1
|
Wang J, Miao J, Zhu P. Insights into the complexities of Citrullination: From immune regulation to autoimmune disease. Autoimmun Rev 2025; 24:103734. [PMID: 39719187 DOI: 10.1016/j.autrev.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Citrullination, a post-translational modification that changes arginine to citrulline in proteins, is vital for immune response modulation and cell signaling. Catalyzed by peptidyl arginine deiminases (PADs), citrullination is linked to various diseases, particularly autoimmune disorders like rheumatoid arthritis (RA). Citrullinated proteins can trigger the production of anti-citrullinated protein antibodies (ACPAs), included in RA classification criteria. The immune response to citrullination involves both innate and adaptive immunity, affecting monocytes/macrophages, neutrophils, dendritic cells, natural killer cells, B cells, and T cells. Citrullination contributes to disease development in RA and other conditions such as multiple sclerosis, sepsis, and cancer. Therapeutic strategies targeting citrullination and its effects are being explored, including B cell depletion therapies, T cell-directed approaches, PAD inhibitors, and citrullinated peptide-based vaccines. Understanding the interplay between citrullination and the immune system may lead to novel diagnostic tools and targeted therapies for autoimmune diseases and beyond.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Strzelec K, Dziedzic-Kowalska A, Sieron Ł, Bereta GP, Stepien KL, Ferenc K, Łazarz-Bartyzel K, Olszewska-Czyż I, Rąpalska I, Aptekorz M, Kaczmarzyk T, Cześnikiewicz-Guzik M, Gawron K. Polymorphic Variants of Peptidylarginine Deiminase Gene from P. gingivalis-Searching for Targets for Supportive Therapy of Periodontitis. Int J Mol Sci 2025; 26:1662. [PMID: 40004125 PMCID: PMC11855631 DOI: 10.3390/ijms26041662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Periodontitis (PD), an oral inflammatory disease, is primarily caused by P. gingivalis. Peptidylarginine deiminase (PPAD) is considered an attractive virulence factor because, due to protein citrullination, it may have deleterious effects on host tissues. In this study, the ppad gene sequences from P. gingivalis were analyzed in the context of its impact on bacterial virulence and potential targets for PD therapy. Analyses of ppad sequences from 58 patients with various clinical stages of PD, 20 controls, and 60 sequences from public databases were conducted. Overall, 55 substitutions assigned as polymorphic variants (4), missense mutations (10), or synonymous variants (35) were identified in PD, and 22 synonymous variants were identified in controls. Among them, the G231N, E232T, N235D variant was found in ~25% of P. gingivalis strains from PD samples. It was located close to the catalytic triad and had two-fold higher activity in comparison with reference P. gingivalis, upregulated expression of key inflammatory mediators, and contributed to worsening periodontium conditions in advanced PD, suggesting their unambiguous impact on P. gingivalis virulence. Our results indicate the G231N, E232T, N235D variant of the ppad gene as a potential candidate, opening a path to searching for novel targets for supportive therapy of PD. Further validation of the identified mutations is needed in future studies.
Collapse
Affiliation(s)
- Karolina Strzelec
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.S.); (A.D.-K.); (K.L.S.); (K.F.)
| | - Agata Dziedzic-Kowalska
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.S.); (A.D.-K.); (K.L.S.); (K.F.)
| | - Łukasz Sieron
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Grzegorz P. Bereta
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Karolina L. Stepien
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.S.); (A.D.-K.); (K.L.S.); (K.F.)
| | - Klara Ferenc
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.S.); (A.D.-K.); (K.L.S.); (K.F.)
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, 31-155 Krakow, Poland; (K.Ł.-B.); (I.O.-C.); (M.C.-G.)
| | - Iwona Olszewska-Czyż
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, 31-155 Krakow, Poland; (K.Ł.-B.); (I.O.-C.); (M.C.-G.)
| | - Iwona Rąpalska
- Department of Oral Surgery, Medical College, Jagiellonian University, 31-155 Krakow, Poland; (I.R.)
| | - Małgorzata Aptekorz
- Department of Medical Microbiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Medical College, Jagiellonian University, 31-155 Krakow, Poland; (I.R.)
| | - Marta Cześnikiewicz-Guzik
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, 31-155 Krakow, Poland; (K.Ł.-B.); (I.O.-C.); (M.C.-G.)
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.S.); (A.D.-K.); (K.L.S.); (K.F.)
| |
Collapse
|
3
|
Sasaki Y, Matsuo T, Watanabe Y, Iwatsuki M, Inahashi Y, Nishida S, Naito M, Shoji M. Identification of nanaomycin A and its analogs by a newly established screening method for functional inhibitors of the type IX secretion system in Porphyromonas gingivalis. J Antibiot (Tokyo) 2025; 78:90-105. [PMID: 39578618 DOI: 10.1038/s41429-024-00790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is a key pathogen in chronic periodontitis. P. gingivalis has a type IX secretion system (T9SS) that secretes highly hydrolytic proteinases called gingipains for obtaining peptides as an energy source. Although most T9SS-related proteins have been identified, no specific inhibitor of T9SS has been reported. To screen T9SS inhibitors, we focused on and characterized a minimal liquid medium called mC medium that contains milk casein as the sole protein source. We found that P. gingivalis wild-type strain ATCC 33277 caused cloudiness of mC medium without growth. In mC medium, an alkylating agent, iodoacetamide (IAM) that is an inhibitor of gingipains, and a protonophore, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) that dissipates the proton motive force required for T9SS-mediated secretion, clearly inhibited the increase in turbidity. Moreover, neither the gingipain-null mutant nor the T9SS-deficient mutant caused mC medium cloudiness, suggesting that mC medium cloudiness is dependent on gingipain activity and T9SS. These results indicated that mC medium can be used to assess P. gingivalis gingipain activity and its functional T9SS. Using an assay system with mC medium, we discovered that OM-173αA and OM-173βA in the Ōmura Natural Compound Library and nanaomycin A were probable T9SS inhibitors. The compounds need to be further investigated as tools for analyzing T9SS and as potential therapeutic agents for periodontal disease.
Collapse
Affiliation(s)
- Yuko Sasaki
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Takehiro Matsuo
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| | - Yoshihiro Watanabe
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuki Inahashi
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan.
| | - Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8588, Japan
| |
Collapse
|
4
|
Zhang X, Bhattacharya A, Pu C, Dai Y, Liu J, Rao L, Tian C. A programmable CRISPR/dCas9-based epigenetic editing system enabling loci-targeted histone citrullination and precise transcription regulation. J Genet Genomics 2024; 51:1485-1493. [PMID: 38849111 DOI: 10.1016/j.jgg.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Histone citrullination, an important post-translational modification mediated by peptidyl arginine deiminases, is essential for many physiological processes and epigenetic regulation. However, the causal relationship between histone citrullination and specific gene regulation remains unresolved. In this study, we develop a programmable epigenetic editor by fusing the peptidyl arginine deiminase (PAD) PPAD from Porphyromonas gingivalis with dCas9. With the assistance of gRNA, PPAD-dCas9 can recruit PPADs to specific genomic loci, enabling direct manipulation of the epigenetic landscape and regulation of gene expression. Our citrullination editor allows for the site-specific manipulation of histone H3R2,8,17 and H3R26 at target human gene loci, resulting in the activation or suppression of different genes in a locus-specific manner. Moreover, the epigenetic effects of the citrullination editor are specific and sustained. This epigenetic editor offers an accurate and efficient tool for exploring gene regulation of histone citrullination.
Collapse
Affiliation(s)
- Xiaoya Zhang
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Pharmacy, Jilin University, Changchun, Jilin 130012, China
| | - Abhisek Bhattacharya
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chunxiang Pu
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yan Dai
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jia Liu
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lang Rao
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Chaoguang Tian
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
5
|
Catalan EA, Seguel-Fuentes E, Fuentes B, Aranguiz-Varela F, Castillo-Godoy DP, Rivera-Asin E, Bocaz E, Fuentes JA, Bravo D, Schinnerling K, Melo-Gonzalez F. Oral Pathobiont-Derived Outer Membrane Vesicles in the Oral-Gut Axis. Int J Mol Sci 2024; 25:11141. [PMID: 39456922 PMCID: PMC11508520 DOI: 10.3390/ijms252011141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Oral pathobionts are essential in instigating local inflammation within the oral cavity and contribute to the pathogenesis of diseases in the gastrointestinal tract and other distant organs. Among the Gram-negative pathobionts, Porphyromonas gingivalis and Fusobacterium nucleatum emerge as critical drivers of periodontitis, exerting their influence not only locally but also as inducers of gut dysbiosis, intestinal disturbances, and systemic ailments. This dual impact is facilitated by their ectopic colonization of the intestinal mucosa and the subsequent mediation of distal systemic effects by releasing outer membrane vesicles (OMVs) into circulation. This review elucidates the principal components of oral pathobiont-derived OMVs implicated in disease pathogenesis within the oral-gut axis, detailing virulence factors that OMVs carry and their interactions with host epithelial and immune cells, both in vitro and in vivo. Additionally, we shed light on the less acknowledged interplay between oral pathobionts and the gut commensal Akkermansia muciniphila, which can directly impede oral pathobionts' growth and modulate bacterial gene expression. Notably, OMVs derived from A. muciniphila emerge as promoters of anti-inflammatory effects within the gastrointestinal and distant tissues. Consequently, we explore the potential of A. muciniphila-derived OMVs to interact with oral pathobionts and prevent disease in the oral-gut axis.
Collapse
Affiliation(s)
- Eduardo A. Catalan
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Emilio Seguel-Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Brandon Fuentes
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Aranguiz-Varela
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Daniela P. Castillo-Godoy
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elizabeth Rivera-Asin
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Elisa Bocaz
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile;
| | - Denisse Bravo
- Cellular Interactions Laboratory, Faculty of Dentistry, Universidad Andrés Bello, Santiago 8370133, Chile;
| | - Katina Schinnerling
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| | - Felipe Melo-Gonzalez
- Laboratorio de Inmunología Traslacional, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile; (E.A.C.); (E.S.-F.); (B.F.); (F.A.-V.); (D.P.C.-G.); (E.R.-A.); (E.B.)
| |
Collapse
|
6
|
Raposo B, Klareskog L, Robinson WH, Malmström V, Grönwall C. The peculiar features, diversity and impact of citrulline-reactive autoantibodies. Nat Rev Rheumatol 2024; 20:399-416. [PMID: 38858604 DOI: 10.1038/s41584-024-01124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Since entering the stage 25 years ago as a highly specific serological biomarker for rheumatoid arthritis, anti-citrullinated protein antibodies (ACPAs) have been a topic of extensive research. This hallmark B cell response arises years before disease onset, displays interpatient autoantigen variability, and is associated with poor clinical outcomes. Technological and scientific advances have revealed broad clonal diversity and intriguing features including high levels of somatic hypermutation, variable-domain N-linked glycosylation, hapten-like peptide interactions, and clone-specific multireactivity to citrullinated, carbamylated and acetylated epitopes. ACPAs have been found in different isotypes and subclasses, in both circulation and tissue, and are secreted by both plasmablasts and long-lived plasma cells. Notably, although some disease-promoting features have been reported, results now demonstrate that certain monoclonal ACPAs therapeutically block arthritis and inflammation in mouse models. A wealth of functional studies using patient-derived polyclonal and monoclonal antibodies have provided evidence for pathogenic and protective effects of ACPAs in the context of arthritis. To understand the roles of ACPAs, one needs to consider their immunological properties by incorporating different facets such as rheumatoid arthritis B cell biology, environmental triggers and chronic antigen exposure. The emerging picture points to a complex role of citrulline-reactive autoantibodies, in which the diversity and dynamics of antibody clones could determine clinical progression and manifestations.
