1
|
Araújo TQ, Hochberg R. Ultrastructure and Function of the Stalk Gland Complex of Pompholyx faciemlarva (Rotifera: Monogononta). J Morphol 2024; 285:e70005. [PMID: 39530785 DOI: 10.1002/jmor.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Many planktonic rotifers carry their oviposited eggs until hatching. In some species, the eggs are attached to the mother via secretions from her style gland, which forms a thread that extends from her cloaca. In species of Pompholyx, the mother possesses the rare ability to change the tension on the secreted thread, which alters the proximity of the egg with respect to her body. In this study, we used behavioral observations, confocal microscopy, and transmission electron microscopy to study the functional morphology of the stalk gland, which secretes a similar thread to the style gland. Our observations reveal that six longitudinal muscles insert on a stalk-gland complex, which is a combination of a two-headed gland and an epithelial duct that connects to the posterior cloaca. The gland secretes a single, long, electron-dense thread that traverses the duct and attaches to the egg surface through the cloaca. Three retractor muscles insert on the stalk gland and function to pull the entire complex anteriorly, thereby increasing tension on the thread and moving the egg close to the mother's body. A set of three (two pairs and a single dorsal) protractor muscles antagonize these actions, and their contraction pulls the gland complex close to the cloaca, thereby releasing tension on the thread and allowing the egg to distance itself from the mother. The stalk gland complex does not appear to be homologous to the style glands of other rotifers, but we hypothesize that it functions as a form of maternal protection as is the case with style glands.
Collapse
Affiliation(s)
- Thiago Quintão Araújo
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Rick Hochberg
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
2
|
Asnicar D, Stranci F, Monti S, Badocco D, Marčeta T, Munari M, Marin MG. Investigating intraspecific variability in the biological responses of sea urchins (Paracentrotus lividus) to seawater acidification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51687-51701. [PMID: 39120814 PMCID: PMC11374922 DOI: 10.1007/s11356-024-34618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Alterations in seawater chemistry posed by acidification may lead to immunological and antioxidant defence impairment in sea urchins, with differences among local populations. Here, we analyzed the effects of reduced pH on Paracentrotus lividus, with a multibiomarker approach, and the possible intraspecific variations in sea urchin responses. Two groups of animals with different ecological histories (i.e., the pattern of environmental characteristics and pressures experienced throughout the organism's lifetime) were maintained at ambient pH and pH reduced of 0.4 units for 8 months. Changes in gonadosomatic index (GSI), immunological, and oxidative stress biomarkers were assessed in coelomic fluid, gonads, and digestive tract. Animals maintained at reduced pH showed limited impact of seawater acidification compared to the ambient pH condition. However, sea urchins from the two sites were differently influenced by the seawater pH (as shown by multivariate analyses). GSI and immunological and antioxidant status were differentially modulated between the two sexes, with generally higher values in females, but differences between sexes in relation to the pH of exposure were limited. Overall, our findings highlight that the impact of environmental stressors may differ in sea urchins from different locations. This has implications for the maintenance of P. lividus wild populations under future global change scenarios.
Collapse
Affiliation(s)
- Davide Asnicar
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
- Aquatic Biosciences, Huntsman Marine Science Centre, 1 Lower Campus Road, E5B 2L7, St. Andrews, New Brunswick, Canada
| | - Federica Stranci
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Silvia Monti
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Tihana Marčeta
- Institute of Marine Sciences (ISMAR), CNR, Castello 2737/F, 30122, Venezia, Italy
| | - Marco Munari
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
- Department of Integrative Marine Ecology, Fano Marine Centre, Stazione Zoologica Anton Dohrn, Fano, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
3
|
Berlino M, Mangano MC, Di Bona G, Lucchese M, Terzo SMC, De Vittor C, D'Alessandro M, Esposito V, Gambi MC, Del Negro P, Sarà G. Functional diversity and metabolic response in benthic communities along an ocean acidification gradient. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106520. [PMID: 38685145 DOI: 10.1016/j.marenvres.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Altered ocean chemistry caused by ocean acidification (OA) is expected to have negative repercussions at different levels of the ecological hierarchy, starting from the individual and scaling up to the community and ultimately to the ecosystem level. Understanding the effects of OA on benthic organisms is of primary importance given their relevant ecological role in maintaining marine ecosystem functioning. The use of functional traits represents an effective technique to investigate how species adapt to altered environmental conditions and can be used to predict changes in the resilience of communities faced with stresses associated with climate change. Artificial supports were deployed for 1-y along a natural pH gradient in the shallow hydrothermal systems of the Bottaro crater near Panarea (Aeolian Archipelago, southern Tyrrhenian Sea), to explore changes in functional traits and metabolic rates of benthic communities and the repercussions in terms of functional diversity. Changes in community composition due to OA were accompanied by modifications in functional diversity. Altered conditions led to higher oxygen consumption in the acidified site and the selection of species with the functional traits needed to withstand OA. Calcification rate and reproduction were found to be the traits most affected by pH variations. A reduction in a community's functional evenness could potentially reduce its resilience to further environmental or anthropogenic stressors. These findings highlight the ability of the ecosystem to respond to climate change and provide insights into the modifications that can be expected given the predicted future pCO2 scenarios. Understanding the impact of climate change on functional diversity and thus on community functioning and stability is crucial if we are to predict changes in ecosystem vulnerability, especially in a context where OA occurs in combination with other environmental changes and anthropogenic stressors.
Collapse
Affiliation(s)
- M Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy; Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy.
| | - M C Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - G Di Bona
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| | - M Lucchese
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy; National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - S M C Terzo
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Fernando Stagno d'Alcontres 3, University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via A.F. Acton, Molosiglio, Napoli, 80133, Italy
| | - C De Vittor
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - M D'Alessandro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - V Esposito
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy; Stazione Zoologica Anton Dohrn, Research Infrastructures for Marine Biological Resources Department, Via Po 25, 00198, Roma, Italy
| | - M C Gambi
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy; Previous at the Stazione Zoologica Anton Dohrn, Department of Marine Integrative Ecology (EMI), Ischia Marine Center, Ischia Napoli, Italy
| | - P Del Negro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, Italy
| | - G Sarà
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo Ed. 16, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo Viale delle Scienze Ed. 16, 90128, Palermo, Italy
| |
Collapse
|
4
|
Signorini SG, Munari M, Federico L, Farè F, Fontana M, Caruso D, Freitas R, Paciello S, D'Aniello I, Gambi MC, Della Torre C. Living under natural conditions of ocean acidification entails energy expenditure and oxidative stress in a mussel species. MARINE POLLUTION BULLETIN 2024; 203:116470. [PMID: 38728956 DOI: 10.1016/j.marpolbul.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
We investigated the health conditions of the Mediterranean mussel Mytilus galloprovincialis recruited in the CO2 vents system of Castello Aragonese at Ischia Island (Mediterranean Sea). Individuals of M. galloprovincialis were sampled in three sites along the pH gradient (8.10, 7.7 and up to <7.4). Untargeted metabolomics and biochemical endpoints related to energetic metabolism, oxidative stress/damage, neurotoxicity and immune defense were analyzed. Corrosion of the valves occurred at low pH. A separation of the metabolome was observed along the pH gradient. Metabolites belonging to amino acids, nucleosides, lipids and organic osmolytes were significantly reduced in the organisms from the most acidified sites. The content of reactive oxygen species and the activity of glutathione peroxidase were reduced in organisms from the acidified sites compared to ambient pH, and no oxidative damage was induced. Overall results suggested the presence of an energy cost underpinning long-term survival in acidified conditions for this species.
Collapse
Affiliation(s)
- Silvia Giorgia Signorini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, Stazione Idrobiologica Umberto D'Ancona, University of Padova, Chioggia, Venice, Italy
| | - Lorenzo Federico
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Fiorenza Farè
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy
| | - Manuela Fontana
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy; Department of Pharmacological and Molecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rosa Freitas
- CESAM - Centre of Marine and Environmental Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Sofia Paciello
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Département de Sciences Biologiques, Université de Montréal, Montréal, Canada
| | - Ilaria D'Aniello
- Department of Biology, Stazione Idrobiologica Umberto D'Ancona, University of Padova, Chioggia, Venice, Italy
| | | | - Camilla Della Torre
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
5
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
6
|
Zhao L, Harvey BP, Higuchi T, Agostini S, Tanaka K, Murakami-Sugihara N, Morgan H, Baker P, Hall-Spencer JM, Shirai K. Ocean acidification stunts molluscan growth at CO 2 seeps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162293. [PMID: 36813205 DOI: 10.1016/j.scitotenv.2023.162293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Ocean acidification can severely affect bivalve molluscs, especially their shell calcification. Assessing the fate of this vulnerable group in a rapidly acidifying ocean is therefore a pressing challenge. Volcanic CO2 seeps are natural analogues of future ocean conditions that offer unique insights into the scope of marine bivalves to cope with acidification. Here, we used a 2-month reciprocal transplantation of the coastal mussel Septifer bilocularis collected from reference and elevated pCO2 habitats to explore how they calcify and grow at CO2 seeps on the Pacific coast of Japan. We found significant decreases in condition index (an indication of tissue energy reserves) and shell growth of mussels living under elevated pCO2 conditions. These negative responses in their physiological performance under acidified conditions were closely associated with changes in their food sources (shown by changes to the soft tissue δ13C and δ15N ratios) and changes in their calcifying fluid carbonate chemistry (based on shell carbonate isotopic and elemental signatures). The reduced shell growth rate during the transplantation experiment was further supported by shell δ13C records along their incremental growth layers, as well as their smaller shell size despite being of comparable ontogenetic ages (5-7 years old, based on shell δ18O records). Taken together, these findings demonstrate how ocean acidification at CO2 seeps affects mussel growth and reveal that lowered shell growth helps them survive stressful conditions.
