1
|
Gumus M, Gulbahce-Mutlu E, Unal O, Baltaci SB, Unlukal N, Mogulkoc R, Baltaci AK. Marginal Maternal Zinc Deficiency Produces Liver Damage and Altered Zinc Transporter Expression in Offspring Male Rats. Biol Trace Elem Res 2024; 202:2133-2142. [PMID: 37656390 DOI: 10.1007/s12011-023-03824-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
The aim of this study was to investigate how zinc deficiency and supplementation affect liver markers including autotaxin, kallistatin, endocan, and zinc carrier proteins ZIP14 and ZnT9 in rats exposed to maternal zinc deficiency. Additionally, the study aimed to assess liver tissue damage through histological examination. A total of forty male pups were included in the research, with thirty originating from mothers who were given a zinc-deficient diet (Groups 1, 2, and 3), and the remaining ten born to mothers fed a standard diet (Group 4). Subsequently, Group 1 was subjected to a zinc-deficient diet, Group 2 received a standard diet, Group 3 received zinc supplementation, and Group 4 served as the control group without any supplementation. Upon completion of the experimental phases of the study, all animals were sacrificed under general anesthesia, and samples of liver tissue were obtained. The levels of autotaxin, kallistatin, endocan, ZIP 14, and ZnT9 in these liver tissue samples were determined using the ELISA technique. In addition, histological examination was performed to evaluate tissue damage in the liver samples. In the group experiencing zinc deficiency, both endocan and autotaxin levels increased compared to the control group. With zinc supplementation, the levels of endocan and autotaxin returned to the values observed in the control group. Similarly, the suppressed levels of kallistatin, ZIP14, and ZnT9 observed in the zinc deficiency group were reversed with zinc supplementation. Likewise, the reduced levels of kallistatin, ZIP14, and ZnT9 seen in the zinc deficiency group were rectified with zinc supplementation. Moreover, the application of zinc partially ameliorated the heightened liver tissue damage triggered by zinc deficiency. This study is the pioneering one to demonstrate that liver tissue dysfunction induced by a marginal zinc-deficient diet in rats with marginal maternal zinc deficiency can be alleviated through zinc supplementation.
Collapse
Affiliation(s)
- Meltem Gumus
- Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Elif Gulbahce-Mutlu
- Department of Medical Biology, Medical Faculty, KTO Karatay University, Konya, Turkey
| | - Omer Unal
- Department of Physiology, Medical Faculty, Kirikkale University, Kirikkale, Turkey
| | - Saltuk Bugra Baltaci
- Department of Physiology, Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Nejat Unlukal
- Department of Histology and Embryology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Selcuk University Faculty of Medicine, Konya, Turkey
| | | |
Collapse
|
2
|
Liao YE, Liu J, Arnold K. Heparan sulfates and heparan sulfate binding proteins in sepsis. Front Mol Biosci 2023; 10:1146685. [PMID: 36865384 PMCID: PMC9971734 DOI: 10.3389/fmolb.2023.1146685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy.
Collapse
Affiliation(s)
- Yi-En Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
3
|
Zhang Y, Ma R, Wang J. Protective effects of fargesin on cadmium-induced lung injury through regulating aryl hydrocarbon receptor. J Biochem Mol Toxicol 2022; 36:e23197. [PMID: 35983679 DOI: 10.1002/jbt.23197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Fragesin, a traditional Chinese medicine, has been shown to exert anti-inflammatory effect. The aim of this study was to figure out the possible effectiveness of the fargesin, and to invest the mechanisms by which it works in the cadmium-induced lung injury in mice. Fargesin was given 1 h before cadmium treatment for 7 days. Then, the bronchoalveolar lavage fluid (BALF) were harvested to test inflammatory cells and pro-inflammatory cytokine production. Lung histopathological changes, myeloperoxidase (MPO) activity, and aryl hydrocarbon receptor (AhR) and nuclear factor kappa B (NF-κB) activation were measured. Fargesin dose-dependently reduced inflammatory cells and pro-inflammatory cytokines in BALF, improved lung histopathological injury, and inhibited lung wet/dry ratio and MPO activity. Furthermore, fargesin inhibited cadmium-induced NF-κB activation. In addition, fargesin was found to increase AhR expression. In conclusion, fargesin attenuates cadmium-induced lung injury may be via activating AhR, which subsequently suppressing the inflammatory response.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Ma
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese, Jinan, China
| | - Juan Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| |
Collapse
|
4
|
Guo X, Sun J, Liang J, Zhu S, Zhang M, Yang L, Huang X, Xue K, Mo Z, Wen S, Hu B, Liu J, Ouyang Y, He M. Vasorin contributes to lung injury via FABP4-mediated inflammation. Mol Biol Rep 2022; 49:9335-9344. [PMID: 35945403 DOI: 10.1007/s11033-022-07780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Lung injury caused by pulmonary inflammation is one of the main manifestations of respiratory diseases. Vasorin (VASN) is a cell-surface glycoprotein encoded by the VASN gene and is expressed in the lungs of developing mouse foetuses. Previous research has revealed that VASN is associated with many diseases. However, its exact function in the lungs and the underlying mechanism remain poorly understood. METHODS AND RESULTS To investigate the molecular mechanisms involved in lung disease caused by VASN deficiency, a VASN gene knockout (VASN-/-) model was established. The pathological changes in the lungs of VASN-/- mice were similar to those in a lung injury experimental mouse model. We further analysed the transcriptomes of the lungs of VASN-/- mice and wild-type mice. Genes in twenty-four signalling pathways were enriched in the lungs of VASN-/- mice, among which PPAR signalling pathway genes (3 genes, FABP4, Plin1, AdipoQ, were upregulated, while apoA5 was downregulated) were found to be closely related to lung injury. The most significantly changed lung injury-related gene, FABP4, was selected for further verification. The mRNA and protein levels of FABP4 were significantly increased in the lungs of VASN-/- mice, as were the mRNA and protein levels of the inflammatory factors IL-6, TNF-α and IL-1β. CONCLUSIONS We believe that these data provide molecular evidence for the regulatory role of VASN in inflammation in the context of lung injury.
Collapse
Affiliation(s)
- Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Siran Zhu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kangning Xue
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sha Wen
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiajuan Liu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Min He
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,School of Public Health, Guangxi Medical University, Nanning, 530021, China. .,Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
5
|
Hepatoprotective Effect of Mitochondria-Targeted Antioxidant Mito-TEMPO against Lipopolysaccharide-Induced Liver Injury in Mouse. Mediators Inflamm 2022; 2022:6394199. [PMID: 35769207 PMCID: PMC9236847 DOI: 10.1155/2022/6394199] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The liver is vulnerable to sepsis, and sepsis-induced liver injury is closely associated with poor survival of sepsis patients. Studies have found that the overproduction of reactive oxygen species (ROS) is the major cause of oxidative stress, which is the main pathogenic factor for the progression of septic liver injury. The mitochondria are a major source of ROS. Mito-TEMPO is a mitochondria-specific superoxide scavenger. The aim of this study was to investigate the effect of Mito-TEMPO on lipopolysaccharide- (LPS-) induced sepsis mice. We found that Mito-TEMPO pretreatment inhibited inflammation, attenuated LPS-induced liver injury, and enhanced the antioxidative capability in septic mice, as evidenced by the decreased MDA content and the increased SOD activity. In addition, Mito-TEMPO restored mitochondrial size and improved mitochondrial function. Finally, we found that the levels of pyroptosis-related proteins in the liver of LPS-treated mice were lower after pretreatment with Mito-TEMPO. The mechanisms could be related to Mito-TEMPO enhanced antioxidative capability and improved mitochondrial function, which reflects the ability to neutralize ROS.
Collapse
|
6
|
Jang WY, Lee HP, Kim SA, Huang L, Yoon JH, Shin CY, Mitra A, Kim HG, Cho JY. Angiopteris cochinchinensis de Vriese Ameliorates LPS-Induced Acute Lung Injury via Src Inhibition. PLANTS 2022; 11:plants11101306. [PMID: 35631731 PMCID: PMC9143704 DOI: 10.3390/plants11101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Growing demand for treatment options against acute lung injury (ALI) emphasizes studies on plant extracts harboring anti-inflammatory effects. According to GC-MS analysis, Angiopteris cochinchinensis de Vriese consists of various flavonoids with anti-inflammatory activities. Thus, in this study, the anti-inflammatory effects of an extract of Angiopteris cochinchinensis de Vriese (Ac-EE) were assessed using RAW264.6 murine macrophages and a lipopolysaccharide (LPS)-induced ALI model. Ac-EE reduced the nitric oxide production in murine macrophages increased by LPS induction. Moreover, protective effects of Ac-EE on lung tissue were demonstrated by shrinkage of edema and lung injury. Reduced neutrophil infiltration and formation of hyaline membranes were also detected in lung tissues after H&E staining. Semiquantitative RT-PCR, quantitative real-time PCR, and ELISA showed that Ac-EE inhibits the production of proinflammatory mediators, including iNOS and COX-2, and cytokines, such as TNF-α, IL-1β, and IL-6. An Ac-EE-mediated anti-inflammatory response was derived from inhibiting the NF-κB signaling pathway, which was evaluated by luciferase reporter assay and Western blotting analysis. A cellular thermal shift assay revealed that the prime target of Ac-EE in alleviating inflammation was Src. With its direct binding with Src, Angiopteris cochinchinensis de Vriese significantly mitigates lung injury, showing possibilities of its potential as an effective botanical drug.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Seung A Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Ji Hye Yoon
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (L.H.); (J.H.Y.); (C.Y.S.)
| | - Ankita Mitra
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
- Correspondence: (H.G.K.); (J.Y.C.); Tel.: +82-31-290-7878 (H.G.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (W.Y.J.); (H.P.L.); (S.A.K.)
- Correspondence: (H.G.K.); (J.Y.C.); Tel.: +82-31-290-7878 (H.G.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
7
|
Qi Z, Chen J, Deng M, Zhang Y, Ma T, Ma M. Protection of Toll-Like Receptor 9 Against Lipopolysaccharide-Induced Inflammation and Oxidative Stress of Pulmonary Epithelial Cells via MyD88-Mediated Pathways. Physiol Res 2022; 71:259-273. [DOI: 10.33549/physiolres.934741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury (ALI) caused by lipopolysaccharide (LPS) is a common, severe clinical syndrome. Injury caused by inflammation and oxidative stress in vascular endothelial and alveolar epithelial cells is a vital process in the pathogenesis of ALI. Toll-like receptor 9 (TLR9) is highly expressed in LPS-induced ALI rats. In this study, Beas-2B human pulmonary epithelial cells and A549 alveolar epithelial cells were stimulated by LPS, resulting in the upregulation of TLR9 in a concentration-dependent manner. Furthermore, TLR9 overexpression and interference vectors were transfected before LPS administration to explore the role of TLR9 in LPS-induced ALI in vitro. The findings revealed that inhibition of TLR9 reduced inflammation and oxidative stress while suppressing apoptosis of LPS-induced Beas-2B and A549 cells, whereas TLR9 overexpression aggravated these conditions. Moreover, TLR9 inhibition resulted in downregulated protein expression of myeloid differentiation protein 88 (MyD88) and activator activator protein 1 (AP-1), as well as phosphorylation of nuclear factor-B (NF-B), c-Jun N terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). The phosphorylation of extracellular-regulated protein kinases 1/2 was upregulated compared to that of cells subjected to only LPS administration, and this was reversed by TLR9 overexpression. These results indicate that inhibition of TLR9 plays a protective role against LPS-induced inflammation and oxidative stress in Beas-2B and A549 cells, possibly via the MyD88/NF-B and MyD88/MAPKs/AP-1 pathways.