Collapse
Affiliation(s)
- Bruno Raposo
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Mizgalska D, Rodríguez-Banqueri A, Veillard F, Książęk M, Goulas T, Guevara T, Eckhard U, Potempa J, Gomis-Rüth FX. Structural and functional insights into the C-terminal signal domain of the Bacteroidetes type-IX secretion system. Open Biol 2024; 14:230448. [PMID: 38862016 DOI: 10.1098/rsob.230448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 06/13/2024] Open
Abstract
Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 β-sandwich (β1-β7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands β3 and β4 ('motif Lβ3β4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lβ3β4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mirosław Książęk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Theodoros Goulas
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Karditsa 43100, Greece
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Ulrich Eckhard
- Synthetic Structural Biology Group, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| |
Collapse
|
8
|
Miranda-López DC, Pérez-Rueda E, Rojas-Vargas J, Cortez CH, Saldaña-Padilla A, Castelán-Sánchez HG, Castro-Escarpulli G. Comprehensive comparative analysis of the periodontal pathogen Porphyromonas gingivalis: exploring the pan-genome, the reconstruction of the gene regulatory network and genome-scale metabolic network. Lett Appl Microbiol 2024; 77:ovae048. [PMID: 38769598 DOI: 10.1093/lambio/ovae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Porphyromonas gingivalis is a nonmotile, obligate anaerobic, Gram-negative bacterium known for its association with periodontal disease and its involvement in systemic diseases such as atherosclerosis, cardiovascular disease, colon cancer, and Alzheimer's disease. This bacterium produces several virulence factors, including capsules, fimbriae, lipopolysaccharides, proteolytic enzymes, and hemagglutinins. A comparative genomic analysis revealed the open pangenome of P. gingivalis and identified complete type IV secretion systems in strain KCOM2805 and almost complete type VI secretion systems in strains KCOM2798 and ATCC49417, which is a new discovery as previous studies did not find the proteins involved in secretion systems IV and VI. Conservation of some virulence factors between different strains was observed, regardless of their genetic diversity and origin. In addition, we performed for the first time a reconstruction analysis of the gene regulatory network, identifying transcription factors and proteins involved in the regulatory mechanisms of bacterial pathogenesis. In particular, QseB regulates the expression of hemagglutinin and arginine deaminase, while Rex may suppress the release of gingipain through interactions with PorV and the formatum/nitrate transporter. Our study highlights the central role of conserved virulence factors and regulatory pathways, particularly QseB and Rex, in P. gingivalis and provides insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Diana C Miranda-López
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Ernesto Pérez-Rueda
- Unidad Académica del Estado de Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida 97357, México
| | - Jorge Rojas-Vargas
- Department of Biology, University of Western, London, Ontario N6A 3K7, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western, London, Ontario N6A 3K7, Canada
| | - Cecilia Hernández Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Andres Saldaña-Padilla
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, México
| | - Hugo G Castelán-Sánchez
- Programa de Investigadoras e Investigadores por México. Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Ciudad de México 03940, México
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 3K7, Canada
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, México
| |
Collapse
|
9
|
Ranaivoson FM, Bande R, Cardaun I, De Riso A, Gärtner A, Loke P, Reinisch C, Vogirala P, Beaumont E. Crystal structure of human peptidylarginine deiminase type VI (PAD6) provides insights into its inactivity. IUCRJ 2024; 11:395-404. [PMID: 38656308 PMCID: PMC11067741 DOI: 10.1107/s2052252524002549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Å resolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca2+ which agrees with acidic residues found to coordinate Ca2+ in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of apo PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein-substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos.
Collapse
Affiliation(s)
- Fanomezana M. Ranaivoson
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Rieke Bande
- Assay Development Department, Manfred Eigen Campus, Evotec (Germany), Essener Bogen 7, 22419 Hamburg, Germany
| | - Isabell Cardaun
- In vitro Biology Department, Manfred Eigen Campus, Evotec SE, Essener Bogen 7, 22419 Hamburg, Germany
| | - Antonio De Riso
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Annette Gärtner
- In vitro Biology Department, Manfred Eigen Campus, Evotec SE, Essener Bogen 7, 22419 Hamburg, Germany
| | - Pui Loke
- Chemistry Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Christina Reinisch
- Assay Development Department, Manfred Eigen Campus, Evotec (Germany), Essener Bogen 7, 22419 Hamburg, Germany
| | - Prasuna Vogirala
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| | - Edward Beaumont
- Protein Sciences Department, Evotec (United Kingdom), 95 Park Drive, Abingdon OX14 4RY, United Kingdom
| |
Collapse
|
10
|
Villanueva-Cañas JL, Fernandez-Fuentes N, Saul D, Kosinsky RL, Teyssier C, Rogalska ME, Pérez FP, Oliva B, Notredame C, Beato M, Sharma P. Evolutionary analysis reveals the role of a non-catalytic domain of peptidyl arginine deiminase 2 in transcriptional regulation. iScience 2024; 27:109584. [PMID: 38623337 PMCID: PMC11016909 DOI: 10.1016/j.isci.2024.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Peptidyl arginine deiminases (PADIs) catalyze protein citrullination, a post-translational conversion of arginine to citrulline. The most widely expressed member of this family, PADI2, regulates cellular processes that impact several diseases. We hypothesized that we could gain new insights into PADI2 function through a systematic evolutionary and structural analysis. Here, we identify 20 positively selected PADI2 residues, 16 of which are structurally exposed and maintain PADI2 interactions with cognate proteins. Many of these selected residues reside in non-catalytic regions of PADI2. We validate the importance of a prominent loop in the middle domain that encompasses PADI2 L162, a residue under positive selection. This site is essential for interaction with the transcription elongation factor (P-TEFb) and mediates the active transcription of the oncogenes c-MYC, and CCNB1, as well as impacting cellular proliferation. These insights could be key to understanding and addressing the role of the PADI2 c-MYC axis in cancer progression.
Collapse
Affiliation(s)
- José Luis Villanueva-Cañas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | | | - Catherine Teyssier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Du Cancer de Montpellier (ICM), F-34298 Montpellier, France
| | - Malgorzata Ewa Rogalska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ferran Pegenaute Pérez
- Live-Cell Structural Biology Laboratory, Department of Medicine and Life Sciences, E-08005 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Baldomero Oliva
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Structural Bioinformatics Laboratory (GRIB-IMIM), Department of Medicine and Life Sciences, E-08003 Barcelona, Spain
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Miguel Beato
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Priyanka Sharma
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
11
|
Bereta GP, Strzelec K, Łazarz-Bartyzel K, Dziedzic-Kowalska A, Nowakowska Z, Krutyhołowa A, Bielecka E, Kantyka T, Grabiec AM, Kaczmarzyk T, Chomyszyn-Gajewska M, Potempa J, Gawron K. Identification of a new genetic variant (G231N, E232T, N235D) of peptidylarginine deiminase from P. gingivalis in advanced periodontitis. Front Immunol 2024; 15:1355357. [PMID: 38576615 PMCID: PMC10991804 DOI: 10.3389/fimmu.2024.1355357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic periodontitis (CP), an inflammatory disease of periodontal tissues driven by a dysbiotic subgingival bacterial biofilm, is also associated with several systemic diseases, including rheumatoid arthritis (RA). Porphyromonas gingivalis, one of the bacterial species implicated in CP as a keystone pathogen produces peptidyl arginine deiminase (PPAD) that citrullinates C-terminal arginine residues in proteins and peptides. Autoimmunity to citrullinated epitopes is crucial in RA, hence PPAD activity is considered a possible mechanistic link between CP and RA. Here we determined the PPAD enzymatic activity produced by clinical isolates of P. gingivalis, sequenced the ppad gene, and correlated the results with clinical determinants of CP in patients from whom the bacteria were isolated. The analysis revealed variations in PPAD activity and genetic diversity of the ppad gene in clinical P. gingivalis isolates. Interestingly, the severity of CP was correlated with a higher level of PPAD activity that was associated with the presence of a triple mutation (G231N, E232T, N235D) in PPAD in comparison to W83 and ATCC 33277 type strains. The relation between mutations and enhanced activity was verified by directed mutagenesis which showed that all three amino acid residue substitutions must be introduced into PPAD expressed by the type strains to obtain the super-active enzyme. Cumulatively, these results may lead to the development of novel prognostic tools to assess the progress of CP in the context of associated RA by analyzing the ppad genotype in CP patients infected with P. gingivalis.
Collapse
Affiliation(s)
- Grzegorz P. Bereta
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Agata Dziedzic-Kowalska
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Kantyka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksander M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Kaczmarzyk
- Department of Oral Surgery, Medical College, Jagiellonian University, Krakow, Poland
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology, Preventive Dentistry and Oral Pathology, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
12
|
Castellar-Mendoza C, Castillo DM, Chila-Moreno L, Bautista-Molano W, Romero-Sánchez C. Porphyromonas gulae and PPAD antibodies are not related to citrullination in rheumatoid arthritis. Clin Oral Investig 2023:10.1007/s00784-023-04964-w. [PMID: 37133700 DOI: 10.1007/s00784-023-04964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/19/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Porphyromonas gulae have the enzyme PPAD, as P. gingivalis, which is responsible for citrullination related to the pathophysiology of rheumatoid arthritis and periodontitis; this implies the presence of two species of PPAD-producing bacteria in the mouth as well as the presence of citrullinated proteins. There are no previous reports or studies investigating an association between P. gulae PPAD in rheumatoid arthritis (RA). OBJECTIVE To assess the presence of P. gulae and anti-citrullinated peptide antibodies of P. gulae PAD in patients with RA and their possible relationship with clinical activity markers. SUBJECTS AND METHODS A total of 95 patients with RA and 95 controls were included. Erythrocyte sedimentation rate (ESR), C-reactive protein, anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF) were measured. Activity index-28 (DAS28) and SCDAI. The periodontal diagnosis was established. Presence of P. gulae and P. gingivalis. An ELISA was used to determine antibodies against citrullinated peptides of P. gulae PAD. RESULTS A P. gulae frequency of 15.8% was observed in the RA group and 9.5% in the control group. Higher levels of ACPA were found in the P. gulae-positive patients of the RA group, finding no significant difference, but if in patients positive for P. gingivalis with statistical significance (p = 0.0001). The frequency of anti-VDK-cit and anti-LPQ-cit9 antibodies to PPAD of P. gulae was higher in the RA group than in the control group without significant difference. No relationship was found with the clinical variables despite the presence of P. gulae and anti-citrullinated peptide antibodies of P. gulae PPAD in patients with RA CONCLUSIONS: It was not possible to establish a connection with clinical variables in RA and P. gulae; as a result, the presence of P. gingivalis continues to contribute significantly to the increase in antibodies against citrullinated proteins/peptides from exogenous sources of citrullination in RA and periodontitis.