Collapse
Affiliation(s)
- Liqiang Zhao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan.
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan.
| | - Tomihiko Higuchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Kentaro Tanaka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | | | - Holly Morgan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Phoebe Baker
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan; School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Kotaro Shirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
7
|
Palombo C, Chiarore A, Ciscato M, Asnicar D, Mirasole A, Fabbrizzi E, Teixidó N, Munari M. Thanks mum. Maternal effects in response to ocean acidification of sea urchin larvae at different ecologically relevant temperatures. MARINE POLLUTION BULLETIN 2023; 188:114700. [PMID: 36773584 DOI: 10.1016/j.marpolbul.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Cristina Palombo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Department of Environmental Biology, University of Rome "La Sapienza", Rome, Italy
| | - Antonia Chiarore
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy.
| | - Maria Ciscato
- Department of Biology, University of Padova, Padova, Italy
| | - Davide Asnicar
- Department of Biology, University of Padova, Padova, Italy; Aquatic Bioscience, Huntsman Marine Science Centre, 1 Lower Campus Road, St Andrews, New Brunswick, Canada E5B 2L7.
| | - Alice Mirasole
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy.
| | - Erika Fabbrizzi
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Nuria Teixidó
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France.
| | - Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Department of Integrative Marine Ecology, Fano Marine Centre, Stazione Zoologica Anton Dohrn, Fano, Italy.
| |
Collapse
|
8
|
Honorio R, Depierrefixe P, Devers S, Rouelle M, Meunier J, Lécureuil C. Effects of cadmium ingestion on reproduction and maternal egg care in the European earwig. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Simonetti S, Zupo V, Gambi MC, Luckenbach T, Corsi I. Unraveling cellular and molecular mechanisms of acid stress tolerance and resistance in marine species: New frontiers in the study of adaptation to ocean acidification. MARINE POLLUTION BULLETIN 2022; 185:114365. [PMID: 36435021 DOI: 10.1016/j.marpolbul.2022.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Since the industrial revolution, fossil fuel combustion has led to a 30 %-increase of the atmospheric CO2 concentration, also increasing the ocean partial CO2 pressure. The consequent lowered surface seawater pH is termed ocean acidification (OA) and severely affects marine life on a global scale. Cellular and molecular responses of marine species to lowered seawater pH have been studied but information on the mechanisms driving the tolerance of adapted species to comparatively low seawater pH is limited. Such information may be obtained from species inhabiting sites with naturally low water pH that have evolved remarkable abilities to tolerate such conditions. This review gathers information on current knowledge about species naturally facing low water pH conditions and on cellular and molecular adaptive mechanisms enabling the species to survive under, and even benefit from, adverse pH conditions. Evidences derived from case studies on naturally acidified systems and on resistance mechanisms will guide predictions on the consequences of future adverse OA scenarios for marine biodiversity.
Collapse
Affiliation(s)
- Silvia Simonetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | | | - Till Luckenbach
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| |
Collapse
|
10
|
Teixeira MAL, Langeneck J, Vieira PE, Hernández JC, Sampieri BR, Kasapidis P, Mucciolo S, Bakken T, Ravara A, Nygren A, Costa FO. Reappraisal of the hyperdiverse. INVERTEBR SYST 2022. [DOI: 10.1071/is21084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Morphologically similar species are often overlooked but molecular techniques have been effective in signalling potential hidden diversity, boosting the documentation of unique evolutionary lineages and ecological diversity. Platynereis dumerilii and Platynereis massiliensis are part of a recognised species complex, where differences in the reproductive biology have mainly been highlighted to date. Analyses of DNA sequence data (COI, 16S rDNA and D2 region of the 28S rDNA) of populations of the apparent morphotype of P. dumerilii obtained from a broader sampling area along European marine waters, including the Azores and Webbnesia islands (Madeira and Canaries), provided compelling evidence for the existence of at least 10 divergent evolutionary lineages. Complementing the genetic data, morphological observations of the better represented lineages revealed two major groups with distinctive paragnath patterns. Two new Platynereis species were erected: P. nunezi sp. nov., widespread in the Azores and Webbnesia islands, and P. jourdei sp. nov., restricted to the western Mediterranean. The new combination P. agilis is also proposed for Nereis agilis, previously unaccepted for one of the lineages present both in the Northeast Atlantic and western Mediterranean. Platynereis dumerilii is redescribed based on topotypic material. However, uncertainty in the identity of P. massiliensis due to the original brief description and the absence of type and topotypic material prevents the unequivocal assignment to the lineage assumed in this and previous studies. The remaining five lineages are represented by only a few small specimens with morphological features poorly preserved and were therefore not described in this study. ZooBank: urn:lsid:zoobank.org:pub:50079615-85E5-447E-BDD7-21E81C2A6F4D
Collapse
|
11
|
Spatafora D, Cattano C, Aglieri G, Quattrocchi F, Turco G, Quartararo G, Dudemaine J, Calosi P, Milazzo M. Limited behavioural effects of ocean acidification on a Mediterranean anemone goby (Gobius incognitus) chronically exposed to elevated CO 2 levels. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105758. [PMID: 36183457 DOI: 10.1016/j.marenvres.2022.105758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
An in situ reciprocal transplant experiment was carried around a volcanic CO2 vent to evaluate the anti-predator responses of an anemone goby species exposed to ambient (∼380 μatm) and high (∼850 μatm) CO2 sites. Overall, the anemone gobies displayed largely unaffected behaviors under high-CO2 conditions suggesting an adaptive potential of Gobius incognitus to ocean acidification (OA) conditions. This is also supported by its 3-fold higher density recorded in the field under high CO2. However, while fish exposed to ambient conditions showed an expected reduction in the swimming activity in the proximity of the predator between the pre- and post-exposure period, no such changes were detected in any of the other treatments where fish experienced acute and long-term high CO2. This may suggest an OA effect on the goby antipredator strategy. Our findings contribute to the ongoing debate over the need for realistic predictions of the impacts of expected increased CO2 concentration on fish, providing evidence from a natural high CO2 system.
Collapse
Affiliation(s)
- Davide Spatafora
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 28, I-90123, Palermo, Italy; Shimoda Marine Research Centre, Tsukuba University, Shimoda City, Shizuoka 415-0025, Japan.
| | - Carlo Cattano
- Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy
| | - Giorgio Aglieri
- Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (complesso Roosevelt), 90149, Palermo, Italy
| | - Federico Quattrocchi
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council CNR, Mazara del Vallo (TP), Italy
| | - Gabriele Turco
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 28, I-90123, Palermo, Italy
| | - Giulia Quartararo
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 28, I-90123, Palermo, Italy
| | - Jeanne Dudemaine
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Marco Milazzo
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 28, I-90123, Palermo, Italy
| |
Collapse
|
12
|
Munari M, Chiarore A, Signorini SG, Cannavacciuolo A, Nannini M, Magni S, Binelli A, Gambi MC, Della Torre C. Surviving in a changing ocean. Tolerance to acidification might affect the susceptibility of polychaetes to chemical contamination. MARINE POLLUTION BULLETIN 2022; 181:113857. [PMID: 35749979 DOI: 10.1016/j.marpolbul.2022.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/26/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to assess the combined effects of ocean acidification (OA) and pollution to the polychaete Syllis prolifera inhabiting the CO2 vent system of the Castello Aragonese (Ischia Island, Italy). We investigated the basal activities of antioxidant enzymes in organisms from the acidified site and from an ambient-pH control site in two different periods of the year. Results showed a limited influence of acidified conditions on the functionality of the antioxidant system. We then investigated the responsiveness of individuals living inside the CO2 vent compared to those from the control to face exposure to acetone and copper. Results highlighted a higher susceptibility of organisms from the vent to acetone and a different response of antioxidant enzymes in individuals from the two sites. Conversely, a higher tolerance to copper was observed in polychaetes from the acidified-site with respect to controls, but any significant oxidative stress was induced at sublethal concentrations.
