1
|
Smith AM, Ramudzulu M, Munk P, Avot BJP, Esterhuyse KCM, van Blerk N, Kwenda S, Sekwadi P. Metagenomics analysis of sewage for surveillance of antimicrobial resistance in South Africa. PLoS One 2024; 19:e0309409. [PMID: 39186711 PMCID: PMC11346938 DOI: 10.1371/journal.pone.0309409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Our 24-month study used metagenomics to investigate antimicrobial resistance (AMR) abundance in raw sewage from wastewater treatment works (WWTWs) in two municipalities in Gauteng Province, South Africa. At the AMR class level, data showed similar trends at all WWTWs, showing that aminoglycoside, beta-lactam, sulfonamide and tetracycline resistance was most abundant. AMR abundance differences were shown between municipalities, where Tshwane Metropolitan Municipality (TMM) WWTWs showed overall higher abundance of AMR compared to Ekurhuleni Metropolitan Municipality (EMM) WWTWs. Also, within each municipality, there were differing trends in AMR abundance. Notably, within TMM, certain AMR classes (macrolides and macrolides_streptogramin B) were in higher abundance at a WWTW serving an urban high-income area, while other AMR classes (aminoglycosides) were in higher abundance at a WWTW serving a semi-urban low income area. At the AMR gene level, all WWTWs samples showed the most abundance for the sul1 gene (encoding sulfonamide resistance). Following this, the next 14 most abundant genes encoded resistance to sulfonamides, aminoglycosides, macrolides, tetracyclines and beta-lactams. Notably, within TMM, some macrolide-encoding resistance genes (mefC, msrE, mphG and mphE) were in highest abundance at a WWTW serving an urban high-income area; while sul1, sul2 and tetC genes were in highest abundance at a WWTW serving a semi-urban low income area. Differential abundance analysis of AMR genes at WWTWs, following stratification of data by season, showed some notable variance in six AMR genes, of which blaKPC-2 and blaKPC-34 genes showed the highest prevalence of seasonal abundance differences when comparing data within a WWTW. The general trend was to see higher abundances of AMR genes in colder seasons, when comparing seasonal data within a WWTW. Our study investigated wastewater samples in only one province of South Africa, from WWTWs located within close proximity to one another. We would require a more widespread investigation at WWTWs distributed across all regions/provinces of South Africa, in order to describe a more comprehensive profile of AMR abundance across the country.
Collapse
Affiliation(s)
- Anthony M. Smith
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Centre for Enteric Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Masindi Ramudzulu
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Centre for Enteric Diseases, Johannesburg, South Africa
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Baptiste J. P. Avot
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | | | - Nico van Blerk
- Ekurhuleni Water Care Company, Kempton Park, South Africa
| | - Stanford Kwenda
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Centre for Enteric Diseases, Johannesburg, South Africa
| | - Phuti Sekwadi
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Centre for Enteric Diseases, Johannesburg, South Africa
| |
Collapse
|
2
|
Smith WJM, Liu Y, Simpson SL, Bivins A, Ahmed W. Assessment of nucleic acid extraction protocols for antibiotic resistance genes (ARGs) quantification in aircraft wastewater. Hum Genomics 2024; 18:54. [PMID: 38816866 PMCID: PMC11138010 DOI: 10.1186/s40246-024-00617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
This study evaluated ten nucleic acid extraction protocols (EP1 to EP10) for measuring five endogenous antibiotic resistance genes (ARGs) in four aircraft wastewater samples (AWW1 to AWW4). The targeted ARGs, including blaCTX-M, blaNDM-1, ermB, qnrS, and tetA, encompassed highly and minimally abundant ARGs. TetA and ermB were consistently detected across four aircraft wastewater samples using the DNeasy Blood and Tissue Kit and the AllPrep PowerViral DNA/RNA kit. QnrS displayed high detection rates with specific extraction protocols and aliquot volumes. Concentrations of ARGs varied across aircraft wastewater samples, with differing extraction protocols influencing quantitative results. The concentrations of tetA, ermB, and qnrS in AWW1 were distinct, while AWW2 to AWW4 exhibited a broader range for tetA, ermB, qnrS, blaCTX-M, and blaNDM-1. EP1 consistently produced the highest concentrations for several ARGs. Collective data analysis revealed varying ARG concentrations across the ten extraction protocols, suggesting the importance of careful extraction protocol selection in ARG monitoring in aircraft wastewater samples. Based on the results, we suggest that a small sample volume (as low as 0.2 mL) may be sufficient for ARG characterization in aircraft wastewater samples. The findings also emphasize the need for considering toilet paper removal without compromising nucleic acid extraction efficiency. The study highlights promising prospects for aircraft wastewater monitoring of ARGs, calling for further investigation into the import and spread of unique ARGs through transport hubs.
Collapse
Affiliation(s)
- Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Yawen Liu
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Stuart L Simpson
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| |
Collapse
|
3
|
Kohle S, Petersen TN, Vigre H, Johansson MHK, Aarestrup FM. Metagenomic analysis of sewage for surveillance of bacterial pathogens: A release experiment to determine sensitivity. PLoS One 2024; 19:e0300733. [PMID: 38753691 PMCID: PMC11098379 DOI: 10.1371/journal.pone.0300733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/04/2024] [Indexed: 05/18/2024] Open
Abstract
Accurate monitoring of gastro-enteric and other diseases in large populations poses a challenge for public health management. Sewage represents a larger population, is freely obtainable and non-subject to ethical approval. Metagenomic sequencing offers simultaneous, multiple-target analysis. However, no study has demonstrated the sensitivity of metagenomics for detecting bacteria in sewage. In this study, we spot-released 1013 colony-forming units (CFU) of Staphyloccus hyicus (non-pathogenetic strain 842J-88). The strain was flushed down a toilet into the sewer in the catchment area of a public wastewater treatment plant (WWTP), serving a population of 36,000 people. Raw sewage was continuously sampled at the WWTP's inlet over 30- and 60-minute intervals for a total period of seven hours. The experiment was conducted twice with one week in-between release days and under comparable weather conditions. For the metagenomics analyses, the pure single isolate of S. hyicus was sequenced, assembled and added to a large database of bacterial reference sequences. All sewage samples were analyzed by shotgun metagenome sequencing and mapped against the reference database. S. hyicus was identified in duplicate samples at both of two release days and these sequence fragment counts served as a proxy to estimate the minimum number of sick people or sensitivity required in order to observe at least one sick person at 95% probability. We found the sensitivity to be in the range 41-140 and 16-36 sick people at release days 1 and 2, respectively. The WWTP normally serves 36,000 people giving a normalized sensitivity in the range of one in 257 to 2,250 persons.
Collapse
Affiliation(s)
- Simon Kohle
- Research Group for Genomic Epidemiology, DTU-Food, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas N. Petersen
- Research Group for Genomic Epidemiology, DTU-Food, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Håkan Vigre
- Research Group for Genomic Epidemiology, DTU-Food, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, DTU-Food, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Tang MHE, Bennedbaek M, Gunalan V, Qvesel AG, Thorsen TH, Larsen NB, Rasmussen LD, Krogsgaard LW, Rasmussen M, Stegger M, Alexandersen S. Variations in the persistence of 5'-end genomic and subgenomic SARS-CoV-2 RNAs in wastewater from aircraft, airports and wastewater treatment plants. Heliyon 2024; 10:e29703. [PMID: 38694057 PMCID: PMC11061675 DOI: 10.1016/j.heliyon.2024.e29703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Wastewater sequencing has become a powerful supplement to clinical testing in monitoring SARS-CoV-2 infections in the post-COVID-19 pandemic era. While its applications in measuring the viral burden and main circulating lineages in the community have proved their efficacy, the variations in sequencing quality and coverage across the different regions of the SARS-CoV-2 genome are not well understood. Furthermore, it is unclear how different sample origins, viral extraction and concentration methods and environmental factors impact the reads sequenced from wastewater. Using high-coverage, amplicon-based, paired-end read sequencing of viral RNA extracted from wastewater collected directly from aircraft, pooled from different aircraft and airport buildings or from regular wastewater plants, we assessed the genome coverage across the sample groups with a focus on the 5'-end region covering the leader sequence and investigated whether it was possible to detect subgenomic RNA from viral material recovered from wastewater. We identified distinct patterns in the persistence of the different genomic regions across the different types of wastewaters and the existence of chimeric reads mapping to non-amplified regions. Our findings suggest that preservation of the 5'-end of the genome and the ability to detect subgenomic RNA reads, though highly susceptible to environment and sample processing conditions, may be indicative of the quality and amount of the viral RNA present in wastewater.
Collapse
Affiliation(s)
- Man-Hung Eric Tang
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Bennedbaek
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Vithiagaran Gunalan
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Amanda Gammelby Qvesel
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Theis Hass Thorsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Lasse Dam Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Lene Wulff Krogsgaard
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | - Soren Alexandersen
- Division of Diagnostic Preparedness, Statens Serum Institut, Copenhagen, Denmark
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
- Deakin University, School of Medicine, Waurn Ponds, Geelong, Australia
| |
Collapse
|
5
|
Munk P, Yang D, Röder T, Maier L, Petersen TN, Duarte ASR, Clausen PTLC, Brinch C, Van Gompel L, Luiken R, Wagenaar JA, Schmitt H, Heederik DJJ, Mevius DJ, Smit LAM, Bossers A, Aarestrup FM. The European livestock resistome. mSystems 2024; 9:e0132823. [PMID: 38501800 PMCID: PMC11019871 DOI: 10.1128/msystems.01328-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Metagenomic sequencing has proven to be a powerful tool in the monitoring of antimicrobial resistance (AMR). Here, we provide a comparative analysis of the resistome from pigs, poultry, veal calves, turkey, and rainbow trout, for a total of 538 herds across nine European countries. We calculated the effects of per-farm management practices and antimicrobial usage (AMU) on the resistome in pigs, broilers, and veal calves. We also provide an in-depth study of the associations between bacterial diversity, resistome diversity, and AMR abundances as well as co-occurrence analysis of bacterial taxa and antimicrobial resistance genes (ARGs) and the universality of the latter. The resistomes of veal calves and pigs clustered together, as did those of avian origin, while the rainbow trout resistome was different. Moreover, we identified clear core resistomes for each specific food-producing animal species. We identified positive associations between bacterial alpha diversity and both resistome alpha diversity and abundance. Network analyses revealed very few taxa-ARG associations in pigs but a large number for the avian species. Using updated reference databases and optimized bioinformatics, previously reported significant associations between AMU, biosecurity, and AMR in pig and poultry farms were validated. AMU is an important driver for AMR; however, our integrated analyses suggest that factors contributing to increased bacterial diversity might also be associated with higher AMR load. We also found that dispersal limitations of ARGs are shaping livestock resistomes, and future efforts to fight AMR should continue to emphasize biosecurity measures.IMPORTANCEUnderstanding the occurrence, diversity, and drivers for antimicrobial resistance (AMR) is important to focus future control efforts. So far, almost all attempts to limit AMR in livestock have addressed antimicrobial consumption. We here performed an integrated analysis of the resistomes of five important farmed animal populations across Europe finding that the resistome and AMR levels are also shaped by factors related to bacterial diversity, as well as dispersal limitations. Thus, future studies and interventions aimed at reducing AMR should not only address antimicrobial usage but also consider other epidemiological and ecological factors.
Collapse
Affiliation(s)
- Patrick Munk
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Dongsheng Yang
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Timo Röder
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Leonie Maier
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
| | | | | | | | - Christian Brinch
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Roosmarijn Luiken
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Dick J. J. Heederik
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Dik J. Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - EFFORT ConsortiumGravelandHaitskeGonzalez-ZornBrunoMoyanoGabrielSandersPascalChauvinClaireBattistiAntonioDewulfJeroenWadepohlKatharinaWasylDariuszSkarzyńskaMagdalenaZajacMagdalenaPękala-SafińskaAgnieszkaDaskalovHristoStärkKatharina D. C.