Collapse
Affiliation(s)
| | - Diana Marcela Castillo
- Oral Basic Research Unit (UIBO), Research Vice-Rectory, School of Dentistry, Universidad El Bosque, Av. Carrera 9 #131A-02, Bogotá, Colombia
| | - Lorena Chila-Moreno
- School of Dentistry, INMUBO Cellular and Molecular Immunology Group, Universidad El Bosque, Av. Carrera 9 #131A-02, Bogotá, Colombia
- School of Medicine, Clinical Immunology Group, Universidad Militar Nueva Granada/Hospital Militar Central, Transversal 3ª #49-00, Bogotá, Colombia
| | - Wilson Bautista-Molano
- School of Dentistry, INMUBO Cellular and Molecular Immunology Group, Universidad El Bosque, Av. Carrera 9 #131A-02, Bogotá, Colombia
- School of Medicine, Clinical Immunology Group, Universidad Militar Nueva Granada/Hospital Militar Central, Transversal 3ª #49-00, Bogotá, Colombia
| | - Consuelo Romero-Sánchez
- School of Dentistry, INMUBO Cellular and Molecular Immunology Group, Universidad El Bosque, Av. Carrera 9 #131A-02, Bogotá, Colombia.
- Department of Rheumatology and Immunology/Clinical Immunology Group, Hospital Militar Central, Transversal 3ª #49-00, Bogotá, Colombia.
| |
Collapse
|
13
|
Ge Y, Sun F, Zhao B, Kong F, Li Z, Kong X. Bacteria derived extracellular vesicles in the pathogenesis and treatment of gastrointestinal tumours. Front Oncol 2023; 12:1103446. [PMID: 36776356 PMCID: PMC9910087 DOI: 10.3389/fonc.2022.1103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles are fundamentally significant in the communication between cells. Outer Membrane Vesicles(OMVs) are a special kind of EVs produced by Gram-negative bacteria, which are minute exosome-like particles budding from the outer membrane, which have been found to play essential roles in diverse bacterial life events, including regulation of microbial interactions, pathogenesis promotion, stress responses and biofilm formation. Recently, and more researches have explored the substantial potentials of EVs as natural functional nanoparticles in the bioengineering applications in infectious diseases, cardiovascular diseases, autoimmune diseases and neurological diseases, such as antibacterial therapy, cancer drugs and immunoadjuvants, with several candidates in clinical trials showing promising efficacy. However, due to the poor understanding of sources, membrane structures and biogenesis mechanisms of EVs, progress in clinical applications still remains timid. In this review, we summarize the latest findings of EVs, especially in gastrointestinal tract tumours, to provide a comprehensive introduction of EVs in tumorigenesis and therapeutics.
Collapse
Affiliation(s)
- Yang Ge
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China,Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Fengyuan Sun
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Bo Zhao
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Fanyang Kong
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China,Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, Shanghai, China,*Correspondence: Xiangyu Kong, ; Zhaoshen Li, ; Fanyang Kong,
| | - Zhaoshen Li
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China,*Correspondence: Xiangyu Kong, ; Zhaoshen Li, ; Fanyang Kong,
| | - Xiangyu Kong
- Changhai Clinical Research Unit, Changhai Hospital, Naval Military Medical University, Shanghai, China,Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, Shanghai, China,National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China,*Correspondence: Xiangyu Kong, ; Zhaoshen Li, ; Fanyang Kong,
| |
Collapse
|
14
|
Implications of Post-Translational Modifications in Autoimmunity with Emphasis on Citrullination, Homocitrullination and Acetylation for the Pathogenesis, Diagnosis and Prognosis of Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms232415803. [PMID: 36555449 PMCID: PMC9781636 DOI: 10.3390/ijms232415803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTMs) influence cellular processes and consequently, their dysregulation is related to the etiologies of numerous diseases. It is widely known that a variety of autoimmune responses in human diseases depend on PTMs of self-proteins. In this review we summarize the latest findings about the role of PTMs in the generation of autoimmunity and, specifically, we address the most relevant PTMs in rheumatic diseases that occur in synovial tissue. Citrullination, homocitrullination (carbamylation) and acetylation are responsible for the generation of Anti-Modified Protein/Peptide Antibodies (AMPAs family), autoantibodies which have been implicated in the etiopathogenesis, diagnosis and prognosis of rheumatoid arthritis (RA). Synthetic peptides provide complete control over the exact epitopes presented as well as the specific positions in their sequence where post-translationally modified amino acids are located and are key to advancing the detection of serological RA biomarkers that could be useful to stratify RA patients in order to pursue a personalized rheumatology. In this review we specifically address the latest findings regarding synthetic peptides post-translationally modified for the specific detection of autoantibodies in RA patients.
Collapse
|
15
|
Chow YC, Yam HC, Gunasekaran B, Lai WY, Wo WY, Agarwal T, Ong YY, Cheong SL, Tan SA. Implications of Porphyromonas gingivalis peptidyl arginine deiminase and gingipain R in human health and diseases. Front Cell Infect Microbiol 2022; 12:987683. [PMID: 36250046 PMCID: PMC9559808 DOI: 10.3389/fcimb.2022.987683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis is a major pathogenic bacterium involved in the pathogenesis of periodontitis. Citrullination has been reported as the underlying mechanism of the pathogenesis, which relies on the interplay between two virulence factors of the bacterium, namely gingipain R and the bacterial peptidyl arginine deiminase. Gingipain R cleaves host proteins to expose the C-terminal arginines for peptidyl arginine deiminase to citrullinate and generate citrullinated proteins. Apart from carrying out citrullination in the periodontium, the bacterium is found capable of citrullinating proteins present in the host synovial tissues, atherosclerotic plaques and neurons. Studies have suggested that both virulence factors are the key factors that trigger distal effects mediated by citrullination, leading to the development of some non-communicable diseases, such as rheumatoid arthritis, atherosclerosis, and Alzheimer’s disease. Thus, inhibition of these virulence factors not only can mitigate periodontitis, but also can provide new therapeutic solutions for systematic diseases involving bacterial citrullination. Herein, we described both these proteins in terms of their unique structural conformations and biological relevance to different human diseases. Moreover, investigations of inhibitory actions on the enzymes are also enumerated. New approaches for identifying inhibitors for peptidyl arginine deiminase through drug repurposing and virtual screening are also discussed.
Collapse
Affiliation(s)
- Yoke Chan Chow
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Weng Yeen Lai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Weng Yue Wo
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Tarun Agarwal
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Yien Yien Ong
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
| | - Siew Lee Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Sheri-Ann Tan, ; Siew Lee Cheong,
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Kuala Lumpur, Malaysia
- *Correspondence: Sheri-Ann Tan, ; Siew Lee Cheong,
| |
Collapse
|
16
|
Krutyhołowa A, Strzelec K, Dziedzic A, Bereta GP, Łazarz-Bartyzel K, Potempa J, Gawron K. Host and bacterial factors linking periodontitis and rheumatoid arthritis. Front Immunol 2022; 13:980805. [PMID: 36091038 PMCID: PMC9453162 DOI: 10.3389/fimmu.2022.980805] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.
Collapse
Affiliation(s)
- Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| |
Collapse
|
17
|
Gómez-Bañuelos E, Konig MF, Andrade F. Microbial pathways to subvert host immunity generate citrullinated neoantigens targeted in rheumatoid arthritis. Curr Opin Struct Biol 2022; 75:102423. [PMID: 35834948 PMCID: PMC9668488 DOI: 10.1016/j.sbi.2022.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
The specific association between antibodies to citrullinated proteins and rheumatoid arthritis (RA) has centered interest on understanding why citrullinated proteins become immunogenic in this disease, which is believed to inform the origins of autoimmunity in RA. Since citrullination is a physiologic post-translational modification (PTM), one theory is that conditions promoting abnormal citrullination are initiators of self-reactive immune responses to citrullinated proteins in RA. Foremost candidates that dysregulate the normal balance of citrullination are microbial agents, which can exploit citrullination as an effector mechanism to subvert host antimicrobial activities and maximize their progeny. Here, we will use the host-pathogen interface as a unifying model to link microbe-induced citrullination and the loss of immunological tolerance to citrullinated antigens in RA.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. https://twitter.com/@Eduardo95668787
| | - Maximilian F Konig
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. https://twitter.com/@MaxKonigMD
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Koziel J, Potempa J. Pros and cons of causative association between periodontitis and rheumatoid arthritis. Periodontol 2000 2022; 89:83-98. [PMID: 35262966 PMCID: PMC9935644 DOI: 10.1111/prd.12432] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 02/05/2023]
Abstract
Research in recent decades has brought significant advancements in understanding of the molecular basis of the etiology of autoimmune diseases, including rheumatoid arthritis, a common systemic disease in which an inappropriate or inadequate immune response to environmental challenges leads to joint destruction. Recent studies have indicated that the classical viewpoint of the immunological processes underpinning the pathobiology of rheumatoid arthritis is restricted and needs to be expanded to include a more holistic and interdisciplinary approach incorporating bacteria-induced inflammatory reactions as an important pathway in rheumatoid arthritis etiology. Here, we discuss in detail data showing the clinical and molecular association of rheumatoid arthritis development with periodontal diseases. We also describe the unique role of periopathogens, which have been proposed to be crucial in the initiation and progression of this autoimmune pathological disorder.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
19
|
Christophorou MA. The virtues and vices of protein citrullination. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220125. [PMID: 35706669 PMCID: PMC9174705 DOI: 10.1098/rsos.220125] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 05/03/2023]
Abstract
The post-translational modification of proteins expands the regulatory scope of the proteome far beyond what is achievable through genome regulation. The field of protein citrullination has seen significant progress in the last two decades. The small family of peptidylarginine deiminase (PADI or PAD) enzymes, which catalyse citrullination, have been implicated in virtually all facets of molecular and cell biology, from gene transcription and epigenetics to cell signalling and metabolism. We have learned about their association with a remarkable array of disease states and we are beginning to understand how they mediate normal physiological functions. However, while the biochemistry of PADI activation has been worked out in exquisite detail in vitro, we still lack a clear mechanistic understanding of the processes that regulate PADIs within cells, under physiological and pathophysiological conditions. This review summarizes and discusses the current knowledge, highlights some of the unanswered questions of immediate importance and gives a perspective on the outlook of the citrullination field.
Collapse
|
20
|
Tan SA, Yam HC, Cheong SL, Chow YC, Bok CY, Ho JM, Lee PY, Gunasekaran B. Inhibition of Porphyromonas gingivalis peptidyl arginine deiminase, a virulence factor, by antioxidant-rich Cratoxylum cochinchinense: In vitro and in silico evaluation. Saudi J Biol Sci 2022; 29:2573-2581. [PMID: 35531186 PMCID: PMC9073004 DOI: 10.1016/j.sjbs.2021.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023] Open
Abstract
Porphyromonas gingivalis, the cause of periodontitis, is also linked to many systemic disorders due to its citrullination capability from a unique peptidyl arginine deiminase (PPAD). Protein citrullination is able to trigger an autoimmune response, increasing the severity of rheumatoid arthritis. The main objective of this study is to evaluate the inhibitory activity of Cratoxylym cochinchinense leaves extract towards the PPAD in vitro and in silico. Methanolic extract of Cratoxylum cochinchinense (CCM) was tested for total phenolic and flavonoid contents along with antioxidative assays. Inhibition of PPAD activities was conducted thereafter using recombinant PPAD in cell lysate. Phytocompounds postulated present in the CCM such as mangiferin, vismiaquinone A, δ-tocotrienol and α-tocotrienol and canophyllol were used as ligands in a simulated docking study against PPAD. Results obtained indicated high antioxidant potential in CCM while recording abundant phenolic (129.0 ± 2.5495 mg GA/g crude extract) and flavonoid (159.0 ± 2.1529 mg QE/g crude extract) contents. A dose-dependent inhibition of PPAD was observed when CCM was evaluated at various concentrations. CCM at 1 mg/mL exhibited citrulline concentration of 24.37 ± 3.25 mM which was 5 times lower than the negative control (114.23 ± 3.31 mM). Molecular docking simulation revealed that mangiferin and vismiaquinone A engaged in H-bonding and pi-pi interactions with important active site residues (Asp130, Arg152, Arg154 and Trp127) of PPAD and could be the potential phytochemicals that accounted for the inhibitory activities observed in the methanolic leaves extract. As such, CCM could be further explored for its therapeutic properties not only for periodontitis, but also for other systemic diseases like rheumatoid arthritis.