Collapse
Affiliation(s)
- Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Antonia Chiarore
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy; Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | - Antonio Cannavacciuolo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Matteo Nannini
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
13
|
Roggatz CC, Saha M, Blanchard S, Schirrmacher P, Fink P, Verheggen F, Hardege JD. Becoming nose-blind-Climate change impacts on chemical communication. GLOBAL CHANGE BIOLOGY 2022; 28:4495-4505. [PMID: 35574993 PMCID: PMC9321854 DOI: 10.1111/gcb.16209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/20/2022] [Indexed: 05/08/2023]
Abstract
Chemical communication via infochemicals plays a pivotal role in ecological interactions, allowing organisms to sense their environment, locate predators, food, habitats, or mates. A growing number of studies suggest that climate change-associated stressors can modify these chemically mediated interactions, causing info-disruption that scales up to the ecosystem level. However, our understanding of the underlying mechanisms is scarce. Evidenced by a range of examples, we illustrate in this opinion piece that climate change affects different realms in similar patterns, from molecular to ecosystem-wide levels. We assess the importance of different stressors for terrestrial, freshwater, and marine ecosystems and propose a systematic approach to address highlighted knowledge gaps and cross-disciplinary research avenues.
Collapse
Affiliation(s)
| | | | - Solène Blanchard
- Department of Chemical and Behavioural Ecology, Gembloux Agro‐Bio TechUniversité de LiègeGemblouxBelgium
| | | | - Patrick Fink
- Department River EcologyHelmholtz Centre for Environmental Research GmbH – UFZMagdeburgGermany
- Department Aquatic Ecosystem Analysis and ManagementHelmholtz Centre for Environmental Research GmbH – UFZMagdeburgGermany
| | - François Verheggen
- Department of Chemical and Behavioural Ecology, Gembloux Agro‐Bio TechUniversité de LiègeGemblouxBelgium
| | - Jörg D. Hardege
- Department of Biological and Marine SciencesUniversity of HullHullUK
| |
Collapse
|
14
|
Zauner S, Vogel M, Polzin J, Yuen B, Mußmann M, El-Hacen EHM, Petersen JM. Microbial communities in developmental stages of lucinid bivalves. ISME COMMUNICATIONS 2022; 2:56. [PMID: 37938693 PMCID: PMC9723593 DOI: 10.1038/s43705-022-00133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2023]
Abstract
Bivalves from the family Lucinidae host sulfur-oxidizing bacterial symbionts, which are housed inside specialized gill epithelial cells and are assumed to be acquired from the environment. However, little is known about the Lucinidae life cycle and symbiont acquisition in the wild. Some lucinid species broadcast their gametes into the surrounding water column, however, a few have been found to externally brood their offspring by the forming gelatinous egg masses. So far, symbiont transmission has only been investigated in one species that reproduces via broadcast spawning. Here, we show that the lucinid Loripes orbiculatus from the West African coast forms egg masses and these are dominated by diverse members of the Alphaproteobacteria, Clostridia, and Gammaproteobacteria. The microbial communities of the egg masses were distinct from those in the environments surrounding lucinids, indicating that larvae may shape their associated microbiomes. The gill symbiont of the adults was undetectable in the developmental stages, supporting horizontal transmission of the symbiont with environmental symbiont acquisition after hatching from the egg masses. These results demonstrate that L. orbiculatus acquires symbionts from the environment independent of the host's reproductive strategy (brooding or broadcast spawning) and reveal previously unknown associations with microbes during lucinid early development.
Collapse
Affiliation(s)
- Sarah Zauner
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria.
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Margaret Vogel
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julia Polzin
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
| | - Benedict Yuen
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
| | - Marc Mußmann
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
| | - El-Hacen M El-Hacen
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700CC, Groningen, The Netherlands
- Parc National du Banc d'Arguin (PNBA) Chami, B.P. 5355, Wilaya de Dakhlet Nouadhibou, Mauritania
| | - Jillian M Petersen
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
15
|
Lörz A, Oldeland J, Kaiser S. Niche breadth and biodiversity change derived from marine Amphipoda species off Iceland. Ecol Evol 2022; 12:e8802. [PMID: 35414894 PMCID: PMC8986549 DOI: 10.1002/ece3.8802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the ecological requirements and thresholds of individual species is crucial to better predict potential outcomes of climate change on species distribution. In particular, species optima and lower and upper limits along resource gradients require attention. Based on Huisman-Olff-Fresco (HOF) models, we determined species-specific responses along gradients of nine environmental parameters including depth in order to estimate niche attributes of 30 deep-sea benthic amphipods occurring around Iceland. We, furthermore, examined the relationships between niche breadth, occupancy, and geographic range assuming that species with a wider niche are spatially more widely dispersed and vice versa. Overall, our results reveal that species react very differently to environmental gradients, which is independent of the family affiliation of the respective species. We could infer a strong relationship between occupancy and geographic range and also relate this to differences in niche breadth; that is specialist species with a narrow niche had a more limited distribution and may thus be more threatened by changing environmental conditions than generalist species, which are more widespread. Given the preponderance of rare species in the deep sea, this implies that many species could be at risk. However, this must be carefully weighed against geographical data gaps in this area, given that many deep-sea areas are severely undersampled and the true distribution of most species is unknown. After all, our results underline that an accurate taxonomic classification is of crucial importance, without which ecological niche properties cannot be determined and which is hence fundamental for the assessment and understanding of changes in biodiversity in the face of increasing human perturbations.
Collapse
Affiliation(s)
- Anne‐Nina Lörz
- Institute for Marine Ecosystems and Fisheries ScienceCenter for Earth System Research and Sustainability (CEN)Universität HamburgHamburgGermany
| | | | - Stefanie Kaiser
- Department of Invertebrate Zoology and HydrobiologyFaculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
- INES Integrated Environmental Solutions UGWilhelmshavenGermany
| |
Collapse
|
16
|
Structural and Functional Analyses of Motile Fauna Associated with Cystoseira brachycarpa along a Gradient of Ocean Acidification in a CO2-Vent System off Panarea (Aeolian Islands, Italy). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ocean acidification (OA), one of the main climate-change-related stressors linked to increasing CO2 concentration in the atmosphere, is considered an important threat to marine biodiversity and habitats. Studies on CO2-vents systems, naturally acidified environments that mimic future ocean scenarios, help to explore the sensitivity of species and to understand how benthic communities rearrange their structure and functioning under the pressure of OA. We addressed this problem by studying the benthic invertebrates associated with a habitat-forming brown alga (Cystoseira brachycarpa) in the Bottaro crater vents system off Panarea island (Tyrrhenian Sea, Italy), by sampling along an OA gradient from the proximity of the main venting area (station B3, pH 7.9) to a control zone (B1 station, pH 8.1). Samples were collected in September 2016 and 2018. A total of 184 taxa and 23 different functional traits have been identified, considering feeding habit, motility, size, reproductive and developmental biology, and occurrence of calcareous structures. Invertebrates are distributed according to the distance from the high venting zone and low pH levels and results very consistent between the two investigated years. In the low-pH area (B3), 43% of the species are selected. The functional traits of the fauna mirror this zonation pattern, mainly changing the relative proportion of the number of individuals of the various functional guilds along the OA gradient. Invertebrates inhabiting the low-pH zone are mainly composed of weakly or non-calcified species, with small size, burrower/tubicolous habit, omnivorous or suspension feeders, and with direct development and brooding habit. In the other stations, heavily calcified forms, herbivore and herbivore/detritivore, and with medium (1–5 cm) and large (>5 cm) sizes prevail, showing indirect benthic and planktic development. The taxonomic analysis, coupled with functional aspects, increases our prediction of which traits could be potentially more advantageous for species to adapt to the hypothesized scenarios of OA, and identify present and future winner and/or loser organisms in the future ocean of the Anthropocene.