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
6
|
Patangia DV, Grimaud G, Wang S, Ross RP, Stanton C. Influence of age, socioeconomic status, and location on the infant gut resistome across populations. Gut Microbes 2024; 16:2297837. [PMID: 38217470 PMCID: PMC10793692 DOI: 10.1080/19490976.2023.2297837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024] Open
Abstract
Antibiotic resistance is a growing global concern, with many ecological niches showing a high abundance of antibiotic resistance genes (ARGs), including the human gut. With increasing indications of ARGs in infants, this study aims to investigate the gut resistome profile during early life at a wider geographic level. To achieve this objective, we utilized stool samples data from 26 studies involving subjects aged up to 3 years from different geographical locations. The 32,277 Metagenome Assembled Genomes (MAGs) previously generated from shotgun sequencing reads from these studies were used for resistome analysis using RGI with the CARD database. This analysis showed that the distribution of ARGs across the countries in our study differed in alpha diversity and compositionally. In particular, the abundance of ARGs was found to vary by socioeconomic status and healthcare access and quality (HAQ) index. Surprisingly, countries having lower socioeconomic status and HAQ indices showed lower ARG abundance, which was contradictory to previous reports. Gram-negative genera, including Escherichia, Enterobacter, Citrobacter, and Klebsiella harbored a particularly rich set of ARGs, which included antibiotics that belong to the Reserve, Access or Watch category, such as glycopeptides, fluoroquinolones, sulfonamides, macrolides, and tetracyclines. We showed that ARG abundance exponentially decreased with time during the first 3 years of life. Many highly ARG-abundant species including Escherichia, Klebsiella, Citrobacter species that we observed are well-known pathobionts found in the infant gut in early life. High abundance of these species and a diverse range of ARGs in their genomes point toward the infant gut, acting as an ARG reservoir. This is a concern and further studies are needed to examine the causal effect and its consequences on long-term health.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ghjuvan Grimaud
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Shaopu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - R. Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
7
|
Liu AB, Lee D, Jalihal AP, Hanage WP, Springer M. Quantitatively assessing early detection strategies for mitigating COVID-19 and future pandemics. Nat Commun 2023; 14:8479. [PMID: 38123536 PMCID: PMC10733317 DOI: 10.1038/s41467-023-44199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Researchers and policymakers have proposed systems to detect novel pathogens earlier than existing surveillance systems by monitoring samples from hospital patients, wastewater, and air travel, in order to mitigate future pandemics. How much benefit would such systems offer? We developed, empirically validated, and mathematically characterized a quantitative model that simulates disease spread and detection time for any given disease and detection system. We find that hospital monitoring could have detected COVID-19 in Wuhan 0.4 weeks earlier than it was actually discovered, at 2,300 cases (standard error: 76 cases) compared to 3,400 (standard error: 161 cases). Wastewater monitoring would not have accelerated COVID-19 detection in Wuhan, but provides benefit in smaller catchments and for asymptomatic or long-incubation diseases like polio or HIV/AIDS. Air travel monitoring does not accelerate outbreak detection in most scenarios we evaluated. In sum, early detection systems can substantially mitigate some future pandemics, but would not have changed the course of COVID-19.
Collapse
Affiliation(s)
- Andrew Bo Liu
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Daniel Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Liu AB, Lee D, Jalihal AP, Hanage WP, Springer M. Quantitatively assessing early detection strategies for mitigating COVID-19 and future pandemics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.08.23291050. [PMID: 37398047 PMCID: PMC10312821 DOI: 10.1101/2023.06.08.23291050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Researchers and policymakers have proposed systems to detect novel pathogens earlier than existing surveillance systems by monitoring samples from hospital patients, wastewater, and air travel, in order to mitigate future pandemics. How much benefit would such systems offer? We developed, empirically validated, and mathematically characterized a quantitative model that simulates disease spread and detection time for any given disease and detection system. We find that hospital monitoring could have detected COVID-19 in Wuhan 0.4 weeks earlier than it was actually discovered, at 2,300 cases (standard error: 76 cases) compared to 3,400 (standard error: 161 cases). Wastewater monitoring would not have accelerated COVID-19 detection in Wuhan, but provides benefit in smaller catchments and for asymptomatic or long-incubation diseases like polio or HIV/AIDS. Monitoring of air travel provides little benefit in most scenarios we evaluated. In sum, early detection systems can substantially mitigate some future pandemics, but would not have changed the course of COVID-19.
Collapse
Affiliation(s)
- Andrew Bo Liu
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
| | - Daniel Lee
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
9
|
Dallman TJ, Neuert S, Fernandez Turienzo C, Berin M, Richardson E, Fuentes-Utrilla P, Loman N, Gharbia S, Jenkins C, Behrens RH, Godbole G, Brown M. Prevalence and Persistence of Antibiotic Resistance Determinants in the Gut of Travelers Returning to the United Kingdom is Associated with Colonization by Pathogenic Escherichia coli. Microbiol Spectr 2023; 11:e0518522. [PMID: 37255437 PMCID: PMC10433802 DOI: 10.1128/spectrum.05185-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
The gut microbiota constitutes an ideal environment for the selection, exchange, and carriage of antibiotic resistance determinants (ARDs), and international travel has been identified as a risk factor for acquisition of resistant organisms. Here, we present a longitudinal metagenomic analysis of the gut resistome in travellers to "high-risk" countries (Gutback). Fifty volunteers, recruited at a travel clinic in London, United Kingdom, provided stool samples before (pre-travel), immediately after (post-travel), and 6 months after their return (follow-up) from a high-risk destination. Fecal DNA was extracted, metagenomic sequencing performed and the resistome profiled. An increase in abundance and diversity of resistome was observed after travel. Significant increases in abundance were seen in antimicrobial genes conferring resistance to macrolides, third-generation cephalosporins, aminoglycosides, and sulfonamides. There was a significant association with increased resistome abundance if the participant experienced diarrhea during travel or took antibiotics, but these two variables were co-correlated. The resistome abundance returned to pre-travel levels by the 6-month sample point but there was evidence of persistence of several ARDs. The post-travel samples had an increase in abundance Escherichia coli which was positively associated with many acquired resistant determinants. Virulence and phylogenetic profiling revealed pathogenic E. coli significantly contributed to this increase abundance. In summary, in this study, foreign travel remains a significant risk factor for acquisition of microbes conferring resistance to multiple classes of antibiotics, often associated with symptomatic exposure to diarrhoeagenic E. coli. IMPORTANCE A future where antimicrobial therapy is severely compromised by the increase in resistant organisms is of grave concern. Given the variability in prevalence and diversity of antimicrobial resistance determinants in different geographical settings, international travel is a known risk factor for acquisition of resistant organisms into the gut microbiota. In this study, we show the utility of metagenomic approaches to quantify the levels of acquisition and carriage of resistance determinants after travel to a "high-risk" setting. Significant modulation to the resistome was seen after travel that is largely resolved within 6 months, although evidence of persistence of several ARDs was observed. Risk factors for acquisition included experiencing a diarrheal episode and the use of antibiotics. Colonization by pathogenic Escherichia coli was correlated with an increase in acquisition of antimicrobial resistance determinants, and as such established public health guidance to travelers on food and water safety remain an important message to reduce the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Timothy J. Dallman
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency London, United Kingdom
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Saskia Neuert
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency London, United Kingdom
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Cristina Fernandez Turienzo
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Michelle Berin
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Emily Richardson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- MicrobesNG, Birmingham, United Kingdom
| | - Pablo Fuentes-Utrilla
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- MicrobesNG, Birmingham, United Kingdom
| | - Nicholas Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Saheer Gharbia
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency London, United Kingdom
- National Institute for Health Research Health Protection Research Unit in Genomics and Enabling Data, Warwick University, United Kingdom
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency London, United Kingdom
- National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Ron H. Behrens
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gauri Godbole
- Gastrointestinal Bacteria Reference Unit, UK Health Security Agency London, United Kingdom
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael Brown
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Jones DL, Rhymes JM, Wade MJ, Kevill JL, Malham SK, Grimsley JMS, Rimmer C, Weightman AJ, Farkas K. Suitability of aircraft wastewater for pathogen detection and public health surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159162. [PMID: 36202356 PMCID: PMC9528016 DOI: 10.1016/j.scitotenv.2022.159162] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
International air travel is now widely recognised as one of the primary mechanisms responsible for the transnational movement and global spread of SARS-CoV-2. Monitoring the viral load and novel lineages within human-derived wastewater collected from aircraft and at air transport hubs has been proposed as an effective way to monitor the importation frequency of viral pathogens. The success of this approach, however, is highly dependent on the bathroom and defecation habits of air passengers during their journey. In this study of UK adults (n = 2103), we quantified the likelihood of defecation prior to departure, on the aircraft and upon arrival on both short- and long-haul flights. The results were then used to assess the likelihood of capturing the signal from infected individuals at UK travel hubs. To obtain a representative cross-section of the population, the survey was stratified by geographical region, gender, age, parenting status, and social class. We found that an individual's likelihood to defecate on short-haul flights (< 6 h in duration) was low (< 13 % of the total), but was higher on long-haul flights (< 36 %; > 6 h in duration). This behaviour pattern was higher among males and younger age groups. The maximum likelihood of defecation was prior to departure (< 39 %). Based on known SARS-CoV-2 faecal shedding rates (30-60 %) and an equal probability of infected individuals being on short- (71 % of inbound flights) and long-haul flights (29 %), we estimate that aircraft wastewater is likely to capture ca. 8-14 % of SARS-CoV-2 cases entering the UK. Monte Carlo simulations predicted that SARS-CoV-2 would be present in wastewater on 14 % of short-haul flights and 62 % of long-haul flights under current pandemic conditions. We conclude that aircraft wastewater alone is insufficient to effectively monitor all the transboundary entries of faecal-borne pathogens but can form part of a wider strategy for public heath surveillance at national borders.
Collapse
Affiliation(s)
- Davey L Jones
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia.
| | - Jennifer M Rhymes
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UK Centre for Ecology and Hydrology, Bangor, Gwynedd LL57 2UW, UK
| | - Matthew J Wade
- Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK; UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, London SW1H 0TL, UK
| | - Jessica L Kevill
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Jasmine M S Grimsley
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, London SW1H 0TL, UK; The London Data Company, London EC2N 2AT, UK
| | - Charlotte Rimmer
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Andrew J Weightman
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK; The London Data Company, London EC2N 2AT, UK
| |
Collapse
|
11
|
Yokoyama M, Peto L, Budgell EP, Jones N, Sheridan E, Liu J, Walker AS, Stoesser N, Gweon HS, Llewelyn MJ. Microbial diversity and antimicrobial resistance in faecal samples from acute medical patients assessed through metagenomic sequencing. PLoS One 2023; 18:e0282584. [PMID: 36928667 PMCID: PMC10019653 DOI: 10.1371/journal.pone.0282584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/18/2023] [Indexed: 03/18/2023] Open
Abstract
Antimicrobial resistance (AMR) is a threat to global public health. However, unsatisfactory approaches to directly measuring the AMR burden carried by individuals has hampered efforts to assess interventions aimed at reducing selection for AMR. Metagenomics can provide accurate detection and quantification of AMR genes within an individual person's faecal flora (their gut "resistome"). Using this approach, we aimed to test the hypothesis that differences in antimicrobial use across different hospitals in the United Kingdom will result in observable differences in the resistome of individual patients. Three National Health Service acute Hospital Trusts with markedly different antibiotic use and Clostridioides difficile infection rates collected faecal samples from anonymous patients which were discarded after C. difficile testing over a period of 9 to 15 months. Metagenomic DNA was extracted from these samples and sequenced using an Illumina NovaSeq 6000 platform. The resulting sequencing reads were analysed for taxonomic composition and for the presence of AMR genes. Among 683 faecal metagenomes we found huge variation between individuals in terms of taxonomic diversity (Shannon Index range 0.10-3.99) and carriage of AMR genes (Median 1.50 genes/cell/sample overall). We found no statistically significant differences in diversity (median Shannon index 2.16 (IQR 1.71-2.56), 2.15 (IQR 1.62-2.50) and 2.26 (IQR 1.55-2.51)) or carriage of AMR genes (median 1.37 genes/cell/sample (IQR 0.70-3.24), 1.70 (IQR 0.70-4.52) and 1.43 (IQR 0.55-3.71)) at the three trusts respectively. This was also the case across the sample collection period within the trusts. While we have not demonstrated differences over place or time using metagenomic sequencing of faecal discards, other sampling frameworks may be more suitable to determine whether organisational level differences in antibiotic use are associated with individual-level differences in burden of AMR carriage.
