foundation, Florence, Italy
| | - Salvatore Rinaldi
- Department of Regenerative Medicine and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Florence, Italy.,Research Department, Rinaldi Fontani Foundation, Florence, Italy
| | - Laura Calzà
- IRET Foundation, Ozzano Emilia, Italy.,Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR). University of Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
35
|
Ventura C, Tavazzi L. Biophysical signalling from and to the (stem) cells: a novel path to regenerative medicine. Eur J Heart Fail 2016; 18:1405-1407. [PMID: 27407069 DOI: 10.1002/ejhf.607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 01/17/2023] Open
Affiliation(s)
- Carlo Ventura
- Maria Cecilia Hospital, Gruppo Villa Maria (GVM) Care & Research and Ettore Sansavini Health Science Foundation, Cotignola and Lugo, Ravenna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Luigi Tavazzi
- Maria Cecilia Hospital, Gruppo Villa Maria (GVM) Care & Research and Ettore Sansavini Health Science Foundation, Cotignola and Lugo, Ravenna, Italy
| |
Collapse
|
36
|
Maioli M, Rinaldi S, Pigliaru G, Santaniello S, Basoli V, Castagna A, Fontani V, Ventura C. REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci Rep 2016; 6:28682. [PMID: 27339908 PMCID: PMC4919615 DOI: 10.1038/srep28682] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/31/2016] [Indexed: 01/11/2023] Open
Abstract
Hyaluronic acid (HA) plays a fundamental role in cell polarity and hydrodynamic processes, affording significant modulation of proliferation, migration, morphogenesis and senescence, with deep implication in the ability of stem cells to execute their differentiating plans. The Radio Electric Asymmetric Conveyer (REAC) technology is aimed to optimize the ions fluxes at the molecular level in order to optimize the molecular mechanisms driving cellular asymmetry and polarization. Here, we show that treatment with 4-methylumbelliferone (4-MU), a potent repressor of type 2 HA synthase and endogenous HA synthesis, dramatically antagonized the ability of REAC to recover the gene and protein expression of Bmi1, Oct4, Sox2, and Nanog in ADhMSCs that had been made senescent by prolonged culture up to the 30(th) passage. In senescent ADhMSCs, 4-MU also counteracted the REAC ability to rescue the gene expression of TERT, and the associated resumption of telomerase activity. Hence, the anti-senescence action of REAC is largely dependent upon the availability of endogenous HA synthesis. Endogenous HA and HA-binding proteins with REAC technology create an interesting network that acts on the modulation of cell polarity and intracellular environment. This suggests that REAC technology is effective on an intracellular niche level of stem cell regulation.
Collapse
Affiliation(s)
- Margherita Maioli
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Salvatore Rinaldi
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Department of Anti Aging Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
| | - Gianfranco Pigliaru
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Sara Santaniello
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Valentina Basoli
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Alessandro Castagna
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Department of Anti Aging Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
| | - Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Department of Anti Aging Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
| | - Carlo Ventura
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Stem Wave Institute for Tissue Healing (SWITH), Ettore Sansavini Health Science Foundation- NPO, via Provinciale per Cotignola 9, 48022 Lugo (Ravenna), Italy
| |
Collapse
|
37
|
Cao W, Hong Y, Chen H, Wu F, Wei X, Ying W. SIRT2 mediates NADH-induced increases in Nrf2, GCL, and glutathione by modulating Akt phosphorylation in PC12 cells. FEBS Lett 2016; 590:2241-55. [PMID: 27264719 DOI: 10.1002/1873-3468.12236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 01/26/2023]
Abstract
SIRT2 plays important roles in multiple biological processes. It is unclear whether SIRT2 affects antioxidant capacity by modulating Nrf2, a key transcription factor for multiple antioxidant genes. By studying NADH-treated differentiated PC12 cells, we found that NADH induced a significant increase in the nuclear Nrf2, which was prevented by both SIRT2 siRNA and SIRT2 inhibitor, AGK2. SIRT2 siRNA also blocked the NADH-induced increases in glutamate cysteine ligase (GCL) and glutathione. Moreover, SIRT2 siRNA and AGK2 blocked NADH-induced Akt phosphorylation, and inhibition of Akt phosphorylation prevented NADH-induced increases in the nuclear Nrf2 and glutathione. Collectively, our study shows that SIRT2 regulates nuclear Nrf2 levels by modulating Akt phosphorylation, thus modulating the levels of GCL and total glutathione.
Collapse
Affiliation(s)
- Wei Cao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Yunyi Hong
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Heyu Chen
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Fan Wu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, China.,Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, China
| |
Collapse
|
38
|
Haas AJ, Le Page Y, Zhadobov M, Sauleau R, Le Dréan Y. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening. Neurosci Lett 2016; 618:58-65. [PMID: 26921450 DOI: 10.1016/j.neulet.2016.02.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/21/2016] [Indexed: 01/06/2023]
Abstract
Technologies for wireless telecommunication systems using millimeter waves (MMW) will be widely deployed in the near future. Forthcoming applications in this band, especially around 60GHz, are mainly developed for high data-rate local and body-centric telecommunications. At those frequencies, electromagnetic radiations have a very shallow penetration into biological tissues, making skin keratinocytes, and free nerve endings of the upper dermis the main targets of MMW. Only a few studies assessed the impact of MMW on neuronal cells, and none of them investigated a possible effect on neuronal differentiation. We used a neuron-like cell line (PC12), which undergoes neuronal differentiation when treated with the neuronal growth factor (NGF). PC12 cells were exposed at 60.4GHz for 24h, at an incident power density averaged over the cell monolayer of 10mW/cm(2). Using a large scale cell-by-cell analysis based on high-content screening microscopy approach, we assessed potential effects of MMW on PC12 neurite outgrowth and cytoskeleton protein expression. No differences were found in protein expression of the neuronal marker β3-tubulin nor in internal expression control β-tubulin. On the other hand, our data showed a slight increase, although insignificant, in neurite outgrowth, induced by MMW exposure. However, experimental controls demonstrated that this increase was related to heating.
Collapse
Affiliation(s)
- Alexis J Haas
- Transcription, Environment and Cancer Group, Institute of Research in Environmental and Occupational Health (IRSET), INSERM, University of Rennes 1, Rennes, France
| | - Yann Le Page
- Transcription, Environment and Cancer Group, Institute of Research in Environmental and Occupational Health (IRSET), INSERM, University of Rennes 1, Rennes, France
| | - Maxim Zhadobov
- Institute of Electronics and Telecommunications of Rennes (IETR), University of Rennes 1, UMR CNRS, Rennes, France
| | - Ronan Sauleau
- Institute of Electronics and Telecommunications of Rennes (IETR), University of Rennes 1, UMR CNRS, Rennes, France
| | - Yves Le Dréan
- Transcription, Environment and Cancer Group, Institute of Research in Environmental and Occupational Health (IRSET), INSERM, University of Rennes 1, Rennes, France.
| |
Collapse
|
39
|
Hjørnevik LV, Frøyset AK, Grønset TA, Rungruangsak-Torrissen K, Fladmark KE. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry. Mar Drugs 2015; 13:7390-402. [PMID: 26694421 PMCID: PMC4699245 DOI: 10.3390/md13127072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s). A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.
Collapse
Affiliation(s)
- Linda V Hjørnevik
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| | - Ann K Frøyset
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| | - Toril A Grønset
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| | | | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| |
Collapse
|