Collapse
Affiliation(s)
- Z Qi
- Department of Critical Care Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, China.
| | | | | | | | | | | |
Collapse
|
8
|
Liang W, Huang L, Ma X, Dong L, Cheng R, Dehdarani M, Karamichos D, Ma JX. Pathogenic Role of Diabetes-Induced Overexpression of Kallistatin in Corneal Wound Healing Deficiency Through Inhibition of Canonical Wnt Signaling. Diabetes 2022; 71:747-761. [PMID: 35044447 PMCID: PMC8965664 DOI: 10.2337/db21-0740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023]
Abstract
It was reported previously that circulation levels of kallistatin, an endogenous Wnt signaling inhibitor, are increased in patients with diabetes. The current study was conducted to determine the role of kallistatin in delayed wound healing in diabetic corneas. Immunostaining and Western blot analysis showed kallistatin levels were upregulated in corneas from humans and rodents with diabetes. In murine corneal wound healing models, the canonical Wnt signaling was activated in nondiabetic corneas and suppressed in diabetic corneas, correlating with delayed wound healing. Transgenic expression of kallistatin suppressed the activation of Wnt signaling in the cornea and delayed wound healing. Local inhibition of Wnt signaling in the cornea by kallistatin, an LRP6-blocking antibody, or the soluble VLDL receptor ectodomain (an endogenous Wnt signaling inhibitor) delayed wound healing. In contrast, ablation of the VLDL receptor resulted in overactivation of Wnt/β-catenin signaling and accelerated corneal wound healing. Activation of Wnt signaling in the cornea accelerated wound healing. Activation of Wnt signaling promoted human corneal epithelial cell migration and proliferation, which was attenuated by kallistatin. Our findings suggested that diabetes-induced overexpression of kallistatin contributes to delayed corneal wound healing by inhibiting the canonical Wnt signaling. Thus, kallistatin and Wnt/β-catenin signaling in the cornea could be potential therapeutic targets for diabetic corneal complications.
Collapse
Affiliation(s)
- Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Li Huang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiang Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijie Dong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Marcus Dehdarani
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX
| | - Jian-xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
9
|
Demichev V, Tober-Lau P, Nazarenko T, Lemke O, Kaur Aulakh S, Whitwell HJ, Röhl A, Freiwald A, Mittermaier M, Szyrwiel L, Ludwig D, Correia-Melo C, Lippert LJ, Helbig ET, Stubbemann P, Olk N, Thibeault C, Grüning NM, Blyuss O, Vernardis S, White M, Messner CB, Joannidis M, Sonnweber T, Klein SJ, Pizzini A, Wohlfarter Y, Sahanic S, Hilbe R, Schaefer B, Wagner S, Machleidt F, Garcia C, Ruwwe-Glösenkamp C, Lingscheid T, Bosquillon de Jarcy L, Stegemann MS, Pfeiffer M, Jürgens L, Denker S, Zickler D, Spies C, Edel A, Müller NB, Enghard P, Zelezniak A, Bellmann-Weiler R, Weiss G, Campbell A, Hayward C, Porteous DJ, Marioni RE, Uhrig A, Zoller H, Löffler-Ragg J, Keller MA, Tancevski I, Timms JF, Zaikin A, Hippenstiel S, Ramharter M, Müller-Redetzky H, Witzenrath M, Suttorp N, Lilley K, Mülleder M, Sander LE, Kurth F, Ralser M. A proteomic survival predictor for COVID-19 patients in intensive care. PLOS DIGITAL HEALTH 2022; 1:e0000007. [PMID: 36812516 PMCID: PMC9931303 DOI: 10.1371/journal.pdig.0000007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care.
Collapse
Affiliation(s)
- Vadim Demichev
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
- The University of Cambridge, Department of Biochemistry and Cambridge Centre for Proteomics, Cambridge, United Kingdom
| | - Pinkus Tober-Lau
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Tatiana Nazarenko
- University College London, Department of Mathematics, London, United Kingdom
- University College London, Department of Women’s Cancer, EGA Institute for Women’s Health, London, United Kingdom
| | - Oliver Lemke
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Simran Kaur Aulakh
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Harry J. Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Lobachevsky University, Laboratory of Systems Medicine of Healthy Ageing, Nizhny Novgorod, Russia
- Imperial College London, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, London, United Kingdom
| | - Annika Röhl
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Anja Freiwald
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Mirja Mittermaier
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Lukasz Szyrwiel
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Daniela Ludwig
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Clara Correia-Melo
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Lena J. Lippert
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Elisa T. Helbig
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Paula Stubbemann
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Nadine Olk
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Charlotte Thibeault
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Nana-Maria Grüning
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Oleg Blyuss
- Lobachevsky University, Department of Applied Mathematics, Nizhny Novgorod, Russia
- University of Hertfordshire, School of Physics, Astronomy and Mathematics, Hatfield, United Kingdom
- Sechenov First Moscow State Medical University, Department of Paediatrics and Paediatric Infectious Diseases, Moscow, Russia
| | - Spyros Vernardis
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Matthew White
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Christoph B. Messner
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Michael Joannidis
- Medical University Innsbruck, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Innsbruck, Austria
| | - Thomas Sonnweber
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Sebastian J. Klein
- Medical University Innsbruck, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Innsbruck, Austria
| | - Alex Pizzini
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Yvonne Wohlfarter
- Medical University of Innsbruck, Institute of Human Genetics, Innsbruck, Austria
| | - Sabina Sahanic
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Richard Hilbe
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Benedikt Schaefer
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, Innsbruck, Austria
| | - Sonja Wagner
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, Innsbruck, Austria
| | - Felix Machleidt
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Carmen Garcia
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Christoph Ruwwe-Glösenkamp
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Tilman Lingscheid
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Laure Bosquillon de Jarcy
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Miriam S. Stegemann
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Moritz Pfeiffer
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Linda Jürgens
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Sophy Denker
- Charité–Universitätsmedizin Berlin, Medical Department of Hematology, Oncology & Tumor Immunology, Virchow Campus & Molekulares Krebsforschungszentrum, Berlin, Germany
| | - Daniel Zickler
- Charité–Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Claudia Spies
- Charité–Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care, Berlin, Germany
| | - Andreas Edel
- Charité–Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care, Berlin, Germany
| | - Nils B. Müller
- Charité–Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Philipp Enghard
- Charité–Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Aleksej Zelezniak
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Rosa Bellmann-Weiler
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Günter Weiss
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Archie Campbell
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, United Kingdom
- University of Edinburgh, Usher Institute, Edinburgh, United Kingdom
| | - Caroline Hayward
- University of Edinburgh, MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, United Kingdom
| | - David J. Porteous
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, United Kingdom
- University of Edinburgh, Usher Institute, Edinburgh, United Kingdom
| | - Riccardo E. Marioni
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, United Kingdom
| | - Alexander Uhrig
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Heinz Zoller
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Markus A. Keller
- Medical University of Innsbruck, Institute of Human Genetics, Innsbruck, Austria
| | - Ivan Tancevski
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - John F. Timms
- University College London, Department of Women’s Cancer, EGA Institute for Women’s Health, London, United Kingdom
| | - Alexey Zaikin
- University College London, Department of Mathematics, London, United Kingdom
- University College London, Department of Women’s Cancer, EGA Institute for Women’s Health, London, United Kingdom
- Lobachevsky University, Laboratory of Systems Medicine of Healthy Ageing, Nizhny Novgorod, Russia
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefan Hippenstiel
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | - Michael Ramharter
- Bernhard Nocht Institute for Tropical Medicine, Department of Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Department of Medicine, Hamburg, Germany
| | - Holger Müller-Redetzky
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Martin Witzenrath
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | - Norbert Suttorp
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | - Kathryn Lilley
- The University of Cambridge, Department of Biochemistry and Cambridge Centre for Proteomics, Cambridge, United Kingdom
| | - Michael Mülleder
- Charité–Universitätsmedizin Berlin, Core Facility—High-Throughput Mass Spectrometry, Berlin, Germany
| | - Leif Erik Sander
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | | | - Florian Kurth
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- Bernhard Nocht Institute for Tropical Medicine, Department of Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Department of Medicine, Hamburg, Germany
- * E-mail:
| | - Markus Ralser
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| |
Collapse
|
10
|
Han D, Fang R, Shi R, Jin Y, Wang Q. LncRNA NKILA knockdown promotes cell viability and represses cell apoptosis, autophagy and inflammation in lipopolysaccharide-induced sepsis model by regulating miR-140-5p/CLDN2 axis. Biochem Biophys Res Commun 2021; 559:8-14. [PMID: 33932903 DOI: 10.1016/j.bbrc.2021.04.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play vital roles in human diseases, including sepsis-induced acute kidney injury (AKI). Here, we aimed to investigate the functions of lncRNA NKILA in sepsis-engendered AKI. METHODS HK2 cells stimulated with LPS were used to mimic sepsis-induced AKI in vitro. qRT-PCR was conducted for lncRNA NKILA and miR-140-5p levels. Cell Counting Kit-8 (CCK-8) assay and flow cytometry analysis were employed to analyze cell viability and apoptosis. Western blot assay was utilized to measured protein levels. ELISA kits were used to examine the concentrations of IL-6, IL-1β and TNF-α. Dual-luciferase reporter assay was utilized to analyze the relationships among lncRNA NKILA, miR-140-5p and claudin 2 (CLDN2). RESULTS LPS restrained HK2 cell viability and accelerated cell apoptosis and autophagy. LncRNA NKILA was increased in LPS-treated HK2 cells. LncRNA NKILA silencing reversed the promotional influence of LPS on cell progression in HK2 cells. miR-140-5p inhibition ameliorated lncRNA NKILA knockdown-mediated cell injury in LPS-mediated HK2 cells. CLDN2 was the target of miR-140-5p. MiR-140-5p elevation promoted cell viability and suppressed cell apoptosis, autophagy and inflammation in LPS-induced HK2 cells, with CLDN2 elevation overturned the effects. CONCLUSION LncRNA NKILA silencing protected HK2 cells from LPS-induced impairments by reducing CLDN2 through sponging miR-140-5p.