Collapse
Affiliation(s)
- Maho Yokoyama
- Department of Global Health and Infectious Diseases, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Leon Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eric P Budgell
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Jones
- Department of Infection, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Elizabeth Sheridan
- Department of Microbiology, University Hospitals Dorset, Bournemouth, United Kingdom
| | - Jane Liu
- Department of Microbiology, Royal United Hospitals Bath, Bath, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infection, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Hyun S Gweon
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Martin J Llewelyn
- Department of Global Health and Infectious Diseases, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
12
|
Tiwari A, Kurittu P, Al-Mustapha AI, Heljanko V, Johansson V, Thakali O, Mishra SK, Lehto KM, Lipponen A, Oikarinen S, Pitkänen T, Heikinheimo A. Wastewater surveillance of antibiotic-resistant bacterial pathogens: A systematic review. Front Microbiol 2022; 13:977106. [PMID: 36590429 PMCID: PMC9798455 DOI: 10.3389/fmicb.2022.977106] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Infectious diseases caused by antibiotic-resistant bacterial (ARB) pathogens are a serious threat to human and animal health. The active surveillance of ARB using an integrated one-health approach can help to reduce the emergence and spread of ARB, reduce the associated economic impact, and guide antimicrobial stewardship programs. Wastewater surveillance (WWS) of ARB provides composite samples for a total population, with easy access to the mixed community microbiome. This concept is emerging rapidly, but the clinical utility, sensitivity, and uniformity of WWS of ARB remain poorly understood especially in relation to clinical evidence in sewershed communities. Here, we systematically searched the literature to identify studies that have compared findings from WWS of ARB and antibiotic resistance genes (ARG) with clinical evidence in parallel, thereby evaluating how likely WWS of ARB and ARG can relate to the clinical cases in communities. Initially, 2,235 articles were obtained using the primary search keywords, and 1,219 articles remained after de-duplication. Among these, 35 articles fulfilled the search criteria, and an additional 13 relevant articles were included by searching references in the primary literature. Among the 48 included papers, 34 studies used a culture-based method, followed by 11 metagenomics, and three PCR-based methods. A total of 28 out of 48 included studies were conducted at the single sewershed level, eight studies involved several countries, seven studies were conducted at national or regional scales, and five at hospital levels. Our review revealed that the performance of WWS of ARB pathogens has been evaluated more frequently for Escherichia coli, Enterococcus spp., and other members of the family Enterobacteriaceae, but has not been uniformly tested for all ARB pathogens. Many wastewater-based ARB studies comparing the findings with clinical evidence were conducted to evaluate the public health risk but not to relate with clinical evidence and to evaluate the performance of WWS of ARB. Indeed, relating WWS of ARB with clinical evidence in a sewershed is not straightforward, as the source of ARB in wastewater cannot be only from symptomatic human individuals but can also be from asymptomatic carriers as well as from animal sources. Further, the varying fates of each bacterial species and ARG within the sewerage make the aim of connecting WWS of ARB with clinical evidence more complicated. Therefore, future studies evaluating the performance of many AMR pathogens and their genes for WWS one by one can make the process simpler and the interpretation of results easier.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Ananda Tiwari,
| | - Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ahmad I. Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria,Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Nigeria
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Shyam Kumar Mishra
- School of Optometry and Vision Science, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
13
|
|
14
|
Nadimpalli ML, Lanza VF, Montealegre MC, Sultana S, Fuhrmeister ER, Worby CJ, Teichmann L, Caduff L, Swarthout JM, Crider YS, Earl AM, Brown J, Luby SP, Islam MA, Julian TR, Pickering AJ. Drinking water chlorination has minor effects on the intestinal flora and resistomes of Bangladeshi children. Nat Microbiol 2022; 7:620-629. [PMID: 35422497 PMCID: PMC9249080 DOI: 10.1038/s41564-022-01101-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Healthy development of the gut microbiome provides long-term health benefits. Children raised in countries with high infectious disease burdens are frequently exposed to diarrhoeal pathogens and antibiotics, which perturb gut microbiome assembly. A recent cluster-randomized trial leveraging >4,000 child observations in Dhaka, Bangladesh, found that automated water chlorination of shared taps effectively reduced child diarrhoea and antibiotic use. In this substudy, we leveraged stool samples collected from 130 children 1 year after chlorine doser installation to examine differences between treatment and control children's gut microbiota. Water chlorination was associated with increased abundance of several bacterial genera previously linked to improved gut health; however, we observed no effects on the overall richness or diversity of taxa. Several clinically relevant antibiotic resistance genes were relatively more abundant in the gut microbiome of treatment children, possibly due to increases in Enterobacteriaceae. While further studies on the long-term health impacts of drinking chlorinated water would be valuable, we conclude that access to chlorinated water did not substantially impact child gut microbiome development in this setting, supporting the use of chlorination to increase global access to safe drinking water.
Collapse
Affiliation(s)
- Maya L. Nadimpalli
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts University, Boston, MA, USA
| | - Val F. Lanza
- Bioinformatics Unit, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain,Network Research Center for Infectious Diseases (CIBERINFEC), Spain
| | | | - Sonia Sultana
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Erica R. Fuhrmeister
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Colin J. Worby
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA
| | - Lisa Teichmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Lea Caduff
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jenna M. Swarthout
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Yoshika S. Crider
- Energy and Resources Group, University of California Berkeley, Berkeley, CA, USA,King Center on Global Development, Stanford University, Stanford, CA, USA
| | - Ashlee M. Earl
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen P. Luby
- Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Mohammad Aminul Islam
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland,Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Timothy R. Julian
- Network Research Center for Infectious Diseases (CIBERINFEC), Spain,Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Amy J. Pickering
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts University, Boston, MA, USA,Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA,Blum Center for Developing Economies, University of California, Berkeley, CA, USA,Correspondence and requests for materials should be addressed to Dr. Amy Pickering () and Dr. Tim Julian ()
| |
Collapse
|
15
|
Poulsen CS, Ekstrøm CT, Aarestrup FM, Pamp SJ. Library Preparation and Sequencing Platform Introduce Bias in Metagenomic-Based Characterizations of Microbiomes. Microbiol Spectr 2022; 10:e0009022. [PMID: 35289669 PMCID: PMC9045301 DOI: 10.1128/spectrum.00090-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Metagenomics is increasingly used to describe microbial communities in biological specimens. Ideally, the steps involved in the processing of the biological specimens should not change the microbiome composition in a way that it could lead to false interpretations of inferred microbial community composition. Common steps in sample preparation include sample collection, storage, DNA isolation, library preparation, and DNA sequencing. Here, we assess the effect of three library preparation kits and two DNA sequencing platforms. Of the library preparation kits, one involved a PCR step (Nextera), and two were PCR free (NEXTflex and KAPA). We sequenced the libraries on Illumina HiSeq and NextSeq platforms. As example microbiomes, two pig fecal samples and two sewage samples of which aliquots were stored at different storage conditions (immediate processing and storage at -80°C) were assessed. All DNA isolations were performed in duplicate, totaling 80 samples, excluding controls. We found that both library preparation and sequencing platform had systematic effects on the inferred microbial community composition. The different sequencing platforms introduced more variation than library preparation and freezing the samples. The results highlight that all sample processing steps need to be considered when comparing studies. Standardization of sample processing is key to generating comparable data within a study, and comparisons of differently generated data, such as in a meta-analysis, should be performed cautiously. IMPORTANCE Previous research has reported effects of sample storage conditions and DNA isolation procedures on metagenomics-based microbiome composition; however, the effect of library preparation and DNA sequencing in metagenomics has not been thoroughly assessed. Here, we provide evidence that library preparation and sequencing platform introduce systematic biases in the metagenomic-based characterization of microbial communities. These findings suggest that library preparation and sequencing are important parameters to keep consistent when aiming to detect small changes in microbiome community structure. Overall, we recommend that all samples in a microbiome study are processed in the same way to limit unwanted variations that could lead to false conclusions. Furthermore, if we are to obtain a more holistic insight from microbiome data generated around the world, we will need to provide more detailed sample metadata, including information about the different sample processing procedures, together with the DNA sequencing data at the public repositories.
Collapse
Affiliation(s)
- Casper S. Poulsen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Claus T. Ekstrøm
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sünje J. Pamp
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Vassallo A, Kett S, Purchase D, Marvasi M. The Bacterial Urban Resistome: Recent Advances. Antibiotics (Basel) 2022; 11:512. [PMID: 35453263 PMCID: PMC9030810 DOI: 10.3390/antibiotics11040512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cities that are densely populated are reservoirs of antibiotic resistant genes (ARGs). The overall presence of all resistance genes in a specific environment is defined as a resistome. Spatial proximity of surfaces and different hygienic conditions leads to the transfer of antibiotic resistant bacteria (ARB) within urban environments. Built environments, public transportation, green spaces, and citizens' behaviors all support persistence and transfer of antimicrobial resistances (AMR). Various unique aspects of urban settings that promote spread and resilience of ARGs/ARB are discussed: (i) the role of hospitals and recreational parks as reservoirs; (ii) private and public transportation as carriers of ARGs/ARB; (iii) the role of built environments as a hub for horizontal gene transfer even though they support lower microbial biodiversity than outdoor environments; (iv) the need to employ ecological and evolutionary concepts, such as modeling the fate of a specific ARG/ARB, to gain enhanced health risk assessments. Our understanding and our ability to control the rise of AMR in an urban setting is linked to our knowledge of the network connecting urban reservoirs and the environment.
Collapse
Affiliation(s)
- Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Steve Kett
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | - Diane Purchase
- Department of Natural Sciences, Middlesex University London, London NW4 4BT, UK; (S.K.); (D.P.)
| | | |
Collapse
|
17
|
Ma T, McAllister TA, Guan LL. A review of the resistome within the digestive tract of livestock. J Anim Sci Biotechnol 2021; 12:121. [PMID: 34763729 PMCID: PMC8588621 DOI: 10.1186/s40104-021-00643-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
Antimicrobials have been widely used to prevent and treat infectious diseases and promote growth in food-production animals. However, the occurrence of antimicrobial resistance poses a huge threat to public and animal health, especially in less developed countries where food-producing animals often intermingle with humans. To limit the spread of antimicrobial resistance from food-production animals to humans and the environment, it is essential to have a comprehensive knowledge of the role of the resistome in antimicrobial resistance (AMR), The resistome refers to the collection of all antimicrobial resistance genes associated with microbiota in a given environment. The dense microbiota in the digestive tract is known to harbour one of the most diverse resistomes in nature. Studies of the resistome in the digestive tract of humans and animals are increasing exponentially as a result of advancements in next-generation sequencing and the expansion of bioinformatic resources/tools to identify and describe the resistome. In this review, we outline the various tools/bioinformatic pipelines currently available to characterize and understand the nature of the intestinal resistome of swine, poultry, and ruminants. We then propose future research directions including analysis of resistome using long-read sequencing, investigation in the role of mobile genetic elements in the expression, function and transmission of AMR. This review outlines the current knowledge and approaches to studying the resistome in food-producing animals and sheds light on future strategies to reduce antimicrobial usage and control the spread of AMR both within and from livestock production systems.