Collapse
|
17
|
Ecological and Biotechnological Relevance of Mediterranean Hydrothermal Vent Systems. MINERALS 2022. [DOI: 10.3390/min12020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Marine hydrothermal systems are a special kind of extreme environments associated with submarine volcanic activity and characterized by harsh chemo-physical conditions, in terms of hot temperature, high concentrations of CO2 and H2S, and low pH. Such conditions strongly impact the living organisms, which have to develop adaptation strategies to survive. Hydrothermal systems have attracted the interest of researchers due to their enormous ecological and biotechnological relevance. From ecological perspective, these acidified habitats are useful natural laboratories to predict the effects of global environmental changes, such as ocean acidification at ecosystem level, through the observation of the marine organism responses to environmental extremes. In addition, hydrothermal vents are known as optimal sources for isolation of thermophilic and hyperthermophilic microbes, with biotechnological potential. This double aspect is the focus of this review, which aims at providing a picture of the ecological features of the main Mediterranean hydrothermal vents. The physiological responses, abundance, and distribution of biotic components are elucidated, by focusing on the necto-benthic fauna and prokaryotic communities recognized to possess pivotal role in the marine ecosystem dynamics and as indicator species. The scientific interest in hydrothermal vents will be also reviewed by pointing out their relevance as source of bioactive molecules.
Collapse
|
18
|
Araújo-Silva CL, Sarmento VC, Santos PJP. Climate change scenarios of increased CO 2 and temperature affect a coral reef peracarid (Crustacea) community. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105518. [PMID: 34763317 DOI: 10.1016/j.marenvres.2021.105518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The effects of applying scenarios of increasing CO2 and temperature, using a mesocosm experiment, on the structure of a macrofaunal coral reef peracarid community were investigated for the first time. Samples were taken from artificial substrate units (ASUs), colonized by macrofauna from the coral reef subtidal zone of Serrambi beach (Brazil). In the laboratory, the ASUs were exposed to a Control (Ctrl) treatment and three climate change Scenarios (Sc) (increase of T° of 0.6, 2, and 3 °C, and pH drop of 0.1, 0.3, and 0.7 units for Sc I, II and III respectively), and were collected after 15 and 29 days of exposure. Our results showed that the effect of different temperature and acidity levels under experimental climate change scenarios significantly impacted density, diversity and community structure. Major differences were observed when applying Sc II and III. Peracarida also showed a reduction in specimen number when comparing both exposure times. Overall, Amphipoda, Tanaidacea and Isopoda communities all displayed a reduction in the number of individuals for both scenarios and exposure time factors, while Cumacea responded negatively in all scenarios, suggesting that these individuals were more sensitive to the experimental conditions. Dissimilarities were greatest between the Ctrl and Sc III, particularly after 29 days. Two species, Elasmopus longipropodus (Amphipoda) and Chondrochelia dubia (Tanaidacea), greatly contributed to these dissimilarities. This study demonstrates that even an intermediate level of increasing ocean temperature and acidification will negatively impact the structure of the Peracarida macrofaunal community on coral reefs. Also demonstrates that different species of Peracarida exhibit divergent response patterns, highlighting the specific responses of these taxa to the impacts of environmental stressors. These outcomes highlight the importance of studying the effects of climate change on benthic peracarids, especially because they incubate their eggs. This characteristic can reduce migration potential and thereby reduces the individual's ability to disperse in response to a changing environment.
Collapse
Affiliation(s)
- Catarina L Araújo-Silva
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Programa de Pós-Graduação em Biologia Animal, Av. Prof. Moraes Rego s/n, Recife, Pernambuco, 50670-420, Brazil.
| | - Visnu C Sarmento
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Programa de Pós-Graduação em Biologia Animal, Av. Prof. Moraes Rego s/n, Recife, Pernambuco, 50670-420, Brazil
| | - Paulo J P Santos
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Programa de Pós-Graduação em Biologia Animal, Av. Prof. Moraes Rego s/n, Recife, Pernambuco, 50670-420, Brazil.
| |
Collapse
|
19
|
Azad T, Alonzo SH, Bonsall MB, Klug H. Life history, mating dynamics and the origin of parental care. J Evol Biol 2021; 35:379-390. [PMID: 34783118 DOI: 10.1111/jeb.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Parental care, mating dynamics and life history co-evolve. Understanding the diversity of reproductive patterns found in nature is a major focus of evolutionary ecology research. Previous research suggests that the origin of parental care of eggs will be favoured when egg and adult death rates and juvenile survival are relatively high. However, the previous research that explored the link between care and life history did not account for among-species variation in mating dynamics. As mating dynamics are generally expected to influence care, we explore, theoretically, the life-history conditions (stage-specific rates of maturation and survival) that favour parental care across three mating scenarios: reproductive rate (1) is unaffected by males (assuming that some males are present), (2) increases as male abundance increases or (3) decreases as male abundance increases. Across scenarios, all forms of care were most strongly favoured when egg and adult death rates, juvenile survival and female egg maturation rates were relatively high. When reproductive rate was unaffected by male abundance or increased as male abundance increased, as we might expect in systems in which females are mate-limited, all forms of care were most strongly favoured when male egg maturation rate (i.e. the rate at which male eggs develop, mature and hatch) was moderate or high. When greater male abundance inhibited reproduction, which might occur in systems with intense male-male competition, all forms of care were most strongly favoured when male egg maturation rate was low-to-moderate. These results suggest that life history affects the evolution of parental care, and sex-specific life history can interact with mating dynamics to influence the origin of care.
Collapse
Affiliation(s)
- Tamjeed Azad
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA.,Department of Computer Science, Columbia University, New York, New York, USA
| | - Suzanne H Alonzo
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, California, USA.,Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, UK.,St. Peter's College, University of Oxford, Oxford, UK
| | - Hope Klug
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA.,SimCenter, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| |
Collapse
|
20
|
Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proc Natl Acad Sci U S A 2021; 118:2103275118. [PMID: 34544862 PMCID: PMC8488634 DOI: 10.1073/pnas.2103275118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Ocean-warming and acidification are predicted to reduce coral reef biodiversity, but the combined effects of these stressors on overall biodiversity are largely unmeasured. Here, we examined the individual and combined effects of elevated temperature (+2 °C) and reduced pH (-0.2 units) on the biodiversity of coral reef communities that developed on standardized sampling units over a 2-y mesocosm experiment. Biodiversity and species composition were measured using amplicon sequencing libraries targeting the cytochrome oxidase I (COI) barcoding gene. Ocean-warming significantly increased species richness relative to present-day control conditions, whereas acidification significantly reduced richness. Contrary to expectations, species richness in the combined future ocean treatment with both warming and acidification was not significantly different from the present-day control treatment. Rather than the predicted collapse of biodiversity under the dual stressors, we find significant changes in the relative abundance but not in the occurrence of species, resulting in a shuffling of coral reef community structure among the highly species-rich cryptobenthic community. The ultimate outcome of altered community structure for coral reef ecosystems will depend on species-specific ecological functions and community interactions. Given that most species on coral reefs are members of the understudied cryptobenthos, holistic research on reef communities is needed to accurately predict diversity-function relationships and ecosystem responses to future climate conditions.
Collapse
|
21
|
Özpolat BD, Randel N, Williams EA, Bezares-Calderón LA, Andreatta G, Balavoine G, Bertucci PY, Ferrier DEK, Gambi MC, Gazave E, Handberg-Thorsager M, Hardege J, Hird C, Hsieh YW, Hui J, Mutemi KN, Schneider SQ, Simakov O, Vergara HM, Vervoort M, Jékely G, Tessmar-Raible K, Raible F, Arendt D. The Nereid on the rise: Platynereis as a model system. EvoDevo 2021; 12:10. [PMID: 34579780 PMCID: PMC8477482 DOI: 10.1186/s13227-021-00180-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.