Collapse
Affiliation(s)
- Dan Han
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai City, China
| | - Rong Fang
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai City, China
| | - Rong Shi
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai City, China
| | - Yuanyuan Jin
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai City, China
| | - Qian Wang
- Department of Emergency Internal Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai City, China.
| |
Collapse
|
11
|
Shotgun Proteomics of Isolated Urinary Extracellular Vesicles for Investigating Respiratory Impedance in Healthy Preschoolers. Molecules 2021; 26:molecules26051258. [PMID: 33652646 PMCID: PMC7956503 DOI: 10.3390/molecules26051258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
Urine proteomic applications in children suggested their potential in discriminating between healthy subjects from those with respiratory diseases. The aim of the current study was to combine protein fractionation, by urinary extracellular vesicle isolation, and proteomics analysis in order to establish whether different patterns of respiratory impedance in healthy preschoolers can be characterized from a protein fingerprint. Twenty-one 3-5-yr-old healthy children, representative of 66 recruited subjects, were selected: 12 late preterm (LP) and 9 full-term (T) born. Children underwent measurement of respiratory impedance through Forced Oscillation Technique (FOT) and no significant differences between LP and T were found. Unbiased clustering, based on proteomic signatures, stratified three groups of children (A, B, C) with significantly different patterns of respiratory impedance, which was slightly worse in group A than in groups B and C. Six proteins (Tripeptidyl peptidase I (TPP1), Cubilin (CUBN), SerpinA4, SerpinF1, Thy-1 membrane glycoprotein (THY1) and Angiopoietin-related protein 2 (ANGPTL2)) were identified in order to type the membership of subjects to the three groups. The differential levels of the six proteins in groups A, B and C suggest that proteomic-based profiles of urinary fractionated exosomes could represent a link between respiratory impedance and underlying biological profiles in healthy preschool children.
Collapse
|
12
|
Che D, Fang Z, Pi L, Xu Y, Fu L, Zhou H, Gu X. The SERPINA4 rs2070777 AA Genotype is Associated with an Increased Risk of Recurrent Miscarriage in a Southern Chinese Population. Int J Womens Health 2021; 13:111-117. [PMID: 33500667 PMCID: PMC7822073 DOI: 10.2147/ijwh.s290009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Many inflammation-related gene polymorphisms are associated with susceptibility to recurrent miscarriage. SERPINA4 is involved in inflammation and is associated with susceptibility to a variety of diseases, but its relevance in recurrent miscarriage is unclear. Therefore, this study aimed to investigate the relationship between SERPINA4 gene polymorphisms and susceptibility to recurrent spontaneous abortion. Methods Two SERPINA4 polymorphisms were genotyped in 631 patients with recurrent miscarriage and 771 controls by TaqMan real-time polymerase chain reaction, and the strength of each association was evaluated through 95% confidence intervals (CIs) and odds ratios (ORs). Results The results showed that SERPINA4 rs2070777 AA genotypes were associated with an increased risk of recurrent miscarriage (AA vs AT/TT adjusted OR=1.409, 95% CI=1.032–1.924, P=0.0309), and we also found a significant association between the rs910352 T allele in the SERPINA4 gene and susceptibility to recurrent miscarriage (CT vs CC adjusted OR=1.579, 95% CI=1.252–1.992, P=0.0001; TT vs CC adjusted OR=1.524, 95% CI=1.134–2.049, P=0.0052). The combined analysis of two SNPs of the SERPINA4 gene revealed that carriers with one to two unfavorable genotypes were associated with a higher risk for recurrent miscarriage compared with individuals with no unfavorable genotypes (adjusted OR=1.257, 95% CI=1.019-1.550). Moreover, our study indicates that having one to two unfavorable genotypes is associated with an increased risk of recurrent miscarriage in women 35–40 years of age. Conclusion Our study suggests that SERPINA4 rs2070777AA genotypes might contribute to an increased risk of recurrent miscarriage in a southern Chinese population.
Collapse
Affiliation(s)
- Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhenzhen Fang
- Program of Molecular Medicine, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - LanYan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China.,Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China.,Department of Blood Transfusion, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Xu R, Shao Z, Cao Q. MicroRNA-144-3p enhances LPS induced septic acute lung injury in mice through downregulating Caveolin-2. Immunol Lett 2021; 231:18-25. [PMID: 33418009 DOI: 10.1016/j.imlet.2020.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/03/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The emphasis of this study focused on the possible implication and the mechanism of miR-144-3p in septic acute lung injury (ALI) condition. METHODS Mice were pre-injected with miR-144-3p agomir, miR-144-3p antagomir, sh-Caveolin-2 or PBS before 10 mg/kg LPS induced sepsis model establishment. The ratio of wet weight of lung tissues and body weight (W/W) was calculated. The pathological changes on lung tissues were observed by H&E staining. Secretions of inflammatory cytokines (TNF-α, IL-1β and IL-6) in both mouse serum and lung tissues were determined by ELISA. Cell apoptosis and cell morphology were measured by TUNEL staining and H&E staining. The expressions of miR-144-3p, Caveolin-2, apoptotic related proteins and JAK/STAT pathway related proteins were measured by qRT-PCR or/and Western blot. Dual luciferase reporter assay was applied to detect the binding of miR-144-3p with Caveolin-2. RESULTS LPS resulted in increased W/W, disrupted lung tissue, enhanced inflammatory response and cell apoptosis. miR-144-3p was upregulated while Caveolin-2 was downregulated in response to LPS treatment. Inflammation and cell apoptosis induced by LPS can be alleviated by miR-144-3p antagomir injection, but enhanced by miR-144-3p agomir or sh-Caveolin-2 treatment. miR-144-3p can negatively target Caveolin-2. miR-144-3p can activate the JAK/STAT signal pathway through Caveolin-2 in septic ALI mouse. CONCLUSION miR-144-3 can promote LPS induced septic ALI through downregulating Caveolin-2 to activate the JAK/STAT signal pathway.
Collapse
Affiliation(s)
- Ruiming Xu
- Emergency Department, Beijing Tongren Hospital (South District), Beijing 100176, PR China
| | - Zhengyi Shao
- Emergency Department, Beijing Tongren Hospital (South District), Beijing 100176, PR China
| | - Qiumei Cao
- Emergency Department, Beijing Tongren Hospital (South District), Beijing 100176, PR China.
| |
Collapse
|
14
|
Li J, Qi Z, Li D, Huang X, Qi B, Feng J, Qu J, Wang X. Alveolar epithelial glycocalyx shedding aggravates the epithelial barrier and disrupts epithelial tight junctions in acute respiratory distress syndrome. Biomed Pharmacother 2021; 133:111026. [PMID: 33378942 PMCID: PMC7685063 DOI: 10.1016/j.biopha.2020.111026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
The main pathophysiological mechanism of acute respiratory distress syndrome (ARDS) invovles the increase in alveolar barrier permeability that is primarily caused by epithelial glycocalyx and tight junction (TJ) protein destruction. This study was performed to explore the effects of the alveolar epithelial glycocalyx on the epithelial barrier, specifically on TJ proteins, in ARDS. We used C57BL/6 mice and human lung epithelial cell models of lipopolysaccharide (LPS)-induced ARDS. Changes in alveolar permeability were evaluated via pulmonary histopathology analysis and by measuring the wet/dry weight ratio of the lungs. Degradation of heparan sulfate (HS), an important component of the epithelial glycocalyx, and alterations in levels of the epithelial TJ proteins (occludin, zonula occludens 1, and claudin 4) were assessed via ELISA, immunofluorescence analysis, and western blotting analysis. Real-time quantitative polymerase chain reaction was used to detect the mRNA of the TJ protein. Changes in glycocalyx and TJ ultrastructures in alveolar epithelial cells were evaluated through electron microscopy. In vivo and in vitro, LPS increased the alveolar permeability and led to HS degradation and TJ damage. After LPS stimulation, the expression of the HS-degrading enzyme heparanase (HPA) in the alveolar epithelial cells was increased. The HPA inhibitor N-desulfated/re-N-acetylated heparin alleviated LPS-induced HS degradation and reduced TJ damage. In vitro, recombinant HPA reduced the expression of the TJ protein zonula occludens-1 (ZO-1) and inhibited its mRNA expression in the alveolar epithelial cells. Taken together, our results demonstrate that shedding of the alveolar epithelial glycocalyx aggravates the epithelial barrier and damages epithelial TJ proteins in ARDS, with the underlying mechanism involving the effect of HPA on ZO-1.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Deparetment of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, YanTai, Shandong, 264100, China
| | - Zhijiang Qi
- Deparetment of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, YanTai, Shandong, 264100, China
| | - Dongxiao Li
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiao Huang
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Boyang Qi
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jiali Feng
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jianyu Qu
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiaozhi Wang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| |
Collapse
|
15
|
Du J, Wang G, Luo H, Liu N, Xie J. JNK‑IN‑8 treatment alleviates lipopolysaccharide‑induced acute lung injury via suppression of inflammation and oxidative stress regulated by JNK/NF‑κB signaling. Mol Med Rep 2020; 23:150. [PMID: 33355369 PMCID: PMC7789102 DOI: 10.3892/mmr.2020.11789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Abstract
JNK serves critical roles in numerous types of inflammation- and oxidative stress-induced disease, including acute lung injury (ALI). JNK-IN-8 is the first irreversible JNK inhibitor that has been described. However, whether JNK-IN-8 can prevent lipopolysaccharide (LPS)-induced ALI by inhibiting JNK activation and its downstream signaling is poorly understood. The objective of the present study was to investigate the specific therapeutic effects of JNK-IN-8 on LPS-induced ALI and the molecular mechanisms involved. JNK-IN-8 attenuated myeloperoxidase activity, malondialdehyde and superoxide dismutase content and the lung wet/dry ratio, and improved the survival rate following lethal injection of LPS. Additionally, JNK-IN-8 decreased bronchoalveolar lavage fluid protein levels, lactate dehydrogenase activity, neutrophil infiltration and the number of macrophages (as demonstrated by flow cytometry), as well as the production of TNF-α, IL-6 and IL-1β (as evaluated via ELISA). In addition, reverse transcription-quantitative PCR and ELISA showed that JNK-IN-8 attenuated LPS-induced inflammatory cytokine production and oxidative stress in primary murine peritoneal macrophages and RAW264.7 cells in vitro. Furthermore, the present study demonstrated that the JNK/NF-κB signaling pathway was involved in the therapeutic effect of JNK-IN-8 against LPS-induced injury both in vivo and in vitro. In conclusion, these findings indicated that JNK-IN-8 had a therapeutic effect on LPS-induced ALI in mice. The mechanism may be associated with inhibition of the JNK/NF-κB signaling pathway. JNK-IN-8 may be a potential therapeutic agent for the treatment of ALI.