Collapse
Affiliation(s)
- Tao Ma
- Key laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G2P5, Edmonton, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4P4, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G2P5, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Yap M, Ercolini D, Álvarez-Ordóñez A, O'Toole PW, O'Sullivan O, Cotter PD. Next-Generation Food Research: Use of Meta-Omic Approaches for Characterizing Microbial Communities Along the Food Chain. Annu Rev Food Sci Technol 2021; 13:361-384. [PMID: 34678075 DOI: 10.1146/annurev-food-052720-010751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms exist along the food chain and impact the quality and safety of foods in both positive and negative ways. Identifying and understanding the behavior of these microbial communities enable the implementation of preventative or corrective measures in public health and food industry settings. Current culture-dependent microbial analyses are time-consuming and target only specific subsets of microbes. However, the greater use of culture-independent meta-omic approaches has the potential to facilitate a thorough characterization of the microbial communities along the food chain. Indeed, these methods have shown potential in contributing to outbreak investigation, ensuring food authenticity, assessing the spread of antimicrobial resistance, tracking microbial dynamics during fermentation and processing, and uncovering the factors along the food chain that impact food quality and safety. This review examines the community-based approaches, and particularly the application of sequencing-based meta-omics strategies, for characterizing microbial communities along the food chain. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Min Yap
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,School of Microbiology, University College Cork, County Cork, Ireland
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain.,Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul W O'Toole
- School of Microbiology, University College Cork, County Cork, Ireland.,APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,APC Microbiome Ireland, University College Cork, County Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,APC Microbiome Ireland, University College Cork, County Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
19
|
Aarestrup FM, Bonten M, Koopmans M. Pandemics- One Health preparedness for the next. LANCET REGIONAL HEALTH-EUROPE 2021; 9:100210. [PMID: 34642673 PMCID: PMC8495373 DOI: 10.1016/j.lanepe.2021.100210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The majority of emerging infectious diseases originate in animals. Current routine surveillance is focused on known diseases and clinical syndromes, but the increasing likelihood of emerging disease outbreaks shows the critical importance of early detection of unusual illness or circulation of pathogens - prior to human disease manifestation. In this Viewpoint, we focus on one key pillar of preparedness—the need for early warning surveillance at the human, animal, environmental interface. The COVID-19 pandemic has revolutionized the scale of sequencing of pathogen genomes, and the current investments in global genomic surveillance offer great potential for a novel, truly integrated Disease X (with epidemic or pandemic potential) surveillance arm provided we do not make the mistake of developing them solely for the case at hand. Generic tools include metagenomic sequencing as a catch-all technique, rather than detection and sequencing protocols focusing on what we know. Developing agnostic or more targeted metagenomic sequencing to assess unusual disease in humans and animals, combined with random sampling of environmental samples capturing pathogen circulation is technically challenging, but could provide a true early warning system. Rather than rebuilding and reinforcing the pre-existing silo's, a real step forward would be to take the lessons learned and bring in novel essential partnerships in a One Health approach to preparedness.
Collapse
Affiliation(s)
| | - Marc Bonten
- Utrecht University Medical Centre, Utrecht, The Netherlands
| | | |
Collapse
|
20
|
Nogueira T, Botelho A. Metagenomics and Other Omics Approaches to Bacterial Communities and Antimicrobial Resistance Assessment in Aquacultures. Antibiotics (Basel) 2021; 10:787. [PMID: 34203511 PMCID: PMC8300701 DOI: 10.3390/antibiotics10070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
The shortage of wild fishery resources and the rising demand for human nutrition has driven a great expansion in aquaculture during the last decades in terms of production and economic value. As such, sustainable aquaculture production is one of the main priorities of the European Union's 2030 agenda. However, the intensification of seafood farming has resulted in higher risks of disease outbreaks and in the increased use of antimicrobials to control them. The selective pressure exerted by these drugs provides the ideal conditions for the emergence of antimicrobial resistance hotspots in aquaculture facilities. Omics technology is an umbrella term for modern technologies such as genomics, metagenomics, transcriptomics, proteomics, culturomics, and metabolomics. These techniques have received increasing recognition because of their potential to unravel novel mechanisms in biological science. Metagenomics allows the study of genomes in microbial communities contained within a certain environment. The potential uses of metagenomics in aquaculture environments include the study of microbial diversity, microbial functions, and antibiotic resistance genes. A snapshot of these high throughput technologies applied to microbial diversity and antimicrobial resistance studies in aquacultures will be presented in this review.
Collapse
Affiliation(s)
- Teresa Nogueira
- Laboratory of Bacteriology and Mycology, INIAV-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Evolutionary Ecology of Microorganisms Group, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Botelho
- Laboratory of Bacteriology and Mycology, INIAV-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
| |
Collapse
|
21
|
Abstract
The risk of emergence and spread of novel human pathogens originating from an animal reservoir has increased in the past decades. However, the unpredictable nature of disease emergence makes surveillance and preparedness challenging. Knowledge of general risk factors for emergence and spread, combined with local level data is needed to develop a risk-based methodology for early detection. This involves the implementation of the One Health approach, integrating human, animal and environmental health sectors, as well as social sciences, bioinformatics and more. Recent technical advances, such as metagenomic sequencing, will aid the rapid detection of novel pathogens on the human-animal interface.
Collapse
|
22
|
Skarżyńska M, Leekitcharoenphon P, Hendriksen RS, Aarestrup FM, Wasyl D. A metagenomic glimpse into the gut of wild and domestic animals: Quantification of antimicrobial resistance and more. PLoS One 2020; 15:e0242987. [PMID: 33270717 PMCID: PMC7714112 DOI: 10.1371/journal.pone.0242987] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is a complex subject, why one need to look at this phenomenon from a wider and holistic perspective. The extensive use of the same antimicrobial classes in human and veterinary medicine as well as horticulture is one of the main drivers for the AMR selection. Here, we applied shotgun metagenomics to investigate the AMR epidemiology in several animal species including farm animals, which are often exposed to antimicrobial treatment opposed to an unique set of wild animals that seems not to be subjected to antimicrobial pressure. The comparison of the domestic and wild animals allowed to investigate the possible anthropogenic impact on AMR spread. Inclusion of animals with different feeding behaviors (carnivores, omnivores) enabled to further assess which AMR genes that thrives within the food chain. We tested fecal samples not only of intensively produced chickens, turkeys, and pigs, but also of wild animals such as wild boars, red foxes, and rodents. A multi-directional approach mapping obtained sequences to several databases provided insight into the occurrence of the different AMR genes. The method applied enabled also analysis of other factors that may influence AMR of intestinal microbiome such as diet. Our findings confirmed higher levels of AMR in farm animals than in wildlife. The results also revealed the potential of wildlife in the AMR dissemination. Particularly in red foxes, we found evidence of several AMR genes conferring resistance to critically important antimicrobials like quinolones and cephalosporins. In contrast, the lowest abundance of AMR was observed in rodents originating from natural environment with presumed limited exposure to antimicrobials. Shotgun metagenomics enabled us to demonstrate that discrepancies between AMR profiles found in the intestinal microbiome of various animals probably resulted from the different antimicrobial exposure, habitats, and behavior of the tested animal species.
Collapse
Affiliation(s)
- Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
| | - Pimlapas Leekitcharoenphon
- National Food Institute, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens, Food and Agriculture Organization Reference Laboratory for Antimicrobial Resistance, and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Rene S. Hendriksen
- National Food Institute, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens, Food and Agriculture Organization Reference Laboratory for Antimicrobial Resistance, and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank M. Aarestrup
- National Food Institute, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens, Food and Agriculture Organization Reference Laboratory for Antimicrobial Resistance, and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
- Department of Omics Analyses, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
23
|
Li S, Yang Z, Hu D, Cao L, He Q. Understanding building-occupant-microbiome interactions toward healthy built environments: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2020; 15:65. [PMID: 33145119 PMCID: PMC7596174 DOI: 10.1007/s11783-020-1357-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.
Collapse
Affiliation(s)
- Shuai Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Zhiyao Yang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Da Hu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Liu Cao
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Institute for a Secure & Sustainable Environment, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
24
|
Engsbro AL, Riis Jespersen HS, Goldschmidt MI, Mollerup S, Worning P, Pedersen MS, Westh H, Schneider UV. Ceftriaxone-resistant Salmonella enterica serotype Typhi in a pregnant traveller returning from Karachi, Pakistan to Denmark, 2019. ACTA ACUST UNITED AC 2020; 24. [PMID: 31138366 PMCID: PMC6540646 DOI: 10.2807/1560-7917.es.2019.24.21.1900289] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a ceftriaxone-resistant Salmonella Typhi bacteraemia in a pregnant woman returning from a family visit in Pakistan. Whole genome sequencing confirmed similarity to a Pakistani outbreak clone. Pregnancy and unawareness of this outbreak delayed appropriate antibiotic therapy. Concurrently, we detected faecal carriage of a carbapenemase-producing Escherichia coli. Awareness of the ongoing outbreak should affect empiric treatment of typhoid fever and hygiene precautions in travellers returning from Pakistan. Meropenem may be warranted in severe cases.
Collapse
Affiliation(s)
- Anne Line Engsbro
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | | | - Sarah Mollerup
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Peder Worning
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Martin Schou Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Henrik Westh
- University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Uffe Vest Schneider
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
25
|
Ekwanzala MD, Dewar JB, Momba MNB. Environmental resistome risks of wastewaters and aquatic environments deciphered by shotgun metagenomic assembly. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110612. [PMID: 32302860 DOI: 10.1016/j.ecoenv.2020.110612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we deciphered the core resistome disseminating from hospital wastewater to the aquatic environment by characterising the resistome, plasmidome, mobilome and virulome using metagenomic analysis. This study also elucidated different environmental resistome risks using shotgun-metagenomic assembly. The results showed that clinically relevant taxa were found in assessed matrices (Salmonella spp., Acinetobacter spp, Escherichia-Shigella spp., Pseudomonas spp., Staphylococcus spp. and Vibrio spp.). For the plasmidome, we found 249 core plasmidome sequences that were shared among all assessed matrices. The core mobilome of 2424 mobile genetic elements shared among all assessed matrices was found. Regarding the virulome, we found 148 core virulence factors shared among all assessed samples, and the core virulome content was consistently shared across the most abundant bacterial genera. Although influent of wastewater showed considerable higher relative bacterial abundance (P = 0.008), hospital wastewater showed significant higher environmental resistome risk scores against all other assessed matrices, with an average of 46.34% (P = 0.001). These results suggest hospital wastewater, effluent and sewage sludge should be subjected to stringent mitigating measures to minimise such dissemination.
Collapse
Affiliation(s)
- Mutshiene Deogratias Ekwanzala
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private BagX680, Pretoria, 0001, South Africa.
| | - John Barr Dewar
- Department of Life and Consumer Sciences, University of South Africa, Florida Campus, Johannesburg, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private BagX680, Pretoria, 0001, South Africa.
| |
Collapse
|
26
|
Van Gompel L, Luiken REC, Sarrazin S, Munk P, Knudsen BE, Hansen RB, Bossers A, Aarestrup FM, Dewulf J, Wagenaar JA, Mevius DJ, Schmitt H, Heederik DJJ, Dorado-García A, Smit LAM. The antimicrobial resistome in relation to antimicrobial use and biosecurity in pig farming, a metagenome-wide association study in nine European countries. J Antimicrob Chemother 2020; 74:865-876. [PMID: 30649386 DOI: 10.1093/jac/dky518] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Previous studies in food-producing animals have shown associations between antimicrobial use (AMU) and resistance (AMR) in specifically isolated bacterial species. Multi-country data are scarce and only describe between-country differences. Here we investigate associations between the pig faecal mobile resistome and characteristics at the farm-level across Europe. METHODS A cross-sectional study was conducted among 176 conventional pig farms from nine European countries. Twenty-five faecal samples from fattening pigs were pooled per farm and acquired resistomes were determined using shotgun metagenomics and the Resfinder reference database, i.e. the full collection of horizontally acquired AMR genes (ARGs). Normalized fragments resistance genes per kilobase reference per million bacterial fragments (FPKM) were calculated. Specific farm-level data (AMU, biosecurity) were collected. Random-effects meta-analyses were performed by country, relating farm-level data to relative ARG abundances (FPKM). RESULTS Total AMU during fattening was positively associated with total ARG (total FPKM). Positive associations were particularly observed between widely used macrolides and tetracyclines, and ARGs corresponding to the respective antimicrobial classes. Significant AMU-ARG associations were not found for β-lactams and only few colistin ARGs were found, despite high use of these antimicrobial classes in younger pigs. Increased internal biosecurity was directly related to higher abundances of ARGs mainly encoding macrolide resistance. These effects of biosecurity were independent of AMU in mutually adjusted models. CONCLUSIONS Using resistome data in association studies is unprecedented and adds accuracy and new insights to previously observed AMU-AMR associations. Major components of the pig resistome are positively and independently associated with on-farm AMU and biosecurity conditions.
