1
|
Cossey HL, Kaminsky HAW, Ulrich AC. Effects of pressure on the biogeochemical and geotechnical behavior of treated oil sands tailings in a pit lake scenario. CHEMOSPHERE 2024; 365:143395. [PMID: 39313078 DOI: 10.1016/j.chemosphere.2024.143395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Reclamation options for oil sands fluid fine tailings (FFT) are limited due to its challenging geotechnical properties, which include high water and clay contents and low shear strength. A feasible reclamation option for tailings with these properties is water capped FFT deposits (pit lakes). A relatively new proposal is to deposit FFT that has been treated with alum and polyacrylamide in pit lakes. Though over 65 Mm3 of alum/polyacrylamide treated FFT has been deposited to date, there is limited publicly available information on the biogeochemical and geotechnical behavior of this treated FFT. Further, the effects of pressure from overlying tailings on microbial activity and biogeochemical cycling in oil sands tailings has not been previously investigated. Twelve 5.5 L columns were designed to mimic alum/polyacrylamide treated FFT deposited beneath a water cap. A 2x2 factorial design was used to apply pressure and hydrocarbon amendments to the tailings. Pressure (0.3-5.1 kPa) was applied incrementally and columns were monitored for 360 d. Pressure significantly enhanced consolidation and microbial activity in treated FFT. Columns with pressure generated significantly more CH4(g) and CO2(g) and had significant increases in dissolved organic carbon and chemical oxygen demand in the FFT and water caps. The enhanced microbial activity in columns with pressure indicates that pressure increased the solubility of microbial substrates and metabolites in the tailings, thereby increasing the bioavailability of these compounds. Ammonium generation was significantly higher in columns with pressure, suggesting that microorganisms utilized polyacrylamide and/or N2 fixation as a nitrogen source to meet enhanced nutrient demands. Pressure also impacted microbial community structure, shifting methanogenic communities from hydrogenotrophic methanogens to predominately acetoclastic methanogens. This study also revealed the importance of sulfur cycling in treated FFT. Extensive sulfate reduction occurred in all columns, generating dissolved sulfides and H2S(g), and this was accelerated by hydrocarbon amendments.
Collapse
Affiliation(s)
- Heidi L Cossey
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Heather A W Kaminsky
- Centre for Energy and Environmental Sustainability, Northern Alberta Institute of Technology, Edmonton, Alberta, T5G 0Y2, Canada
| | - Ania C Ulrich
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
2
|
Zhong C, Chen R, He Y, Hou D, Chen F. Interactions between microbial communities and polymers in hydraulic fracturing water cycle: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174412. [PMID: 38977097 DOI: 10.1016/j.scitotenv.2024.174412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Hydraulic fracturing (HF) has substantially boosted global unconventional hydrocarbon production but has also introduced various environmental and operational challenges. Understanding the interactions between abundant and diverse microbial communities and chemicals, particularly polymers used for proppant delivery, thickening, and friction reduction, in HF water cycles is crucial for addressing these challenges. This review primarily examined the recent studies conducted in China, an emerging area for HF activities, and comparatively examined studies from other regions. In China, polyacrylamide (PAM) and its derivatives products became key components in hydraulic fracturing fluid (HFF) for unconventional hydrocarbon development. The microbial diversity of unconventional HF water cycles in China was higher compared to North America, with frequent detection of taxa such as Shewanella, Marinobacter, and Desulfobacter. While biodegradation, biocorrosion, and biofouling were common issues across regions, the mechanisms underlying these microbe-polymer interactions differed substantially. Notably, in HF sites in the Sichuan Basin, the use of biocides gradually decreased its efficiency to mitigate adverse microbial activities. High-throughput sequencing proved to be a robust tool that could identify key bioindicators and biodegradation pathways, and help select optimal polymers and biocides, leading to more efficient HFF systems. The primary aim of this study is to raise awareness about the interactions between microorganisms and polymers, providing fresh insights that can inform decisions related to enhanced chemical use and biological control measures at HF sites.
Collapse
Affiliation(s)
- Cheng Zhong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China
| | - Rong Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Fu Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| |
Collapse
|
3
|
Li J, Usman M, Arslan M, Gamal El-Din M. Molecular and microbial insights towards anaerobic biodegradation of anionic polyacrylamide in oil sands tailings. WATER RESEARCH 2024; 258:121757. [PMID: 38768520 DOI: 10.1016/j.watres.2024.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Anionic polyacrylamide (A-PAM) is widely used as a flocculant in the management of oil sands tailings. Nevertheless, apprehensions arise regarding its potential biodegradation and environmental consequences within the context of oil sands tailings. Consequently, it is imperative to delve into the anaerobic biodegradation of A-PAM in oil sands tailings to gain a comprehensive understanding of its influence on tailings water quality. This work explored the dynamics of A-PAM biodegradation across concentrations: 50, 100, 250, 500, 1000, and 2000 mg/kg TS. The results showed a significant decrease in A-PAM concentration and molecular weight at lower concentrations (50 and 100 mg/kg TS) compared to higher ones, suggesting enhanced degradation efficiency. Likewise, the organic transformation and methane production exhibited dependency on A-PAM concentrations. The peak concentrations observed were 20.0 mg/L for volatile fatty acids (VFAs), 0.07 mg/L for acrylamide (AMD), and 8.9 mL for methane yield, with these maxima being recorded at 50 mg/kg TS. The biodegradation efficiency diminishes at higher concentrations of A-PAM, potentially due to the inhibitory effects of polyacrylic acid accumulation. A-PAM biodegradation under anaerobic condition did not contribute to acute toxicity or genotoxicity. SEM-EDS, FT-IR and XRD analyses further revealed that higher concentrations of A-PAM inhibited the biodegradation by altering floc structure and composition, thereby restricting the microbial activity. Major microorganisms, including Smithella, Candidatus_Cloacimonas, W5, XBB1006, and DMER64 were identified, highlighting A-PAM's dual role as a source of carbon and nitrogen under anaerobic conditions. The above findings from this research not only significantly advance understanding of A-PAM's environmental behavior but also contribute to the effective management practices in oil sands tailings.
Collapse
Affiliation(s)
- Jia Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
4
|
Huang W, Wang F, Xia X, Fang S, Cheng X, Zhou A, Feng L, Wang D, Luo J. Tannic Acid Modulation of Substrate Utilization, Microbial Community, and Metabolic Traits in Sludge Anaerobic Fermentation for Volatile Fatty Acid Promotion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9792-9803. [PMID: 38780952 DOI: 10.1021/acs.est.3c08678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Anaerobic fermentation is a crucial route to realize effective waste activated sludge (WAS) resource recovery and utilization, while the overall efficiency is commonly restrained by undesirable disruptors (i.e., chemical dewatering agents). This work unveiled the unexpectedly positive effects of biodewatering tannic acid (TA) on the volatile fatty acids (VFAs) biosynthesis during WAS anaerobic fermentation. The total VFAs yield was remarkably increased by 15.6 folds with enriched acetate and butyrate in TA-occurred systems. TA was capable to disintegrate extracellular polymeric substances to promote the overall organics release. However, TA further modulated the soluble proteins structure by hydrogen bonding and hydrophobic interactions, resulting in the decrease of proteins bioavailability and consequential alteration of metabolic substrate feature. These changes reshaped the microbial community and stimulated adaptive regulatory systems in hydrolytic-acidogenic bacteria. The keystone species for carbohydrate metabolism (i.e., Solobacterium and Erysipelotrichaceae) were preferentially enriched. Also, the typical quorum sensing (i.e., enhancing substrate transport) and two-component systems (i.e., sustaining high metabolic activity) were activated to promote the microbial networks connectivity and ecological cooperative behaviors in response to TA stress. Additionally, the metabolic functions responsible for carbohydrate hydrolysis, transmembrane transport, and intracellular metabolism as well as VFA biosynthesis showed increased relative abundance, which maintained high microbial activities for VFAs biosynthesis. This study underscored the advantages of biodewatering TA for WAS treatment in the context of resource recovery and deciphered the interactive mechanisms.