Collapse
Key Words
- ABTS, 2,2′-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt
- ACPA, Anti-citrullinated peptide antibodies
- Anti-citrullination
- BAEE, Benzoyl-L-arginine ethyl ester
- Cratoxylum cochinchinense
- DNA, Deoxyribonucleic acid
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- DTT, Dithiothreitol
- EDTA, Ethylenediamine tetraacetic acid
- FRAP, Ferric reducing antioxidant power
- GAE, Gallic acid equivalence
- HPLC, High performance liquid chromatography
- IPTG, Isopropyl β- d-1-thiogalactopyranoside
- Mangiferin
- OPLS, Optimized potentials for liquid simulations
- PAD, Peptidylarginine deiminase
- PCR, Polymerase chain reaction
- PDB, Protein data bank
- PMSF, Phenylmethylsulfonyl fluoride
- PPAD, Porphyromonas gingivalis peptidylarginine deiminase
- Peptidyl arginine deiminase
- Porphyromonas gingivalis
- QE, Quercetin equivalence
- RA, Rheumatoid arthritis
- SD, Standard deviation
- SDS-PAGE, Sodium dodecyl sulphate–polyacrylamide gel electrophoresis
- TFC, Total flavonoid content
- TPC, Total phenolic content
- TPTZ, 2,4,6-Tripyridyl-S-triazine
- Vismiaquinone A
Collapse
Affiliation(s)
- Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Siew Lee Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Yoke Chan Chow
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia
| | - Chui Yin Bok
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia
| | - Jia Min Ho
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia
| | - Pei Yin Lee
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Wielento A, Bereta GP, Łagosz-Ćwik KB, Eick S, Lamont RJ, Grabiec AM, Potempa J. TLR2 Activation by Porphyromonas gingivalis Requires Both PPAD Activity and Fimbriae. Front Immunol 2022; 13:823685. [PMID: 35432342 PMCID: PMC9010743 DOI: 10.3389/fimmu.2022.823685] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Porphyromonas gingivalis, a keystone oral pathogen implicated in development and progression of periodontitis, may also contribute to the pathogenicity of diseases such as arthritis, atherosclerosis, and Alzheimer's. P. gingivalis is a master manipulator of host immune responses due to production of a large variety of virulence factors. Among these, P. gingivalis peptidilarginine deiminase (PPAD), an enzyme unique to P. gingivalis, converts C-terminal Arg residues in bacterium- and host-derived proteins and peptides into citrulline. PPAD contributes to stimulation of proinflammatory responses in host cells and is essential for activation of the prostaglandin E2 (PGE2) synthesis pathway in gingival fibroblasts. Since P. gingivalis is recognized mainly by Toll-like receptor-2 (TLR2), we investigated the effects of PPAD activity on TLR2-dependent host cell responses to P. gingivalis, as well as to outer membrane vesicles (OMVs) and fimbriae produced by this organism. Using reporter cell lines, we found that PPAD activity was required for TLR2 activation by P. gingivalis cells and OMVs. We also found that fimbriae, an established TLR2 ligand, from wild-type ATCC 33277 (but not from its isogenic PPAD mutant) enhanced the proinflammatory responses of host cells. Furthermore, only fimbriae from wild-type ATCC 33277, but not from the PPAD-deficient strains, induced cytokine production and stimulated expression of genes within the PGE2 synthesis pathway in human gingival fibroblasts via activation of the NF-ĸB and MAP kinase-dependent signaling pathways. Analysis of ten clinical isolates revealed that type I FimA is preferable for TLR2 signaling enhancement. In conclusion, the data strongly suggest that both PPAD activity and fimbriae are important for TLR2-dependent cell responses to P. gingivalis infection.
Collapse
Affiliation(s)
- Aleksandra Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna B. Łagosz-Ćwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sigrun Eick
- Department of Periodontology, Laboratory of Oral Microbiology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Aleksander M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
22
|
Vincent MS, Comas Hervada C, Sebban-Kreuzer C, Le Guenno H, Chabalier M, Kosta A, Guerlesquin F, Mignot T, McBride MJ, Cascales E, Doan T. Dynamic proton-dependent motors power type IX secretion and gliding motility in Flavobacterium. PLoS Biol 2022; 20:e3001443. [PMID: 35333857 PMCID: PMC8986121 DOI: 10.1371/journal.pbio.3001443] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/06/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Motile bacteria usually rely on external apparatus like flagella for swimming or pili for twitching. By contrast, gliding bacteria do not rely on obvious surface appendages to move on solid surfaces. Flavobacterium johnsoniae and other bacteria in the Bacteroidetes phylum use adhesins whose movement on the cell surface supports motility. In F. johnsoniae, secretion and helicoidal motion of the main adhesin SprB are intimately linked and depend on the type IX secretion system (T9SS). Both processes necessitate the proton motive force (PMF), which is thought to fuel a molecular motor that comprises the GldL and GldM cytoplasmic membrane proteins. Here, we show that F. johnsoniae gliding motility is powered by the pH gradient component of the PMF. We further delineate the interaction network between the GldLM transmembrane helices (TMHs) and show that conserved glutamate residues in GldL TMH2 are essential for gliding motility, although having distinct roles in SprB secretion and motion. We then demonstrate that the PMF and GldL trigger conformational changes in the GldM periplasmic domain. We finally show that multiple GldLM complexes are distributed in the membrane, suggesting that a network of motors may be present to move SprB along a helical path on the cell surface. Altogether, our results provide evidence that GldL and GldM assemble dynamic membrane channels that use the proton gradient to power both T9SS-dependent secretion of SprB and its motion at the cell surface.
Collapse
Affiliation(s)
- Maxence S. Vincent
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Caterina Comas Hervada
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Corinne Sebban-Kreuzer
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Hugo Le Guenno
- Microscopy Core Facility, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université, Marseille, France
| | - Maïalène Chabalier
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université, Marseille, France
| | - Françoise Guerlesquin
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7283, Marseille, France
| | - Mark J. McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Eric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| | - Thierry Doan
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université – CNRS UMR7255, Marseille, France
| |
Collapse
|
23
|
Protein Interactome Analysis of the Type IX Secretion System Identifies PorW as the Missing Link between the PorK/N Ring Complex and the Sov Translocon. Microbiol Spectr 2022; 10:e0160221. [PMID: 35019767 PMCID: PMC8754138 DOI: 10.1128/spectrum.01602-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type IX secretion system (T9SS) transports cargo proteins through the outer membrane of Bacteroidetes and attaches them to the cell surface for functions including pathogenesis, gliding motility, and degradation of carbon sources. The T9SS comprises at least 20 different proteins and includes several modules: the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, the outer membrane Sov translocon, and the cell attachment complex. However, the spatial organization of these modules is unknown. We have characterized the protein interactome of the Sov translocon in Porphyromonas gingivalis and identified Sov-PorV-PorA as well as Sov-PorW-PorN-PorK to be novel networks. PorW also interacted with PGN_1783 (PorD), which was required for maximum secretion efficiency. The identification of PorW as the missing link completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore. IMPORTANCE The T9SS is a newly identified protein secretion system of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum used by pathogens associated with diseases of humans, fish, and poultry for the secretion and cell surface attachment of virulence factors. The T9SS comprises three known modules: (i) the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, (ii) the outer membrane Sov translocon, and (iii) the cell surface attachment complex. The spatial organization and interaction of these modules have been a mystery. Here, we describe the protein interactome of the Sov translocon in the human pathogen Porphyromonas gingivalis and have identified PorW as the missing link which bridges PorN with Sov and so completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing, for the first time, a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore.
Collapse
|
24
|
Doocey CM, Finn K, Murphy C, Guinane CM. The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiol 2022; 22:53. [PMID: 35151278 PMCID: PMC8840051 DOI: 10.1186/s12866-022-02465-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Cancer impacts millions of lives globally each year, with approximately 10 million cancer-related deaths recorded worldwide in 2020. Mounting research has recognised the human microbiome as a key area of interest in the pathophysiology of various human diseases including cancer tumorigenesis, progression and in disease outcome. It is suggested that approximately 20% of human cancers may be linked to microbes. Certain residents of the human microbiome have been identified as potentially playing a role, including: Helicobacter pylori, Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Porphyromonas gingivalis.
Main body
In this review, we explore the current evidence that indicate a link between the human microbiome and cancer. Microbiome compositional changes have been well documented in cancer patients. Furthermore, pathogenic microbes harbouring specific virulence factors have been implicated in driving the carcinogenic activity of various malignancies including colorectal, gastric and pancreatic cancer. The associated genetic mechanisms with possible roles in cancer will be outlined. It will be indicated which microbes have a potential direct link with cancer cell proliferation, tumorigenesis and disease progression. Recent studies have also linked certain microbial cytotoxins and probiotic strains to cancer cell death, suggesting their potential to target the tumour microenvironment given that cancer cells are integral to its composition. Studies pertaining to such cytotoxic activity have suggested the benefit of microbial therapies in oncological treatment regimes. It is also apparent that bacterial pathogenic protein products encoded for by certain loci may have potential as oncogenic therapeutic targets given their possible role in tumorigenesis.
Conclusion
Research investigating the impact of the human microbiome in cancer has recently gathered pace. Vast amounts of evidence indicate the human microbiome as a potential player in tumorigenesis and progression. Promise in the development of cancer biomarkers and in targeted oncological therapies has also been demonstrated, although more studies are needed. Despite extensive in vitro and in vivo research, clinical studies involving large cohorts of human patients are lacking. The current literature suggests that further intensive research is necessary to validate both the role of the human microbiome in cancer, and the use of microbiome modification in cancer therapy.