Collapse
Affiliation(s)
- Jingxian Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, P.R. China
| | - Huanyu Luo
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, P.R. China
| | - Na Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, P.R. China
| | - Junran Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
16
|
Xu Y, Chen F. Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities of Nesfatin-1: A Review. J Inflamm Res 2020; 13:607-617. [PMID: 33061526 PMCID: PMC7532075 DOI: 10.2147/jir.s273446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Nesfatin-1, a newly identified energy-regulating peptide, is widely expressed in the central and peripheral tissues, and has a variety of physiological activities. A large number of recent studies have shown that nesfatin-1 exhibits antioxidant, anti-inflammatory, and anti-apoptotic properties and is involved in the occurrence and progression of various diseases. This review summarizes current data focusing on the therapeutic effects of nesfatin-1 under different pathophysiological conditions and the mechanisms underlying its antioxidant, anti-inflammatory, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People's Republic of China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, People's Republic of China
| |
Collapse
|
17
|
Liu T, Liu J, Tian C, Wang H, Wen M, Yan M. LncRNA THRIL is upregulated in sepsis and sponges miR-19a to upregulate TNF-α in human bronchial epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2020; 17:31. [PMID: 32944003 PMCID: PMC7488348 DOI: 10.1186/s12950-020-00259-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/18/2020] [Indexed: 12/23/2022]
Abstract
Background Long non-coding RNAs (lncRNAs) have been demonstrated to play critical roles in various diseases. Our bioinformatics analysis showed that lncRNA TNFα and heterogenous nuclear ribonucleoprotein L (hnRNPL) related immunoregulatory LincRNA (THRIL) may interact with miR-19a, which targets TNF-α. This study aimed to explore the role of THRIL, an enhancer of LPS-induced inflammatory, in sepsis. Methods Research subjects of the present study included 66 sepsis patients and 66 healthy volunteers. The expression levels of THRIL, miR-19a and TNF-α in plasma samples from these participants were determined by RT-qPCR. The interaction between THRIL and miR-19a was explored by performing overexpression experiments in human bronchial epithelial cells (HBEpCs). The roles of THRIL, miR-19a and TNF-α in regulating the apoptosis of HBEpCs were analyzed by cell apoptosis assay. Results We found that THRIL was upregulated in sepsis patients. THRIL is predicted to interact with miR-19a, and the interaction was confirmed by dual-luciferase activity assay. However, THRIL and miR-19a did not affect the expression of each other. Instead, overexpression of THRIL resulted in the increased expression levels of TNF-α, a downstream target of miR-19a in HBEpCs. In HBEpCs, LPS treatment induced the overexpression of THRIL. Cell apoptosis analysis showed that overexpression of THRIL and TNF-α promoted the apoptosis of HBEpCs induced by LPS, while overexpression of miR-19a played an opposite role. Overexpression of THRIL attenuated the effects of overexpression of miR-19a. Conclusion Therefore, THRIL is upregulated in sepsis and may sponge miR-19a to upregulate TNF-α, thereby promoting lung cell apoptosis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Respiratory and Critical Care Medicine, Inner Mongolia Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, 014032 Inner Mongolia China
| | - Jingbin Liu
- Department of Respiratory Medicine, Hospital of FIRMACO (The Fourth Affiliated Hospital of Inner Mongolia Medical University), Baotou, 014032 Inner Mongolia China
| | - Chunhua Tian
- Department of Nephrology, Inner Mongolia Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), No.20 Shaoxian Road, Kundulun District, Baotou City, 014032 Inner Mongolia China
| | - Hongyuan Wang
- Department of Dental department, Hospital of FIRMACO (The Fourth Affiliated Hospital of Inner Mongolia Medical University), Baotou, 014032 Inner Mongolia China
| | - Min Wen
- Department of Pharmacy, Hospital of FIRMACO (The Fourth Affiliated Hospital of Inner Mongolia Medical University), Baotou, 014032 Inner Mongolia China
| | - Mingyu Yan
- Department of Respiratory and Critical Care Medicine, Inner Mongolia Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, 014032 Inner Mongolia China
| |
Collapse
|
18
|
Güralp O, Tüten N, Gök K, Hamzaoglu K, Bulut H, Schild-Suhren M, Malik E, Tüten A. Serum kallistatin level is decreased in women with preeclampsia. J Perinat Med 2020; 49:60-66. [PMID: 32866127 DOI: 10.1515/jpm-2020-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To evaluate the serum levels of the serine proteinase inhibitor kallistatin in women with preeclampsia (PE). METHODS The clinical and laboratory parameters of 55 consecutive women with early-onset PE (EOPE) and 55 consecutive women with late-onset PE (LOPE) were compared with 110 consecutive gestational age (GA)-matched (±1 week) pregnant women with an uncomplicated pregnancy and an appropriate for gestational age fetus. RESULTS Mean serum kallistatin was significantly lower in women with PE compared to the GA-matched-controls (27.74±8.29 ng/mL vs. 37.86±20.64 ng/mL, p<0.001); in women with EOPE compared to that of women in the control group GA-matched for EOPE (24.85±6.65 ng/mL vs. 33.37±17.46 ng/mL, p=0.002); and in women with LOPE compared to that of women in the control group GA-matched for LOPE (30.87±8.81 ng/mL vs. 42.25±22.67 ng/mL, p=0.002). Mean serum kallistatin was significantly lower in women with EOPE compared to LOPE (24.85±6.65 ng/mL vs. 30.87±8.81 ng/mL, p<0.001). Serum kallistatin had negative correlations with systolic and diastolic blood pressure, creatinine, and positive correlation with GA at sampling and GA at birth. CONCLUSIONS Serum kallistatin levels are decreased in preeclamptic pregnancies compared to the GA-matched-controls. This decrease was also significant in women with EOPE compared to LOPE. Serum kallistatin had negative correlation with systolic and diastolic blood pressure, creatinine and positive correlation with GA at sampling and GA at birth.
Collapse
Affiliation(s)
- Onur Güralp
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Nevin Tüten
- Obstetrics and Gynecology, Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Koray Gök
- Obstetrics and Gynecology, Sakarya University, Education and Research Hospital, Sakarya, Turkey
| | - Kübra Hamzaoglu
- Department of Obstetrics and Gynecology, Istanbul Cerrahpasa University, Istanbul, Turkey
| | - Huri Bulut
- Medical Biochemistry Department, Istinye University, Faculty of Medicine, Istanbul, Turkey
| | - Meike Schild-Suhren
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Eduard Malik
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Abdullah Tüten
- Department of Obstetrics and Gynecology, Istanbul Cerrahpasa University, Istanbul, Turkey
| |
Collapse
|
19
|
Wang G, Zou J, Yu X, Yin S, Tang C. The antiatherogenic function of kallistatin and its potential mechanism. Acta Biochim Biophys Sin (Shanghai) 2020; 52:583-589. [PMID: 32393963 DOI: 10.1093/abbs/gmaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is the pathological basis of most cardiovascular diseases, the leading cause of morbidity and mortality worldwide. Kallistatin, originally discovered in human serum, is a tissue-kallikrein-binding protein and a unique serine proteinase inhibitor. Upon binding to its receptor integrin β3, lipoprotein receptor-related protein 6, nucleolin, or Krüppel-like factor 4, kallistatin can modulate various signaling pathways and affect multiple biological processes, including angiogenesis, inflammatory response, oxidative stress, and tumor growth. Circulating kallistatin levels are significantly decreased in patients with coronary artery disease and show an inverse correlation with its severity. Importantly, both in vitro and in vivo experiments have demonstrated that kallistatin reduces atherosclerosis by inhibiting vascular inflammation, antagonizing endothelial dysfunction, and improving lipid metabolism. Thus, kallistatin may be a novel biomarker and a promising therapeutic target for atherosclerosis-related diseases. In this review, we focus on the antiatherogenic function of kallistatin and its potential mechanism.
Collapse
Affiliation(s)
- Gang Wang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Jin Zou
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Xiaohua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Shanhui Yin
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Chaoke Tang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| |
Collapse
|
20
|
Li K, Zhang F, Wei L, Han Z, Liu X, Pan Y, Guo C, Han W. Recombinant Human Elafin Ameliorates Chronic Hyperoxia-Induced Lung Injury by Inhibiting Nuclear Factor-Kappa B Signaling in Neonatal Mice. J Interferon Cytokine Res 2020; 40:320-330. [PMID: 32460595 DOI: 10.1089/jir.2019.0241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The study aimed to investigate whether recombinant human elafin can prevent hyperoxia-induced pulmonary inflammation in newborn mice, and to explore the mechanism underlying the inhibitory effects of elafin on nuclear factor-kappa B (NF-κB) signaling pathway. Neonatal C57BL/6J mice were exposed to 85% O2 for 1, 3, 7, 14, or 21 days. Then, elafin was administered daily for 20 days through intraperitoneal injection. After treatment, morphometric analysis, quantitative real-time polymerase chain reaction, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and Western blotting were carried out to determine the key markers involved in inflammatory process and the potential signaling pathways in hyperoxia-exposed newborn mice treated with elafin. In neonatal bronchopulmonary dysplasia (BPD) mice, hyperoxia induced apoptosis by increasing Bcl-2-associated X protein expression, and triggered inflammation by upregulating the expression levels of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α. Moreover, hyperoxia activated NF-κB signaling pathway by promoting the nuclear translocation of p65 in lung tissue. However, all these changes could be inhibited or reversed by elafin at least partially. Elafin reduced apoptosis, suppressed inflammation cytokines, and improved NF-κB p65 nuclear accumulation in hyperoxia-exposed neonatal mice, indicating that this recombinant protein can serve as a novel target for the treatment of BPD.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Fengmei Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Li Wei
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, P.R. China
| | - Zhigang Han
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Xuwei Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yongquan Pan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| | - Chunbao Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Department of Hepatology and Liver Transplantation Center, Children's Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Wenli Han
- Laboratory Animal Center, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
21
|
Berastegui C, Gómez-Ollés S, Mendoza-Valderrey A, Pereira-Veiga T, Culebras M, Monforte V, Saez B, López-Meseguer M, Sintes-Permanyer H, Ruiz de Miguel V, Bravo C, Sacanell J, Ramon MA, Romero L, Deu M, Román A. Use of serum KL-6 level for detecting patients with restrictive allograft syndrome after lung transplantation. PLoS One 2020; 15:e0226488. [PMID: 31929536 PMCID: PMC6957146 DOI: 10.1371/journal.pone.0226488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/27/2019] [Indexed: 11/24/2022] Open
Abstract
KL-6 is an antigen produced mainly by damaged type II pneumocytes that is involved in interstitial lung disease. Chronic lung allograft dysfunction (CLAD) after lung transplantation (LT) is a major concern for LT clinicians, especially in patients with restrictive allograft syndrome (RAS). We investigated KL-6 levels in serum and bronchoalveolar lavage fluid (BALF) as a potential biomarker of the RAS phenotype. Levels of KL-6 in serum and BALF were measured in 73 bilateral LT recipients, and patients were categorized into 4 groups: stable (ST), infection (LTI), bronchiolitis obliterans syndrome (BOS), and RAS. We also studied a healthy cohort to determine reference values for serum KL-6. The highest levels of KL-6 were found in the serum of patients with RAS (918 [487.8–1638] U/mL). No differences were found for levels of KL-6 in BALF. Using a cut-off value of 465 U/mL serum KL-6 levels was able to differentiate RAS patients from BOS patients with a sensitivity of 100% and a specificity of 75%. Furthermore, higher serum KL-6 levels were associated with a decline in Forced Vital Capacity (FVC) at 6 months after sample collection. Therefore, KL-6 in serum may well be a potential biomarker for differentiating between the BOS and RAS phenotypes of CLAD in LT recipients.