Collapse
Affiliation(s)
- Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xue Xia
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
5
|
Guo Y, Askari N, Smets I, Appels L. A review on co-metabolic degradation of organic micropollutants during anaerobic digestion: Linkages between functional groups and digestion stages. WATER RESEARCH 2024; 256:121598. [PMID: 38663209 DOI: 10.1016/j.watres.2024.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
The emerging presence of organic micropollutants (OMPs) in water bodies produced by human activities is a source of growing concern due to their environmental and health issues. Biodegradation is a widely employed treatment method for OMPs in wastewater owing to its high efficiency and low operational cost. Compared to aerobic degradation, anaerobic degradation has numerous advantages, including energy efficiency and superior performance for certain recalcitrant compounds. Nonetheless, the low influent concentrations of OMPs in wastewater treatment plants (WWTPs) and their toxicity make it difficult to support the growth of microorganisms. Therefore, co-metabolism is a promising mechanism for OMP biodegradation in which co-substrates are added as carbon and energy sources and stimulate increased metabolic activity. Functional microorganisms and enzymes exhibit significant variations at each stage of anaerobic digestion affecting the environment for the degradation of OMPs with different structural properties, as these factors substantially influence OMPs' biodegradability and transformation pathways. However, there is a paucity of literature reviews that explicate the correlations between OMPs' chemical structure and specific metabolic conditions. This study provides a comprehensive review of the co-metabolic processes which are favored by each stage of anaerobic digestion and attempts to link various functional groups to their favorable degradation pathways. Furthermore, potential co-metabolic processes and strategies that can enhance co-digestion are also identified, providing directions for future research.
Collapse
Affiliation(s)
- Yutong Guo
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Najmeh Askari
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Ilse Smets
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F box 2424, Heverlee 3001, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
6
|
Zhang B, Tang X, Xu Q, Fan C, Gao Y, Li S, Wang M, Li C. Anionic polyacrylamide alleviates cadmium inhibition on anaerobic digestion of waste activated sludge. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100306. [PMID: 37701857 PMCID: PMC10494310 DOI: 10.1016/j.ese.2023.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 09/14/2023]
Abstract
The uncontrolled discharge of industrial wastewater leads to a significant cadmium (Cd) accumulation in waste activated sludge (WAS), posing a serious threat to the steady operation of the anaerobic digestion (AD) system in wastewater treatment plants (WWTPs). Therefore, developing a viable approach to cope with the adverse effects of high-concentration Cd on the AD system is urgently required. This study aims to investigate the potential of using anionic polyacrylamide (APAM), a commonly used agent in WWTPs, to mitigate the adverse effects of Cd in a toxic amount (i.e., 5.0 mg per g total suspended solids (TSS)) on AD of WAS. The results showed that the effectiveness of higher APAM on Cd toxicity alleviation was less than that of lower APAM at the studied level (i.e., the effectiveness order was 1.5 mg APAM per g TSS > 3.0 mg APAM per g TSS > 6.0 mg APAM per g TSS). The moderate supplement of APAM (i.e., 1.5 mg per g TSS) recovered the accumulative methane yield from 190.5 ± 3.6 to 228.9 ± 4.1 mL per g volatile solids by promoting solubilization, hydrolysis, and acidification processes related to methane production. The application of APAM also increased the abundance of key microbes in the AD system, especially Methanolinea among methanogens and Caldilineaceae among hydrolyzers. Furthermore, APAM facilitated the key enzyme activities involved in AD processes and reduced reactive oxygen species (induced by Cd) production via adsorption/enmeshment of Cd by APAM. These findings demonstrate the feasibility of using moderate APAM to mitigate Cd toxicity during AD, providing a promising solution for controlling Cd or other heavy metal toxicity in WWTPs.
Collapse
Affiliation(s)
- Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuying Gao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shuang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mier Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Chao Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
- College of Mechanical & Electrical Engineering, Hunan Agricultural University, Changsha, 410128, PR China
| |
Collapse
|
7
|
Abed RMM, Al-Fori M, Al-Hinai M, Al-Sabahi J, Al-Battashi H, Prigent S, Headley T. Effect of partially hydrolyzed polyacrylamide (HPAM) on the bacterial communities of wetland rhizosphere soils and their efficiency in HPAM and alkane degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9713-9724. [PMID: 36063269 DOI: 10.1007/s11356-022-22636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The effect of partially hydrolyzed polyacrylamide (HPAM) on structure and function of rhizosphere soil bacterial communities in constructed wetlands has been largely underinvestigated. In this study, we compare the effect of 250, 500, and 1000 mg/L of HPAM on bacterial community composition of Phragmites australis associated rhizosphere soils in an experimental wetland using MiSeq amplicon sequencing. Rhizosphere soils from the HPAM-free and the 500-mg/L-exposed treatments were used for laboratory experiments to further investigate the effect of HPAM on the soil's degradation and respiration activities. Soils treated with HPAM showed differences in bacterial communities with the dominance of Proteobacteria and the enrichment of potential hydrocarbon and HPAM-degrading bacteria. CO2 generation was higher in the HPAM-free soils than in the HPAM pre-exposed soil, with a noticeable increase in both soils when oil was added. The addition of HPAM at different concentrations had a more pronounced effect on CO2 evolution in the HPAM-pre-exposed soil. Soils were able to degrade between 37 ± 18.0 and 66 ± 6.7% of C10 to C30 alkanes after 28 days, except in the case of HPAM-pre-exposed soil treated with 500 mg/L where degradation reached 92 ± 4.3%. Both soils reduced HPAM concentration by 60 ± 15% of the initial amount in the 500 mg/L treatment, but by only ≤ 21 ± 7% in the 250-mg/L and 1000-mg/L treatments. In conclusion, the rhizosphere soils demonstrated the ability to adapt and retain their ability to degrade hydrocarbon in the presence of HPAM.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Al Khoud, P.O. Box: 36, PC 123, Al Seeb, Sultanate of Oman.