Collapse
Affiliation(s)
- B. Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Nadine Randel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Elizabeth A. Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Guillaume Balavoine
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Paola Y. Bertucci
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David E. K. Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| | | | - Eve Gazave
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Mette Handberg-Thorsager
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jörg Hardege
- Department of Biological & Marine Sciences, Hull University, Cottingham Road, Hull, HU67RX UK
| | - Cameron Hird
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Yu-Wen Hsieh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Nzumbi Mutemi
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Q. Schneider
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 11529 Taiwan
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Hernando M. Vergara
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, Howland Street 25, London, W1T 4JG UK
| | - Michel Vervoort
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | | | - Florian Raible
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Mazzei R, Rubenstein DR. Larval ecology, dispersal, and the evolution of sociality in the sea. Ethology 2021. [DOI: 10.1111/eth.13195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Renata Mazzei
- Department of Ecology, Evolution and Environmental Biology Columbia University New York NY USA
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology Columbia University New York NY USA
| |
Collapse
|
23
|
Lörz AN, Kaiser S, Oldeland J, Stolter C, Kürzel K, Brix S. Biogeography, diversity and environmental relationships of shelf and deep-sea benthic Amphipoda around Iceland. PeerJ 2021; 9:e11898. [PMID: 34447625 PMCID: PMC8364320 DOI: 10.7717/peerj.11898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
The waters around Iceland, bounding the Northern North Atlantic and the Nordic seas, are a region characterized by complex hydrography and seabed topography. This and the presence of the Greenland-Iceland-Faroe-Scotland ridge (GIFR) are likely to have a major impact on the diversity and distribution of the benthic fauna there. Biodiversity in this region is also under increasing threat from climate-induced changes, ocean warming and acidification in particular, affecting the marine realm. The aim of the present study was to investigate the biodiversity and distributional patterns of amphipod crustaceans in Icelandic waters and how it relates to environmental variables and depth. A comprehensive data set from the literature and recent expeditions was compiled constituting distributional records for 355 amphipod species across a major depth gradient (18–3,700 m). Using a 1° hexagonal grid to map amphipod distributions and a set of environmental factors (depth, pH, phytobiomass, velocity, dissolved oxygen, dissolved iron, salinity and temperature) we could identify four distinct amphipod assemblages: A Deep-North, Deep-South, and a Coastal cluster as well as one restricted to the GIFR. In addition to depth, salinity and temperature were the main parameters that determined the distribution of amphipods. Diversity differed greatly between the depth clusters and was significantly higher in coastal and GIFR assemblages compared to the deep-sea clusters north and south of the GIFR. A variety of factors and processes are likely to be responsible for the perceived biodiversity patterns, which, however, appear to vary according to region and depth. Low diversity of amphipod communities in the Nordic basins can be interpreted as a reflection of the prevailing harsh environmental conditions in combination with a barrier effect of the GIFR. By contrast, low diversity of the deep North Atlantic assemblages might be linked to the variable nature of the oceanographic environment in the region over multiple spatio-temporal scales. Overall, our study highlights the importance of amphipods as a constituent part of Icelandic benthos. The strong responses of amphipod communities to certain water mass variables raise the question of whether and how their distribution will change due to climate alteration, which should be a focus of future studies.
Collapse
Affiliation(s)
- Anne-Nina Lörz
- Institute for Marine Ecosystems and Fisheries Science, Universität Hamburg, Hamburg, Germany
| | - Stefanie Kaiser
- Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Lodz, Poland
| | | | - Caroline Stolter
- Department Biology, Zoological Institute, Universität Hamburg, Hamburg, Germany
| | | | - Saskia Brix
- Deutsches Zentrum für Marine Biodiversität, Senckenberg Nature Research Society, Hamburg, Germany
| |
Collapse
|
24
|
Moss JB, Moore AJ. Constrained flexibility of parental cooperation limits adaptive responses to harsh conditions. Evolution 2021; 75:1835-1849. [PMID: 34153114 PMCID: PMC8362138 DOI: 10.1111/evo.14285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Parental care is predicted to evolve to mitigate harsh environments, thus adaptive plasticity of care may be an important response to our climate crisis. In biparental species, fitness costs may be reduced by resolving conflict and enhancing cooperation among partners. We investigated this prediction with the burying beetle, Nicrophorus orbicollis, by exposing them to contrasting benign and harsh thermal environments. Despite measurable fitness costs under the harsh environment, sexual conflict persisted in the form of sex-specific social plasticity. That is, females provided equivalent care with or without males, whereas males with partners deserted earlier and reduced provisioning effort. The interaction of social condition and thermal environment did not explain variation in individual behavior, failing to support a temperature-mediated shift from conflict to cooperation. Examining selection gradients and splines on cumulative care revealed a likely explanation for these patterns. Contrary to predictions, increased care did not enhance offspring performance under stress. Rather, different components of care were under different selection regimes, with optimization constrained due to lack of coordination between parents. We suggest that the potential for parenting to ameliorate the effects of our climate crisis may depend on the sex-specific evolutionary drivers of parental care, and that this may be best reflected in components of care.
Collapse
Affiliation(s)
- Jeanette B Moss
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, USA.,Current Address: Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801, USA
| | - Allen J Moore
- Department of Entomology, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
25
|
Lawlor JA, Arellano SM. Temperature and salinity, not acidification, predict near-future larval growth and larval habitat suitability of Olympia oysters in the Salish Sea. Sci Rep 2020; 10:13787. [PMID: 32796854 PMCID: PMC7429507 DOI: 10.1038/s41598-020-69568-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/14/2020] [Indexed: 11/26/2022] Open
Abstract
Most invertebrates in the ocean begin their lives with planktonic larval phases that are critical for dispersal and distribution of these species. Larvae are particularly vulnerable to environmental change, so understanding interactive effects of environmental stressors on larval life is essential in predicting population persistence and vulnerability of species. Here, we use a novel experimental approach to rear larvae under interacting gradients of temperature, salinity, and ocean acidification, then model growth rate and duration of Olympia oyster larvae and predict the suitability of habitats for larval survival. We find that temperature and salinity are closely linked to larval growth and larval habitat suitability, but larvae are tolerant to acidification at this scale. We discover that present conditions in the Salish Sea are actually suboptimal for Olympia oyster larvae from populations in the region, and that larvae from these populations might actually benefit from some degree of global ocean change. Our models predict a vast decrease in mean pelagic larval duration by the year 2095, which has the potential to alter population dynamics for this species in future oceans. Additionally, we find that larval tolerance can explain large-scale biogeographic patterns for this species across its range.
Collapse
Affiliation(s)
- Jake A Lawlor
- Department of Biology, Shannon Point Marine Center, Western Washington University, Anacortes, WA, USA.
| | - Shawn M Arellano
- Department of Biology, Shannon Point Marine Center, Western Washington University, Anacortes, WA, USA
| |
Collapse
|
26
|
Spermcast mating with release of zygotes in the small dioecious bivalve Digitaria digitaria. Sci Rep 2020; 10:12605. [PMID: 32724126 PMCID: PMC7387346 DOI: 10.1038/s41598-020-69457-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
Digitaria digitaria, a small astartid usually less than 10 mm in length, has a non-brooding behaviour in spite of its limited space for gonad development. This species lives in highly unstable environments with strong currents, which represent a challenge for fertilization and larval settlement. The studied population of D. digitaria from the Strait of Gibraltar area was dioecious, with significant predominance of females and sexual dimorphism, where females are larger than males. The reproductive cycle is asynchronous throughout the year, without a resting period, but with successive partial spawning events. The presence of stored sperm in the suprabranchial chamber and inside the gonad of some females, together with the release of eggs along the dorsal axis of both gills, points to internal oocyte fertilization. Bacteriocytes were found in the female and male follicle walls, but no bacteria were observed inside any of the gametes. Digitaria digitaria could represent a “missing link” between spermcast mating bivalves with brooded offspring and bivalves with broadcast release of eggs and sperm. The small size, limiting the oocyte production, together with the unstable environment could represent evolutionary pressures towards sperm uptake in D. digitaria.