Collapse
Affiliation(s)
- Cristina Berastegui
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Gómez-Ollés
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Enfermedades Respiratorias (Ciberes)
- * E-mail:
| | - Alberto Mendoza-Valderrey
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thais Pereira-Veiga
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mario Culebras
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victor Monforte
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Enfermedades Respiratorias (Ciberes)
| | - Berta Saez
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel López-Meseguer
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Helena Sintes-Permanyer
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victoria Ruiz de Miguel
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Bravo
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Enfermedades Respiratorias (Ciberes)
| | - Judit Sacanell
- Servei de Medicina Intensiva, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María-Antonia Ramon
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Romero
- Servei de Cirurgia Toràcica, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Deu
- Servei de Cirurgia Toràcica, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Román
- Servei de Pneumologia, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Enfermedades Respiratorias (Ciberes)
| |
Collapse
|
22
|
Hagiwara J, Yamada M, Motoda N, Yokota H. Intravenous Immunoglobulin Attenuates Cecum Ligation and Puncture-Induced Acute Lung Injury by Inhibiting Apoptosis of Alveolar Epithelial Cells. J NIPPON MED SCH 2019; 87:129-137. [PMID: 31902854 DOI: 10.1272/jnms.jnms.2020_87-303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE Intravenous immunoglobulin (IVIG) therapy has been used to treat sepsis, but its mechanisms of action remain unclear. Sepsis causes multiple organ failure, such as acute lung injury (ALI), which involves apoptosis of alveolar epithelial cells. In this study, we hypothesized that IVIG suppresses apoptosis in alveolar epithelial cells and evaluated mortality, cytokine levels, histological changes in the lung, and alveolar epithelial cell apoptosis after IVIG administration, in mice with experimentally induced sepsis. METHODS Mice received an injection of vehicle (saline) or immunoglobulin (100 mg/kg or 400 mg/kg) into the tail vein, after which they underwent cecal ligation and puncture. A sham-operated group was used as the normal control. Survival was assessed in all groups after 72 hours. Plasma levels of TNF-α and IL-6, histopathological changes and wet-to-dry ratio in lung, and alveolar epithelial cell apoptosis were evaluated in all groups at 4 hours after surgery. RESULTS In the vehicle group, histopathological injury of the lung was severe, and apoptosis of alveolar epithelial cells was significant. Survival and plasma cytokine levels were better in the IVIG treatment groups than in the vehicle group. IVIG 400 mg/kg suppressed apoptosis of alveolar epithelial cells and reduced ALI. CONCLUSION IVIG suppressed inflammatory cytokine levels and improved survival. Lung histopathology and alveolar epithelial cell apoptosis were improved by IVIG treatment, in a dose-dependent manner. Suppressing apoptosis in alveolar epithelial cells appears to be a mechanism by which IVIG improves survival.
Collapse
Affiliation(s)
- Jun Hagiwara
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School
| | - Marina Yamada
- Faculty of Medical Science, Nippon Sport Science University
| | - Norio Motoda
- Department of Pathology, Nippon Medical School Musashi Kosugi Hospital
| | - Hiroyuki Yokota
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
23
|
Liu H, Hao J, Wu C, Liu G, Wang X, Yu J, Liu Y, Zhao H. Eupatilin Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Inflammation and Oxidative Stress. Med Sci Monit 2019; 25:8289-8296. [PMID: 31680664 PMCID: PMC6854882 DOI: 10.12659/msm.917406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Eupatilin, an active flavone separated from Artemisia species, has various biological activity such as anti-inflammatory activity. The aim of the present study was to find out the influence of eupatilin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats. MATERIAL AND METHODS The administration of LPS was used to induce ALI; eupatilin was given 1 hour before the LPS administration. Lung structural damage of rats was analyzed by hematoxylin and eosin staining and the wet/dry lung ratio. The related inflammatory factors and lung injury markers were examined by enzyme-linked immunosorbent assay. The oxidative stress factors were analyzed by corresponding kits. The expression of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) was assayed by western blot and immunohistochemical staining. RESULTS The results showed that eupatilin alleviated LPS-induced structural damage and decreased the wet/dry lung ratio concentration-dependently. Eupatilin decreased the level of surfactant protein (SP)-A, SP-D, and inflammatory factors such as interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and monocyte chemo-attractant protein (MCP)-1. LPS trigged nitric oxide (NO) generation, improved the production of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and decreased the activity of superoxide dismutase (SOD), which were reversed when rats treated with eupatilin in a concentration-dependent way. Besides, the expression of PPAR-a was increased under the treatment of eupatilin. CONCLUSIONS Collectively, eupatilin alleviated LPS-induced ALI through inhibiting inflammation and oxidative stress in a concentration-dependent way, which was likely to be closely related with the activation of PPAR-alpha.
Collapse
Affiliation(s)
- Haiying Liu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland).,Department of Pediatrics, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Jindou Hao
- Department of Pediatrics, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Chunyuan Wu
- Department of Pediatrics, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Guosheng Liu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Xing Wang
- Department of Pediatrics, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Jieming Yu
- Department of Pediatrics, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Yu Liu
- Department of Pediatrics, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| | - Hongxia Zhao
- Department of Pediatrics, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
24
|
Zhu HP, Huang HY, Wu DM, Dong N, Dong L, Chen CS, Chen CL, Chen YG. Regulatory mechanism of NOV/CCN3 in the inflammation and apoptosis of lung epithelial alveolar cells upon lipopolysaccharide stimulation. Mol Med Rep 2019; 21:1872-1880. [PMID: 31545412 PMCID: PMC7057825 DOI: 10.3892/mmr.2019.10655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/20/2019] [Indexed: 01/11/2023] Open
Abstract
Lipopolysaccharide (LPS) induces inflammatory stress and apoptosis. Pulmonary epithelial cell apoptosis has been shown to accelerate the progression of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), and is the leading cause of mortality in patients with ALI/ARDS. Nephroblastoma overexpressed (NOV; also known as CCN3), an inflammatory modulator, is reported to be a biomarker in ALI. Using an LPS-induced ALI model, we investigated the expression of CCN3 and its possible molecular mechanism involved in lung alveolar epithelial cell inflammation and apoptosis. Our data revealed that LPS treatment greatly increased the level of CCN3 in human lung alveolar type II epithelial cells (A549 cell line). The A549 cells were also transfected with a specific CCN3 small interfering RNA (siRNA). CCN3 knockdown not only largely attenuated the expression of inflammatory cytokines, interleukin (IL)-1β and transforming growth factor (TGF)-β1, but also reduced the apoptotic rate of the A549 cells and altered the expression of apoptosis-associated proteins (Bcl-2 and caspase-3). Furthermore, CCN3 knockdown greatly inhibited the activation of nuclear factor (NF)-κB p65 in the A549 cells, and TGF-β/p-Smad and NF-κB inhibitors significantly decreased the expression level of CCN3 in A549 cells. In conclusion, our data indicate that CCN3 knockdown affects the expression of downstream genes through the TGF-β/p-Smad or NF-κB pathways, leading to the inhibition of cell inflammation and apoptosis in human alveolar epithelial cells.
Collapse
Affiliation(s)
- Hai-Ping Zhu
- Department of Emergency Medicine and Chest Pain Center, Clinical Research Center for Emergency and Critical Care Medicine of Shandong, Key Laboratory of Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary‑Cerebral Resuscitation Research, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui-Ya Huang
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Deng-Min Wu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Nian Dong
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Li Dong
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Cheng-Shui Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chao-Lei Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu-Guo Chen
- Department of Emergency Medicine and Chest Pain Center, Clinical Research Center for Emergency and Critical Care Medicine of Shandong, Key Laboratory of Emergency and Critical Care Medicine, Key Laboratory of Cardiopulmonary‑Cerebral Resuscitation Research, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Ismail Hassan F, Didari T, Khan F, Niaz K, Mojtahedzadeh M, Abdollahi M. A Review on The Protective Effects of Metformin in Sepsis-Induced Organ Failure. CELL JOURNAL 2019; 21:363-370. [PMID: 31376317 PMCID: PMC6722446 DOI: 10.22074/cellj.2020.6286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/17/2018] [Indexed: 02/02/2023]
Abstract
Despite advances in sepsis management, it remains a major intensive-care-unit (ICU) concern. From new prospective, positive
effects of metformin, such as anti-oxidant and anti-inflammatory properties are considered potentially beneficial properties
for management of septic patients. This article reviewed the potential ameliorative effects of metformin in sepsis-induced
organ failure. Information were retrieved from PubMed, Scopus, Embase, and Google Scholar. Multi-organ damage, oxidative
stress, inflammatory cytokine stimulation, and altered circulation are hallmarks of sepsis. Metformin exerts its effect via
adenosine monophosphate-activated protein kinase (AMPK) activation. It improves sepsis-induced organ failure by inhibiting
the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, preventing the activation of transcription
factors related to inflammation, decreasing neutrophil accumulation/infiltration, and also maintaining mitochondrial membrane
potential. Studies reported the safety of metformin therapeutic doses, with no evidence of lactic acidosis, in septic patients.
Collapse
Affiliation(s)
- Fatima Ismail Hassan
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tina Didari
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Niaz
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:.,Department of Toxicology and Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Ma X, Zhang Y, Jiang D, Yang Y, Wu G, Wu Z. Protective Effects of Functional Amino Acids on Apoptosis, Inflammatory Response, and Pulmonary Fibrosis in Lipopolysaccharide-Challenged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4915-4922. [PMID: 31001980 DOI: 10.1021/acs.jafc.9b00942] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lung injury is a complicated and lethal condition characterized by alveolar barrier disruption, pulmonary edema, enhanced inflammation, and apoptosis in alveoli. However, therapeutic strategies to ameliorate lung injury without exerting side effects are not available. Functional amino acids have been shown to have anti-inflammatory and anti-apoptotic effects under various conditions. The objective of this study was to test the hypothesis that arginine, glutamine, or glycine supplementation ameliorated lipopolysaccharide (LPS)-induced lung injury in mice. Mice pretreated with aerosolized arginine, glutamine, or glycine were exposed to aerosolized LPS to induce lung injury. Results showed that arginine or glycine pretreatment beneficially reduced LPS-induced collagen deposition, apoptosis of alveolar cells, expression of inflammatory cytokines and chemokines, and accumulation of neutrophils and macrophages in lung tissues of mice, thus contributing to improved alveolar integrity and function. Glutamine administration reduced LPS-induced collagen deposition and inflammatory cytokines without affecting any other parameters examined in the study. Our findings indicated that arginine or glycine pretreatment effectively alleviated LPS-induced lung injury by inhibiting the accumulation of lymphocytes, the release of inflammatory cytokines and chemokines, and the apoptosis of alveolar cells. Supplementation of arginine or glycine may be a novel nutritional strategy to reduce deleterious effects of bacterial infection on alveolar function.
Collapse
Affiliation(s)
- Xiaoshi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
| | - Da Jiang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
- Department of Animal Science , Texas A&M University , College Station , Texas 77843 , United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
27
|
Protein S is Protective in Acute Lung Injury by Inhibiting Cell Apoptosis. Int J Mol Sci 2019; 20:ijms20051082. [PMID: 30832349 PMCID: PMC6429595 DOI: 10.3390/ijms20051082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury is a fatal disease characterized by inflammatory cell infiltration, alveolar-capillary barrier disruption, protein-rich edema, and impairment of gas exchange. Protein S is a vitamin K-dependent glycoprotein that exerts anticoagulant, immunomodulatory, anti-inflammatory, anti-apoptotic, and neuroprotective effects. The aim of this study was to evaluate whether human protein S inhibits cell apoptosis in acute lung injury. Acute lung injury in human protein S transgenic and wild-type mice was induced by intratracheal instillation of lipopolysaccharide. The effect of human protein S on apoptosis of lung tissue cells was evaluated by Western blotting. Inflammatory cell infiltration, alveolar wall thickening, myeloperoxidase activity, and the expression of inflammatory cytokines were reduced in human protein S transgenic mice compared to the wild-type mice after lipopolysaccharide instillation. Apoptotic cells and caspase-3 activity were reduced while phosphorylation of extracellular signal-regulated kinase was enhanced in the lung tissue from human protein S transgenic mice compared to wild-type mice after lipopolysaccharide instillation. The results of this study suggest that human protein S is protective in lipopolysaccharide-induced acute lung injury by inhibiting apoptosis of lung cells.