| | - Marwan Al-Fori
- Biology Department, College of Science, Sultan Qaboos University, Al Khoud, P.O. Box: 36, PC 123, Al Seeb, Sultanate of Oman
| | - Mahmood Al-Hinai
- Biology Department, College of Science, Sultan Qaboos University, Al Khoud, P.O. Box: 36, PC 123, Al Seeb, Sultanate of Oman
| | - Jamal Al-Sabahi
- Central Instrumentation Laboratory, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al Khoud, P.O. Box: 34, PC 123, Al Seeb, Sultanate of Oman
| | - Huda Al-Battashi
- Biology Department, College of Science, Sultan Qaboos University, Al Khoud, P.O. Box: 36, PC 123, Al Seeb, Sultanate of Oman
| | - Stephane Prigent
- BAUER Nimr LLC, P.C 114, Al Mina, P.O. Box 1186, Muscat, Sultanate of Oman
| | - Tom Headley
- BAUER Nimr LLC, P.C 114, Al Mina, P.O. Box 1186, Muscat, Sultanate of Oman
| |
Collapse
|
8
|
Cliffe L, Hernandez-Becerra N, Boothman C, Eden B, Lloyd JR, Nixon SL. Guar Gum Stimulates Biogenic Sulfide Production in Microbial Communities Derived from UK Fractured Shale Production Fluids. Microbiol Spectr 2022; 10:e0364022. [PMID: 36453927 PMCID: PMC9769687 DOI: 10.1128/spectrum.03640-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Shale gas production fluids offer a window into the engineered deep biosphere. Here, for the first time, we report on the geochemistry and microbiology of production fluids from a UK shale gas well in the Bowland shale formation. The composition of input fluids used to fracture this well were comparatively lean, consisting only of water, sand, and polyacrylamide. This formation therefore represents an interesting comparison to previously explored fractured shales in which more additives were used in the input fluids. Here, we combine cultivation and molecular ecology techniques to explore the microbial community composition of hydraulic fracturing production fluids, with a focus on the potential for common viscosity modifiers to stimulate microbial growth and biogenic sulfide production. Production fluids from a Bowland Shale exploratory well were used as inocula in substrate utilization experiments to test the potential for polyacrylamide and guar gum to stimulate microbial metabolism. We identified a consortium of thiosulfate-reducing bacteria capable of utilizing guar gum (but not polyacrylamide), resulting in the production of corrosive and toxic hydrogen sulfide. Results from this study indicate polyacrylamide is less likely than guar gum to stimulate biogenic sulfide production during shale gas extraction and may guide planning of future hydraulic fracturing operations. IMPORTANCE Shale gas exploitation relies on hydraulic fracturing, which often involves a range of chemical additives in the injection fluid. However, relatively little is known about how these additives influence fractured shale microbial communities. This work offers a first look into the microbial community composition of shale gas production fluids obtained from an exploratory well in the Bowland Shale, United Kingdom. It also seeks to establish the impact of two commonly used viscosity modifiers, polyacrylamide and guar gum, on microbial community dynamics and the potential for microbial sulfide production. Not only does this work offer fascinating insights into the engineered deep biosphere, it could also help guide future hydraulic fracturing operations that seek to minimize the risk of biogenic sulfide production, which could reduce efficiency and increase environmental impacts of shale gas extraction.
Collapse
Affiliation(s)
- Lisa Cliffe
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Natali Hernandez-Becerra
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Christopher Boothman
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Bob Eden
- Rawwater Engineering Company Limited, Culcheth, United Kingdom
| | - Jonathan R. Lloyd
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
| | - Sophie L. Nixon
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Novel insight into the degradation of polyacrylamide by thermophilic anaerobic digestion. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Biodegradation of Polymers Used in Oil and Gas Operations: Towards Enzyme Biotechnology Development and Field Application. Polymers (Basel) 2022; 14:polym14091871. [PMID: 35567040 PMCID: PMC9100872 DOI: 10.3390/polym14091871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
Linear and crosslinked polymers are commonly used in the oil and gas industry. Guar-derived polymers have been extensively utilized in hydraulic fracturing processes, and recently polyacrylamide and cellulose-based polymers have also found utility. As these polymers are used during various phases of the hydraulic fracturing process, they can accumulate at formation fracture faces, resulting in undesired filter cakes that impede oil and gas recovery. Although acids and chemical oxidizers are often added in the fracturing fluids to degrade or ‘break’ polymer filter cakes, the constant use of these chemicals can be hazardous and can result in formation damage and corrosion of infrastructure. Alternately, the use of enzymes is an attractive and environmentally friendly technology that can be used to treat polymer accumulations. While guar-linkage-specific enzyme breakers isolated from bacteria have been shown to successfully cleave guar-based polymers and decrease their molecular weight and viscosity at reservoir conditions, new enzymes that target a broader range of polymers currently used in hydraulic fracturing operations still require research and development for effective application. This review article describes the current state-of-knowledge on the mechanisms and enzymes involved in biodegradation of guar gum, polyacrylamide (and hydrolyzed polyacrylamide), and carboxymethyl cellulose polymers. In addition, advantages and challenges in the development and application of enzyme breaker technologies are discussed.
Collapse
|
11
|
Park J, Cayetano RDA, Kim GB, Jo Y, Kwon Y, Lei Z, Kim SH. Sludge disintegration and anaerobic digestion enhancement by alkaline-thermal pretreatment: Economic evaluation and microbial population analysis. BIORESOURCE TECHNOLOGY 2022; 346:126594. [PMID: 34953997 DOI: 10.1016/j.biortech.2021.126594] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Alkaline-thermal pretreatment was examined for waste activated sludge (WAS) disintegration and subsequent anaerobic digestion (AD). Pretreatment at 60 °C was estimated to provide better economic benefits than higher temperature conditions. The maximum methane yield of 215.6 mL/g COD was achieved when WAS was pretreated at 60 °C and pH 10 for 24 h, which was 46.6% higher than untreated WAS. The pretreatment condition also provided the maximum net savings. The degree of sludge disintegration, considering both loosely bound-extracellular polymeric substance and soluble COD, would be a better indicator to predict anaerobic digestibility than the solubilization rate that considers soluble COD alone. Microbial analysis implied that pretreatment facilitated the growth of hydrolytic bacteria, phyla Bacteroidetes and Firmicutes. In addition, sludge pretreatment enhanced the growth of both acetoclastic and hydrogenotrophic methanogens, genera Methanosaeta and Methanobacterium. The mild AT-PT would be useful to enhance the digestion performance and economic benefit of WAS digestion.
Collapse
Affiliation(s)
- Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Roent Dune A Cayetano
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yura Jo
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeelyung Kwon
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
12
|
Braun O, Coquery C, Kieffer J, Blondel F, Favero C, Besset C, Mesnager J, Voelker F, Delorme C, Matioszek D. Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances. Molecules 2021; 27:42. [PMID: 35011281 PMCID: PMC8746853 DOI: 10.3390/molecules27010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Humankind is facing a climate and energy crisis which demands global and prompt actions to minimize the negative impacts on the environment and on the lives of millions of people. Among all the disciplines which have an important role to play, chemistry has a chance to rethink the way molecules are made and find innovations to decrease the overall anthropic footprint on the environment. In this paper, we will provide a review of the existing knowledge but also recent advances on the manufacturing and end uses of acrylamide-based polymers following the "green chemistry" concept and 100 years after the revolutionary publication of Staudinger on macromolecules. After a review of raw material sourcing options (fossil derivatives vs. biobased), we will discuss the improvements in monomer manufacturing followed by a second part dealing with polymer manufacturing processes and the paths followed to reduce energy consumption and CO2 emissions. In the following section, we will see how the polyacrylamides help reduce the environmental footprint of end users in various fields such as agriculture or wastewater treatment and discuss in more detail the fate of these molecules in the environment by looking at the existing literature, the regulations in place and the procedures used to assess the overall biodegradability. In the last section, we will review macromolecular engineering principles which could help enhance the degradability of said polymers when they reach the end of their life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dimitri Matioszek
- SNF SA, ZAC de Milieux, 42160 Andrézieux-Bouthéon, France; (O.B.); (C.C.); (J.K.); (F.B.); (C.F.); (C.B.); (J.M.); (F.V.); (C.D.)