Collapse
|
27
|
Byrne M, Foo SA, Ross PM, Putnam HM. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. GLOBAL CHANGE BIOLOGY 2020; 26:80-102. [PMID: 31670444 DOI: 10.1111/gcb.14882] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 05/18/2023]
Abstract
Although cross generation (CGP) and multigenerational (MGP) plasticity have been identified as mechanisms of acclimation to global change, the weight of evidence indicates that parental conditioning over generations is not a panacea to rescue stress sensitivity in offspring. For many species, there were no benefits of parental conditioning. Even when improved performance was observed, this waned over time within a generation or across generations and fitness declined. CGP and MGP studies identified resilient species with stress tolerant genotypes in wild populations and selected family lines. Several bivalves possess favourable stress tolerance and phenotypically plastic traits potentially associated with genetic adaptation to life in habitats where they routinely experience temperature and/or acidification stress. These traits will be important to help 'climate proof' shellfish ventures. Species that are naturally stress tolerant and those that naturally experience a broad range of environmental conditions are good candidates to provide insights into the physiological and molecular mechanisms involved in CGP and MGP. It is challenging to conduct ecologically relevant global change experiments over the long times commensurate with the pace of changing climate. As a result, many studies present stressors in a shock-type exposure at rates much faster than projected scenarios. With more gradual stressor introduction over longer experimental durations and in context with conditions species are currently acclimatized and/or adapted to, the outcomes for sensitive species might differ. We highlight the importance to understand primordial germ cell development and the timing of gametogenesis with respect to stressor exposure. Although multigenerational exposure to global change stressors currently appears limited as a universal tool to rescue species in the face of changing climate, natural proxies of future conditions (upwelling zones, CO2 vents, naturally warm habitats) show that phenotypic adjustment and/or beneficial genetic selection is possible for some species, indicating complex plasticity-adaptation interactions.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Shawna A Foo
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
28
|
Kara J, Santos CSG, Macdonald AHH, Simon CA. Resolving the taxonomic identities and genetic structure of two cryptic Platynereis Kinberg species from South Africa. INVERTEBR SYST 2020. [DOI: 10.1071/is19072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The perceived cosmopolitanism of polychaete worms could be an artefact of historical factors such as poor original species descriptions, lack of type material and the European taxonomic bias, to name a few. Thus, it is possible that several cosmopolitan species hide complexes of cryptic and pseudocryptic species. Two putative cosmopolitan species, Platynereis dumerilii and Platynereis australis, collected in South Africa were investigated here (1) to determine whether the South African taxa are conspecific with the morphologically identical taxa from France and New Zealand (the respective type localities of P. dumerilii and P. australis), (2) to compare the South African species morphometrically to determine whether their morphological characters are reliable enough to separate them, and (3) to investigate whether these species have geographically structured populations along the coast of South Africa. Molecular data (COI and ITS1) confirm that P. dumerilii and P. australis do not occur in South Africa. Instead, the South African taxon formerly thought to be Platynereis dumerilii is new and is described here as Platynereis entshonae, sp. nov.; the identity of the other South African species is currently unresolved and is treated here as Platynereis sp. Surprisingly, Platynereis massiliensis (type locality: Marseilles) nested within the South African Platynereissp. clade but, since it is part of a cryptic species complex in the Mediterranean, the name is considered doubtful. Morphological characters traditionally used to define these South African Platynereis species are not reliable as predefined morphological groupings do not match phylogenetic clades and principal component scores revealed no separation in morphological characters that could distinguish between them. Haplotype networks and phylogenetic trees revealed that P. entshonae, sp. nov. and Platynereis sp. have geographically structured populations along the South African coast. http://zoobank.org/urn:lsid:zoobank.org:pub:6E36A210-9E48-430F-8A93-EDC27F0C5631
Collapse
|
29
|
Seguel V, Guzmán F, Bascur M, Riera R, Urzúa Á. Temporal variation in larval biochemical condition at hatching of the red squat lobster Pleuroncodes monodon(Decapoda: Munididae) from Humboldt Current System. INVERTEBR REPROD DEV 2019. [DOI: 10.1080/07924259.2019.1647471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Victoria Seguel
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Fabián Guzmán
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Miguel Bascur
- Programa de Magíster en Ecología Marina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Rodrigo Riera
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ángel Urzúa
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
30
|
Del Pasqua M, Gambi MC, Caricato R, Lionetto MG, Giangrande A. Effects of short-term and long-term exposure to ocean acidification on carbonic anhydrase activity and morphometric characteristics in the invasive polychaete Branchiomma boholense (Annelida: Sabellidae): A case-study from a CO 2 vent system. MARINE ENVIRONMENTAL RESEARCH 2019; 144:203-212. [PMID: 30709638 DOI: 10.1016/j.marenvres.2019.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to test the effects of short- and long-term exposure to high pCO2 on the invasive polychaete Branchiomma boholense (Grube, 1878), (Sabellidae), through the implementation of a transplant experiment at the CO2 vents of the Castello Aragonese at the island of Ischia (Italy). Analysis of carbonic anhydrase (CA) activity, protein tissue content and morphometric characteristics were performed on transplanted individuals (short-term exposure) as well as on specimens resident to both normal and low pH/high pCO2 environments (long-term exposure). Results obtained on transplanted worms showed no significant differences in CA activity between individuals exposed to control and acidified conditions, while a decrease in weight was observed under short-term acclimatization to both control and low pH, although at low pH the decrease was more pronounced (∼20%). As regard individuals living under chronic exposure to high pCO2, the morphometric results revealed a significantly lower (70%) wet weight of specimens from the vents with respect to animals living in high pH/low pCO2 areas. Moreover, individuals living in the Castello vents showed doubled values of enzymatic activity and a significantly higher (50%) protein tissue content compared to specimens native from normal pH/low pCO2. The results of this study demonstrated that B. boholense is inclined to maintain a great homeostatic capacity when exposed to low pH, although likely at the energetic expense of other physiological processes such as growth, especially under chronic exposure to high pCO2.
Collapse
Affiliation(s)
- Michela Del Pasqua
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, 73100, Lecce, Italy.
| | - Maria Cristina Gambi
- Stazione Zoologica Anton Dohrn di Napoli, Department of Integrative Marine Ecology, Villa Dohrn- Benthic Ecology Center, Punta S. Pietro, 80077, Ischia (Napoli), Italy
| | - Roberto Caricato
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, 73100, Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, 73100, Lecce, Italy
| | - Adriana Giangrande
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, 73100, Lecce, Italy; Stazione Zoologica Anton Dohrn di Napoli, Department of Integrative Marine Ecology, Villa Dohrn- Benthic Ecology Center, Punta S. Pietro, 80077, Ischia (Napoli), Italy
| |
Collapse
|
31
|
Calosi P, Putnam HM, Twitchett RJ, Vermandele F. Marine Metazoan Modern Mass Extinction: Improving Predictions by Integrating Fossil, Modern, and Physiological Data. ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:369-390. [PMID: 30216738 DOI: 10.1146/annurev-marine-010318-095106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Evolution, extinction, and dispersion are fundamental processes affecting marine biodiversity. Until recently, studies of extant marine systems focused mainly on evolution and dispersion, with extinction receiving less attention. Past extinction events have, however, helped shape the evolutionary history of marine ecosystems, with ecological and evolutionary legacies still evident in modern seas. Current anthropogenic global changes increase extinction risk and pose a significant threat to marine ecosystems, which are critical for human use and sustenance. The evaluation of these threats and the likely responses of marine ecosystems requires a better understanding of evolutionary processes that affect marine ecosystems under global change. Here, we discuss how knowledge of ( a) changes in biodiversity of ancient marine ecosystems to past extinctions events, ( b) the patterns of sensitivity and biodiversity loss in modern marine taxa, and ( c) the physiological mechanisms underpinning species' sensitivity to global change can be exploited and integrated to advance our critical thinking in this area.
Collapse
Affiliation(s)
- Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec G5L 3A1, Canada; ,
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA;
| | - Richard J Twitchett
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom;
| | - Fanny Vermandele
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec G5L 3A1, Canada; ,
| |
Collapse
|
32
|
Díaz-Castañeda V, Cox TE, Gazeau F, Fitzer S, Delille J, Alliouane S, Gattuso JP. Ocean acidification affects calcareous tube growth in adult stage and reared offspring of serpulid polychaetes. J Exp Biol 2019; 222:jeb.196543. [DOI: 10.1242/jeb.196543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
The energetically costly transition from free-swimming larvae to benthic life stage and maintenance of a calcareous structure can make calcifying marine invertebrates vulnerable to ocean acidification. The first goal of this study was to evaluate the impacts of ocean acidification on calcified tube growth for two Serpulidae polychaete worms. Spirorbis sp. and Spirobranchus triqueter were collected at 11 m depth from the Northwest Mediterranean Sea and maintained for 30 and 90 d, at three mean pHT levels (total scale) of 8.1 (ambient), 7.7, and 7.4. Moderately decreased tube elongation rates were observed in both species at a pHT of 7.7 while severe reductions occurred at pHT 7.4. There was visual evidence of dissolution and tubes were more fragile at lower pH but, fragility was not attributed to changes in fracture toughness. Instead, it appeared to be due to the presence of larger alveoli covered in a thinner calcareous layer. The second objective of the study was to test for effects in offspring development of the species S. triqueter. Spawning was induced, and offspring were reared in the same pH conditions the parents experienced. Trochophore size was reduced at the lowest pH level but settlement success was similar across pH conditions. Post-settlement tube growth was most affected. At 38 d post-settlement, juvenile tubes at pHT of 7.7 and 7.4 were half the size of those at pHT 8.1. Results suggest future carbonate chemistry will negatively affect initiation and persistence of both biofouling and epiphytic polychaete tube worms.
Collapse
Affiliation(s)
- V. Díaz-Castañeda
- Centro de Investigación Científica y Educación Superior de Ensenada, Departmento de Ecología Marina. Carret. Tij. - Ensenada 3918, C.P. 22860 Ensenada, Baja California, México
| | - T. E. Cox
- University of New Orleans, Department of Biological Sciences 2000 Lakeshore Drive New Orleans, LA, 70148 USA
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
| | - F. Gazeau
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
| | - S. Fitzer
- Institute of Aquaculture, University of Stirling, FK9 4LA, Scotland, UK
| | - J. Delille
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
| | - S. Alliouane
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
| | - J.-P. Gattuso
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-mer, France
- Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
| |
Collapse
|
33
|
González-Delgado S, Hernández JC. The Importance of Natural Acidified Systems in the Study of Ocean Acidification: What Have We Learned? ADVANCES IN MARINE BIOLOGY 2018; 80:57-99. [PMID: 30368306 DOI: 10.1016/bs.amb.2018.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human activity is generating an excess of atmospheric CO2, resulting in what we know as ocean acidification, which produces changes in marine ecosystems. Until recently, most of the research in this area had been done under small-scale, laboratory conditions, using few variables, few species and few life cycle stages. These limitations raise questions about the reproducibility of the environment and about the importance of indirect effects and synergies in the final results of these experiments. One way to address these experimental problems is by conducting studies in situ, in natural areas where expected future pH conditions already occur, such as CO2 vent systems. In the present work, we compile and discuss the latest research carried out in these natural laboratories, with the objective to summarize their advantages and disadvantages for research to improve these investigations so they can better help us understand how the oceans of the future will change.