Collapse
|
25
|
Satala D, Gonzalez-Gonzalez M, Smolarz M, Surowiec M, Kulig K, Wronowska E, Zawrotniak M, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. The Role of Candida albicans Virulence Factors in the Formation of Multispecies Biofilms With Bacterial Periodontal Pathogens. Front Cell Infect Microbiol 2022; 11:765942. [PMID: 35071033 PMCID: PMC8766842 DOI: 10.3389/fcimb.2021.765942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontal disease depends on the presence of different microorganisms in the oral cavity that during the colonization of periodontal tissues form a multispecies biofilm community, thus allowing them to survive under adverse conditions or facilitate further colonization of host tissues. Not only numerous bacterial species participate in the development of biofilm complex structure but also fungi, especially Candida albicans, that often commensally inhabits the oral cavity. C. albicans employs an extensive armory of various virulence factors supporting its coexistence with bacteria resulting in successful host colonization and propagation of infection. In this article, we highlight various aspects of individual fungal virulence factors that may facilitate the collaboration with the associated bacterial representatives of the early colonizers of the oral cavity, the bridging species, and the late colonizers directly involved in the development of periodontitis, including the “red complex” species. In particular, we discuss the involvement of candidal cell surface proteins—typical fungal adhesins as well as originally cytosolic “moonlighting” proteins that perform a new function on the cell surface and are also present within the biofilm structures. Another group of virulence factors considered includes secreted aspartic proteases (Sap) and other secreted hydrolytic enzymes. The specific structure of the candidal cell wall, dynamically changing during morphological transitions of the fungus that favor the biofilm formation, is equally important and discussed. The non-protein biofilm-composing factors also show dynamic variability upon the contact with bacteria, and their biosynthesis processes could be involved in the stability of mixed biofilms. Biofilm-associated changes in the microbe communication system using different quorum sensing molecules of both fungal and bacterial cells are also emphasized in this review. All discussed virulence factors involved in the formation of mixed biofilm pose new challenges and influence the successful design of new diagnostic methods and the application of appropriate therapies in periodontal diseases.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland.,Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Smolarz
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
26
|
Nowakowska Z, Madej M, Grad S, Wang T, Hackett M, Miller DP, Lamont RJ, Potempa J. Phosphorylation of major Porphyromonas gingivalis virulence factors is crucial for their processing and secretion. Mol Oral Microbiol 2021; 36:316-326. [PMID: 34569151 PMCID: PMC10148667 DOI: 10.1111/omi.12354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
The main etiological agent of periodontitis is the anaerobic bacterium Porphyromonas gingivalis. Virulence of this pathogen is controlled by various mechanisms and executed by major virulence factors including the gingipain proteases, peptidylarginine deiminase (PPAD), and RagB, an outer membrane macromolecular transport component. Although the structures and functions of these proteins are well characterized, little is known about their posttranslational maturation. Here, we determined the phosphoproteome of P. gingivalis in which phosphorylated tyrosine residues constitute over 80% of all phosphoresidues. Multiple phosphotyrosines were found in gingipains, PPAD, and RagB. Although mutation of phosphorylated residues in PPAD and RagB had no effect on secretion or activity, site-directed mutagenesis showed that phosphorylation in hemagglutinin/adhesin domains of RgpA and Kgp, and in the catalytic domain of RgpB, had a strong influence on secretion, processing, and enzymatic activity. Moreover, preventing phosphorylation of one gingipain influenced the others, suggesting multiple phosphorylation-dependent pathways of gingipain maturation in P. gingivalis. Various candidate kinases including Ptk1 BY kinase and ubiquitous bacterial kinase 1 (UbK1) may be involved, but their contribution to gingipain processing and activation remains to be confirmed.
Collapse
Affiliation(s)
- Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Grad
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tiansong Wang
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Murray Hackett
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Daniel P. Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
27
|
Cummings TFM, Gori K, Sanchez-Pulido L, Gavriilidis G, Moi D, Wilson AR, Murchison E, Dessimoz C, Ponting CP, Christophorou MA. Citrullination Was Introduced into Animals by Horizontal Gene Transfer from Cyanobacteria. Mol Biol Evol 2021; 39:6420225. [PMID: 34730808 PMCID: PMC8826395 DOI: 10.1093/molbev/msab317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Protein posttranslational modifications add great sophistication to biological systems. Citrullination, a key regulatory mechanism in human physiology and pathophysiology, is enigmatic from an evolutionary perspective. Although the citrullinating enzymes peptidylarginine deiminases (PADIs) are ubiquitous across vertebrates, they are absent from yeast, worms, and flies. Based on this distribution PADIs were proposed to have been horizontally transferred, but this has been contested. Here, we map the evolutionary trajectory of PADIs into the animal lineage. We present strong phylogenetic support for a clade encompassing animal and cyanobacterial PADIs that excludes fungal and other bacterial homologs. The animal and cyanobacterial PADI proteins share functionally relevant primary and tertiary synapomorphic sequences that are distinct from a second PADI type present in fungi and actinobacteria. Molecular clock calculations and sequence divergence analyses using the fossil record estimate the last common ancestor of the cyanobacterial and animal PADIs to be less than 1 billion years old. Additionally, under an assumption of vertical descent, PADI sequence change during this evolutionary time frame is anachronistically low, even when compared with products of likely endosymbiont gene transfer, mitochondrial proteins, and some of the most highly conserved sequences in life. The consilience of evidence indicates that PADIs were introduced from cyanobacteria into animals by horizontal gene transfer (HGT). The ancestral cyanobacterial PADI is enzymatically active and can citrullinate eukaryotic proteins, suggesting that the PADI HGT event introduced a new catalytic capability into the regulatory repertoire of animals. This study reveals the unusual evolution of a pleiotropic protein modification.
Collapse
Affiliation(s)
- Thomas F M Cummings
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom,Corresponding authors: E-mails: ;
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Luis Sanchez-Pulido
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Gavriil Gavriilidis
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - David Moi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Abigail R Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Elizabeth Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, Cambridge, United Kingdom
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland,Swiss Institute of Bioinformatics, Lausanne, Switzerland,Department of Genetics Evolution and Environment, University College London, London, United Kingdom,Department of Computer Science, University College London, London, United Kingdom
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Maria A Christophorou
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom,Epigenetics Department, The Babraham Institute, Cambridge, United Kingdom,Corresponding authors: E-mails: ;
| |
Collapse
|
28
|
Wang M, Fage CD, He Y, Mi J, Yang Y, Li F, An X, Fan H, Song L, Zhu S, Tong Y. Recent Advances and Perspectives on Expanding the Chemical Diversity of Lasso Peptides. Front Bioeng Biotechnol 2021; 9:741364. [PMID: 34631682 PMCID: PMC8498205 DOI: 10.3389/fbioe.2021.741364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products that exhibit a range of structures and bioactivities. Initially assembled from the twenty proteinogenic amino acids in a ribosome-dependent manner, RiPPs assume their peculiar bioactive structures through various post-translational modifications. The essential modifications representative of each subfamily of RiPP are performed on a precursor peptide by the so-called processing enzymes; however, various tailoring enzymes can also embellish the precursor peptide or processed peptide with additional functional groups. Lasso peptides are an interesting subfamily of RiPPs characterized by their unique lariat knot-like structure, wherein the C-terminal tail is inserted through a macrolactam ring fused by an isopeptide bond between the N-terminal amino group and an acidic side chain. Until recently, relatively few lasso peptides were found to be tailored with extra functional groups. Nevertheless, the development of new routes to diversify lasso peptides and thus introduce novel or enhanced biological, medicinally relevant, or catalytic properties is appealing. In this review, we highlight several strategies through which lasso peptides have been successfully modified and provide a brief overview of the latest findings on the tailoring of these peptides. We also propose future directions for lasso peptide tailoring as well as potential applications for these peptides in hybrid catalyst design.
Collapse
Affiliation(s)
- Mengjiao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Christopher D Fage
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Yile He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jinhui Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yang Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Clinical Laboratory Center, Taian City Central Hospital, Taian, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shaozhou Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
29
|
Mizgalska D, Goulas T, Rodríguez-Banqueri A, Veillard F, Madej M, Małecka E, Szczesniak K, Ksiazek M, Widziołek M, Guevara T, Eckhard U, Solà M, Potempa J, Gomis-Rüth FX. Intermolecular latency regulates the essential C-terminal signal peptidase and sortase of the Porphyromonas gingivalis type-IX secretion system. Proc Natl Acad Sci U S A 2021; 118:e2103573118. [PMID: 34593635 PMCID: PMC8501833 DOI: 10.1073/pnas.2103573118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen of the human dysbiotic oral microbiome that causes severe periodontitis. It employs a type-IX secretion system (T9SS) to shuttle proteins across the outer membrane (OM) for virulence. Uniquely, T9SS cargoes carry a C-terminal domain (CTD) as a secretion signal, which is cleaved and replaced with anionic lipopolysaccharide by transpeptidation for extracellular anchorage to the OM. Both reactions are carried out by PorU, the only known dual-function, C-terminal signal peptidase and sortase. PorU is itself secreted by the T9SS, but its CTD is not removed; instead, intact PorU combines with PorQ, PorV, and PorZ in the OM-inserted "attachment complex." Herein, we revealed that PorU transits between active monomers and latent dimers and solved the crystal structure of the ∼260-kDa dimer. PorU has an elongated shape ∼130 Å in length and consists of seven domains. The first three form an intertwined N-terminal cluster likely engaged in substrate binding. They are followed by a gingipain-type catalytic domain (CD), two immunoglobulin-like domains (IGL), and the CTD. In the first IGL, a long "latency β-hairpin" protrudes ∼30 Å from the surface to form an intermolecular β-barrel with β-strands from the symmetric CD, which is in a latent conformation. Homology modeling of the competent CD followed by in vivo validation through a cohort of mutant strains revealed that PorU is transported and functions as a monomer through a C690/H657 catalytic dyad. Thus, dimerization is an intermolecular mechanism for PorU regulation to prevent untimely activity until joining the attachment complex.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, 43100 Karditsa, Greece
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ewelina Małecka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Katarzyna Szczesniak
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Miroslaw Ksiazek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Magda Widziołek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Ulrich Eckhard
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Maria Solà
- Structural MitoLab, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain;
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Higher Scientific Research Council (CSIC), Molecular Biology Institute of Barcelona, 08028 Barcelona, Catalonia, Spain;
| |
Collapse
|
30
|
Zheng S, Yu S, Fan X, Zhang Y, Sun Y, Lin L, Wang H, Pan Y, Li C. Porphyromonas gingivalis survival skills: Immune evasion. J Periodontal Res 2021; 56:1007-1018. [PMID: 34254681 DOI: 10.1111/jre.12915] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023]
Abstract
Periodontitis is a chronic inflammatory condition that destroys the tooth-supporting tissues and eventually leads to tooth loss. As one of the most prevalent oral conditions, periodontitis endangers the oral health of 70% of people throughout the world. Periodontitis is also related to various systemic diseases, such as diabetes mellitus, atherosclerosis, and rheumatoid arthritis, which not only has a great impact on population health status and the quality of life but also increases the social burden. Porphyromonas gingivalis (P. gingivalis) is a gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. Porphyromonas gingivalis can express various of virulence factors to overturn innate and adaptive immunities, which makes P. gingivalis survive and propagate in the host, destroy periodontal tissues, and have connection to systemic diseases. Porphyromonas gingivalis can invade into and survive in host tissues by destructing the gingival epithelial barrier, internalizing into the epithelial cells, and enhancing autophagy in epithelial cells. Deregulation of complement system, degradation of antibacterial peptides, and destruction of phagocyte functions facilitate the evasion of P. gingivalis. Porphyromonas gingivalis can also suppress adaptive immunity, which allows P. gingivalis to exist in the host tissues and cause the inflammatory response persistently. Here, we review studies devoted to understanding the strategies utilized by P. gingivalis to escape host immunity. Methods for impairing P. gingivalis immune evasion are also mentioned.