| |
Collapse
|
13
|
Abed RMM, Al-Fori M, Al-Sabahi J, Prigent S, Headley T. Impacts of partially hydrolyzed polyacrylamide (HPAM) on microbial mats from a constructed wetland treating oilfield produced water. CHEMOSPHERE 2021; 285:131421. [PMID: 34242985 DOI: 10.1016/j.chemosphere.2021.131421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetlands have been successfully used in the treatment of produced water brought to the surface in large quantities during oil extraction activities. However, with the increasing use of partially hydrolyzed polyacrylamide (HPAM) in enhancing oil recovery, the impacts of HPAM on the biological processes of wetlands is still unknown. Microbial mats in wetlands play a key role in hydrocarbon degradation. Here, we compared the bacterial communities of four wetland microbial mats after flooding with different concentrations of HPAM. Two mats (i.e. the HPAM-free and the 500 ppm HPAM pre-exposed mats) were selected to further investigate the effect of HPAM on respiration and biodegradation activities. The field mats exhibited clear differences in their bacterial community structure, where Cyanobacteria and Alphaproteobacteria became dominant in the presence of HPAM. In the laboratory experiments, the generated CO2 by the HPAM-free and the 500 ppm HPAM pre-exposed mats did not vary significantly when HPAM was added, although CO2 values were slightly higher in the presence of oil. Both mats were still able to degrade between 15 ± 14.4 to 50 ± 13.0% of C10 to C30 alkanes in 28 days, and this degradation was not affected by HPAM addition. The HPAM concentration decreased by 22-34% of the initial amount after 28 days of incubation in the HPAM-free mat, versus only 7-18.4% decrease in the 500 ppm HPAM pre-exposed mat. We conclude that the wetland microbial mats seem to have become well adapted to HPAM and could maintain their respiration and hydrocarbon degradation activities.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Oman.
| | - Marwan Al-Fori
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Oman
| | - Jamal Al-Sabahi
- Central Instrumentation Laboratory, College of Agricultural & Marine Sciences, Sultan Qaboos University, P. O. Box: 34, PC 123, Al Khoud, Oman
| | | | - Tom Headley
- BAUER Nimr LLC, P.O.Box 1186, P.C 114, Al Mina, Muscat, Oman
| |
Collapse
|
14
|
Abstract
Oil sands surface mining in Alberta has generated over a billion cubic metres of waste, known as tailings, consisting of sands, silts, clays, and process-affected water that contains toxic organic compounds and chemical constituents. All of these tailings will eventually be reclaimed and integrated into one of two types of mine closure landforms: end pit lakes (EPLs) or terrestrial landforms with a wetland feature. In EPLs, tailings deposits are capped with several metres of water while in terrestrial landforms, tailings are capped with solid materials, such as sand or overburden. Because tailings landforms are relatively new, past research has heavily focused on the geotechnical and biogeochemical characteristics of tailings in temporary storage ponds, referred to as tailings ponds. As such, the geochemical stability of tailings landforms remains largely unknown. This review discusses five mechanisms of geochemical change expected in tailings landforms: consolidation, chemical mass loading via pore water fluxes, biogeochemical cycling, polymer degradation, and surface water and groundwater interactions. Key considerations and knowledge gaps with regard to the long-term geochemical stability of tailings landforms are identified, including salt fluxes and subsequent water quality, bioremediation and biogenic greenhouse gas emissions, and the biogeochemical implications of various tailings treatment methods meant to improve geotechnical properties of tailings, such as flocculant (polyacrylamide) and coagulant (gypsum) addition.
Collapse
|
15
|
Zhang H, Li X, An Z, Liu Z, Tang C, Zhao X. Treatment of polyacrylamide-polluted wastewater using a revolving algae biofilm reactor: Pollutant removal performance and microbial community characterization. BIORESOURCE TECHNOLOGY 2021; 332:125132. [PMID: 33848818 DOI: 10.1016/j.biortech.2021.125132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Industries such as oil mining face challenges in the treatment of polyacrylamide (PAM)-containing wastewater produced during petroleum extraction. The feasibility of using revolving algae biofilm (RAB) reactors to treat PAM-contaminated wastewater for simultaneous removal of carbon and nitrogen was evaluated. The presence or absence of external nitrogen sources had a significant impact on the treatment effect of the RAB system. With the additional N source, the PAM, COD, TOC, and TN removal rates were 64.1 ± 2.0, 58 ± 1.5, 34.5 ± 1.5, and 85 ± 6.0%, respectively. High-throughput sequencing showed that the biofilms on RAB reactors contained a variety of bacteria, cyanobacteria, and green algae, degrading PAM through various mechanisms. The results of infrared spectroscopy analysis indicate that the product of these processes was carboxylic acid. Based on these results, it was concluded that RAB systems can be effectively applied to the treatment of polymer-containing wastewater.
Collapse
Affiliation(s)
- Huichao Zhang
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Xin Li
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Zhongyi An
- School of Civil Engineering, Yantai University, Yantai 264000, China.
| | - Zhiwei Liu
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Chunxiao Tang
- School of Civil Engineering, Yantai University, Yantai 264000, China
| | - Xiaodong Zhao
- School of Marine Science, Yantai University, Yantai 264000, China
| |
Collapse
|
16
|
Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time. ENERGIES 2021. [DOI: 10.3390/en14112993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to evaluate the possibility of using the process of dark fermentation to convert kitchen waste into valuable volatile fatty acids in a semi-continuous process at different values of the organic loading rate (2.5 and 5.0 gVS/(L × d)) and hydraulic retention time (5 and 10 d) using anaerobic mixed microbial consortia. The experiments were performed in a bioreactor of working volume 8L with pH control. The maximum volatile fatty acids yield in a steady state (22.3 g/L) was achieved at the organic loading rate of 5.0 gVS/(L × d) and HRT of 10 days. The main products of dark fermentation were acetic and butyric acids, constituting, respectively, 35.2–47.7% and 24.1–30.0% of all identified volatile fatty acids. Additionally, at the beginning of the fermentation and in a steady-state condition, the microbial population analysis (16S rDNA) of the fermentation mixture with the most effective volatile fatty acids generation has been performed to monitor the DF microflora development. The dominant microorganisms at a phylum level in a steady state were Firmicutes (44.9%) and Bacteroidetes (30.1%), which indicate the main role of those phyla in the volatile fatty acids synthesis.
Collapse
|
17
|
Ma L, Hu T, Liu Y, Liu J, Wang Y, Wang P, Zhou J, Chen M, Yang B, Li L. Combination of biochar and immobilized bacteria accelerates polyacrylamide biodegradation in soil by both bio-augmentation and bio-stimulation strategies. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124086. [PMID: 33153796 DOI: 10.1016/j.jhazmat.2020.124086] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Polyacrylamide (PAM) has been used extensively due to its well-known stable chemical properties, but limited information is available on the biodegradation of soil-containing PAM. In this work, sufficient degradation of PAM was achieved via the addition of the Klebsiella sp. PCX-biochar composite to PAM-containing soil, due to the synergic effect of bio-augmentation and bio-stimulation. The optimal degradation rate of 69.1% over 30-day period was observed under the following conditions: the addition of immobilized bacteria at 0.07 g/g, pH 6.6, and temperature at 38.0 °C. In this study, we showed that PAM was successfully hydrolyzed by amidase, and ammonia in the hydrolysis product was then oxidized by the nitrifying bacteria. The decrease of water-extractable organic carbon (WEOC) also demonstrated the chain cleavage in PAM. PAM was utilized as a carbon source not only by Klebsiella sp. PCX but also by some taxa from indigenous bacteria. Last but not least, it was shown in this study that biochar, even though immobilized with exogenous microorganisms, actually enhanced bacterial diversity and stimulated the growth of some indigenous PAM-degrading taxa. Based on the above observations, we concluded that PAM biodegradation via the addition of bacteria-immobilized biochar was a synergy of both bio-augmentation and bio-stimulation strategies.