Collapse
Affiliation(s)
- Liese Van Gompel
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands
| | - Roosmarijn E C Luiken
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands
| | - Steven Sarrazin
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Patrick Munk
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet 204, Kongens Lyngby, Denmark
| | - Berith E Knudsen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet 204, Kongens Lyngby, Denmark
| | | | - Alex Bossers
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Houtribweg 39, RA, Lelystad, The Netherlands
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet 204, Kongens Lyngby, Denmark
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Jaap A Wagenaar
- Wageningen Bioveterinary Research, Houtribweg 39, RA, Lelystad, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, CL, Utrecht, The Netherlands
| | - Dik J Mevius
- Wageningen Bioveterinary Research, Houtribweg 39, RA, Lelystad, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, CL, Utrecht, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands.,Centre of Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, MA, Bilthoven, The Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands
| | - Alejandro Dorado-García
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands
| | | |
Collapse
|
27
|
Osakunor DNM, Munk P, Mduluza T, Petersen TN, Brinch C, Ivens A, Chimponda T, Amanfo SA, Murray J, Woolhouse MEJ, Aarestrup FM, Mutapi F. The gut microbiome but not the resistome is associated with urogenital schistosomiasis in preschool-aged children. Commun Biol 2020; 3:155. [PMID: 32242065 PMCID: PMC7118151 DOI: 10.1038/s42003-020-0859-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Helminth parasites have been shown to have systemic effects in the host. Using shotgun metagenomic sequencing, we characterise the gut microbiome and resistome of 113 Zimbabwean preschool-aged children (1-5 years). We test the hypothesis that infection with the human helminth parasite, Schistosoma haematobium, is associated with changes in gut microbial and antimicrobial resistance gene abundance/diversity. Here, we show that bacteria phyla Bacteroidetes, Firmicutes, Proteobacteria, and fungi phyla Ascomycota, Microsporidia, Zoopagomycota dominate the microbiome. The abundance of Proteobacteria, Ascomycota, and Basidiomycota differ between schistosome-infected versus uninfected children. Specifically, infection is associated with increases in Pseudomonas, Stenotrophomonas, Derxia, Thalassospira, Aspergillus, Tricholoma, and Periglandula, with a decrease in Azospirillum. We find 262 AMR genes, from 12 functional drug classes, but no association with individual-specific data. To our knowledge, we describe a novel metagenomic dataset of Zimbabwean preschool-aged children, indicating an association between urogenital schistosome infection and changes in the gut microbiome.
Collapse
Affiliation(s)
- Derick N M Osakunor
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Patrick Munk
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Takafira Mduluza
- Biochemistry Department, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe
| | - Thomas N Petersen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Christian Brinch
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Alasdair Ivens
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Theresa Chimponda
- Biochemistry Department, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe
| | - Seth A Amanfo
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Janice Murray
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Mark E J Woolhouse
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
28
|
Carney SM, Clemente JC, Cox MJ, Dickson RP, Huang YJ, Kitsios GD, Kloepfer KM, Leung JM, LeVan TD, Molyneaux PL, Moore BB, O'Dwyer DN, Segal LN, Garantziotis S. Methods in Lung Microbiome Research. Am J Respir Cell Mol Biol 2020; 62:283-299. [PMID: 31661299 PMCID: PMC7055701 DOI: 10.1165/rcmb.2019-0273tr] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
The lung microbiome is associated with host immune response and health outcomes in experimental models and patient cohorts. Lung microbiome research is increasing in volume and scope; however, there are no established guidelines for study design, conduct, and reporting of lung microbiome studies. Standardized approaches to yield reliable and reproducible data that can be synthesized across studies will ultimately improve the scientific rigor and impact of published work and greatly benefit microbiome research. In this review, we identify and address several key elements of microbiome research: conceptual modeling and hypothesis framing; study design; experimental methodology and pitfalls; data analysis; and reporting considerations. Finally, we explore possible future directions and research opportunities. Our goal is to aid investigators who are interested in this burgeoning research area and hopefully provide the foundation for formulating consensus approaches in lung microbiome research.
Collapse
Affiliation(s)
| | | | | | | | - Yvonne J Huang
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kirsten M Kloepfer
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Janice M Leung
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Philip L Molyneaux
- Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Foundation National Health Service Trust, London, United Kingdom
| | | | | | - Leopoldo N Segal
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York; and
| | - Stavros Garantziotis
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
29
|
Frost I, Van Boeckel TP, Pires J, Craig J, Laxminarayan R. Global geographic trends in antimicrobial resistance: the role of international travel. J Travel Med 2019; 26:5496989. [PMID: 31115466 DOI: 10.1093/jtm/taz036] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Rising antimicrobial resistance (AMR) is a threat to modern medicine, and increasing international mobility facilitates the spread of AMR. Infections with resistant organisms have higher morbidity and mortality, are costlier to treat, result in longer hospital stays and place a greater burden on health systems than infections caused by susceptible organisms. Here we review the role of travel in the international dissemination of AMR and consider actions at the levels of travelers, travel medicine practitioners and policymakers that would mitigate this threat. RESULTS Resistant pathogens do not recognize international borders; travelers to areas with high AMR prevalence are likely to be exposed to resistant bacteria and return to their home countries colonized. Medical tourists go between health facilities with drastically different rates of AMR, potentially transmitting highly resistant strains.Drug-resistant bacteria have been found in every continent; however, differences between countries in the prevalence of AMR depend on multiple factors. These include levels of antibiotic consumption (including inappropriate use), access to clean water, adequate sanitation, vaccination coverage, the availability of quality healthcare and access to high-quality medical products. CONCLUSIONS Travelers to areas with high levels of AMR should have vaccines up to date, be aware of ways of treating and preventing travelers' diarrhea (other than antibiotic use) and be informed on safe sexual practices. The healthcare systems of low- and middle-income countries require investment to reduce the transmission of resistant strains by improving access to clean water, sanitation facilities and vaccines. Efforts are needed to curb inappropriate antibiotic use worldwide. In addition, more surveillance is needed to understand the role of the movement of humans, livestock and food products in resistance transmission. The travel medicine community has a key role to play in advocating for the recognition of AMR as a priority on the international health agenda. KEY POLICY RECOMMENDATIONS AMR is a threat to modern medicine, and international travel plays a key role in the spread of highly resistant strains. It is essential that this is addressed at multiple levels. Individual travelers can reduce antibiotic consumption and the likelihood of infection. Travelers should have up-to-date vaccines and be informed on methods of preventing and treating travelers' diarrhea, other than use of antibiotics and on safe sexual practices, such as condom use. Healthcare facilities need to be aware of the travel history of patients to provide appropriate treatment to those who are at high risk of exposure and to prevent further spread. Internationally, in countries without reliable and universal access to clean water, sanitation and hygiene, investment is needed to reduce the emergence and spread of resistance and ensure the antimicrobials available are of assured quality. High-income countries must ensure their use of antimicrobials is appropriate to reduce selection for AMR. Surveillance across all countries is needed to monitor and respond to this emerging threat.
Collapse
Affiliation(s)
- Isabel Frost
- Center for Disease Dynamics, Economics & Policy, New Delhi, India.,Amity Institute of Public Health, Amity University, Noida, India
| | - Thomas P Van Boeckel
- Center for Disease Dynamics, Economics & Policy, New Delhi, India.,Swiss Federal Institute of Technology Zurich, Department of Earth Systems Science, Institute for Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - João Pires
- Swiss Federal Institute of Technology Zurich, Department of Earth Systems Science, Institute for Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Jessica Craig
- Center for Disease Dynamics, Economics & Policy, New Delhi, India
| | - Ramanan Laxminarayan
- Center for Disease Dynamics, Economics & Policy, New Delhi, India.,Princeton Environmental Institute, Princeton University, New Jersey, USA
| |
Collapse
|
30
|
Gweon HS, Shaw LP, Swann J, De Maio N, AbuOun M, Niehus R, Hubbard ATM, Bowes MJ, Bailey MJ, Peto TEA, Hoosdally SJ, Walker AS, Sebra RP, Crook DW, Anjum MF, Read DS, Stoesser N. The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples. ENVIRONMENTAL MICROBIOME 2019; 14:7. [PMID: 33902704 PMCID: PMC8204541 DOI: 10.1186/s40793-019-0347-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/28/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Shotgun metagenomics is increasingly used to characterise microbial communities, particularly for the investigation of antimicrobial resistance (AMR) in different animal and environmental contexts. There are many different approaches for inferring the taxonomic composition and AMR gene content of complex community samples from shotgun metagenomic data, but there has been little work establishing the optimum sequencing depth, data processing and analysis methods for these samples. In this study we used shotgun metagenomics and sequencing of cultured isolates from the same samples to address these issues. We sampled three potential environmental AMR gene reservoirs (pig caeca, river sediment, effluent) and sequenced samples with shotgun metagenomics at high depth (~ 200 million reads per sample). Alongside this, we cultured single-colony isolates of Enterobacteriaceae from the same samples and used hybrid sequencing (short- and long-reads) to create high-quality assemblies for comparison to the metagenomic data. To automate data processing, we developed an open-source software pipeline, 'ResPipe'. RESULTS Taxonomic profiling was much more stable to sequencing depth than AMR gene content. 1 million reads per sample was sufficient to achieve < 1% dissimilarity to the full taxonomic composition. However, at least 80 million reads per sample were required to recover the full richness of different AMR gene families present in the sample, and additional allelic diversity of AMR genes was still being discovered in effluent at 200 million reads per sample. Normalising the number of reads mapping to AMR genes using gene length and an exogenous spike of Thermus thermophilus DNA substantially changed the estimated gene abundance distributions. While the majority of genomic content from cultured isolates from effluent was recoverable using shotgun metagenomics, this was not the case for pig caeca or river sediment. CONCLUSIONS Sequencing depth and profiling method can critically affect the profiling of polymicrobial animal and environmental samples with shotgun metagenomics. Both sequencing of cultured isolates and shotgun metagenomics can recover substantial diversity that is not identified using the other methods. Particular consideration is required when inferring AMR gene content or presence by mapping metagenomic reads to a database. ResPipe, the open-source software pipeline we have developed, is freely available ( https://gitlab.com/hsgweon/ResPipe ).
Collapse
Affiliation(s)
- H Soon Gweon
- Harborne Building, School of Biological Sciences, University of Reading, Reading, RG6 6AS, UK.
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK.
| | - Liam P Shaw
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jeremy Swann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicola De Maio
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Rene Niehus
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Mike J Bowes
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Mark J Bailey
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit (HPRU) in Healthcare-associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | | | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit (HPRU) in Healthcare-associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Robert P Sebra
- Department of Genetics and Genomics, Icahn School of Medicine at Mt Sinai, New York, NY, USA
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit (HPRU) in Healthcare-associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Daniel S Read
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Hendriksen RS, Lukjancenko O, Munk P, Hjelmsø MH, Verani JR, Ng’eno E, Bigogo G, Kiplangat S, Oumar T, Bergmark L, Röder T, Neatherlin JC, Clayton O, Hald T, Karlsmose S, Pamp SJ, Fields B, Montgomery JM, Aarestrup FM. Pathogen surveillance in the informal settlement, Kibera, Kenya, using a metagenomics approach. PLoS One 2019; 14:e0222531. [PMID: 31600207 PMCID: PMC6786639 DOI: 10.1371/journal.pone.0222531] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/31/2019] [Indexed: 11/18/2022] Open
Abstract
Background Worldwide, the number of emerging and re-emerging infectious diseases is increasing, highlighting the importance of global disease pathogen surveillance. Traditional population-based methods may fail to capture important events, particularly in settings with limited access to health care, such as urban informal settlements. In such environments, a mixture of surface water runoff and human feces containing pathogenic microorganisms could be used as a surveillance surrogate. Method We conducted a temporal metagenomic analysis of urban sewage from Kibera, an urban informal settlement in Nairobi, Kenya, to detect and quantify bacterial and associated antimicrobial resistance (AMR) determinants, viral and parasitic pathogens. Data were examined in conjunction with data from ongoing clinical infectious disease surveillance. Results A large variation of read abundances related to bacteria, viruses, and parasites of medical importance, as well as bacterial associated antimicrobial resistance genes over time were detected. Significant increased abundances were observed for a number of bacterial pathogens coinciding with higher abundances of AMR genes. Vibrio cholerae as well as rotavirus A, among other virus peaked in several weeks during the study period whereas Cryptosporidium spp. and Giardia spp, varied more over time. Conclusion The metagenomic surveillance approach for monitoring circulating pathogens in sewage was able to detect putative pathogen and resistance loads in an urban informal settlement. Thus, valuable if generated in real time to serve as a comprehensive infectious disease agent surveillance system with the potential to guide disease prevention and treatment. The approach may lead to a paradigm shift in conducting real-time global genomics-based surveillance in settings with limited access to health care.