Collapse
Affiliation(s)
- Shaowen Zheng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shiwen Yu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiaomiao Fan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yonghuan Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yangyang Sun
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hongyan Wang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
31
|
Lunar Silva I, Cascales E. Molecular Strategies Underlying Porphyromonas gingivalis Virulence. J Mol Biol 2021; 433:166836. [PMID: 33539891 DOI: 10.1016/j.jmb.2021.166836] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is considered the keystone of periodontitis diseases, a set of inflammatory conditions that affects the tissues surrounding the teeth. In the recent years, the major virulence factors exploited by P. gingivalis have been identified and characterized, including a cocktail of toxins, mainly proteases called gingipains, which promote gingival tissue invasion. These effectors use the Sec pathway to cross the inner membrane and are then recruited and transported across the outer membrane by the type IX secretion system (T9SS). In P. gingivalis, most secreted effectors are attached to anionic lipopolysaccharides (A-LPS), and hence form a virulence coat at the cell surface. P. gingivalis produces additional virulence factors to evade host immune responses, such as capsular polysaccharide, fimbriae and outer membrane vesicles. In addition to periodontitis, it is proposed that this broad repertoire of virulence factors enable P. gingivalis to be involved in diverse human diseases such as rheumatoid arthritis, and neurodegenerative, Alzheimer, and cardiovascular disorders. Here, we review the major virulence determinants of P. gingivalis and discuss future directions to better understand their mechanisms of action.
Collapse
Affiliation(s)
- Ignacio Lunar Silva
- Laboratoire d'Ingénierie des Syst èmes Macromol éculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 Chemin Joseph Aiguier CS7071, 13009 Marseille Cedex 20, France.
| | - Eric Cascales
- Laboratoire d'Ingénierie des Syst èmes Macromol éculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR7255, 31 Chemin Joseph Aiguier CS7071, 13009 Marseille Cedex 20, France.
| |
Collapse
|
32
|
PPAD Activity Promotes Outer Membrane Vesicle Biogenesis and Surface Translocation by Porphyromonas gingivalis. J Bacteriol 2021; 203:JB.00343-20. [PMID: 33257525 PMCID: PMC7847538 DOI: 10.1128/jb.00343-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/22/2020] [Indexed: 12/27/2022] Open
Abstract
Gram-negative bacteria produce nanosized OMVs that are actively released into their surroundings. The oral anaerobe P. gingivalis is prolific in OMV production, and many of the proteins packaged in these vesicles are proteolytic or protein-modifying enzymes. Many bacteria switch between a sessile and a motile mode in response to environmental and host-related signals. Porphyromonas gingivalis, an oral anaerobe implicated in the etiology of chronic periodontal disease, has long been described as a nonmotile bacterium. And yet, recent studies have shown that under certain conditions, P. gingivalis is capable of surface translocation. Considering these findings, this work aimed to increase our understanding of how P. gingivalis transitions between sessile growth and surface migration. Here, we show that the peptidylarginine deiminase secreted by P. gingivalis (PPAD), an enzyme previously shown to be upregulated during surface translocation and to constrain biofilm formation, promotes surface translocation. In the absence of PPAD, the production of outer membrane vesicles (OMVs) was drastically reduced. In turn, there was a reduction in gingipain-mediated proteolysis and a reduced zone of hydration around the site of inoculation. Transcriptome sequencing (RNA-Seq) and metabolomics analyses also showed that these changes corresponded to a shift in arginine metabolism. Overall, this report provides new evidence for the functional relevance of PPAD and proteases, as well as the importance of PPAD activity in OMV biogenesis and release. Our findings support the model that citrullination is a critical mechanism during lifestyle transition between surface-attached growth and surface translocation by modulating OMV-mediated proteolysis and arginine metabolism. IMPORTANCE Gram-negative bacteria produce nanosized OMVs that are actively released into their surroundings. The oral anaerobe P. gingivalis is prolific in OMV production, and many of the proteins packaged in these vesicles are proteolytic or protein-modifying enzymes. This includes key virulence determinants, such as the gingipains and PPAD (a unique peptidylarginine deiminase). Here, we show that PPAD activity (citrullination) is involved in OMV biogenesis. The study revealed an unusual mechanism that allows this bacterium to transform its surroundings. Since OMVs are detected in circulation and in systemic tissues, our study results also support the notion that PPAD activity may be a key factor in the correlation between periodontitis and systemic diseases, further supporting the idea of PPAD as an important therapeutic target.
Collapse
|
33
|
Troublesome friends within us: the role of gut microbiota on rheumatoid arthritis etiopathogenesis and its clinical and therapeutic relevance. Clin Exp Med 2020; 21:1-13. [PMID: 32712721 DOI: 10.1007/s10238-020-00647-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
The role of gut microbiota on immune regulation and the development of autoimmune diseases such as rheumatoid arthritis (RA) is an emerging research topic. Multiple studies have demonstrated alterations on gut microbiota composition and/or function (referred to as dysbiosis) both in early and established RA patients. Still, research delineating the molecular mechanisms by which gut microorganisms induce the loss of immune tolerance or contribute to disease progression is scarce. Available data indicate that gut microbiota alterations are involved in RA autoimmune response by several mechanisms including the post-translational modification of host proteins, molecular mimicry between bacterial and host epitopes, activation of immune system and polarization toward inflammatory phenotypes, as well as induction of intestinal permeability. Therefore, in this review we analyze recent clinical and molecular evidence linking gut microbiota with the etiopathogenesis of RA. The potential of the gut microbiota as a diagnostic or severity biomarker is discussed, as well as the opportunity areas for the development of complementary therapeutic strategies based on the modulation of gut microbiota in the rheumatic patient.
Collapse
|
34
|
Peptidylarginine Deiminase of Porphyromonas gingivalis Modulates the Interactions between Candida albicans Biofilm and Human Plasminogen and High-Molecular-Mass Kininogen. Int J Mol Sci 2020; 21:ijms21072495. [PMID: 32260245 PMCID: PMC7177930 DOI: 10.3390/ijms21072495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Microorganisms that create mixed-species biofilms in the human oral cavity include, among others, the opportunistic fungus Candida albicans and the key bacterial pathogen in periodontitis, Porphyromonas gingivalis. Both species use arsenals of virulence factors to invade the host organism and evade its immune system including peptidylarginine deiminase that citrullinates microbial and host proteins, altering their function. We assessed the effects of this modification on the interactions between the C. albicans cell surface and human plasminogen and kininogen, key components of plasma proteolytic cascades related to the maintenance of hemostasis and innate immunity. Mass spectrometry was used to identify protein citrullination, and microplate tests to quantify the binding of modified plasminogen and kininogen to C. albicans cells. Competitive radioreceptor assays tested the affinity of citrullinated kinins to their specific cellular receptors. The citrullination of surface-exposed fungal proteins reduced the level of unmodified plasminogen binding but did not affect unmodified kininogen binding. However, the modification of human proteins did not disrupt their adsorption to the unmodified fungal cells. In contrast, the citrullination of kinins exerted a significant impact on their interactions with cellular receptors reducing their affinity and thus affecting the role of kinin peptides in the development of inflammation.
Collapse
|
35
|
Muñoz-Atienza E, Flak MB, Sirr J, Paramonov NA, Aduse-Opoku J, Pitzalis C, Curtis MA. The P. gingivalis Autocitrullinome Is Not a Target for ACPA in Early Rheumatoid Arthritis. J Dent Res 2020; 99:456-462. [PMID: 31905316 PMCID: PMC7088229 DOI: 10.1177/0022034519898144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory disease affecting primarily the joints, is frequently characterized by the presence of autoimmune anticitrullinated protein antibodies (ACPA) during preclinical stages of disease and accumulation of hypercitrullinated proteins in arthritic joints. A strong association has been reported between RA and periodontal disease, and Porphyromonas gingivalis, a known driver of periodontitis, has been proposed as the microbial link underlying this association. We recently demonstrated P. gingivalis-mediated gut barrier breakdown and exacerbation of joint inflammation during inflammatory arthritis. In the present study, we investigated another potential role for P. gingivalis in RA etiopathogenesis, based on the generation of ACPA through the activity of a unique P. gingivalis peptidylarginine deiminase (PPAD) produced by this bacterium, which is capable of protein citrullination. Using a novel P. gingivalis W50 PPAD mutant strain, incapable of protein citrullination, and serum from disease-modifying antirheumatic drug-naïve early arthritis patients, we assessed whether autocitrullinated proteins in the P. gingivalis proteome serve as cross-activation targets in the initiation of ACPA production. We found no evidence for patient antibody activity specific to autocitrullinated P. gingivalis proteins. Moreover, deletion of PPAD did not prevent P. gingivalis-mediated intestinal barrier breakdown and exacerbation of disease during inflammatory arthritis in a murine model. Together, these findings suggest that the enzymatic activity of PPAD is not a major virulence mechanism during early stages of inflammatory arthritis.
Collapse
Affiliation(s)
- E Muñoz-Atienza
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, London, UK
| | - M B Flak
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, London, UK
| | - J Sirr
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, London, UK
| | - N A Paramonov
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - J Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - C Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, London, UK
| | - M A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
36
|
Millán C, Jiménez E, Schuster A, Diederichs K, Usón I. ALIXE: a phase-combination tool for fragment-based molecular replacement. Acta Crystallogr D Struct Biol 2020; 76:209-220. [PMID: 32133986 PMCID: PMC7057212 DOI: 10.1107/s205979832000056x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/15/2020] [Indexed: 11/10/2022] Open
Abstract
Fragment-based molecular replacement exploits the use of very accurate yet incomplete search models. In the case of the ARCIMBOLDO programs, consistent phase sets produced from the placement and refinement of fragments with Phaser can be combined in order to increase their signal before proceeding to the step of density modification and autotracing with SHELXE. The program ALIXE compares multiple phase sets, evaluating mean phase differences to determine their common origin, and subsequently produces sets of combined phases that group consistent solutions. In this work, its use on different scenarios of very partial molecular-replacement solutions and its performance after the development of a much-optimized set of algorithms are described. The program is available both standalone and integrated within the ARCIMBOLDO programs. ALIXE has been analysed to identify its rate-limiting steps while exploring the best parameterization to improve its performance and make this software efficient enough to work on modest hardware. The algorithm has been parallelized and redesigned to meet the typical landscape of solutions. Analysis of pairwise correlation between the phase sets has also been explored to test whether this would provide additional insight. ALIXE can be used to exhaustively analyse all partial solutions produced or to complement those already selected for expansion, and also to reduce the number of redundant solutions, which is particularly relevant to the case of coiled coils, or to combine partial solutions from different programs. In each case parallelization and optimization to provide speedup makes its use amenable to typical hardware found in crystallography. ARCIMBOLDO_BORGES and ARCIMBOLDO_SHREDDER now call on ALIXE by default.