Collapse
Affiliation(s)
- Lili Ma
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; National Postdoctoral Research Station, Haitian Water Group Co., Ltd, Chengdu 610041, China.
| | - Ting Hu
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Yucheng Liu
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Jie Liu
- Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Puzhou Wang
- Synthego Corporation, Redwood City, CA 94063, United States
| | - Jiyue Zhou
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Mingyan Chen
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Bing Yang
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Lingli Li
- Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| |
Collapse
|
18
|
Chen H, Chen Z, Nasikai M, Luo G, Zhang S. Hydrothermal pretreatment of sewage sludge enhanced the anaerobic degradation of cationic polyacrylamide (cPAM). WATER RESEARCH 2021; 190:116704. [PMID: 33279745 DOI: 10.1016/j.watres.2020.116704] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Cationic polyacrylamide (cPAM) is a widely used flocculant to dewater sewage sludge (SS) for high-solids anaerobic digestion (AD), and its degradation is crucial since it would release toxic acrylamide (AM) once entering environment. Hydrothermal treatment (HTT) is an efficient method to enhance the AD efficiency of SS. However, the effects of cPAM on AD of SS and the degradation of cPAM during HTT-AD process have not be studied. The study showed cPAM at 20 mg/g TS increased methane yield of SS from 127.0 to 138.9 ml CH4/g TS in HTT-AD process, and the biodegradability of cPAM was 76.3%, which was much higher than that (7.4%) without HTT. In HTT-AD process, the enrichment of certain microbes (e.g. Gelria sp.) was observed, which might be related with cPAM degradation. HTT decreased the molecular weight (MW) of cPAM, and resulted in the production of 2-hydroxy-ethyl-trimethylammonium, ammonia, trimethylamine, and ethanol. Methane potential tests of the main HTT products also showed they were easily to be degraded. Overall, HTT-AD integrated process was an efficient method to reduce environmental risk of cPAM as well as increase energy output (biogas), and the study also provided insights into the degradation mechanism of cPAM during HTT.
Collapse
Affiliation(s)
- Huihui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Mila Nasikai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China.
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| |
Collapse
|
19
|
Gaytán I, Burelo M, Loza-Tavera H. Current status on the biodegradability of acrylic polymers: microorganisms, enzymes and metabolic pathways involved. Appl Microbiol Biotechnol 2021; 105:991-1006. [PMID: 33427930 PMCID: PMC7798386 DOI: 10.1007/s00253-020-11073-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Abstract Acrylic polymers (AP) are a diverse group of materials with broad applications, frequent use, and increasing demand. Some of the most used AP are polyacrylamide, polyacrylic acid, polymethyl methacrylates, and polyacrylonitrile. Although no information for the production of all AP types is published, data for the most used AP is around 9 MT/year, which gives an idea of the amount of waste that can be generated after products’ lifecycles. After its lifecycle ends, the fate of an AP product will depend on its chemical structure, the environmental setting where it was used, and the regulations for plastic waste management existing in the different countries. Even though recycling is the best fate for plastic polymer wastes, few AP can be recycled, and most of them end up in landfills. Because of the pollution crisis the planet is immersed, setting regulations and developing technological strategies for plastic waste management are urgent. In this regard, biotechnological approaches, where microbial activity is involved, could be attractive eco-friendly strategies. This mini-review describes the broad AP diversity, their properties and uses, and the factors affecting their biodegradability, underlining the importance of standardizing biodegradation quantification techniques. We also describe the enzymes and metabolic pathways that microorganisms display to attack AP chemical structure and predict some biochemical reactions that could account for quaternary carbon-containing AP biodegradation. Finally, we analyze strategies to increase AP biodegradability and stress the need for more studies on AP biodegradation and developing stricter legislation for AP use and waste control. Key points • Acrylic polymers (AP) are a diverse and extensively used group of compounds. • The environmental fates and health effects of AP waste are not completely known. • Microorganisms and enzymes involved in AP degradation have been identified. • More biodegradation studies are needed to develop AP biotechnological treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-11073-1.
Collapse
Affiliation(s)
- Itzel Gaytán
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000. Col. UNAM., 04510, Mexico City, México
| | - Manuel Burelo
- Laboratorio de Química Sostenible, Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000. Col. UNAM., 04510, Mexico City, México
| | - Herminia Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000. Col. UNAM., 04510, Mexico City, México.
| |
Collapse
|
20
|
Application of Polyacrylamide Flocculant for Stabilization of Anaerobic Digestion under Conditions of Excessive Accumulation of Volatile Fatty Acids. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Excessive accumulation of volatile fatty acids (VFA) is one of the major factors destabilizing methanogenic digestion of organic wastes in anaerobic bioreactors. Existing methods of stabilization of this process are mostly expensive and labor-intensive, often requiring removal of a considerable portion of acidified biomass from the bioreactor. We propose a method for methanogenesis restoration in such soured reactors by the addition of a cationic polyacrylamide flocculant (PAM) at 20 mg/g total solids. After flocculant addition, mixing should be minimized to prolong the existence of the floccules formed in the presence of the flocculant. While partial microbial degradation of the polyacrylamide flocculant was observed during the thermophilic anaerobic process, complete PAM mineralization did not occur. Significant inhibition of anaerobic processes, primarily in the activity of syntrophic propionate-oxidizing bacteria, was observed at PAM concentrations above 40 mg/g total solids.
Collapse
|
21
|
Liu J, Jia S, Xu L, Zhu F, Ren S, Liu Y, Sun Z. Application of composite degradable modified starch-based flocculant on dewatering and recycling properties. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2051-2061. [PMID: 33263583 DOI: 10.2166/wst.2020.464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sludge dewatering is an important step for wastewater treatment. Composite degradable flocculant (CDF) was prepared by cationic polyacrylamide (PAM) grafting onto modified starch with a novel initiator, and characterized by Fourier transform infrared spectroscopy. The microstructure of flocculated sludge was characterized by scanning electron microscopy. The study investigated the properties of CDF compared to PAM, which showed that the prepared CDF exhibited a highly effective flocculation on sludge dewatering, a higher transmittance and chemical oxygen demand removal rate, and a lower value of effluent ammonia nitrogen and total phosphorus. The fermentation process was also analyzed by testing the performance of dewatered sludge (temperature, pH, ammonia nitrogen, E4/E6 (humic acid absorbance at 465 nm (E4) and 665 nm (E6))). The dehydrated sludge with CDF could be easily compressed into cakes by belt-filter for easy transportation and storage. With the continuous addition of CDF and PAM, the corresponding index of capillary suction time (CST) increased. Moreover, the total value of CST with CDF was low, showing a good dewaterability. In addition, the sludge index of pumping time and moisture content with CDF were low in contrast with PAM. Fermentation experiments demonstrated that sludge with CDF had a comparatively high temperature and low value of E4/E6. Such novel CDF shows enormous potential in wastewater treatment and sludge fermentation.