Collapse
Affiliation(s)
- Sara González-Delgado
- Marine Community Ecology and Climate Change, Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias (Biología), Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - José Carlos Hernández
- Marine Community Ecology and Climate Change, Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias (Biología), Universidad de La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
34
|
Rodriguez-Dominguez A, Connell SD, Baziret C, Nagelkerken I. Irreversible behavioural impairment of fish starts early: Embryonic exposure to ocean acidification. MARINE POLLUTION BULLETIN 2018; 133:562-567. [PMID: 30041350 DOI: 10.1016/j.marpolbul.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Long-term species responses to ocean acidification depend on their sensitivity during different life stages. We tested for sensitivity of juvenile fish behaviour to ocean acidification by exposing eggs to control and elevated CO2 levels, and translocating offspring between treatments in a reciprocal design. After 12 weeks of exposure, activity, inactivity and anxiety levels of juveniles from control eggs were similar, whether juveniles had experienced elevated CO2 conditions or not, and this pattern was consistent over time. However, juveniles raised as eggs under elevated CO2 showed increased anxiety levels compared to those from control eggs. This response was not reversed when CO2-exposed juveniles were translocated to control conditions. Our findings highlight the value of evaluating fish sensitivities to global change pollutants across different life stages, and indicate that sensitivity during the often-overlooked egg stage can be critical with long-lasting impairment of behaviours that are coupled to individual fitness and population persistence.
Collapse
Affiliation(s)
- Almendra Rodriguez-Dominguez
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Clement Baziret
- Aix Marseille Université/Mediterranean Institute of Oceanography (MIO) UM 110 13288, Marseille, France
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
35
|
Del Pasqua M, Schulze A, Tovar-Hernández MA, Keppel E, Lezzi M, Gambi MC, Giangrande A. Clarifying the taxonomic status of the alien species Branchiomma bairdi and Branchiomma boholense (Annelida: Sabellidae) using molecular and morphological evidence. PLoS One 2018; 13:e0197104. [PMID: 29746553 PMCID: PMC5945006 DOI: 10.1371/journal.pone.0197104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
This study was performed to analyse the genetic and morphological diversity of the sabellid annelid genus Branchiomma, with special emphasis on a taxon so far identified as Branchiomma bairdi. This species, originally described from Bermuda, has frequently been reported as an invader in the Mediterranean, the Atlantic and the Eastern Pacific, but recent observations have raised some taxonomic questions. Samples of this taxon were collected from five sites in the Mediterranean Sea, two sites in the original distribution area of B. bairdi in the Gulf of Mexico and four localities in the east Pacific and Atlantic Oceans where B. bairdi has been reported as invasive. The molecular results revealed a conspicuous genetic divergence (18.5% K2P) between the sampled Mediterranean populations and all the other ones that led to a re-evaluation of their morphological characters. The latter showed that the Mediterranean and extra-Mediterranean populations also differ in some discrete morphological and reproductive features. Consequently, the Mediterranean samples were re-designated as B. boholense, another non-indigenous species originally described from Philippines. Branchiomma bairdi and B. boholense differ in body size, development and shape of micro and macrostylodes, size of radiolar eyes and body pigmentation. Genetic diversity was high in B. boholense from the Mediterranean as well as in B. bairdi from the Gulf of Mexico, but low in B. bairdi populations outside their native range. The phylogenetic analysis revealed the presence of connections between the Mediterranean localities as well as between native and introduced B. bairdi populations that focus the attention on the Panama Canal as important passage for the introduction of the species from the Gulf of Mexico to the north-east Pacific Ocean.
Collapse
Affiliation(s)
- Michela Del Pasqua
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, Lecce, Italy
- * E-mail:
| | - Anja Schulze
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - María Ana Tovar-Hernández
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Biosistemática, San Nicolás de los Garza, Nuevo León, México
| | - Erica Keppel
- Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | - Marco Lezzi
- ARPAT, Environmental Protection Agency of Tuscany, A.V. Costa - Laboratory Sector - U.O. Biologia, Pisa, Italy
| | - Maria Cristina Gambi
- Stazione Zoologica Anton Dohrn di Napoli, Department of Integrative Marine Ecology, Villa Dohrn- Benthic Ecology Center, Punta S. Pietro, Ischia (Napoli), Italy
| | - Adriana Giangrande
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, CoNISMa Unit, Lecce, Italy
- Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale, Naples, Italy
| |
Collapse
|
36
|
Arnberg M, Moodley L, Dunaevskaya E, Ramanand S, Ingvarsdóttir A, Nilsen M, Ravagnan E, Westerlund S, Sanni S, Tarling GA, Bechmann RK. Effects of chronic crude oil exposure on early developmental stages of the Northern krill (Meganyctiphanes norvegica). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:916-931. [PMID: 28849995 DOI: 10.1080/15287394.2017.1352204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rising oil and gas activities in northern high latitudes have led to an increased risk of petroleum pollution in these ecosystems. Further, seasonal high UV radiation at high latitudes may elevate photo-enhanced toxicity of petroleum pollution to marine organisms. Zooplanktons are a key ecological component of northern ecosystems; therefore, it is important to assess their sensitivity to potential pollutants of oil and gas activity. As ontogenetic development may be particularly sensitive, the aim of this study was to examine the impact of chronic exposure to oil water dispersion (OWD) on development and feeding of early life stages of the Northern krill, Meganyctiphanes norvegica. In a range of experiments, embryonic, nonfeeding, and feeding larval stages were exposed to concentrations of between 0.01 and 0.1 mg/L of oil or photo-modified oil for 19 and 21 d. No significant effects on egg respiration, hatching success, development, length and larval survival were observed from these treatments. Similarly, evolution of fatty acid composition patterns during ontogenetic development was unaffected. The results indicates a high degree of resilience of these early developmental stages to such types and concentrations of pollutants. However, feeding and motility in later calyptopis-stage larvae were significantly impaired at exposure of 0.1 mg/L oil. Data indicate that feeding larval stage of krill was more sensitive to OWD than early nonfeeding life stages. This might be attributed to the narcotic effects of oil pollutants, their direct ingestion, or accumulated adverse effects over early development.
Collapse
Affiliation(s)
- Maj Arnberg
- a IRIS-International Research Institute of Stavanger , Randaberg , Norway
| | - Leon Moodley
- a IRIS-International Research Institute of Stavanger , Randaberg , Norway
| | | | - Sreerekha Ramanand
- a IRIS-International Research Institute of Stavanger , Randaberg , Norway
| | - Anna Ingvarsdóttir
- a IRIS-International Research Institute of Stavanger , Randaberg , Norway
| | - Marianne Nilsen
- b Western Norway University of Applied Sciences (HVL) , Sogndal , Norway
| | - Elisa Ravagnan
- a IRIS-International Research Institute of Stavanger , Randaberg , Norway
| | - Stig Westerlund
- a IRIS-International Research Institute of Stavanger , Randaberg , Norway
| | - Steinar Sanni
- a IRIS-International Research Institute of Stavanger , Randaberg , Norway
- c University of Stavanger , Faculty of Science and Technology , Stavanger , Norway
| | - Geraint A Tarling
- d British Antarctic Survey, Natural Environment Research Council , Cambridge , UK
| | - Renée K Bechmann
- a IRIS-International Research Institute of Stavanger , Randaberg , Norway
| |
Collapse
|
37
|
Overwintering individuals of the Arctic krill Thysanoessa inermis appear tolerant to short-term exposure to low pH conditions. Polar Biol 2017. [DOI: 10.1007/s00300-017-2194-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Vizzini S, Martínez-Crego B, Andolina C, Massa-Gallucci A, Connell SD, Gambi MC. Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers. Sci Rep 2017. [PMID: 28642608 PMCID: PMC5481442 DOI: 10.1038/s41598-017-03802-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Increasing oceanic uptake of CO2 is predicted to drive ecological change as both a resource (i.e. CO2 enrichment on primary producers) and stressor (i.e. lower pH on consumers). We use the natural ecological complexity of a CO2 vent (i.e. a seagrass system) to assess the potential validity of conceptual models developed from laboratory and mesocosm research. Our observations suggest that the stressor-effect of CO2 enrichment combined with its resource-effect drives simplified food web structure of lower trophic diversity and shorter length. The transfer of CO2 enrichment from plants to herbivores through consumption (apparent resource-effect) was not compensated by predation, because carnivores failed to contain herbivore outbreaks. Instead, these higher-order consumers collapsed (apparent stressor-effect on carnivores) suggesting limited trophic propagation to predator populations. The dominance of primary producers and their lower-order consumers along with the loss of carnivores reflects the duality of intensifying ocean acidification acting both as resource-effect (i.e. bottom-up control) and stressor-effect (i.e. top-down control) to simplify community and trophic structure and function. This shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides new insights into how the trophic dynamics might stabilize against or propagate future environmental change.