Collapse
Affiliation(s)
- Claudia Millán
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Elisabet Jiménez
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Antonia Schuster
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Kay Diederichs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| |
Collapse
|
37
|
Gingimaps: Protein Localization in the Oral Pathogen Porphyromonas gingivalis. Microbiol Mol Biol Rev 2020; 84:84/1/e00032-19. [PMID: 31896547 DOI: 10.1128/mmbr.00032-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porphyromonas gingivalis is an oral pathogen involved in the widespread disease periodontitis. In recent years, however, this bacterium has been implicated in the etiology of another common disorder, the autoimmune disease rheumatoid arthritis. Periodontitis and rheumatoid arthritis were known to correlate for decades, but only recently a possible molecular connection underlying this association has been unveiled. P. gingivalis possesses an enzyme that citrullinates certain host proteins and, potentially, elicits autoimmune antibodies against such citrullinated proteins. These autoantibodies are highly specific for rheumatoid arthritis and have been purported both as a symptom and a potential cause of the disease. The citrullinating enzyme and other major virulence factors of P. gingivalis, including some that were implicated in the etiology of rheumatoid arthritis, are targeted to the host tissue as secreted or outer-membrane-bound proteins. These targeting events play pivotal roles in the interactions between the pathogen and its human host. Accordingly, the overall protein sorting and secretion events in P. gingivalis are of prime relevance for understanding its full disease-causing potential and for developing preventive and therapeutic approaches. The aim of this review is therefore to offer a comprehensive overview of the subcellular and extracellular localization of all proteins in three reference strains and four clinical isolates of P. gingivalis, as well as the mechanisms employed to reach these destinations.
Collapse
|
38
|
Larsen DN, Mikkelsen CE, Kierkegaard M, Bereta GP, Nowakowska Z, Kaczmarek JZ, Potempa J, Højrup P. Citrullinome of Porphyromonas gingivalis Outer Membrane Vesicles: Confident Identification of Citrullinated Peptides. Mol Cell Proteomics 2020; 19:167-180. [PMID: 31754044 PMCID: PMC6944236 DOI: 10.1074/mcp.ra119.001700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is a key pathogen in chronic periodontitis and has recently been mechanistically linked to the development of rheumatoid arthritis via the activity of peptidyl arginine deiminase generating citrullinated epitopes in the periodontium. In this project the outer membrane vesicles (OMV) from P. gingivalis W83 wild-type (WT), a W83 knock-out mutant of peptidyl arginine deiminase (ΔPPAD), and a mutant strain expressing PPAD with the active site cysteine mutated to alanine (C351A), have been analyzed using a two-dimensional HFBA-based separation system combined with LC-MS. For optimal and positive identification and validation of citrullinated peptides and proteins, high resolution mass spectrometers and strict MS search criteria were utilized. This may have compromised the total number of identified citrullinations but increased the confidence of the validation. A new two-dimensional separation system proved to increase the strength of validation, and along with the use of an in-house build program, Citrullia, we establish a fast and easy semi-automatic (manual) validation of citrullinated peptides. For the WT OMV we identified 78 citrullinated proteins having a total of 161 citrullination sites. Notably, in keeping with the mechanism of OMV formation, the majority (51 out of 78) of citrullinated proteins were predicted to be exported via the inner membrane and to reside in the periplasm or being translocated to the bacterial surface. Citrullinated surface proteins may contribute to the pathogenesis of rheumatoid arthritis. For the C351A-OMV a single citrullination site was found and no citrullinations were identified for the ΔPPAD-OMV, thus validating the unbiased character of our method of citrullinated peptide identification.
Collapse
Affiliation(s)
| | | | | | - Grzegorz P Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jakub Z Kaczmarek
- Research and Development Department, Ovodan Biotech A/S, 5000 Odense, Denmark
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, Kentucky
| | - Peter Højrup
- University of Southern Denmark, Campusvej 55, Odense M, Denmark.
| |
Collapse
|
39
|
Zhang L, Yuan Y, Xu Q, Jiang Z, Chu CQ. Contribution of neutrophils in the pathogenesis of rheumatoid arthritis. J Biomed Res 2020; 34:86-93. [PMID: 32305962 DOI: 10.7555/jbr.33.20190075] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are major innate immune effector cells for host defense and have been a topic of active research for their participation in the pathogenesis of autoimmune inflammatory diseases including rheumatoid arthritis (RA) due to recently discovered neutrophil extracellular trap (NET) formation. NET formation and other mechanisms leading to the release of neutrophil nuclear and cytoplasmic contents are implicated as a source of citrullinated antigens in RA. Further investigations are required to delineate what factors diverge neutrophils from host defense to autoimmune response in RA.
Collapse
Affiliation(s)
- Lingshu Zhang
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA;Rheumatology Section, VA Portland Healthcare System, Portland, OR 97239, USA
| | - Yi Yuan
- Department of Rheumatology and Immunology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qiang Xu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA;Rheumatology Section, VA Portland Healthcare System, Portland, OR 97239, USA
| | - Zhengyu Jiang
- Department of Rheumatology and Immunology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA;Rheumatology Section, VA Portland Healthcare System, Portland, OR 97239, USA
| |
Collapse
|
40
|
Fert-Bober J, Darrah E, Andrade F. Insights into the study and origin of the citrullinome in rheumatoid arthritis. Immunol Rev 2019; 294:133-147. [PMID: 31876028 DOI: 10.1111/imr.12834] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/08/2019] [Indexed: 12/11/2022]
Abstract
The presence of autoantibodies and autoreactive T cells to citrullinated proteins and citrullinating enzymes in patients with rheumatoid arthritis (RA), together with the accumulation of citrullinated proteins in rheumatoid joints, provides substantial evidence that dysregulated citrullination is a hallmark feature of RA. However, understanding mechanisms that dysregulate citrullination in RA has important challenges. Citrullination is a normal process in immune and non-immune cells, which is likely activated by different conditions (eg, inflammation) with no pathogenic consequences. In a complex inflammatory environment such as the RA joint, unique strategies are therefore required to dissect specific mechanisms involved in the abnormal production of citrullinated proteins. Here, we will review current models of citrullination in RA and discuss critical components that, in our view, are relevant to understanding the accumulation of citrullinated proteins in the RA joint, collectively referred to as the RA citrullinome. In particular, we will focus on potential caveats in the study of citrullination in RA and will highlight methods to precisely detect citrullinated proteins in complex biological samples, which is a confirmatory approach to mechanistically link the RA citrullinome with unique pathogenic pathways in RA.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
41
|
Gómez-Bañuelos E, Mukherjee A, Darrah E, Andrade F. Rheumatoid Arthritis-Associated Mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. J Clin Med 2019; 8:jcm8091309. [PMID: 31454946 PMCID: PMC6780899 DOI: 10.3390/jcm8091309] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology characterized by immune-mediated damage of synovial joints and antibodies to citrullinated antigens. Periodontal disease, a bacterial-induced inflammatory disease of the periodontium, is commonly observed in RA and has implicated periodontal pathogens as potential triggers of the disease. In particular, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans have gained interest as microbial candidates involved in RA pathogenesis by inducing the production of citrullinated antigens. Here, we will discuss the clinical and mechanistic evidence surrounding the role of these periodontal bacteria in RA pathogenesis, which highlights a key area for the treatment and preventive interventions in RA.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Amarshi Mukherjee
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
42
|
Lassak J, Koller F, Krafczyk R, Volkwein W. Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biol Chem 2019; 400:1397-1427. [DOI: 10.1515/hsz-2019-0182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Post-translational modifications (PTM) are the evolutionary solution to challenge and extend the boundaries of genetically predetermined proteomic diversity. As PTMs are highly dynamic, they also hold an enormous regulatory potential. It is therefore not surprising that out of the 20 proteinogenic amino acids, 15 can be post-translationally modified. Even the relatively inert guanidino group of arginine is subject to a multitude of mostly enzyme mediated chemical changes. The resulting alterations can have a major influence on protein function. In this review, we will discuss how bacteria control their cellular processes and develop pathogenicity based on post-translational protein-arginine modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Franziska Koller
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Ralph Krafczyk
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| | - Wolfram Volkwein
- Center for Integrated Protein Science Munich (CiPSM), Department of Biology I, Microbiology , Ludwig-Maximilians-Universität München , Grosshaderner Strasse 2-4 , D-82152 Planegg , Germany
| |
Collapse
|
43
|
Vermilyea DM, Ottenberg GK, Davey ME. Citrullination mediated by PPAD constrains biofilm formation in P. gingivalis strain 381. NPJ Biofilms Microbiomes 2019; 5:7. [PMID: 32029738 PMCID: PMC6367333 DOI: 10.1038/s41522-019-0081-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis is the only known human-associated prokaryote that produces a peptidylarginine deiminase (PPAD), a protein-modifying enzyme that is secreted along with a number of virulence factors via a type IX secretion system (T9SS). While the function of PPAD in P. gingivalis physiology is not clear, human peptidylarginine deiminases are known to convert positively charged arginine residues within proteins to neutral citrulline and, thereby, impact protein conformation and function. Here, we report that the lack of citrullination in a PPAD deletion mutant (Δ8820) enhances biofilm formation. More Δ8820 cells attached to the surface than the parent strain during the early stages of biofilm development and, ultimately, mature Δ8820 biofilms were comprised of significantly more cell-cell aggregates and extracellular matrix. Imaging by electron microscopy discovered that Δ8820 biofilm cells secrete copious amounts of protein aggregates. Furthermore, gingipain-derived adhesin proteins, which are also secreted by the T9SS were predicted by mass spectrometry to be citrullinated and citrullination of these targets by wild-type strain 381 in vitro was confirmed. Lastly, Δ8820 biofilms contained more gingipain-derived adhesin proteins and more gingipain activity than 381 biofilms. Overall, our findings support the model that citrullination of T9SS cargo proteins known to play a key role in colonization, such as gingipain-derived adhesin proteins, is an underlying mechanism that modulates P. gingivalis biofilm development.
Collapse
Affiliation(s)
- Danielle M Vermilyea
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Gregory K Ottenberg
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Mary E Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
44
|
Bereta G, Goulas T, Madej M, Bielecka E, Solà M, Potempa J, Xavier Gomis-Rüth F. Structure, function, and inhibition of a genomic/clinical variant of Porphyromonas gingivalis peptidylarginine deiminase. Protein Sci 2019; 28:478-486. [PMID: 30638292 DOI: 10.1002/pro.3571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
Citrullination is an essential post-translational modification in which the guanidinium group of protein and peptide arginines is deiminated by peptidylarginine deiminases (PADs). When deregulated, excessive citrullination leads to inflammation as in severe periodontal disease (PD) and rheumatoid arthritis (RA). Porphyromonas gingivalis is the major periodontopathogenic causative agent of PD and also an etiological agent of RA. It secretes a PAD, termed Porphyromonas PAD (PPAD), which is a virulence factor that causes aberrant citrullination. Analysis of P. gingivalis genomes of laboratory strains and clinical isolates unveiled a PPAD variant (PPAD-T2), which showed three amino-acid substitutions directly preceding catalytic Residue H236 (G231 N/E232 T/N235 D) when compared with PPAD from the reference strain (PPAD-T1). Mutation of these positions in the reference strain resulted in twofold higher cell-associated citrullinating activity. Similar to PPAD-T1, recombinant PPAD-T2 citrullinated arginines at the C-termini of general peptidic substrates but not within peptides. Catalytically, PPAD-T2 showed weaker substrate binding but higher turnover rates than PPAD-T1. In contrast, no differences were found in thermal stability. The 1.6 Å-resolution X-ray crystal structure of PPAD-T2 in complex with the general human PAD inhibitor, Cl-amidine, revealed that the inhibitor moiety is tightly bound and that mutations localize to a loop engaged in substrate/inhibitor binding. In particular, mutation G231 N caused a slight structural rearrangement, which probably originated the higher substrate turnover observed. The present data compare two natural PPAD variants and will set the pace for the design of specific inhibitors against P. gingivalis-caused PD.