Collapse
Affiliation(s)
- Jianbo Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Shibei District, Qingdao, China E-mail: ; Sinocore Biotechnology (Qingdao) Co., Ltd, 53# Zhengzhou Road, Qingdao, 266042, China
| | - Shouhao Jia
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Shibei District, Qingdao, China E-mail:
| | - Liming Xu
- Sinocore Biotechnology (Qingdao) Co., Ltd, 53# Zhengzhou Road, Qingdao, 266042, China
| | - Feifei Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Shibei District, Qingdao, China E-mail:
| | - Shan Ren
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Shibei District, Qingdao, China E-mail:
| | - Yuanfeng Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Shibei District, Qingdao, China E-mail:
| | - Ziqi Sun
- Sinocore Biotechnology (Qingdao) Co., Ltd, 53# Zhengzhou Road, Qingdao, 266042, China
| |
Collapse
|
22
|
Zhao L, Zhang C, Lu Z, Bao M, Lu J. Key role of different levels of dissolved oxygen in hydrolyzed polyacrylamide bioconversion: Focusing on metabolic products, key enzymes and functional microorganisms. BIORESOURCE TECHNOLOGY 2020; 306:123089. [PMID: 32155564 DOI: 10.1016/j.biortech.2020.123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Dissolved oxygen (DO) played a short board effect on nitrogen biotransformation and pollutant metabolism. This study for the first time explored the key role of different levels of DO (covering anaerobic, anoxic and aerobic) on hydrolyzed polyacrylamide (HPAM) bioconversion. HPAM was metabolized to intermediates with different chain length. Volatile fatty acid (VFA) production rose first and then descended with DO concentration (0-2 mg·L-1), and the maximum reached 92.5 mg·L-1 when DO was 0.5 mg·L-1. Total nitrogen (TN) removal increased first and then dropped with DO concentration, and the maximum (61.4%) occurred at 0.5 mg·L-1 DO. NH4+-N dipped from 42.8 to 0 mg·L-1 and NO3--N rose from 0 to 32.8 mg·L-1 with DO concentration. The changes of enzyme activities were consistent with those of VFA production and TN removal, which were related to HPAM metabolism and N bioconversion. Microbial function was correlated to HPAM metabolism, N bioconversion and key enzyme.
Collapse
Affiliation(s)
- Lanmei Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Congcong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyang Lu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
23
|
Zhao L, Cheng Y, Yin Z, Chen D, Bao M, Lu J. Insights into the effect of different levels of crude oil on hydrolyzed polyacrylamide biotransformation in aerobic and anoxic biosystems: Bioresource production, enzymatic activity, and microbial function. BIORESOURCE TECHNOLOGY 2019; 293:122023. [PMID: 31472407 DOI: 10.1016/j.biortech.2019.122023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
The differences of crude oil recovery ratio resulted in different levels of crude oil in actual hydrolyzed polyacrylamide (HPAM)-containing wastewater. The effect of crude oil on HPAM biotransformation was explored from bioresource production, enzymatic activity and microbial function. In aerobic biosystems, the highest polyhydroxyalkanoate (PHA) yield (19.6%-40.2%) and dehydrogenase (DH) activity (4.06-8.32 mg·g-1 VSS) occurred in the 48th hour, and increased with crude oil concentration (0-400 mg·L-1). In anoxic biosystems, the highest PHA yield (24.5%-50.5%) and DH activity (3.24-6.69 mg·g-1 VSS) occurred in the 72nd hour, and increased with crude oil concentration. The higher substrate removal (38.5%-65.7%) occurred in aerobic biosystems, while the higher PHA accumulation occurred in anoxic biosystems. PHA yield, DH activity and HPAM removal were related. Microbial function related to HPAM biodegradation and PHA synthesis was discussed. The main function of Pseudomonas and Bacillus in aerobic biosystems was to degrade HPAM, and in anoxic biosystems was to synthesize PHA.
Collapse
Affiliation(s)
- Lanmei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuan Cheng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dafan Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
24
|
Zhang Y, Zhao L, Song T, Cheng Y, Bao M, Li Y. Simultaneous nitrification and denitrification in an aerobic biofilm biosystem with loofah sponges as carriers for biodegrading hydrolyzed polyacrylamide-containing wastewater. Bioprocess Biosyst Eng 2019; 43:529-540. [DOI: 10.1007/s00449-019-02247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/01/2019] [Indexed: 01/14/2023]
|
25
|
Song T, Li S, Jin J, Yin Z, Lu Y, Bao M, Li Y. Enhanced hydrolyzed polyacrylamide removal from water by an aerobic biofilm reactor-ozone reactor-aerobic biofilm reactor hybrid treatment system: Performance, key enzymes and functional microorganisms. BIORESOURCE TECHNOLOGY 2019; 291:121811. [PMID: 31344634 DOI: 10.1016/j.biortech.2019.121811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Degradation of hydrolyzed polyacrylamide-containing (HPAM-containing) wastewater was investigated in a lab-scale aerobic-ozonic-aerobic hybrid treatment system. When the HPAM concentration was 500 mg L-1 and the ozone dose was 25 g O3/g TOC, the HPAM removal rate reached 90.79%. Experimental results obtained from gel permeation chromatography (GPC) and rheometer indicated that the refractory HPAM was decomposed into small-molecule compounds. High performance liquid chromatography (HPLC) analysis showed that there was no acrylamide (AM) in the effluent of the system. Microbial communities in two aerobic biofilm reactors (ABRs) were analyzed by Illumina MiSeq Sequencing, which indicated that norank_f_Cytophagaceae, Meiothermus, Bacillus, etc. were keystone functional bacterial genera and Methanobacterium, norank_p_Bathyarchaeota, norank_c_Marine_Group_Ⅰ, etc. were dominant functional archaeal groups. To our knowledge, this is the first study to treat HPAM-containing wastewater using an aerobic-ozonic-aerobic hybrid process. Good removal efficiencies and presence of functional microorganisms demonstrated that the hybrid treatment system was practical for treating HPAM-containing wastewater.
Collapse
Affiliation(s)
- Tianwen Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Shanshan Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiafeng Jin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yifeng Lu
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; China Petrochemical Corporation (Sinopec Group), Beijing 100728, China
| |
Collapse
|
26
|
Zhao L, Han D, Yin Z, Bao M, Lu J. Biohydrogen and polyhydroxyalkanoate production from original hydrolyzed polyacrylamide-containing wastewater. BIORESOURCE TECHNOLOGY 2019; 287:121404. [PMID: 31108414 DOI: 10.1016/j.biortech.2019.121404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
This work aimed to study biohydrogen (H2) and polyhydroxyalkanoate (PHA) production from original hydrolyzed polyacrylamide (HPAM)-containing wastewater. NH4+-N from HPAM hydrolysis was removed efficiently through short-cut nitrification and anoxic ammonia oxidation (anammox). Carbon/Nitrogen (C/N) ratios of effluent reached 51-97, and TOC decreased only 2%-4%, providing potential for subsequent H2 and PHA production. The maximum yields of H2 (0.833 mL·mg-1substrate) and Volatile Fatty Acid (VFA) (465 mg·L-1) occurred at influent C/N ratio of 51. Substrate removal increased linearly with the activities of dehydrogenase and hydrogenase (R2 ≥ 0.990), and H2 yield rose exponentially with enzyme activities (R2 ≥ 0.989). The maximum PHA yield (54.2% VSS) occurred at the 42nd hour and influent C/N ratio of 97. PHA yield was positively correlated with substrate uptake. The change of H2-producing, PHA-accumulating and HPAM-degradating bacteria indicated that those functional microorganisms had synergistic effects on H2 production and substrate uptake, as well as PHA accumulation and substrate uptake.