Collapse
Affiliation(s)
- Rene S. Hendriksen
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail:
| | - Oksana Lukjancenko
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patrick Munk
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mathis H. Hjelmsø
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jennifer R. Verani
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Nairobi, Kenya
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Eric Ng’eno
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Nairobi, Kenya
| | - Godfrey Bigogo
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Nairobi, Kenya
| | - Samuel Kiplangat
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Nairobi, Kenya
| | - Traoré Oumar
- Kenya Medical Research Institute, Center for Global Health Research (KEMRI-CGHR), Nairobi, Kenya
| | - Lasse Bergmark
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Timo Röder
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - John C. Neatherlin
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Onyango Clayton
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Tine Hald
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Susanne Karlsmose
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sünje J. Pamp
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Barry Fields
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Nairobi, Kenya
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Joel M. Montgomery
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Nairobi, Kenya
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Frank M. Aarestrup
- National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
32
|
Hendriksen RS, Bortolaia V, Tate H, Tyson GH, Aarestrup FM, McDermott PF. Using Genomics to Track Global Antimicrobial Resistance. Front Public Health 2019; 7:242. [PMID: 31552211 PMCID: PMC6737581 DOI: 10.3389/fpubh.2019.00242] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022] Open
Abstract
The recent advancements in rapid and affordable DNA sequencing technologies have revolutionized diagnostic microbiology and microbial surveillance. The availability of bioinformatics tools and online accessible databases has been a prerequisite for this. We conducted a scientific literature review and here we present a description of examples of available tools and databases for antimicrobial resistance (AMR) detection and provide future perspectives and recommendations. At least 47 freely accessible bioinformatics resources for detection of AMR determinants in DNA or amino acid sequence data have been developed to date. These include, among others but not limited to, ARG-ANNOT, CARD, SRST2, MEGARes, Genefinder, ARIBA, KmerResistance, AMRFinder, and ResFinder. Bioinformatics resources differ for several parameters including type of accepted input data, presence/absence of software for search within a database of AMR determinants that can be specific to a tool or cloned from other resources, and for the search approach employed, which can be based on mapping or on alignment. As a consequence, each tool has strengths and limitations in sensitivity and specificity of detection of AMR determinants and in application, which for some of the tools have been highlighted in benchmarking exercises and scientific articles. The identified tools are either available at public genome data centers, from GitHub or can be run locally. NCBI and European Nucleotide Archive (ENA) provide possibilities for online submission of both sequencing and accompanying phenotypic antimicrobial susceptibility data, allowing for other researchers to further analyze data, and develop and test new tools. The advancement in whole genome sequencing and the application of online tools for real-time detection of AMR determinants are essential to identify control and prevention strategies to combat the increasing threat of AMR. Accessible tools and DNA sequence data are expanding, which will allow establishing global pathogen surveillance and AMR tracking based on genomics. There is however, a need for standardization of pipelines and databases as well as phenotypic predictions based on the data.
Collapse
Affiliation(s)
- Rene S. Hendriksen
- European Union Reference Laboratory for Antimicrobial Resistance, World Health Organisation, Collaborating Center for Antimicrobial Resistance and Genomics in Food borne Pathogens, FAO Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Valeria Bortolaia
- European Union Reference Laboratory for Antimicrobial Resistance, World Health Organisation, Collaborating Center for Antimicrobial Resistance and Genomics in Food borne Pathogens, FAO Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Heather Tate
- Center for Veterinary Medicine, Office of Research, United States Food and Drug Administration, Laurel, MD, United States
| | - Gregory H. Tyson
- Center for Veterinary Medicine, Office of Research, United States Food and Drug Administration, Laurel, MD, United States
| | - Frank M. Aarestrup
- European Union Reference Laboratory for Antimicrobial Resistance, World Health Organisation, Collaborating Center for Antimicrobial Resistance and Genomics in Food borne Pathogens, FAO Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Patrick F. McDermott
- Center for Veterinary Medicine, Office of Research, United States Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
33
|
Zhang N, Zhao P, Li Y. Increased infection severity in downstream cities in infectious disease transmission and tourists surveillance analysis. J Theor Biol 2019; 470:20-29. [PMID: 30851275 PMCID: PMC7094123 DOI: 10.1016/j.jtbi.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Abstract
Infectious disease severely threatens human life. Human mobility and travel patterns influence the spread of infection between cities and countries. We find that the infection severity in downstream cities during outbreaks is related to transmission rate, recovery rate, travel rate, travel duration and the average number of person-to-person contacts per day. The peak value of the infected population in downstream cities is slightly higher than that in source cities. However, as the number of cities increases, the severity increase percentage during outbreaks between end and source cities is constant. The surveillance of important nodes connecting cities, such as airports and train stations, can help delay the occurrence time of infection outbreaks. The city-entry surveillance of hub cities is not only useful to these cities, but also to cities that are strongly connected (i.e., have a high travel rate) to them. The city-exit surveillance of hub cities contributes to other downstream cities, but only slightly to itself. Surveillance conducted in hub cities is highly efficient in controlling infection transmission. Only strengthening the individual immunity of frequent travellers is not efficient for infection control. However, reducing the number of person-to-person contacts per day effectively limits the spread of infection.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Pengcheng Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
34
|
Kasabova S, Hartmann M, Werner N, Käsbohrer A, Kreienbrock L. Used Daily Dose vs. Defined Daily Dose-Contrasting Two Different Methods to Measure Antibiotic Consumption at the Farm Level. Front Vet Sci 2019; 6:116. [PMID: 31069237 PMCID: PMC6491814 DOI: 10.3389/fvets.2019.00116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/28/2019] [Indexed: 02/02/2023] Open
Abstract
Tackling the problem of rising antibiotic resistance requires valid and comparable data on the use of antimicrobial drugs in livestock. To date, no harmonized monitoring of antimicrobial usage in animals is available, and there is no system to assess usage data throughout Europe, thus hampering a direct comparison between different European countries. Most of the currently applied monitoring systems are based on sales data. Placement of sales data in relation to the population at risk requires overall assumptions about the weights of the animals treated and the doses applied. Only a few monitoring systems collect data in which the number of treated animals is reported exactly and does not need to be estimated. To evaluate the influence of different calculation methods on the standardizing procedure of antibiotic usage and benchmarking of farms, the treatment frequency for several farms (broiler, suckling piglets, and fattening pigs) was calculated in the following two different ways: first, based on the Used Daily Dose (TFUDD), and second, based on the Defined Daily Dose (TFDDD). To support this evaluation, consumption data from the Veterinary Consumption of Antibiotics Sentinel (VetCAb-S) project in Germany were used as example data. The results show discrepancies between both outcomes depending on the calculation method applied. In broiler holdings, the median values of TFDDD were 20.89% lower than the median values of TFUDD. In suckling piglets and fattening pig holdings, the median values of TFDDD were increased 77.14% and 16.33%, respectively, which may have serious implications for the benchmarking of farms. Furthermore, this finding reflects that the calculation procedure also has an impact on the comparison between populations. Therefore, UDD-based calculations should be preferred to run monitoring systems with a benchmark mission. If, in contrast, the DDD approach is chosen to compare antimicrobial usage between populations, additional considerations should be made to adjust for the addressed discrepancies.
Collapse
Affiliation(s)
- Svetlana Kasabova
- Department of Biometry, Epidemiology, and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine, Hanover, Germany
| | - Maria Hartmann
- Department of Biometry, Epidemiology, and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine, Hanover, Germany
| | - Nicole Werner
- Department of Biometry, Epidemiology, and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine, Hanover, Germany
| | - Annemarie Käsbohrer
- Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, Vienna, Austria.,Department Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology, and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
35
|
Graham DW, Bergeron G, Bourassa MW, Dickson J, Gomes F, Howe A, Kahn LH, Morley PS, Scott HM, Simjee S, Singer RS, Smith TC, Storrs C, Wittum TE. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann N Y Acad Sci 2019; 1441:17-30. [PMID: 30924539 PMCID: PMC6850694 DOI: 10.1111/nyas.14036] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Abstract
Antimicrobial resistance (AMR) is a significant threat to both human and animal health. The spread of AMR bacteria and genes across systems can occur through a myriad of pathways, both related and unrelated to agriculture, including via wastewater, soils, manure applications, direct exchange between humans and animals, and food exposure. Tracing origins and drivers of AMR bacteria and genes is challenging due to the array of contexts and the complexity of interactions overlapping health practice, microbiology, genetics, applied science and engineering, as well as social and human factors. Critically assessing the diverse and sometimes contradictory AMR literature is a valuable step in identifying tractable mitigation options to stem AMR spread. In this article we review research on the nonfoodborne spread of AMR, with a focus on domesticated animals and the environment and possible exposures to humans. Attention is especially placed on delineating possible sources and causes of AMR bacterial phenotypes, including underpinning the genetics important to human and animal health.
Collapse
Affiliation(s)
| | | | | | - James Dickson
- Department of Animal ScienceIowa State UniversityAmesIowa
| | | | - Adina Howe
- The New York Academy of SciencesNew YorkNew York
| | - Laura H. Kahn
- Woodrow Wilson School of Public International AffairsPrinceton UniversityPrincetonNew Jersey
| | - Paul S. Morley
- Department of Large Animal Clinical ScienceTexas A&M UniversityCanyonTexasUSA
| | - H. Morgan Scott
- Department of Veterinary PathobiologyTexas A&M UniversityCollege StationTexas
| | | | - Randall S. Singer
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesota
| | - Tara C. Smith
- College of Public HealthKent State UniversityKentOhio
| | | | - Thomas E. Wittum
- Department of Veterinary Preventive MedicineOhio State UniversityColumbusOhio
| |
Collapse
|
36
|
Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L, Lukjancenko O, Röder T, Nieuwenhuijse D, Pedersen SK, Kjeldgaard J, Kaas RS, Clausen PTLC, Vogt JK, Leekitcharoenphon P, van de Schans MGM, Zuidema T, de Roda Husman AM, Rasmussen S, Petersen B, Amid C, Cochrane G, Sicheritz-Ponten T, Schmitt H, Alvarez JRM, Aidara-Kane A, Pamp SJ, Lund O, Hald T, Woolhouse M, Koopmans MP, Vigre H, Petersen TN, Aarestrup FM. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun 2019; 10:1124. [PMID: 30850636 PMCID: PMC6408512 DOI: 10.1038/s41467-019-08853-3] [Citation(s) in RCA: 512] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.
Collapse
Affiliation(s)
- Rene S Hendriksen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Patrick Njage
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Bram van Bunnik
- Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Luke McNally
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JD, UK
| | - Oksana Lukjancenko
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Timo Röder
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | | | - Jette Kjeldgaard
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Rolf S Kaas
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Josef Korbinian Vogt
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | | | - Tina Zuidema
- RIKILT Wageningen University and Research, Wageningen, 6708, The Netherlands
| | - Ana Maria de Roda Husman
- National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721, The Netherlands
| | - Simon Rasmussen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Bent Petersen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Clara Amid
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Guy Cochrane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Thomas Sicheritz-Ponten
- Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Kedah, 08100, Malaysia
| | - Heike Schmitt
- National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721, The Netherlands
| | | | | | - Sünje J Pamp
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Ole Lund
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Tine Hald
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Mark Woolhouse
- Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Marion P Koopmans
- Viroscience, Erasmus Medical Center, Rotterdam, 3015, The Netherlands
| | - Håkan Vigre
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | | | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| |
Collapse
|
37
|
Metagenomic analysis of viruses in toilet waste from long distance flights-A new procedure for global infectious disease surveillance. PLoS One 2019; 14:e0210368. [PMID: 30640944 PMCID: PMC6331095 DOI: 10.1371/journal.pone.0210368] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023] Open
Abstract
Human viral pathogens are a major public health threat. Reliable information that accurately describes and characterizes the global occurrence and transmission of human viruses is essential to support national and global priority setting, public health actions, and treatment decisions. However, large areas of the globe are currently without surveillance due to limited health care infrastructure and lack of international cooperation. We propose a novel surveillance strategy, using metagenomic analysis of toilet material from international air flights as a method for worldwide viral disease surveillance. The aim of this study was to design, implement, and evaluate a method for viral analysis of airplane toilet waste enabling simultaneous detection and quantification of a wide range of human viral pathogens. Toilet waste from 19 international airplanes was analyzed for viral content, using viral capture probes followed by high-throughput sequencing. Numerous human pathogens were detected including enteric and respiratory viruses. Several geographic trends were observed with samples originating from South Asia having significantly higher viral species richness as well as higher abundances of salivirus A, aichivirus A and enterovirus B, compared to samples originating from North Asia and North America. In addition, certain city specific trends were observed, including high numbers of rotaviruses in airplanes departing from Islamabad. Based on this study we believe that central sampling and analysis at international airports could be a useful supplement for global viral surveillance, valuable for outbreak detection and for guiding public health resources.