Collapse
Affiliation(s)
- Grzegorz Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, PL-30-387, Kraków, Poland
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, PL-30-387, Kraków, Poland
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30-387, Kraków, Poland
| | - Maria Solà
- Structural MitoLab, Structural Biology Unit, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, PL-30-387, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, 40202
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| |
Collapse
|
45
|
Dwivedi N, Radic M. Burning controversies in NETs and autoimmunity: The mysteries of cell death and autoimmune disease. Autoimmunity 2018; 51:267-280. [PMID: 30417698 DOI: 10.1080/08916934.2018.1523395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The causes and mechanisms of autoimmune disease pose continuing challenges to the scientific community. Recent clues implicate a peculiar feature of neutrophils, their ability to release nuclear chromatin in the form of neutrophil extracellular traps (NETs), in the induction or progression of autoimmune disease. Efforts to define the beneficial versus detrimental effects of NET release have, as yet, only partially revealed mechanisms that guide this process. Evidence suggests that the process of NET release is highly regulated, but the details of regulation remain controversial and obscure. Without a better understanding of the factors that initiate and control NET formation, the judicious modification of neutrophil behaviour for medically useful purposes appears remote. We highlight gaps and inconsistencies in published work, which make NETs and their role in health and disease a puzzle that deserves more focused attention.
Collapse
Affiliation(s)
- Nishant Dwivedi
- a TIP Immunology , EMD Serono Research and Development Institute, Inc , Billerica , MA , USA
| | - Marko Radic
- b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
46
|
Type 9 secretion system structures reveal a new protein transport mechanism. Nature 2018; 564:77-82. [PMID: 30405243 DOI: 10.1038/s41586-018-0693-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022]
Abstract
The type 9 secretion system (T9SS) is the protein export pathway of bacteria of the Gram-negative Fibrobacteres-Chlorobi-Bacteroidetes superphylum and is an essential determinant of pathogenicity in severe periodontal disease. The central element of the T9SS is a so-far uncharacterized protein-conducting translocon located in the bacterial outer membrane. Here, using cryo-electron microscopy, we provide structural evidence that the translocon is the T9SS protein SprA. SprA forms an extremely large (36-strand) single polypeptide transmembrane β-barrel. The barrel pore is capped on the extracellular end, but has a lateral opening to the external membrane surface. Structures of SprA bound to different components of the T9SS show that partner proteins control access to the lateral opening and to the periplasmic end of the pore. Our results identify a protein transporter with a distinctive architecture that uses an alternating access mechanism in which the two ends of the protein-conducting channel are open at different times.
Collapse
|
47
|
Miller DP, Wang Q, Weinberg A, Lamont RJ. Transcriptome analysis of Porphyromonas gingivalis and Acinetobacter baumannii in polymicrobial communities. Mol Oral Microbiol 2018; 33:364-377. [PMID: 29939498 DOI: 10.1111/omi.12238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii is a nosocomial, opportunistic pathogen that causes several serious conditions including meningitis, septicemia, endocarditis, and pneumonia. It can be found in the oral biofilm, which may be a reservoir for pneumonia and chronic obstructive pulmonary disease. Subgingival colonization by A. baumannii is associated with chronic and aggressive periodontitis as well as refractory periodontal disease. Porphyromonas gingivalis, a keystone periodontal pathogen localized to subgingival plaque, is also implicated in several chronic conditions including aspiration pneumonia. Although both bacteria are found together in subgingival plaque and can cause multiple polymicrobial infections, nothing is known about the interactions between these two important human pathogens. In this study, we used RNA sequencing to understand the transcriptional response of both species as they adapt to heterotypic communities. Among the differentially regulated genes were those encoding a number of important virulence factors for both species including adhesion, biofilm formation, and protein secretion. Additionally, the presence of A. baumannii increased the abundance of P. gingivalis in model dual-species communities. Collectively these results suggest that both P. gingivalis and A. baumannii adapt to each other and have synergistic potential for increased pathogenicity. In identifying the mechanisms that promote pathogenicity and refractory disease, novel approaches to mitigate polymicrobial synergistic interactions may be developed to treat or prevent associated diseases.
Collapse
Affiliation(s)
- D P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Q Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - A Weinberg
- Department of Biological Sciences, Case Western Reserve University, Cleveland, Ohio
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
48
|
Olsen I, Singhrao SK, Potempa J. Citrullination as a plausible link to periodontitis, rheumatoid arthritis, atherosclerosis and Alzheimer's disease. J Oral Microbiol 2018; 10:1487742. [PMID: 29963294 PMCID: PMC6022223 DOI: 10.1080/20002297.2018.1487742] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Periodontitis, rheumatoid arthritis (RA), atherosclerosis (AS), and Alzheimer’s disease (AD) are examples of complex human diseases with chronic inflammatory components in their etiologies. The initial trigger of inflammation that progresses to these diseases remains unresolved. Porphyromonas gingivalis is unique in its ability to secrete the P. gingivalis-derived peptidyl arginine deiminase (PPAD) and consequently offers a plausible and exclusive link to these diseases through enzymatic conversion of arginine to citrulline. Citrullination is a post-translational enzymatic modification of arginine residues in proteins formed as part of normal physiological processes. However, PPAD has the potential to modify self (bacterial) and host proteins by deimination of arginine amino acid residues, preferentially at the C-terminus. Migration of P. gingivalis and/or its secreted PPAD into the bloodstream opens up the possibility that this enzyme will citrullinate proteins at disparate body sites. Citrullination is associated with the pathogenesis of multifactorial diseases such as RA and AD, which have an elusive external perpetrator as they show epidemiological associations with periodontitis. Therefore, PPAD deserves some prominence as an external antigen, in at least, a subset of RA and AD cases, with as yet unidentified, immune/genetic vulnerabilities.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K Singhrao
- Dementia and Neurodegeneration Research Group, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Jagiellonian University, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| |
Collapse
|
49
|
Millán C, Sammito MD, McCoy AJ, Nascimento AFZ, Petrillo G, Oeffner RD, Domínguez-Gil T, Hermoso JA, Read RJ, Usón I. Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination. Acta Crystallogr D Struct Biol 2018; 74:290-304. [PMID: 29652256 PMCID: PMC5892878 DOI: 10.1107/s2059798318001365] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/22/2018] [Indexed: 01/13/2023] Open
Abstract
Macromolecular structures can be solved by molecular replacement provided that suitable search models are available. Models from distant homologues may deviate too much from the target structure to succeed, notwithstanding an overall similar fold or even their featuring areas of very close geometry. Successful methods to make the most of such templates usually rely on the degree of conservation to select and improve search models. ARCIMBOLDO_SHREDDER uses fragments derived from distant homologues in a brute-force approach driven by the experimental data, instead of by sequence similarity. The new algorithms implemented in ARCIMBOLDO_SHREDDER are described in detail, illustrating its characteristic aspects in the solution of new and test structures. In an advance from the previously published algorithm, which was based on omitting or extracting contiguous polypeptide spans, model generation now uses three-dimensional volumes respecting structural units. The optimal fragment size is estimated from the expected log-likelihood gain (LLG) values computed assuming that a substructure can be found with a level of accuracy near that required for successful extension of the structure, typically below 0.6 Å root-mean-square deviation (r.m.s.d.) from the target. Better sampling is attempted through model trimming or decomposition into rigid groups and optimization through Phaser's gyre refinement. Also, after model translation, packing filtering and refinement, models are either disassembled into predetermined rigid groups and refined (gimble refinement) or Phaser's LLG-guided pruning is used to trim the model of residues that are not contributing signal to the LLG at the target r.m.s.d. value. Phase combination among consistent partial solutions is performed in reciprocal space with ALIXE. Finally, density modification and main-chain autotracing in SHELXE serve to expand to the full structure and identify successful solutions. The performance on test data and the solution of new structures are described.
Collapse
Affiliation(s)
- Claudia Millán
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Massimo Domenico Sammito
- Department of Structural Chemistry, Georg August University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Airlie J. McCoy
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 OXY, England
| | - Andrey F. Ziem Nascimento
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- XALOC Beamline, Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290 Barcelona, Spain
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Caixa Postal 6192, 13083-970 Campinas-SP, Brazil
| | - Giovanna Petrillo
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- Biochemize S.L, Barcelona Advanced Industry, C/Marie Curie 8-14, 08042 Barcelona, Spain
| | - Robert D. Oeffner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 OXY, England
| | - Teresa Domínguez-Gil
- Department of Crystallography and Structural Biology, Instituto Química-Física ‘Rocasolano’ CSIC (Spanish National Research Council), Serrano 119, 28006 Madrid, Spain
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology, Instituto Química-Física ‘Rocasolano’ CSIC (Spanish National Research Council), Serrano 119, 28006 Madrid, Spain
| | - Randy J. Read
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 OXY, England
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB–CSIC), Barcelona Science Park, Helix Building, Baldiri Reixac 15, 08028 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08003 Barcelona, Spain
| |
Collapse
|
50
|
Konig MF, Abusleme L, Reinholdt J, Palmer RJ, Teles RP, Sampson K, Rosen A, Nigrovic PA, Sokolove J, Giles JT, Moutsopoulos NM, Andrade F. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med 2017; 8:369ra176. [PMID: 27974664 DOI: 10.1126/scitranslmed.aaj1921] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/09/2016] [Accepted: 11/09/2016] [Indexed: 12/16/2022]
Abstract
A bacterial etiology of rheumatoid arthritis (RA) has been suspected since the beginnings of modern germ theory. Recent studies implicate mucosal surfaces as sites of disease initiation. The common occurrence of periodontal dysbiosis in RA suggests that oral pathogens may trigger the production of disease-specific autoantibodies and arthritis in susceptible individuals. We used mass spectrometry to define the microbial composition and antigenic repertoire of gingival crevicular fluid in patients with periodontal disease and healthy controls. Periodontitis was characterized by the presence of citrullinated autoantigens that are primary immune targets in RA. The citrullinome in periodontitis mirrored patterns of hypercitrullination observed in the rheumatoid joint, implicating this mucosal site in RA pathogenesis. Proteomic signatures of several microbial species were detected in hypercitrullinated periodontitis samples. Among these, Aggregatibacter actinomycetemcomitans (Aa), but not other candidate pathogens, induced hypercitrullination in host neutrophils. We identified the pore-forming toxin leukotoxin A (LtxA) as the molecular mechanism by which Aa triggers dysregulated activation of citrullinating enzymes in neutrophils, mimicking membranolytic pathways that sustain autoantigen citrullination in the RA joint. Moreover, LtxA induced changes in neutrophil morphology mimicking extracellular trap formation, thereby releasing the hypercitrullinated cargo. Exposure to leukotoxic Aa strains was confirmed in patients with RA and was associated with both anticitrullinated protein antibodies and rheumatoid factor. The effect of human lymphocyte antigen-DRB1 shared epitope alleles on autoantibody positivity was limited to RA patients who were exposed to Aa These studies identify the periodontal pathogen Aa as a candidate bacterial trigger of autoimmunity in RA.
Collapse
Affiliation(s)
- Maximilian F Konig
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Loreto Abusleme
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesper Reinholdt
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Robert J Palmer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ricardo P Teles
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Applied Oral Sciences, Forsyth Institute, Cambridge, MA 02142, USA
| | - Kevon Sampson
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Antony Rosen
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.,Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jon T Giles
- Division of Rheumatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Niki M Moutsopoulos
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|