Collapse
|
28
|
Bin W, Ming X, Wen-Xia C. TRAF1 meditates lipopolysaccharide-induced acute lung injury by up regulating JNK activation. Biochem Biophys Res Commun 2019; 511:49-56. [PMID: 30760405 DOI: 10.1016/j.bbrc.2019.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 01/11/2023]
Abstract
Acute lung injury (ALI) is served as a severe life-threatening disease. However, the pathogenesis that contributes to ALI has not been fully understood. Tumor necrosis factor receptor-associated factor 1 (TRAF1) interacts with multiple regulators, performing its diverse role in biological functions. However, the effects of TRAF1 on ALI remain unknown. In this study, we attempted to explore the role of TRAF1 in ALI progression. The findings suggested that TRAF1-knockout (KO) markedly attenuated LPS-induced severe mortality rate in murine animals. LPS-elicited histological alterations in pulmonary tissues were significantly alleviated by TRAF1-deletion. Additionally, TRAF1 knockout effectively attenuated lung injury, as evidenced by the reduced lung wet/dry (W/D) weight ratio, as well as decreased bronchoalveolar lavage fluid (BALF) protein levels and neutrophil infiltration. Meanwhile, TRAF1 deletion markedly lessened inflammation, oxidative stress and apoptosis in BALF and/or lung tissues. The levels of pro-inflammatory cytokines stimulated by LPS were down-regulated by TRAF1 ablation, along with the inactivation of nuclear factor κB (NF-κB). LPS-promoted reactive oxygen species (ROS) generation was decreased in TRAF1-KO mice, partly through the improvement of anti-oxidants. Apoptosis was also inhibited by TRAF1 deletion in lung tissues of LPS-challenged mice through the suppression of cleaved Caspase-3. Moreover, TRAF1 knockout significantly decreased c-Jun N-terminal kinase (JNK) activation and its down-streaming signal of c-Jun in pulmonary samples of LPS-induced mice. Importantly, the in vitro study suggested that promoting JNK activation markedly abrogated TRAF1 knockdown-attenuated inflammation, ROS production and apoptosis in LPS-exposed A549 cells. Therefore, our experimental results provided evidence that TRAF1 suppression effectively protected LPS-induced ALI against inflammation, oxidative stress and apoptosis through the suppression of JNK activity.
Collapse
Affiliation(s)
- Wan Bin
- Department of Pediatrics, Renmin Hospital of Hubei University of Medicine, Shiyan, 442000, China
| | - Xue Ming
- Department of Pediatrics, Pediatrics of Traditional Chinese Medicine Hospital of Baoji City, Baoji, 721001, China
| | - Chen Wen-Xia
- Department of Pediatrics, Ankang Central Hospital, Ankang, 725000, China.
| |
Collapse
|
29
|
Li S, Zhong M, Yuan Y, Zhang L. Differential roles of p38 MAPK and ERK1/2 in angiopoietin-2-mediated rat pulmonary microvascular endothelial cell apoptosis induced by lipopolysaccharide. Exp Ther Med 2018; 16:4729-4736. [PMID: 30546397 DOI: 10.3892/etm.2018.6810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
Angiopoietin-2 (Ang-2) is a Tie-2 ligand that destabilizes vascular structures, enhances vascular permeability and induces vascular regression and endothelial cell apoptosis. Although there is evidence for the involvement of the Ang/Tie2 axis in acute lung injury (ALI), the underlying mechanisms involved in Ang-2-induced cell apoptosis are not well understood. In this study, whether Ang-2 contributes to microvascular endothelial cell injury and mediates lipopolysaccharide (LPS)-induced endothelial cell apoptosis and its associated signaling pathways was investigated. Exposure of rat pulmonary microvascular endothelial cells (RPMVECs) to LPS, Ang-2 and related inhibitors was performed to measure the expression levels of Ang-2, the activation of mitogen-activated protein kinases (MAPKs), the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, and expression of the apoptosis-related proteins Bax and Bcl-2 using western blotting, reverse transcription-quantitative polymerase chain reaction, flow cytometry and fluorescence microscopy. The expression of Ang-2 in the RPMVECs was increased by LPS independent of time. The phosphorylation of p38 MAPK and ERK1/2 was significantly upregulated and the activation of apoptosis-related proteins Bax and Bcl was mediated by Ang-2. In addition, inhibition of the p38 pathway by SB203580 attenuated the Ang-2-mediated cell apoptosis, but inhibition of the ERK1/2 pathway by PD98059 exerted an anti-apoptotic effect against Ang-2. In conclusion, LPS-induced apoptosis is partly mediated via stimulation of p38 and ERK1/2 signaling pathways, where Ang-2 acts an inflammation-related factor to participate in the course of cell apoptosis in RPMVECs.
Collapse
Affiliation(s)
- Shi Li
- ICU, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Mingmei Zhong
- ICU, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Yuan Yuan
- The Central Laboratory of Binhu Hospital, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Lin Zhang
- ICU, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| |
Collapse
|
30
|
Qi XL, Hao J, Huang LJ, Wu S, Ma HH, Ye ZQ, He HB, Li SW, Li CE, Huang X. Apoptotic mechanisms in rabbits with blast-induced acute lung injury. Acta Cir Bras 2018; 33:896-903. [PMID: 30484499 DOI: 10.1590/s0102-865020180100000004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
| | | | | | | | - Hong-Hao Ma
- University of Science and Technology of China, China
| | | | | | | | | | | |
Collapse
|
31
|
Guo Y, Chao L, Chao J. Kallistatin attenuates endothelial senescence by modulating Let-7g-mediated miR-34a-SIRT1-eNOS pathway. J Cell Mol Med 2018; 22:4387-4398. [PMID: 29992759 PMCID: PMC6111868 DOI: 10.1111/jcmm.13734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/08/2018] [Indexed: 01/18/2023] Open
Abstract
Kallistatin, a plasma protein, protects against vascular and organ injury. This study is aimed to investigate the role and mechanism of kallistatin in endothelial senescence. Kallistatin inhibited H2 O2 -induced senescence in human endothelial cells, as indicated by reduced senescence-associated-β-galactosidase activity, p16INK4a and plasminogen activator inhibitor-1 expression, and elevated telomerase activity. Kallistatin blocked H2 O2 -induced superoxide formation, NADPH oxidase levels and VCAM-1, ICAM-1, IL-6 and miR-34a synthesis. Kallistatin reversed H2 O2 -mediated inhibition of endothelial nitric oxide synthase (eNOS), SIRT1, catalase and superoxide dismutase (SOD)-2 expression, and kallistatin alone stimulated the synthesis of these antioxidant enzymes. Moreover, kallistatin's anti-senescence and anti-oxidant effects were attributed to SIRT1-mediated eNOS pathway. Kallistatin, via interaction with tyrosine kinase, up-regulated Let-7g, whereas Let-7g inhibitor abolished kallistatin's effects on miR-34a and SIRT1/eNOS synthesis, leading to inhibition of senescence, oxidative stress and inflammation. Furthermore, lung endothelial cells isolated from endothelium-specific kallistatin knockout mice displayed marked reduction in mouse kallistatin levels. Kallistatin deficiency in mouse endothelial cells exacerbated senescence, oxidative stress and inflammation compared to wild-type mouse endothelial cells, and H2 O2 treatment further magnified these effects. Kallistatin deficiency caused marked reduction in Let-7g, SIRT1, eNOS, catalase and SOD-1 mRNA levels, and elevated miR-34a synthesis in mouse endothelial cells. These findings indicate that endogenous kallistatin through novel mechanisms protects against endothelial senescence by modulating Let-7g-mediated miR-34a-SIRT1-eNOS pathway.
Collapse
Affiliation(s)
- Youming Guo
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSCUSA
| | - Lee Chao
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSCUSA
| | - Julie Chao
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSCUSA
| |
Collapse
|
32
|
Hangul M, Ozturk D, Keti DB, Demirkan FG, Kose M. Plasma Kallistatin Levels in Children with Community-Acquired Pneumonia. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2018; 31:146-150. [PMID: 36348576 DOI: 10.1089/ped.2017.0854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Purpose: Community-acquired pneumonia (CAP) is a potentially lethal lower respiratory tract infection affecting children all over the world. In this study, we aimed to evaluate plasma kallistatin levels in children at the time of admission and on the fourth day of treatment to determine if this is effective in deciding whether to hospitalize patients and to assess the response to treatment in patients with CAP. Methods: This prospective case/control study was conducted between November 2015 and May 2016 at Erciyes University School of Medicine, in the Department of Paediatric Pulmonology. Fifty-three patients, who were diagnosed with CAP with clinical and radiological findings, were included in the study. The patients were divided into various subgroups such as inpatients, outpatients, those with complications, those without complications, and dead patients. The levels of kallistatin were compared between the control group and the patient group. Results: A total of 53 children with a diagnosis of CAP and 55 healthy children were enrolled in the study. The plasma kallistatin level of CAP patients at admission was significantly higher than that of the control group [1.6 (1.2-2.9) ng/mL], [0.9 (0.7-1.1) ng/mL] (P < 0.001). The patient group was divided into 3 subgroups: those with complications, those with no complications, and those who died. In patients who were hospitalized, who died, and who were in need of mechanical ventilation (MV), kallistatin levels were significantly higher than in the other patients (P = 0.027 for hospitalization; P = 0.022 for exitus; and P = 0.008 for MV) at the time of diagnosis and on the fourth day of treatment. Conclusion: A higher plasma kallistatin level was found to be significant in CAP. Patients with high kallistatin levels should be carefully monitored for hospitalization and for unwanted side effects such as MV need and death.
Collapse
Affiliation(s)
- Melih Hangul
- Division of Paediatric Pulmonology, Department of Paediatrics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Didem Ozturk
- Division of Paediatric Pulmonology, Department of Paediatrics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Didem Barlak Keti
- Department of Biochemistry Erciyes University School of Medicine, Kayseri, Turkey
| | - Fatma Gül Demirkan
- Division of Paediatric Pulmonology, Department of Paediatrics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Kose
- Division of Paediatric Pulmonology, Department of Paediatrics, School of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
33
|
Yang J, Mao M, Zhen YY. miRNA-23a has effects to improve lung injury induced by sepsis in vitro and vivo study. Biomed Pharmacother 2018; 107:81-89. [PMID: 30081205 DOI: 10.1016/j.biopha.2018.07.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 02/05/2023] Open
Abstract
AIM The aim of this study is to explain the effects and mechanism of miRNA-23a in lung injury which were induced by sepsis in vitro and vivo. METHODS In the vitro study, The BEAS-2B cells were divided into 4 groups: NC, MC, miRNA and miRNA + PTEN agonist groups. The cell proliferation and apoptosis of difference groups were measured by MTT and flow cytometry, the relative proteins expression of difference groups were measured by WB assay. In the vivo study, the rats were also divided into 4 groups: NC, MC, miRNA and miRNA + PTEN agonist groups. The miRNA-23a expression of difference groups were evaluated by ISH in lung tissues of rats. The cell apoptosis of difference groups were evaluated by TUNEL assay in lung tissues; the relative proteins expression of difference groups were evaluated by IHC assay. RESULTS Compared with NC group, the cell apoptosis rate of MC groups were significantly increased in vitro and vivo studies (P < 0.05, respectively). The relative proteins (PTEN, PI3K, AKT and P53) expressions of MC group were significantly differences (P < 0.05, respectively) compared with those of NC groups in vitro and vivo studies. However, with miRNA-23a infection, the cell apoptosis of miRNA group were significantly suppressed compared with MC groups, and the relative proteins (PTEN, PI3K, AKT and P53) of miRNA group were also significantly differences compared with MC groups in vitro and vivo studies (P < 0.05, respectively). CONCLUSION The miRNA-23a has improved lung injury induced by sepsis via PTEN/PI3K/AKT/P53 pathway in vitro and vivo studies.
