1
|
Rodríguez-Parra MÁ, Vargas-De-León C, Godinez-Jaimes F, Martinez-Lázaro C. Bayesian estimation of parameters in viral dynamics models with antiviral effect of interferons in a cell culture. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:11033-11062. [PMID: 37322970 DOI: 10.3934/mbe.2023488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The goal of this work is to estimate the efficacy of interferon therapy in the inhibition of infection by the human immunodeficiency virus type 1 (HIV-1) in a cell culture. For this purpose, three viral dynamics models with the antiviral effect of interferons are presented; the dynamics of cell growth differ among the models, and a variant with Gompertz-type cell dynamics is proposed. A Bayesian statistics approach is used to estimate the cell dynamics parameters, viral dynamics and interferon efficacy. The models are fitted to sets of experimental data on cell growth, HIV-1 infection without interferon therapy and HIV-1 infection with interferon therapy, respectively. The Watanabe-Akaike information criterion (WAIC) is used to determine the model that best fits the experimental data. In addition to the estimated model parameters, the average lifespan of the infected cells and the basic reproductive number are calculated.
Collapse
Affiliation(s)
- Miguel Ángel Rodríguez-Parra
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Ciudad Universitaria s/n Chilpancingo, Guerrero, México
| | - Cruz Vargas-De-León
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, México
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Flaviano Godinez-Jaimes
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Ciudad Universitaria s/n Chilpancingo, Guerrero, México
| | - Celia Martinez-Lázaro
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Ciudad Universitaria s/n Chilpancingo, Guerrero, México
| |
Collapse
|
2
|
Kumata R, Iwanami S, Mar KB, Kakizoe Y, Misawa N, Nakaoka S, Koyanagi Y, Perelson AS, Schoggins JW, Iwami S, Sato K. Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection. PLoS Comput Biol 2022; 18:e1010053. [PMID: 35468127 PMCID: PMC9037950 DOI: 10.1371/journal.pcbi.1010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
In HIV-1-infected individuals, transmitted/founder (TF) virus contributes to establish new infection and expands during the acute phase of infection, while chronic control (CC) virus emerges during the chronic phase of infection. TF viruses are more resistant to interferon-alpha (IFN-α)-mediated antiviral effects than CC virus, however, its virological relevance in infected individuals remains unclear. Here we perform an experimental-mathematical investigation and reveal that IFN-α strongly inhibits cell-to-cell infection by CC virus but only weakly affects that by TF virus. Surprisingly, IFN-α enhances cell-free infection of HIV-1, particularly that of CC virus, in a virus-cell density-dependent manner. We further demonstrate that LY6E, an IFN-stimulated gene, can contribute to the density-dependent enhancement of cell-free HIV-1 infection. Altogether, our findings suggest that the major difference between TF and CC viruses can be explained by their resistance to IFN-α-mediated inhibition of cell-to-cell infection and their sensitivity to IFN-α-mediated enhancement of cell-free infection.
Collapse
Affiliation(s)
- Ryuichi Kumata
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Science, Kyoto University, Kyoto, Japan
| | - Shoya Iwanami
- interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yusuke Kakizoe
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Naoko Misawa
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- MIRAI, Japan Science and Technology Agency, Saitama, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
3
|
Ratti V, Nanda S, Eszterhas SK, Howell AL, Wallace DI. A mathematical model of HIV dynamics treated with a population of gene-edited haematopoietic progenitor cells exhibiting threshold phenomenon. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2021; 37:212-242. [PMID: 31265056 DOI: 10.1093/imammb/dqz011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/03/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
The use of gene-editing technology has the potential to excise the CCR5 gene from haematopoietic progenitor cells, rendering their differentiated CD4-positive (CD4+) T cell descendants HIV resistant. In this manuscript, we describe the development of a mathematical model to mimic the therapeutic potential of gene editing of haematopoietic progenitor cells to produce a class of HIV-resistant CD4+ T cells. We define the requirements for the permanent suppression of viral infection using gene editing as a novel therapeutic approach. We develop non-linear ordinary differential equation models to replicate HIV production in an infected host, incorporating the most appropriate aspects found in the many existing clinical models of HIV infection, and extend this model to include compartments representing HIV-resistant immune cells. Through an analysis of model equilibria and stability and computation of $R_0$ for both treated and untreated infections, we show that the proposed therapy has the potential to suppress HIV infection indefinitely and return CD4+ T cell counts to normal levels. A computational study for this treatment shows the potential for a successful 'functional cure' of HIV. A sensitivity analysis illustrates the consistency of numerical results with theoretical results and highlights the parameters requiring better biological justification. Simulations of varying level production of HIV-resistant CD4+ T cells and varying immune enhancements as the result of these indicate a clear threshold response of the model and a range of treatment parameters resulting in a return to normal CD4+ T cell counts.