Collapse
Affiliation(s)
- S Vizzini
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy. .,CoNISMa, Roma, Italy.
| | | | - C Andolina
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy.,Department of Environmental Sciences, Informatics and Statistics, DAIS, University Ca' Foscari, Venice, Italy
| | - A Massa-Gallucci
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn Benthic Ecology Center (Ischia), Naples, Italy
| | - S D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, South Australia, Australia
| | - M C Gambi
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn Benthic Ecology Center (Ischia), Naples, Italy
| |
Collapse
|
39
|
Calosi P, De Wit P, Thor P, Dupont S. Will life find a way? Evolution of marine species under global change. Evol Appl 2016; 9:1035-1042. [PMID: 27695513 PMCID: PMC5039318 DOI: 10.1111/eva.12418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/22/2022] Open
Abstract
Projections of marine biodiversity and implementation of effective actions for its maintenance in the face of current rapid global environmental change are constrained by our limited understanding of species’ adaptive responses, including transgenerational plasticity, epigenetics and natural selection. This special issue presents 13 novel studies, which employ experimental and modelling approaches to (i) investigate plastic and evolutionary responses of marine species to major global change drivers; (ii) ask relevant broad eco‐evolutionary questions, implementing multiple species and populations studies; (iii) show the advantages of using advanced experimental designs and tools; (iv) construct novel model organisms for marine evolution; (v) help identifying future challenges for the field; and (vi) highlight the importance of incorporating existing evolutionary theory into management solutions for the marine realm. What emerges is that at least some populations of marine species have the ability to adapt to future global change conditions. However, marine organisms’ capacity for adaptation appears finite, due to evolutionary trade‐offs and possible rapid losses in genetic diversity. This further corroborates the idea that acquiring an evolutionary perspective on how marine life will respond to the selective pressure of future global changes will guide us in better identifying which conservation efforts will be most needed and most effective.
Collapse
Affiliation(s)
- Piero Calosi
- Département de Biologie Chimie et Géographie Universitè du Québec à Rimouski Rimouski QC Canada
| | - Pierre De Wit
- Department of Marine Sciences University of Gothenburg Strömstad Sweden
| | - Peter Thor
- Norwegian Polar Institute Fram Centre Tromsø Norway
| | - Sam Dupont
- Department of Biological and Environmental Sciences University of Gothenburg Fiskebäckskil Sweden
| |
Collapse
|
40
|
Turner LM, Ricevuto E, Massa Gallucci A, Lorenti M, Gambi MC, Calosi P. Metabolic responses to high pCO 2 conditions at a CO 2 vent site in juveniles of a marine isopod species assemblage. MARINE BIOLOGY 2016; 163:211. [PMID: 27729710 PMCID: PMC5030223 DOI: 10.1007/s00227-016-2984-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
We are starting to understand the relationship between metabolic rate responses and species' ability to respond to exposure to high pCO2. However, most of our knowledge has come from investigations of single species. The examination of metabolic responses of closely related species with differing distributions around natural elevated CO2 areas may be useful to inform our understanding of their adaptive significance. Furthermore, little is known about the physiological responses of marine invertebrate juveniles to high pCO2, despite the fact they are known to be sensitive to other stressors, often acting as bottlenecks for future species success. We conducted an in situ transplant experiment using juveniles of isopods found living inside and around a high pCO2 vent (Ischia, Italy): the CO2 'tolerant' Dynamene bifida and 'sensitive' Cymodoce truncata and Dynamene torelliae. This allowed us to test for any generality of the hypothesis that pCO2 sensitive marine invertebrates may be those that experience trade-offs between energy metabolism and cellular homoeostasis under high pCO2 conditions. Both sensitive species were able to maintain their energy metabolism under high pCO2 conditions, but in C. truncata this may occur at the expense of [carbonic anhydrase], confirming our hypothesis. By comparison, the tolerant D. bifida appeared metabolically well adapted to high pCO2, being able to upregulate ATP production without recourse to anaerobiosis. These isopods are important keystone species; however, given they differ in their metabolic responses to future pCO2, shifts in the structure of the marine ecosystems they inhabit may be expected under future ocean acidification conditions.
Collapse
Affiliation(s)
- Lucy M. Turner
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, Plymouth, PL4 8AA UK
- Department of Marine Sciences, University of Gothenburg, Box 460, 405 30 Göteborg, Sweden
| | - Elena Ricevuto
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn - Benthic Ecology Centre, 80121 Ischia, Naples Italy
| | - Alexia Massa Gallucci
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn - Benthic Ecology Centre, 80121 Ischia, Naples Italy
| | - Maurizio Lorenti
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn - Benthic Ecology Centre, 80121 Ischia, Naples Italy
| | - Maria-Cristina Gambi
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Dohrn - Benthic Ecology Centre, 80121 Ischia, Naples Italy
| | - Piero Calosi
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, Plymouth, PL4 8AA UK
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1 Canada
| |
Collapse
|
41
|
Lucey NM, Lombardi C, Florio M, DeMarchi L, Nannini M, Rundle S, Gambi MC, Calosi P. An in situ assessment of local adaptation in a calcifying polychaete from a shallow CO 2 vent system. Evol Appl 2016; 9:1054-1071. [PMID: 27695515 PMCID: PMC5039320 DOI: 10.1111/eva.12400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/23/2016] [Indexed: 01/03/2023] Open
Abstract
Ocean acidification (OA) is likely to exert selective pressure on natural populations. Our ability to predict which marine species will adapt to OA and what underlies this adaptive potential is of high conservation and resource management priority. Using a naturally low‐pH vent site in the Mediterranean Sea (Castello Aragonese, Ischia) mirroring projected future OA conditions, we carried out a reciprocal transplant experiment to investigate the relative importance of phenotypic plasticity and local adaptation in two populations of the sessile, calcifying polychaete Simplaria sp. (Annelida, Serpulidae, Spirorbinae): one residing in low pH and the other from a nearby ambient (i.e. high) pH site. We measured a suite of fitness‐related traits (i.e. survival, reproductive output, maturation, population growth) and tube growth rates in laboratory‐bred F2 generation individuals from both populations reciprocally transplanted back into both ambient and low‐pH in situ habitats. Both populations showed lower expression in all traits, but increased tube growth rates, when exposed to low‐pH compared with high‐pH conditions, regardless of their site of origin suggesting that local adaptation to low‐pH conditions has not occurred. We also found comparable levels of plasticity in the two populations investigated, suggesting no influence of long‐term exposure to low pH on the ability of populations to adjust their phenotype. Despite high variation in trait values among sites and the relatively extreme conditions at the low pH site (pH < 7.36), response trends were consistent across traits. Hence, our data suggest that, for Simplaria and possibly other calcifiers, neither local adaptations nor sufficient phenotypic plasticity levels appear to suffice in order to compensate for the negative impacts of OA on long‐term survival. Our work also emphasizes the utility of field experiments in natural environments subjected to high level of pCO2 for elucidating the potential for adaptation to future scenarios of OA.
Collapse
Affiliation(s)
- Noelle M Lucey
- Department of Earth and Environmental Sciences University of Pavia PaviaItaly; Marine Environment Research Centre ENEALa SpeziaItaly; Marine Biology and Ecology Research Centre Plymouth University Plymouth UK
| | | | - Maurizio Florio
- Department of Earth and Environmental Sciences University of Pavia Pavia Italy; Marine Environment Research Centre ENEALa Spezia Italy
| | - Lucia DeMarchi
- CNR-ISMARLa Spezia Italy; Department of Biology University of Aveiro Aveiro Portugal
| | - Matteo Nannini
- Marine Environment Research Centre ENEALa SpeziaItaly; Department of Biology University of Pisa Pisa Italy
| | - Simon Rundle
- Marine Biology and Ecology Research Centre Plymouth University Plymouth UK
| | - Maria Cristina Gambi
- Department Integrative Marine Ecology Villa Dohrn-Benthic Ecology Center Stazione Zoologica "Anton Dohrn" Ischia Napoli Italy
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie Université du Québec à Rimouski Rimouski Quebec Canada
| |
Collapse
|