Collapse
Affiliation(s)
- Lanmei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dong Han
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zichao Yin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
27
|
Liu X, Xu Q, Wang D, Yang Q, Wu Y, Li Y, Fu Q, Yang F, Liu Y, Ni BJ, Wang Q, Li X. Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. BIORESOURCE TECHNOLOGY 2019; 281:158-167. [PMID: 30818267 DOI: 10.1016/j.biortech.2019.02.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Deterioration of anaerobic digestion can occur with the presence of polyacrylamide (PAM) in waste activated sludge, and little information on mitigating this deterioration is currently available. In this study, simultaneous mitigation of PAM negative effects and improvement of methane production was accomplished by thermal-alkaline pretreatment. Under the optimized pretreatment conditions (i.e., 75 °C, pH 11.0 for 17.5 h), the biochemical methane potential of PAM-flocculated sludge increased from 100.5 to 210.8 mL/g VS and the hydrolysis rate increased from 0.122 to 0.187 d-1. Mechanism investigations revealed that the pretreatment not only broke the large firm floccules, improved the degradation of PAM, but also facilitated the release of biodegradable organics from sludge, which thereby provided better growth environment and enough nutrients to anaerobic microbes for methane production. The activities of key enzymes responsible for methane production and PAM degradation were greatly improved in pretreated reactor, with the accumulation of acrylamide being avoided.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fan Yang
- Hunan Communication Research Institute Co, Changsha 410015, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
28
|
Liu X, Xu Q, Wang D, Wu Y, Yang Q, Liu Y, Wang Q, Li X, Li H, Zeng G, Yang G. Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. WATER RESEARCH 2019; 155:142-151. [PMID: 30844675 DOI: 10.1016/j.watres.2019.02.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 05/16/2023]
Abstract
Cationic polyacrylamide, a flocculation powder widely used in wastewater pretreatment and sludge dewatering, was highly accumulated in waste activated sludge. However, its effect on short-chain fatty acids (SCFAs) accumulation from anaerobic fermentation of waste activated sludge has not been investigated. This work therefore aims to deeply unveil how cationic polyacrylamide affects SCFAs production, through both long-term and batch tests using either real waste activated sludge or synthetic wastewaters as fermentation substrates. Experimental results showed that the presence of cationic polyacrylamide not only significantly decreased the accumulation of SCFAs but also affected the composition of individual SCFA. The concentration of SCFAs decreased from 3374.7 to 2391.7 mg COD/L with cationic polyacrylamide level increasing from 0 to 12 g/kg of total suspended solids, whereas the corresponding percentage of acetic acid increased from 45.2% to 55.5%. The mechanism studies revealed that although cationic polyacrylamide could be partially degraded to produce SCFAs during anaerobic fermentation, cationic polyacrylamide and its major degradation metabolite, polyacrylic acid, inhibited all the sludge solubilization, hydrolysis, acidogenesis, acetogenesis and homoacetogenesis processes to some extents. As a result, the accumulation of SCFAs in the cationic polyacrylamide added systems decreased rather than increased. However, the inhibition to acetogenesis and homoacetogenesis was slighter than that to acidogenesis, leading to an increase of acetic acid to total SCFAs. It was further found that cationic polyacrylamide had stronger ability to adhere to protein molecules surface, which inhibited the bioconversion of proteins more severely. Illumina MiSeq sequencing analyses showed that cationic polyacrylamide decreased microbial community diversity, altered community structure and changed activities of key enzymes responsible for SCFAs accumulation.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China.
| |
Collapse
|
29
|
High temperature utilization of PAM and HPAM by microbial communities enriched from oilfield produced water and activated sludge. AMB Express 2019; 9:46. [PMID: 30968201 PMCID: PMC6456633 DOI: 10.1186/s13568-019-0766-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 03/23/2019] [Indexed: 11/25/2022] Open
Abstract
Non-hydrolyzed polyacrylamide (PAM) and partially hydrolyzed polyacrylamide (HPAM) are commonly used polymers in various industrial applications, including in oil and gas production operations. Understanding the microbial utilization of such polymers can contribute to improved recovery processes and help to develop technologies for polymer remediation. Microbial communities enriched from oilfield produced water (PW) and activated sludge from Alberta, Canada were assessed for their ability to utilize PAM and HPAM as nitrogen and carbon sources at 50 °C. Microbial growth was determined by measuring CO2 production, and viscosity changes and amide concentrations were used to determine microbial utilization of the polymers. The highest CO2 production was observed in incubations wherein HPAM was added as a nitrogen source for sludge-derived enrichments. Our results showed that partial deamination of PAM and HPAM occurred in both PW and sludge microbial cultures after 34 days of incubation. Whereas viscosity changes were not observed in cultures when HPAM or PAM was provided as the only carbon source, sludge enrichment cultures amended with HPAM and glucose showed significant decreases in viscosity. 16S rRNA gene sequencing analysis indicated that microbial members from the family Xanthomonadaceae were enriched in both PW and sludge cultures amended with HPAM or PAM as a nitrogen source, suggesting the importance of this microbial taxon in the bio-utilization of these polymers. Overall, our results demonstrate that PAM and HPAM can serve as nitrogen sources for microbial communities under the thermophilic conditions commonly found in environments such as oil and gas reservoirs.
Collapse
|
30
|
Litti Y, Nikitina A, Kovalev D, Ermoshin A, Mahajan R, Goel G, Nozhevnikova A. Influence of cationic polyacrilamide flocculant on high-solids' anaerobic digestion of sewage sludge under thermophilic conditions. ENVIRONMENTAL TECHNOLOGY 2019; 40:1146-1155. [PMID: 29237330 DOI: 10.1080/09593330.2017.1417492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Treatment of sewage sludge (SS) by biodegradable polyacrylamide-based flocculants (PAM) is considered to be an effective way to increase total solids' (TS) content prior to anaerobic digestion (AD). However, data on how PAM addition influences the efficiency of AD process are quite contradictory; moreover, no data are available for thermophilic AD (TAD). This study showed that at an optimal inoculum-to-substrate ratio (ISR, 55/45), PAM addition resulted in some decrease in initial methane production during the TAD of SS due to the formation of large flocs (up to 2-3 mm in diameter), which deteriorated the mass transfer. However, at non-optimal ISR (40/60), which led to the destabilization of TAD, PAM addition (40 mg/g TS) could restore the methanogenesis despite the inhibiting accumulation of volatile fatty acids (14-15 g/l) and pH drop (5.5). The observed positive effect of PAM-forced flocculation proposes a new interesting alternative for recovery of 'soured' reactors.