Collapse
|
38
|
Roager HM, Vogt JK, Kristensen M, Hansen LBS, Ibrügger S, Mærkedahl RB, Bahl MI, Lind MV, Nielsen RL, Frøkiær H, Gøbel RJ, Landberg R, Ross AB, Brix S, Holck J, Meyer AS, Sparholt MH, Christensen AF, Carvalho V, Hartmann B, Holst JJ, Rumessen JJ, Linneberg A, Sicheritz-Pontén T, Dalgaard MD, Blennow A, Frandsen HL, Villas-Bôas S, Kristiansen K, Vestergaard H, Hansen T, Ekstrøm CT, Ritz C, Nielsen HB, Pedersen OB, Gupta R, Lauritzen L, Licht TR. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut 2019; 68:83-93. [PMID: 29097438 PMCID: PMC6839833 DOI: 10.1136/gutjnl-2017-314786] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. DESIGN 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. RESULTS 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. CONCLUSION Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation. TRIAL REGISTRATION NUMBER NCT01731366; Results.
Collapse
Affiliation(s)
- Henrik Munch Roager
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Josef K Vogt
- Department of Bio and Heath Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mette Kristensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Frederiksberg, Denmark
| | - Lea Benedicte S Hansen
- Department of Bio and Heath Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sabine Ibrügger
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Frederiksberg, Denmark
| | - Rasmus B Mærkedahl
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Frederiksberg, Denmark,Department of Veterinary Disease Biology, Faculty of Science, University of Copenhagen, Copenhagen, Frederiksberg, Denmark
| | - Martin Iain Bahl
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mads Vendelbo Lind
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Frederiksberg, Denmark,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Rikke L Nielsen
- Department of Bio and Heath Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hanne Frøkiær
- Department of Veterinary Disease Biology, Faculty of Science, University of Copenhagen, Copenhagen, Frederiksberg, Denmark
| | - Rikke Juul Gøbel
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Alastair B Ross
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jesper Holck
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne S Meyer
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Vera Carvalho
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bolette Hartmann
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jüri Johannes Rumessen
- Research Unit and Department of Gastroenterology, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Allan Linneberg
- Research Centre for Prevention and Health, Copenhagen, Denmark,Department of Clinical Experimental Research, Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Sicheritz-Pontén
- Department of Bio and Heath Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marlene D Dalgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Silas Villas-Bôas
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Claus T Ekstrøm
- Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Frederiksberg, Denmark
| | - Henrik Bjørn Nielsen
- Department of Bio and Heath Informatics, Technical University of Denmark, Kongens Lyngby, Denmark,Clinical-Microbiomics A/S, Copenhagen, Denmark
| | - Oluf Borbye Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ramneek Gupta
- Department of Bio and Heath Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Frederiksberg, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
39
|
Acquisition and Loss of CTX-M-Producing and Non-Producing Escherichia coli in the Fecal Microbiome of Travelers to South Asia. mBio 2018; 9:mBio.02408-18. [PMID: 30538187 PMCID: PMC6299485 DOI: 10.1128/mbio.02408-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli strains which produce CTX-M extended-spectrum beta-lactamases are endemic as colonizers of humans and in the environment in South Asia. This study demonstrates that acquisition of CTX-M-producing E. coli (CTX-M-EC) in travelers from the United Kingdom to South Asia is polyclonal, which is likely due to multiple acquisition events from contaminated food and drinking water during travel. CTX-M-EC frequently persists in the fecal microbiome for at least 1 year after acquisition, often alongside newly acquired non-CTX-M E. coli strains. In travelers who acquire CTX-M-EC, pre-travel non-CTX-M E. coli remains as a minority population in the gut until the CTX-M-EC strains are lost. The non-CTX-M strains are then reestablished as the predominant E. coli population. This study has shed light on the dynamics of CTX-M-EC acquisition, colonization, and loss after travel. Future work involving manipulation of nonvirulent resident E. coli could be used to prevent colonization with antibiotic-resistant E. coli. Over 80% of travelers from the United Kingdom to the Indian subcontinent acquire CTX-M-producing Escherichia coli (CTX-M-EC), but the mechanism of CTX-M-EC acquisition is poorly understood. We aimed to investigate the dynamics of CTX-M-EC acquisition in healthy travelers and how this relates to populations of non-CTX-M-EC in the fecal microbiome. This is a prospective observational study of healthy volunteers traveling from the United Kingdom to South Asia. Fecal samples were collected pre- and post-travel at several time points up to 12 months post-travel. A toothpicking experiment was used to determine the proportion of cephalosporin-sensitive E. coli in fecal samples containing CTX-M-EC. MLST and SNP type of pre-travel and post-travel E. coli were deduced by WGS. CTX-M-EC was acquired by 89% (16/18) of volunteers. Polyclonal acquisition of CTX-M-EC was seen in 8/15 volunteers (all had >3 STs across post-travel samples), suggesting multiple acquisition events. Indistinguishable CTX-M-EC clones (zero SNPs apart) are detectable in serial fecal samples up to 7 months after travel, indicating stable maintenance in the fecal microbiome on return to the United Kingdom in the absence of selective pressure. CTX-M-EC-containing samples were often co-colonized with novel, non-CTX-M strains after travel, indicating that acquisition of non-CTX-M-EC occurs alongside CTX-M-EC. The same pre-travel non-CTX-M strains (<10 SNPs apart) were found in post-travel fecal samples after CTX-M-EC had been lost, suggesting return of the fecal microbiome to the pre-travel state and long-term persistence of minority strains in travelers who acquire CTX-M-EC.
Collapse
|
40
|
Ferreira JP, Staerk K. Antimicrobial resistance and antimicrobial use animal monitoring policies in Europe: Where are we ? J Public Health Policy 2018; 38:185-202. [PMID: 28533531 DOI: 10.1057/s41271-017-0067-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The World Health Organization has recognized antimicrobial resistance as one of the top three threats to human health. Any use of antibiotics in animals will ultimately affect humans and vice versa. Appropriate monitoring of antimicrobial use and resistance has been repeatedly emphasized along with the need for global policies. Under the auspices of the European Union research project, EFFORT, we mapped antimicrobial use and resistance monitoring programs in ten European countries. We then compared international and European guidelines and policies. In resistance monitoring, we did not find important differences between countries. Current resistance monitoring systems are focused on food animal species (using fecal samples). They ignore companion animals. The scenario is different for monitoring antibiotics use. Recently, countries have tried to harmonize methodologies, but reporting of antimicrobial use remains voluntary. We therefore identified a need for stronger policies.
Collapse
|
41
|
Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol 2018; 3:898-908. [DOI: 10.1038/s41564-018-0192-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 11/08/2022]
|
42
|
Abstract
The increase in bacteria harboring antimicrobial resistance (AMR) is a global problem because there is a paucity of antibiotics available to treat multidrug-resistant bacterial infections in humans and animals. Detection of AMR present in bacteria that may pose a threat to veterinary and public health is routinely performed using standardized phenotypic methods. Molecular methods are often used in addition to phenotypic methods but are set to replace them in many laboratories due to the greater speed and accuracy they provide in detecting the underlying genetic mechanism(s) for AMR. In this article we describe some of the common molecular methods currently used for detection of AMR genes. These include PCR, DNA microarray, whole-genome sequencing and metagenomics, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. The strengths and weaknesses of these methods are discussed, especially in the context of implementing them for routine surveillance activities on a global scale for mitigating the risk posed by AMR worldwide. Based on current popularity and ease of use, PCR and single-isolate whole-genome sequencing seem irreplaceable.
Collapse
|
43
|
Borthong J, Omori R, Sugimoto C, Suthienkul O, Nakao R, Ito K. Comparison of Database Search Methods for the Detection of Legionella pneumophila in Water Samples Using Metagenomic Analysis. Front Microbiol 2018; 9:1272. [PMID: 29971047 PMCID: PMC6018159 DOI: 10.3389/fmicb.2018.01272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Metagenomic analysis has become a powerful tool to analyze bacterial communities in environmental samples. However, the detection of a specific bacterial species using metagenomic analysis remains difficult due to false positive detections of sequences shared between different bacterial species. In this study, 16S rRNA amplicon and shotgun metagenomic analyses were conducted on samples collected along a stream and ponds in the campus of Hokkaido University. We compared different database search methods for bacterial detection by focusing on Legionella pneumophila. In this study, we used L. pneumophila-specific nested PCR as a gold standard to evaluate the results of the metagenomic analysis. Comparison with the results from L. pneumophila-specific nested PCR indicated that a blastn search of shotgun reads against the NCBI-NT database led to false positive results and had problems with specificity. We also found that a blastn search of shotgun reads against a database of the catalase-peroxidase (katB) gene detected L. pneumophila with the highest area under the receiver operating characteristic curve among the tested search methods; indicating that a blastn search against the katB gene database had better diagnostic ability than searches against other databases. Our results suggest that sequence searches targeting long genes specifically associated with the bacterial species of interest is a prerequisite to detecting the bacterial species in environmental samples using metagenomic analyses.
Collapse
Affiliation(s)
- Jednipit Borthong
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryosuke Omori
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Orasa Suthienkul
- Faculty of Public Health, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,Faculty of Public Health, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| |
Collapse
|
44
|
|
45
|
Frickmann H, Köller T, Hagen RM, Ebert KP, Müller M, Wenzel W, Gatzer R, Schotte U, Binder A, Skusa R, Warnke P, Podbielski A, Rückert C, Kreikemeyer B. Molecular Epidemiology of Multidrug-Resistant Bacteria Isolated from Libyan and Syrian Patients with War Injuries in Two Bundeswehr Hospitals in Germany. Eur J Microbiol Immunol (Bp) 2018; 8:1-11. [PMID: 29760959 PMCID: PMC5944420 DOI: 10.1556/1886.2018.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction We assessed the molecular epidemiology of multidrug-resistant bacteria colonizing or infecting war-injured patients from Libya and Syria who were treated at the Bundeswehr hospitals Hamburg and Westerstede, Germany. Methods Enterobacteriaceae and Gram-negative rod-shaped nonfermentative bacteria with resistance against third-generation methoxyimino cephalosporins or carbapenems as well as methicillin-resistant Staphylococcus aureus (MRSA) from war-injured patients from Libya and Syria were assessed by molecular typing, i.e., spa typing for MRSA strains and rep-PCR and next-generation sequencing (NGS) for Gram-negative isolates. Results A total of 66 isolates were assessed – comprising 44 Enterobacteriaceae, 16 nonfermentative rod-shaped bacteria, and 6 MRSA from 22 patients – and 8 strains from an assessment of the patient environment comprising 5 Enterobacteriaceae and 3 nonfermentative rod-shaped bacteria. Although 24 out of 66 patient strains were isolated more than 3 days after hospital admission, molecular typing suggested only 7 likely transmission events in the hospitals. Identified clonal clusters primarily suggested transmission events in the country of origin or during the medical evacuation flights. Conclusions Nosocomial transmissions in hospital can be efficiently prevented by hygiene precautions in spite of heavy colonization. Transmission prior to hospital admission like on evacuation flights or in crises zones needs further assessment.