Collapse
Affiliation(s)
| | - Seema Nanda
- Department of Mathematics, Dartmouth College, Hanover, USA
| | - Susan K Eszterhas
- Veterans Affairs Medical Center, White River Junction, USA.,Departments of Microbiology and Immunology, and Medicine, Geisel School of Medicine at Dartmouth, Lebanon, USA
| | - Alexandra L Howell
- Veterans Affairs Medical Center, White River Junction, USA.,Departments of Microbiology and Immunology, and Medicine, Geisel School of Medicine at Dartmouth, Lebanon, USA
| | | |
Collapse
|
4
|
Differential utilization of CD4+ by transmitted/founder and chronic envelope glycoproteins in a MSM HIV-1 subtype B transmission cluster. AIDS 2020; 34:2187-2200. [PMID: 32932339 DOI: 10.1097/qad.0000000000002690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE HIV-1 transmission leads to a genetic bottleneck, with one or a few variants of the donor quasispecies establishing an infection in the new host. We aimed to characterize this bottleneck in more detail, by comparing the properties of HIV envelope glycoproteins from acute and chronic infections within the particular context of a male-to-male transmission cluster. DESIGN We compared the genotypic and phenotypic properties of envelope glycoproteins from viral variants derived from five study participants from the same transmission cluster. METHODS We used single-genome amplification to generate a collection of full-length env sequences. We then constructed pseudotyped viruses expressing selected Env variants from the quasispecies infecting each study participant and compared their infectivities and sensitivities to various entry inhibitors. RESULTS The genotypic analyses confirmed the genetic bottleneck expected after HIV transmission, with a limited number of variants identified in four study participants during acute infection. However, the transmitted sequences harbored no evident common signature and belonged to various genetic lineages. The phenotypic analyses revealed no difference in infectivity, susceptibility to the CCR5 antagonist maraviroc, the fusion inhibitor enfurvitide or type-I interferon between viruses from participants with acute and chronic infections. The key property distinguishing transmitted viruses was a higher resistance to soluble CD4, correlated with greater sensitivity to occupation of the CD4 receptor by the anti-CD4 antibodies LM52 and SK3. CONCLUSION These results suggest that envelope glycoproteins from transmitted/founder viruses bind CD4 less efficiently than those of viruses from chronic infections.
Collapse
|
5
|
Liao LE, Carruthers J, Smither SJ, Weller SA, Williamson D, Laws TR, García-Dorival I, Hiscox J, Holder BP, Beauchemin CAA, Perelson AS, López-García M, Lythe G, Barr JN, Molina-París C. Quantification of Ebola virus replication kinetics in vitro. PLoS Comput Biol 2020; 16:e1008375. [PMID: 33137116 PMCID: PMC7660928 DOI: 10.1371/journal.pcbi.1008375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/12/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola virus modelling efforts have primarily focused on in vivo virus kinetics, e.g., in animal models, to aid the development of antivirals and vaccines. But, thus far, these studies have not yielded a detailed specification of the infection cycle, which could provide a foundational description of the virus kinetics and thus a deeper understanding of their clinical manifestation. Here, we obtain a diverse experimental data set of the Ebola virus infection in vitro, and then make use of Bayesian inference methods to fully identify parameters in a mathematical model of the infection. Our results provide insights into the distribution of time an infected cell spends in the eclipse phase (the period between infection and the start of virus production), as well as the rate at which infectious virions lose infectivity. We suggest how these results can be used in future models to describe co-infection with defective interfering particles, which are an emerging alternative therapeutic.