Collapse
Affiliation(s)
- Jing Yang
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, PR China.
| | - Min Mao
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, PR China
| | - Yuan-Yuan Zhen
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, PR China
| |
Collapse
|
34
|
Heme Oxygenase-1 Reduces Sepsis-Induced Endoplasmic Reticulum Stress and Acute Lung Injury. Mediators Inflamm 2018; 2018:9413876. [PMID: 30013453 PMCID: PMC6022325 DOI: 10.1155/2018/9413876] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Sepsis leads to severe acute lung injury/acute respiratory distress syndrome (ALI/ARDS) that is associated with enhanced endoplasmic reticulum (ER) stress. Heme oxygenase-1 (HO-1), an ER-anchored protein, exerts antioxidant and protective functions under ALI. However, the role of HO-1 activation in the development of endoplasmic reticulum (ER) stress during sepsis remains unknown. Methods Cecal ligation and puncture (CLP) model was created to induce septic ALI. Lung tissue ER stress was measured 18 hours after CLP. The effects of HO-1 on ER stress during septic ALI were investigated in vivo using HO-1 agonist hemin and antagonist ZnPP. Results Compared with the sham group, ER stress in septic lung increased significantly 18 hours after CLP, which was significantly reduced by pretreatment with the ER inhibitor 4-phenylbutyrate (4-PBA). The lung injury score and the lung wet to dry (W/D) ratio in lungs were significantly reduced in septic rats after ER stress inhibition. Similarly, lung ER stress-related genes' (PERK, eIF2-α, ATF4, and CHOP) levels were attenuated after ER stress inhibition. Furthermore, HO-1 activation by hemin reduced p-PERK, p-eIF2-α, ATF4, and CHOP protein expression and oxidative stress and lung cell apoptosis. Additionally, HO-1 antagonist could aggregate the ER stress-related ALI. Conclusions ER stress was activated during CLP-induced ALI, which may represent a mechanism by which CLP induces ALI. HO-1 activation could inhibit CLP-induced lung ER stress and attenuate CLP-induced ALI.
Collapse
|
35
|
Tan Z, Wang H, Sun J, Li M. Effects of propofol pretreatment on lung morphology and heme oxygenase-1 expression in oleic acid-induced acute lung injury in rats. Acta Cir Bras 2018; 33:250-258. [PMID: 29668779 DOI: 10.1590/s0102-865020180030000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/28/2018] [Indexed: 03/16/2023] Open
Abstract
PURPOSE To investigate the effects of propofol pretreatment on lung morphology and heme oxygenase-1 expression in oleic acid -induced acute lung injury in rats. METHODS A total of 32 male Sprague-Dawley rats (250-300g) were randomly divided into the following four groups (n=8/group): group C, group OA, group OA+PR, and group OA+IX to compare related parameter changes. RESULTS PaO2, PCO2, and PaO2/FiO2 were significantly different among the four treatment groups (P<0.05 or P<0.01). Lung wet/dry weight ratio and HO-1 protein expression also significantly differed among the groups (P<0.01). Immunohistochemistry showed that the expression of HO-1 in group OA+PR was stronger than those in groups OA, OA+IX, and C. Light microscopy revealed that pathological changes in lung tissues in group OA+PR were milder than those in group OA and group OA+IX. Electron microscopy showed that alveolar type II epithelial cell ultrastructure in group OA was relatively irregular with cell degeneration and disintegration and cytoplasmic lamellar bodies were vacuolized. Changes in group OA+PR were milder than those in group OA; however, they were more severe in group OA+IX than in group OA. CONCLUSION Propofol significantly increases the expression of HO-1 in the lung tissueand prevents changes in lung morphology due to ALI in rats.
Collapse
Affiliation(s)
- Zelong Tan
- Department of Anesthesiology, Tai'an Central Hospital, Tai'an, Shandong, China
| | - Huaizhou Wang
- Department of Anesthesiology, Yantai Stomatological Hospital, Yantai, Shandong, China
| | - Jing Sun
- Tai'an Maternal and Child Health Hospital, Tai'an, Shandong, China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an Central Hospital, Tai'an, Shandong, China
| |
Collapse
|
36
|
Shaaban AA, El-Kashef DH, Hamed MF, El-Agamy DS. Protective effect of pristimerin against LPS-induced acute lung injury in mice. Int Immunopharmacol 2018; 59:31-39. [PMID: 29621734 DOI: 10.1016/j.intimp.2018.03.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Pristimerin (Pris) is a triterpenoid derivative obtained from Celastraceae and Hippocrateaceae families. This compound has been extensively tested for its potent anti-cancer activity against different types of tumors. However, its effects against acute lung injury (ALI) remain to be investigated. This study explored the efficacy of Pris to protect against lipopolysaccharide (LPS)-induced ALI and its possible pathways. Results have shown that Pris possesses potent protective activity against LPS-induced acute lung damage. It significantly decreased pulmonary edema as presented by significant decrease in lung W/D ratio and in protein content. Pris attenuated LPS-induced inflammatory cell infiltration into the lung tissue and suppressed the activity of myeloperoxidase in lung. LPS-induced histopathological lesions were significantly improved via Pris pretreatment. Pris exhibited not only inhibition of LPS-induced oxidative stress, but also enhancement of the suppressed antioxidant capacity of the lung tissue. The anti-inflammatory activity of Pris against LPS-induced ALI was clearly evident via attenuation of the levels of pro-inflammatory cytokines namely, tumor necrosis factor-α and interleukin-6. Similarly, Pris inhibited LPS-induced elevation of pro-apoptotic protein, Bax, and caspase-3. Pris also increased the diminished level of Bcl2 induced by LPS. Collectively, Pris exerted protective activity against LPS-induced ALI via anti-oxidant, anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Ahmed A Shaaban
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Faculty of Pharmacy, Aqaba University of Technology, Jordan.
| | - Dalia H El-Kashef
- Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed F Hamed
- Pathology Dept., Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, 30001, Saudi Arabia; Pharmacology and Toxicology Dept., Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
37
|
Girardot T, Rimmelé T, Venet F, Monneret G. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis 2018; 22:295-305. [PMID: 27812767 DOI: 10.1007/s10495-016-1325-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sepsis and other acute injuries such as severe trauma, extensive burns, or major surgeries, are usually followed by a period of marked immunosuppression. In particular, while lymphocytes play a pivotal role in immune response, their functions and numbers are profoundly altered after severe injuries. Apoptosis plays a central role in this process by affecting immune response at various levels. Indeed, apoptosis-induced lymphopenia duration and depth have been associated with higher risk of infection and mortality in various clinical settings. Therapies modulating apoptosis represent an interesting approach to restore immune competence after acute injury, although their use in clinical practice still presents several limitations. After briefly describing the apoptosis process in physiology and during severe injuries, we will explore the immunological consequences of injury-induced lymphocyte apoptosis, and describe associations with clinically relevant outcomes in patients. Therapeutic perspectives targeting apoptosis will also be discussed.
Collapse
Affiliation(s)
- Thibaut Girardot
- Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Edouard Herriot Hospital, Lyon, France
| | - Thomas Rimmelé
- Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Edouard Herriot Hospital, Lyon, France
| | - Fabienne Venet
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Pavillon E, 5, place d'Arsonval, 69437 Cedex 03, Lyon, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Pavillon E, 5, place d'Arsonval, 69437 Cedex 03, Lyon, France. .,EA 7426 Pathophysiology of Injury-Induced Immunosuppression (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Edouard Herriot Hospital, Lyon, France.
| |
Collapse
|
38
|
Gong Y, Yu Z, Gao Y, Deng L, Wang M, Chen Y, Li J, Cheng B. FABP4 inhibitors suppress inflammation and oxidative stress in murine and cell models of acute lung injury. Biochem Biophys Res Commun 2018; 496:1115-1121. [DOI: 10.1016/j.bbrc.2018.01.150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
|
39
|
Zhou S, Wang G, Zhang W. Effect of TLR4/MyD88 signaling pathway on sepsis-associated acute respiratory distress syndrome in rats, via regulation of macrophage activation and inflammatory response. Exp Ther Med 2018; 15:3376-3384. [PMID: 29545858 PMCID: PMC5841028 DOI: 10.3892/etm.2018.5815] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the effects of the Toll-like receptor (TLR)4/myeloid differentiation primary response (MyD)88 signaling pathway on sepsis-associated acute respiratory distress syndrome (ARDS) in rats, and the involvement of macrophage activation and the inflammatory response. A total of 36 specific pathogen-free male Sprague-Dawley rats were selected to establish the rat model of sepsis-associated ARDS using cecal ligation and puncture (CLP). Rats were assigned into the Ab (anti-TLR4 monoclonal antibody)-CLP, CLP and Sham groups. Arterial partial pressure of oxygen (PaO2) was detected using blood gas analysis. Bronchoalveolar lavage fluid (BALF) and alveolar macrophages were collected. The pathological structure of lung tissue was observed following hematoxylin-eosin staining. The ultrastructural alterations of alveolar epithelial cells were observed under transmission electron microscope. The ratios of wet/dry weight of lung tissue and total protein content in BALF were measured. The concentration of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in BALF and peripheral blood was determined by enzyme-linked immunosorbent assay. The TLR4, TLR9, MyD88 and nuclear factor (NF)-κΒ mRNA and protein expression levels in alveolar macrophages were measured by reverse transcription-quantitative polymerase chain reaction and western blotting. Compared with the Sham group, the rats in the CLP group demonstrated significantly increased respiratory frequency, lung permeability, lung edema, inflammatory infiltration, TNF-α and IL-1β expression levels in BALF and peripheral blood and TLR4, TLR9, MyD88 and NF-κΒ expression levels in macrophages, however decreased arterial PaO2. Following pretreatment with anti-TLR4 monoclonal antibody, rats exhibited decreased lung injury, inflammatory infiltration, lung edema, TNF-α and IL-1β expressions in BALF and peripheral blood, and TLR4, TLR9, MyD88 and NF-κΒ expression levels in macrophages, with increased arterial PaO2. These results suggested that the inhibition of TLR4/MyD88 signaling pathway may relieve sepsis-associated ARDS in rats through regulating macrophage activation and the inflammatory response.