Collapse
Affiliation(s)
- Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany.,Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Thomas Köller
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Ralf Matthias Hagen
- Department of Preventive Medicine, Bundeswehr Medical Academy, Munich, Germany
| | - Klaus-Peter Ebert
- Hygiene Department, Bundeswehr Hospital Westerstede, Westerstede, Germany
| | - Martin Müller
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Berlin, Berlin, Germany
| | - Werner Wenzel
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany.,Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Berlin, Berlin, Germany
| | - Renate Gatzer
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Berlin, Berlin, Germany
| | - Ulrich Schotte
- Laboratory Department II, Central Institute of the Bundeswehr Kiel, Kiel-Kronshagen, Germany
| | - Alfred Binder
- Laboratory Department II, Central Institute of the Bundeswehr Kiel, Kiel-Kronshagen, Germany
| | - Romy Skusa
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Philipp Warnke
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Christian Rückert
- Centrum for Biotechnology (CeBiTec), University Bielefeld, Bielefeld, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
46
|
Nag S, Kofoed PE, Ursing J, Lemvigh CK, Allesøe RL, Rodrigues A, Svendsen CA, Jensen JD, Alifrangis M, Lund O, Aarestrup FM. Direct whole-genome sequencing of Plasmodium falciparum specimens from dried erythrocyte spots. Malar J 2018; 17:91. [PMID: 29471822 PMCID: PMC5824530 DOI: 10.1186/s12936-018-2232-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Plasmodium falciparum malaria remains a major health burden and genomic research represents one of the necessary approaches for continued progress towards malaria control and elimination. Sample acquisition for this purpose is troublesome, with the majority of malaria-infected individuals living in rural areas, away from main infrastructure and the electrical grid. The aim of this study was to describe a low-tech procedure to sample P. falciparum specimens for direct whole genome sequencing (WGS), without use of electricity and cold-chain. METHODS Venous blood samples were collected from malaria patients in Bandim, Guinea-Bissau and leukocyte-depleted using Plasmodipur filters, the enriched parasite sample was spotted on Whatman paper and dried. The samples were stored at ambient temperatures and subsequently used for DNA-extraction. Ratios of parasite:human content of the extracted DNA was assessed by qPCR, and five samples with varying parasitaemia, were sequenced. Sequencing data were used to analyse the sample content, as well as sample coverage and depth as compared to the 3d7 reference genome. RESULTS qPCR revealed that 73% of the 199 samples were applicable for WGS, as defined by a minimum ratio of parasite:human DNA of 2:1. WGS revealed an even distribution of sequence data across the 3d7 reference genome, regardless of parasitaemia. The acquired read depths varied from 16 to 99×, and coverage varied from 87.5 to 98.9% of the 3d7 reference genome. SNP-analysis of six genes, for which amplicon sequencing has been performed previously, confirmed the reliability of the WGS-data. CONCLUSION This study describes a simple filter paper based protocol for sampling P. falciparum from malaria patients for subsequent direct WGS, enabling acquisition of samples in remote settings with no access to electricity.
Collapse
Affiliation(s)
- Sidsel Nag
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Poul-Erik Kofoed
- Department of Paediatrics, Kolding Hospital, Kolding, Denmark.,Bandim Health Project, Bissau, Guinea-Bissau
| | - Johan Ursing
- Bandim Health Project, Bissau, Guinea-Bissau.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Danderyds Hospital, Danderyd, Sweden
| | | | | | | | - Christina Aaby Svendsen
- Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jacob Dyring Jensen
- Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Ole Lund
- DTU Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Frank M Aarestrup
- Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
47
|
Housefly (Musca domestica) and Blow Fly (Protophormia terraenovae) as Vectors of Bacteria Carrying Colistin Resistance Genes. Appl Environ Microbiol 2017; 84:AEM.01736-17. [PMID: 29030447 DOI: 10.1128/aem.01736-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 11/20/2022] Open
Abstract
Flies have the capacity to transfer pathogens between different environments, acting as one of the most important vectors of human diseases worldwide. In this study, we trapped flies on a university campus and tested them for mobile resistance genes against colistin, a last-resort antibiotic in human medicine for treating clinical infections caused by multidrug-resistant Gram-negative bacteria. Quantitative PCR assays we developed showed that 34.1% of Musca domestica (86/252) and 51.1% of Protophormia terraenovae (23/45) isolates were positive for the mcr-1 gene, 1.2% of M. domestica (3/252) and 2.2% of P. terraenovae (2.2%, 1/45) isolates were positive for mcr-2, and 5.2% of M. domestica (13/252) and 44.4% of P. terraenovae (20/45) isolates were positive for mcr-3 Overall, 4.8% (9/189) of bacteria isolated from the flies were positive for the mcr-1 gene (Escherichia coli: 8.3%, 4/48; Enterobacter cloacae: 12.5%, 1/8; Providencia alcalifaciens: 11.8%, 2/17; Providencia stuartii: 4.9%, 2/41), while none were positive for mcr-2 and mcr-3 Four mcr-1-positive isolates (two P. stuartii and two P. alcalifaciens) from blow flies trapped near a dumpster had a MIC for colistin above 4 mg/ml. This study reports mcr-1 carriage in Providencia spp. and detection of mcr-2 and mcr-3 after their initial identification in Belgium and China, respectively. This study suggests that flies might contribute significantly to the dissemination of bacteria, carrying these genes into a large variety of ecological niches. Further studies are warranted to explore the roles that flies might play in the spread of colistin resistance genes.IMPORTANCE Antimicrobial resistance is recognized as one of the most serious global threats to human health. An option for treatment of the Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) bacteria with multiple drug resistance was the reintroduction of the older antibiotic colistin. However, a mobile colistin resistance gene (mcr-1) has recently been found to occur widely; very recently, two other colistin resistance genes (mcr-2 and mcr-3) have been identified in Belgium and China, respectively. In this study, we report the presence of colistin resistance genes in flies. This study also reports the carriage of colistin resistance genes in the genus Providencia and detection of mcr-2 and mcr-3 after their initial identification. This study will stimulate more in-depth studies to fully elucidate the transmission mechanisms of the colistin resistance genes and their interaction.
Collapse
|
48
|
Sekse C, Holst-Jensen A, Dobrindt U, Johannessen GS, Li W, Spilsberg B, Shi J. High Throughput Sequencing for Detection of Foodborne Pathogens. Front Microbiol 2017; 8:2029. [PMID: 29104564 PMCID: PMC5655695 DOI: 10.3389/fmicb.2017.02029] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022] Open
Abstract
High-throughput sequencing (HTS) is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic "natural" strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade.
Collapse
Affiliation(s)
- Camilla Sekse
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Arne Holst-Jensen
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Gro S. Johannessen
- Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Weihua Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bjørn Spilsberg
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Mardal M, Aarestrup FM, Rasmussen BS, Mollerup CB, Dalsgaard PW, Linnet K. Analytical Profiling of Airplane Wastewater - a New Matrix for Mapping Worldwide Patterns of Drug Use and Abuse. SCANDINAVIAN JOURNAL OF FORENSIC SCIENCE 2017. [DOI: 10.1515/sjfs-2017-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
There is limited knowledge on the global prescription and consumption patterns of therapeutic (TD) and illicit drugs (ID). Pooled urine analysis and wastewater-based epidemiology (WBE) has been used for local-based drug screening. It is, however, difficult to study the global epidemiology due to difficulties in obtaining samples. The aims of the study were to test the detectability of TD and ID in airplane wastewater samples categorized according to their geographical origin.
Wastewater samples (n= 17) were collected from long-distance flights and prepared with enzymatic conjugate cleaving followed by either precipitation or solid phase extraction. Aliquots were analysed on various liquid chromatography – mass spectrometers. TDs were grouped according to their Anatomical Therapeutic Chemical (ATC) codes.
Identification confidence was assigned to three levels based on variables including detection on multiple instruments and number of targets per compound. A total of 424 compounds were identified across all samples, distributed on 87 unique TD and 2 ID. Two principal components in a principal component analysis separated three clusters of wastewater samples corresponding to geographical origin of the airplanes with therapeutic subgroup ATC codes as variables. Airplane wastewater analysis is useful for identifying targets for WBE and toxicological analysis and explore drug use and abuse patterns.
Collapse
Affiliation(s)
- Marie Mardal
- Department of Forensic Medicine, Faculty of Health and Medical Sciences , University of Copenhagen , Frederik V’s vej 11, 2100 Kbh Ø, Denmark
| | - Frank Møller Aarestrup
- National Food Institute , Technical University of Denmark , Søltofts Plads building 221, 2800 Kgs. Lyngby, Denmark
| | - Brian Schou Rasmussen
- Department of Forensic Medicine, Faculty of Health and Medical Sciences , University of Copenhagen , Frederik V’s vej 11, 2100 Kbh Ø, Denmark
| | - Christian Brinch Mollerup
- Department of Forensic Medicine, Faculty of Health and Medical Sciences , University of Copenhagen , Frederik V’s vej 11, 2100 Kbh Ø, Denmark
| | - Petur Weihe Dalsgaard
- Department of Forensic Medicine, Faculty of Health and Medical Sciences , University of Copenhagen , Frederik V’s vej 11, 2100 Kbh Ø, Denmark
| | - Kristian Linnet
- Department of Forensic Medicine, Faculty of Health and Medical Sciences , University of Copenhagen , Frederik V’s vej 11, 2100 Kbh Ø, Denmark
| |
Collapse
|
50
|
Huang XY, Su J, Lu QC, Li SZ, Zhao JY, Li ML, Li Y, Shen XJ, Zhang BF, Wang HF, Mu YJ, Wu SY, Du YH, Liu LC, Chen WJ, Klena JD, Xu BL. A large outbreak of acute gastroenteritis caused by the human norovirus GII.17 strain at a university in Henan Province, China. Infect Dis Poverty 2017; 6:6. [PMID: 28143569 PMCID: PMC5286658 DOI: 10.1186/s40249-017-0236-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
Background Human noroviruses are a major cause of viral gastroenteritis and are the main etiological agents of acute gastroenteritis outbreaks. An increasing number of outbreaks and sporadic cases of norovirus have been reported in China in recent years. There was a large acute gastroenteritis outbreak at a university in Henan Province, China in the past five years. We want to identify the source, transmission routes of the outbreak by epidemiological investigation and laboratory testing in order to provide the effective control measures. Methods The clinical cases were investigated, and analysed by descriptive epidemiological methods according to factors such as time, department, grade and so on. Samples were collected from clinical cases, healthy persons, the environment, water, and food at the university. These samples were tested for potential bacteria and viruses. The samples that tested positive for norovirus were selected for whole genome sequencing and the sequences were then analysed. Results From 4 March to 3 April 2015, a total of 753 acute diarrhoea cases were reported at the university; the attack rate was 3.29%. The epidemic curve showed two peaks, with the main peak occurring between 10 and 20 March, accounting for 85.26% of reported cases. The rates of norovirus detection in samples from confirmed cases, people without symptoms, and environmental samples were 32.72%, 17.39%, and 9.17%, respectively. The phylogenetic analysis showed that the norovirus belonged to the genotype GII.17. Conclusions This is the largest and most severe outbreak caused by genotype GII.17 norovirus in recent years in China. The GII.17 viruses displayed high epidemic activity and have become a dominant strain in China since the winter of 2014, having replaced the previously dominant GII.4 Sydney 2012 strain. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0236-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue-Yong Huang
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Jia Su
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Qian-Chao Lu
- Nanyang City Center for Disease Control and Prevention, Nanyang, China
| | - Shi-Zheng Li
- Nanyang City Center for Disease Control and Prevention, Nanyang, China
| | - Jia-Yong Zhao
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Meng-Lei Li
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yi Li
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Xiao-Jing Shen
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Bai-Fan Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Hai-Feng Wang
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yu-Jiao Mu
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Shu-Yu Wu
- Program of Global Disease Detection, US Centers for Disease Control and Prevention, Beijing, China
| | - Yan-Hua Du
- Henan Center for Disease Control and Prevention, Zhengzhou, China.,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China
| | - Li-Cheng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wei-Jun Chen
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - John David Klena
- Program of Global Disease Detection, US Centers for Disease Control and Prevention, Beijing, China.,Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Bian-Li Xu
- Henan Center for Disease Control and Prevention, Zhengzhou, China. .,Henan Key Laboratory of Pathogenic Microorganisms, Zhengzhou, China.
| |
Collapse
|