Collapse
Affiliation(s)
- Yuri Litti
- a Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - Anna Nikitina
- a Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - Dmitriy Kovalev
- b Federal Government Budgetary Scientific Institution Federal Scientific Agroengeneering Centre VIM , Moscow , Russia
| | - Artem Ermoshin
- a Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - Rishi Mahajan
- c Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat , India
| | - Gunjan Goel
- c Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Waknaghat , India
| | - Alla Nozhevnikova
- a Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
31
|
Zhang L, Su F, Wang N, Liu S, Yang M, Wang YZ, Huo D, Zhao T. Biodegradability enhancement of hydrolyzed polyacrylamide wastewater by a combined Fenton-SBR treatment process. BIORESOURCE TECHNOLOGY 2019; 278:99-107. [PMID: 30684729 DOI: 10.1016/j.biortech.2019.01.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
An efficient way to solve the environmental pollution deriving from hydrolyzed polyacrylamide (HPAM)-containing drilling wastewater is urgent. This work adopted a novel method coupling Fenton oxidation with sequencing batch reactor (SBR) to treat gas-field drilling wastewater successively. This Fenton-SBR process reduced COD, HPAM, NH4+-N and total phosphorus (TP) concentrations of drilling wastewater by 98.35%, 87.58%, 94.50% and 93.52%, respectively. While simulated HPAM wastewater with similar HPAM concentration to Fenton-oxidized drilling wastewater was treated only by biological process, and the COD and HPAM removal efficiencies reached 78.26% and 62.95%. The result indicates that the biodegradability of the drilling wastewater was enhanced after Fenton oxidation. Moreover, the analysis on microbial community structure indicates the dominant bacteria in treated drilling wastewater were different from that in treated simulated-wastewater. It can be considered the Fenton-SBR process possesses potential to be applied to treating the drilling wastewater.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Fei Su
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Nan Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shuai Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yong-Zhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
32
|
Hydrolyzed polyacrylamide biotransformation in an up-flow anaerobic sludge blanket reactor system: key enzymes, functional microorganisms, and biodegradation mechanisms. Bioprocess Biosyst Eng 2019; 42:941-951. [DOI: 10.1007/s00449-019-02094-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
|
33
|
Zhao L, Zhang C, Bao M, Lu J. Advanced treatment for actual hydrolyzed polyacrylamide-containing wastewater in a biofilm/activated sludge membrane bioreactor system: Biodegradation and interception. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Hu H, Liu JF, Li CY, Yang SZ, Gu JD, Mu BZ. Anaerobic biodegradation of partially hydrolyzed polyacrylamide in long-term methanogenic enrichment cultures from production water of oil reservoirs. Biodegradation 2018; 29:233-243. [PMID: 29502248 DOI: 10.1007/s10532-018-9825-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/24/2018] [Indexed: 10/17/2022]
Abstract
The increasing usage of partially hydrolyzed polyacrylamide (HPAM) in oilfields as a flooding agent to enhance oil recovery at so large quantities is an ecological hazard to the subsurface ecosystem due to persistence and inertness. Biodegradation of HPAM is a potentially promising strategy for dealing with this problem among many other methods available. To understand the responsible microorganisms and mechanism of HPAM biodegradation under anaerobic conditions, an enrichment culture from production waters of oil reservoirs were established with HPAM as the sole source of carbon and nitrogen incubated for over 328 days, and analyzed using both molecular microbiology and chemical characterization methods. Gel permeation chromatography, High-pressure liquid chromatography and Fourier-transformed infrared spectroscopy results indicated that, after 328 days of anaerobic incubation, some of the amide groups on HPAM were removed and released as ammonia/ammonium and carboxylic groups, while the carbon backbone of HPAM was converted to smaller polymeric fragments, including oligomers and various fatty acids. Based on these results, the biochemical process of anaerobic biodegradation of HPAM was proposed. The phylogenetic analysis of 16S rRNA gene sequences retrieved from the enrichments showed that Proteobacteria and Planctomycetes were the dominant bacteria in the culture with HPAM as the source of carbon and nitrogen, respectively. For archaea, Methanofollis was more abundant in the anaerobic enrichment. These results are helpful for understanding the process of HPAM biodegradation and provide significant insights to the fate of HPAM in subsurface environment and for possible bioremediation.
Collapse
Affiliation(s)
- Hao Hu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Cai-Yun Li
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.,Shanghai Collaborative Innovation Center of Biomanufacturing Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
35
|
Wang D, Liu X, Zeng G, Zhao J, Liu Y, Wang Q, Chen F, Li X, Yang Q. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. WATER RESEARCH 2018; 130:281-290. [PMID: 29241114 DOI: 10.1016/j.watres.2017.12.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy, Griffith University, QLD, Australia
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
36
|
Zhao L, Zhang C, Bao M, Lu J. Effects of different electron acceptors on the methanogenesis of hydrolyzed polyacrylamide biodegradation in anaerobic activated sludge systems. BIORESOURCE TECHNOLOGY 2018; 247:759-768. [PMID: 30060411 DOI: 10.1016/j.biortech.2017.09.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 06/08/2023]
Abstract
The type of electron acceptor was a crucial factor in regulating the methanogenic process of anaerobic hydrolyzed polyacrylamide (HPAM) degradation. The combined methods of biodegradation experiments and thermodynamic calculations were applied to explore the effects of different electron acceptors on methanogenic HPAM degradation. Under the conditions of without electron acceptor, SO42-, Fe3+, SO42- and Fe3+ as electron acceptors, HPAM biodegradation ratio reached 31.56%, 41.48%, 49.4% and 61.1%, acetate production reached 0.0532, 28.28, 112.7 and 141.95mg·L-1, CH4 production reached 0.024, 0.3015, 9.446 and 11.78mg·L-1, respectively. The synergistic effect of SO42- and Fe3+ further promoted methanogenic HPAM biotransformation. Archaeal community analysis revealed that Methanobacteriales, Methanomicrobiales and Methanosarcinales were dominant. Thermodynamic opportunity windows of methanogenesis with Fe3+ as electron acceptor are 35 times larger than that with SO42- as electron acceptor. It indicated that acetoclastic methanogenesis was dominant and hydrogenotrophic methanogenesis was inhibited in the methane-producing process of anaerobic HPAM degradation.
Collapse
Affiliation(s)
- Lanmei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Congcong Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
37
|
Zhao L, Bao M, Yan M, Lu J. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions. BIORESOURCE TECHNOLOGY 2016; 216:95-104. [PMID: 27235971 DOI: 10.1016/j.biortech.2016.05.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 06/05/2023]
Abstract
Kinetics and thermodynamics of hydrolyzed polyacrylamide (HPAM) biodegradation in anaerobic and aerobic activated sludge biochemical treatment systems were explored to determine the maximum rate and feasibility of HPAM biodegradation. The optimal nutrient proportions for HPAM biodegradation were determined to be 0.08g·L(-1) C6H12O6, 1.00g·L(-1) NH4Cl, 0.36g·L(-1) NaH2PO4 and 3.00g·L(-1) K2HPO4 using response surface methodology (RSM). Based on the kinetics, the maximum HPAM biodegradation rates were 16.43385mg·L(-1)·d(-1) and 2.463mg·L(-1)·d(-1) in aerobic and anaerobic conditions, respectively. The activation energy (Ea) of the aerobic biodegradation was 48.9897kJ·mol(-1). Entropy changes (ΔS) of biochemical treatment system decreased from 216.21J·K(-1) to 2.39J·K(-1). Thermodynamic windows of opportunity for HPAM biodegradation were drawn. And it demonstrated HPAM was biodegraded into acetic acid and CO2 under laboratory conditions. Growth-process equations for functional bacteria anaerobically grown on polyacrylic acid were constructed and it confirmed electron equivalence between substrate and product.
Collapse
Affiliation(s)
- Lanmei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Miao Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
38
|
Yan M, Zhao L, Bao M, Lu J. Hydrolyzed polyacrylamide biodegradation and mechanism in sequencing batch biofilm reactor. BIORESOURCE TECHNOLOGY 2016; 207:315-321. [PMID: 26896716 DOI: 10.1016/j.biortech.2016.01.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
An investigation was performed to study the performance of a sequencing batch biofilm reactor (SBBR) to treat hydrolyzed polyacrylamides (HPAMs) and to determine the mechanisms of HPAM biodegradation. The mechanisms for the optimized parameters that significantly improved the degradation efficiency of the HPAMs were investigated by a synergistic effect of the co-metabolism in the sludge and the enzyme activities. The HPAM and TOC removal ratio reached 54.69% and 70.14%. A significant decrease in the total nitrogen concentration was measured. The carbon backbone of the HPAMs could be degraded after the separation of the amide group according to the data analysis. The HPLC results indicated that the HPAMs could be converted to polymer fragments without the generation of the acrylamide monomer intermediate. The results from high-throughput sequencing analysis revealed proteobacterias, bacteroidetes and planctomycetes were the key microorganisms involved in the degradation.
Collapse
Affiliation(s)
- Miao Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Lanmei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jinren Lu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|