Collapse
Affiliation(s)
- Laura E. Liao
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA 87545
| | - Jonathan Carruthers
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Simon A. Weller
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | - Diane Williamson
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | - Thomas R. Laws
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | - Isabel García-Dorival
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Julian Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Benjamin P. Holder
- Department of Physics, Grand Valley State University, Allendale, MI, USA 49401
| | - Catherine A. A. Beauchemin
- Department of Physics, Ryerson University, Toronto, ON, Canada M5B 2K3
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Research Program at RIKEN, Wako, Saitama, Japan, 351-0198
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA 87545
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - John N. Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
- * E-mail:
| |
Collapse
|
6
|
Kitagawa K, Nakaoka S, Asai Y, Watashi K, Iwami S. A PDE multiscale model of hepatitis C virus infection can be transformed to a system of ODEs. J Theor Biol 2018; 448:80-85. [PMID: 29634960 DOI: 10.1016/j.jtbi.2018.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
Abstract
Direct-acting antivirals (DAAs) treat hepatitis C virus (HCV) by targeting its intracellular viral replication. DAAs are effective and deliver high clinical performance against HCV infection, but optimization of the DAA treatment regimen is ongoing. Different classes of DAAs are currently under development, and HCV treatments that combine two or three DAAs with different action mechanisms are being improved. To accurately quantify the antiviral effect of these DAA treatments and optimize multi-drug combinations, we must describe the intracellular viral replication processes corresponding to the action mechanisms by multiscale mathematical models. Previous multiscale models of HCV treatment have been formulated by partial differential equations (PDEs). However, estimating the parameters from clinical datasets requires comprehensive numerical PDE computations that are time consuming and often converge poorly. Here, we propose a user-friendly approach that transforms a standard PDE multiscale model of HCV infection (Guedj J et al., Proc. Natl. Acad. Sci. USA 2013; 110(10):3991-6) to mathematically identical ordinary differential equations (ODEs) without any assumptions. We also confirm consistency between the numerical solutions of our transformed ODE model and the original PDE model. This relationship between a detailed structured model and a simple model is called ``model aggregation problem'' and a fundamental important in theoretical biology. In particular, as the parameters of ODEs can be estimated by already established methods, our transformed ODE model and its modified version avoid the time-consuming computations and are broadly available for further data analysis.
Collapse
Affiliation(s)
- Kosaku Kitagawa
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Shinji Nakaoka
- PRESTO, JST, Saitama 332-0012, Japan; Institute of Industrial Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-0041, Japan
| | - Yusuke Asai
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638, Japan; CREST, JST, Saitama 332-0012, Japan.
| | - Koichi Watashi
- CREST, JST, Saitama 332-0012, Japan; Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| | - Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan; PRESTO, JST, Saitama 332-0012, Japan; CREST, JST, Saitama 332-0012, Japan.
| |
Collapse
|
7
|
Urquiza JM, Burgos JM, Ojeda DS, Pascuale CA, Leguizamón MS, Quarleri JF. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi. Front Cell Infect Microbiol 2017; 7:345. [PMID: 28824880 PMCID: PMC5539089 DOI: 10.3389/fcimb.2017.00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV), the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis.
Collapse
Affiliation(s)
- Javier M Urquiza
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Juan M Burgos
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Diego S Ojeda
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Carla A Pascuale
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - M Susana Leguizamón
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Argentina Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Jorge F Quarleri
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
8
|
Boyd DF, Sharma A, Humes D, Cheng-Mayer C, Overbaugh J. Adapting SHIVs In Vivo Selects for Envelope-Mediated Interferon-α Resistance. PLoS Pathog 2016; 12:e1005727. [PMID: 27399306 PMCID: PMC4939950 DOI: 10.1371/journal.ppat.1005727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/05/2016] [Indexed: 02/07/2023] Open
Abstract
Lentiviruses are able to establish persistent infection in their respective hosts despite a potent type-I interferon (IFN-I) response following transmission. A number of IFN-I-induced host factors that are able to inhibit lentiviral replication in vitro have been identified, and these studies suggest a role for IFN-induced factors as barriers to cross-species transmission. However, the ability of these factors to inhibit viral replication in vivo has not been well characterized, nor have the viral determinants that contribute to evasion or antagonism of the host IFN-I response. In this study, we hypothesized that the host IFN-I response serves as a strong selective pressure in the context of SIV/HIV chimeric virus (SHIV) infection of macaques and sought to identify the viral determinants that contribute to IFN-I resistance. We assessed the ability of SHIVs encoding HIV-1 sequences adapted by serial passage in macaques versus SHIVs encoding HIV sequences isolated directly from infected individuals to replicate in the presence of IFNα in macaque lymphocytes. We demonstrate that passage in macaques selects for IFNα resistant viruses that have higher replication kinetics and increased envelope content. SHIVs that encode HIV-1 sequences derived directly from infected humans were sensitive to IFNα -induced inhibition whereas SHIVs obtained after passage in macaques were not. This evolutionary process was directly observed in viruses that were serially passaged during the first few months of infection-a time when the IFNα response is high. Differences in IFNα sensitivity mapped to HIV-1 envelope and were associated with increased envelope levels despite similar mRNA expression, suggesting a post-transcriptional mechanism. These studies highlight critical differences in IFNα sensitivity between HIV-1 sequences in infected people and those used in SHIV models.
Collapse
Affiliation(s)
- David F. Boyd
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Pathobiology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Amit Sharma
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|