Collapse
Affiliation(s)
- Shujun Zhou
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| | - Gui Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| | - Wenbin Zhang
- Emergency Department, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
40
|
Therapeutic effects of simvastatin combined with kallistatin treatment for pediatric burn patients with sepsis. Exp Ther Med 2018; 15:3080-3087. [PMID: 29599842 DOI: 10.3892/etm.2018.5791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to examine the combined efficacy of simvastatin and kallistatin treatment for pediatric burn sepsis. A total of 72 pediatric patients with burn sepsis were recruited and randomly divided into 3 groups, receiving simvastatin (40 mg/day), kallistatin (20 mg/day) or combined treatment. ELISA, reverse transcription-quantitative polymerase chain reaction, western blotting and flow cytometry were used to analyze the therapeutic effects of simvastatin and kallistatin. The results revealed that combined treatment in pediatric burn sepsis patients decreased the inflammatory cytokine tumor necrosis factor α and interleukin (IL)-1β serum levels, whereas it increased IL-10 and human leukocyte antigen-D related levels. In addition, administration of combined simvastatin and kallistatin decreased the blood urea nitrogen and serum creatinine levels in the patients. It was also demonstrated that Toll-like receptor 4 expression on the surface of monocytes was markedly decreased, while suppressor of cytokine signaling-3 expression was increased in the combined treatment group as compared with the kallistatin or simvastatin treatment alone. Combined treatment also promoted human endothelial cell (HEC) growth compared with the single treatment groups and inhibited the high mobility group box-1 (HMGB1) levels, HMGB1-induced nuclear factor-κB activation and inflammatory gene expression levels in these cells. The study further demonstrated that combined treatment significantly decreased HEC apoptosis through the upregulation of B-cell lymphoma 2 (Bcl-2) and P53 expression levels, as well as downregulation of Bcl-2-associated X protein and caspase-3 levels. In conclusion, these observations indicated that combined treatment with simvastatin and kallistatin inhibited HEC apoptosis, which may be a potential therapeutic strategy for the treatment of pediatric burn sepsis patients.
Collapse
|
41
|
Chao J, Li P, Chao L. Kallistatin: double-edged role in angiogenesis, apoptosis and oxidative stress. Biol Chem 2017; 398:1309-1317. [DOI: 10.1515/hsz-2017-0180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023]
Abstract
AbstractKallistatin, via its two structural elements – an active site and a heparin-binding domain – displays a double-edged function in angiogenesis, apoptosis and oxidative stress. First, kallistatin has both anti-angiogenic and pro-angiogenic effects. Kallistatin treatment attenuates angiogenesis and tumor growth in cancer-bearing mice. Kallistatin via its heparin-binding site inhibits angiogenesis by blocking vascular endothelial growth factor (VEGF)-induced growth, migration and adhesion of endothelial cells. Conversely, kallistatin via the active site promotes neovascularization by stimulating VEGF levels in endothelial progenitor cells. Second, kallistatin inhibits or induces apoptosis depending on cell types. Kallistatin attenuates organ injury and apoptosis in animal models, and its heparin-binding site is essential for blocking tumor necrosis factor (TNF)-α-induced apoptosis in endothelial cells. However, kallistatin via its active site induces apoptosis in breast cancer cells by up-regulating miR-34a and down-regulating miR-21 and miR-203 synthesis. Third, kallistatin can act as an antioxidant or pro-oxidant. Kallistatin treatment inhibits oxidative stress and tissue damage in animal models and cultured cells. Kallistatin via the heparin-binding domain antagonizes TNF-α-induced oxidative stress, whereas its active site is crucial for stimulating antioxidant enzyme expression. In contrast, kallistatin provokes oxidant formation, leading to blood pressure reduction and bacterial killing. Kallistatin-mediated vasodilation is partly mediated by H2O2, as the effect is abolished by the antioxidant enzyme catalase. Moreover, kallistatin exerts a bactericidal effect by stimulating superoxide production in neutrophils of mice with microbial infection as well as in cultured immune cells. Thus, kallistatin’s dual roles in angiogenesis, apoptosis and oxidative stress contribute to its beneficial effects in various diseases.
Collapse
|
42
|
Polydeoxyribonucleotide Ameliorates Lipopolysaccharide-Induced Lung Injury by Inhibiting Apoptotic Cell Death in Rats. Int J Mol Sci 2017; 18:ijms18091847. [PMID: 28837114 PMCID: PMC5618496 DOI: 10.3390/ijms18091847] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022] Open
Abstract
Lung injury is characterized by diffuse lung inflammation, alveolar-capillary destruction, and alveolar flooding, resulting in respiratory failure. Polydexyribonucleotide (PDRN) has an anti-inflammatory effect, decreasing inflammatory cytokines, and suppressing apoptosis. Thus, we investigated its efficacy in the treatment of lung injury, which was induced in rats using lipopolysaccharide (LPS). Rats were randomly divided into three groups according to sacrifice time, and each group split into control, lung injury-induced, and lung injury-induced + PDRN-treated groups. Rats were sacrificed 24 h and 72 h after PDRN administration, according to each group. Lung injury was induced by intratracheal instillation of LPS (5 mg/kg) in 0.2 mL saline. Rats in PDRN-treated groups received a single intraperitoneal injection of 0.3 mL distilled water including PDRN (8 mg/kg), 1 h after lung injury induction. Percentages of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive, cleaved caspase-3-, -8-, and -9-positive cells, the ratio of Bcl-2-associated X protein (Bax) to B-cell lymphoma 2 (Bcl-2), and expressions of inflammatory cytokines (tumor necrosis factor-α, interleukin-6) were decreased by PDRN treatment in the LPS-induced lung injury rats. Therefore, treatment with PDRN reduced lung injury score. This anti-apoptotic effect of PDRN can be ascribed to the enhancing effect of PDRN on adenosine A2A receptor expression. Based on these results, PDRN might be considered as a new therapeutic agent for the treatment of lung injury.
Collapse
|
43
|
Zhang L, Zhou XJ, Zhan LY, Wu XJ, Li WL, Zhao B, Meng QT, Xia ZY. [Dexmedetomidine preconditioning protects against lipopolysaccharides-induced injury in the human alveolar epithelial cells]. Rev Bras Anestesiol 2017; 67:600-606. [PMID: 28818492 DOI: 10.1016/j.bjan.2017.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 11/28/2016] [Accepted: 02/27/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Dexmedetomidine (DEX) has demonstrated the preconditioning effect and shown protective effects against organize injury. In this study, using A549 (human alveolar epithelial cell) cell lines, we investigated whether DEX preconditioning protected against acute lung injury (ALI) in vitro. METHODS A549 were randomly divided into four groups (n=5): control group, DEX group, lipopolysaccharides (LPS) group, and D-LPS (DEX+LPS) group. Phosphate buffer saline (PBS) or DEX were administered. After 2h preconditioning, the medium was refreshed and the cells were challenged with LPS for 24h on the LPS and D-LPS group. Then the malondialdehyde (MDA), superoxide dismutase (SOD), Bcl-2, Bax, caspase-3 and the cytochrome c in the A549 were tested. The apoptosis was also evaluated in the cells. RESULTS Compare with LPS group, DEX preconditioning reduced the apoptosis (26.43%±1.05% vs. 33.58%±1.16%, p<0.05) in the A549, which is correlated with decreased MDA (12.84±1.05 vs. 19.16±1.89nmol.mg-1 protein, p<0.05) and increased SOD activity (30.28±2.38 vs. 20.86±2.19U.mg-1 protein, p<0.05). DEX preconditioning also increased the Bcl-2 level (0.53±0.03 vs. 0.32±0.04, p<0.05) and decreased the level of Bax (0.49±0.04 vs. 0.65±0.04, p<0.05), caspase-3 (0.54±0.04 vs. 0.76±0.04, p<0.05) and cytochrome c. CONCLUSION DEX preconditioning has a protective effect against ALI in vitro. The potential mechanisms involved are the inhibition of cell death and improvement of antioxidation.
Collapse
Affiliation(s)
- Lei Zhang
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Xian-Jin Zhou
- Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China; Tongji University, First Maternity and Infant Hospital, Department of Anesthesiology, Shanghai, China
| | - Li-Ying Zhan
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Xiao-Jing Wu
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Wen-Lan Li
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Bo Zhao
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Qing-Tao Meng
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Zhong-Yuan Xia
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China.
| |
Collapse
|
44
|
Lin WC, Chen CW, Chao L, Chao J, Lin YS. Plasma kallistatin in critically ill patients with severe sepsis and septic shock. PLoS One 2017; 12:e0178387. [PMID: 28542440 PMCID: PMC5443576 DOI: 10.1371/journal.pone.0178387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/14/2017] [Indexed: 02/03/2023] Open
Abstract
Kallistatin, an endogenous serine proteinase inhibitor, is protective against sepsis in animal models. The aim of this study was to determine the plasma concentration of kallistatin in intensive care unit (ICU) patients with severe sepsis and septic shock and to determine their potential correlation with disease severity and outcomes. We enrolled 86 ICU patients with severe sepsis and septic shock. Their plasma concentrations of kallistatin, kallikrein, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 were measured by enzyme-linked immunosorbent assay. The association of kallistatin levels with disease severity and patient outcomes was evaluated. The relationship between kallistatin and other biomarkers was also analyzed. Plasma kallistatin levels on day 1 of ICU admission were lower in patients with septic shock compared with patients with severe sepsis (p = 0.004). Twenty-nine patients who died in the hospital had significantly lower day 1 kallistatin levels than patients who survived (p = 0.031). Using the optimal cutoff value (4 μg/ml) of day 1 plasma kallistatin determined by receiver operating characteristic curves for 60-day mortality, we found that high kallistatin levels were associated with a preferable 60-day survival (p = 0.012) by Kaplan-Meier analysis and lower Sequential Organ Failure Assessment (SOFA) scores over the first 5 days in the ICU (p = 0.001). High kallistatin levels were also independently associated with a decreased risk of septic shock, the development of acute respiratory distress syndrome, and positive blood cultures. In addition, there were inverse correlations between day 1 kallistatin levels and the levels of TNF-α, IL-1β, IL-6, and C-reactive protein, and SOFA scores on day 1. Our results indicate that during severe sepsis and septic shock, a decrease in plasma concentrations of kallistatin reflects increased severity and poorer outcome of disease.
Collapse
Affiliation(s)
- Wei-Chieh Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Wen Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
45
|
Li Y, Xiao J, Tan Y, Wang J, Zhang Y, Deng X, Luo Y. Inhibition of PKR ameliorates lipopolysaccharide-induced acute lung injury by suppressing NF-κB pathway in mice. Immunopharmacol Immunotoxicol 2017; 39:165-172. [PMID: 28511573 DOI: 10.1080/08923973.2017.1303839] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute lung injury (ALI) is characterized by dramatic lung inflammation and alveolar epithelial cell death. Although protein kinase R (PKR) (double-stranded RNA-activated serine/threonine kinase) has been implicated in inflammatory response to bacterial cell wall components, whether it plays roles in lipopolysaccharide (LPS)-induced ALI remains unclear. This study was aimed to reveal whether and how PKR was involved in LPS-induced ALI pathology and the potential effects of its specific inhibitor, C16 (C13H8N4OS). During the experiment, mice received C16 (100 or 500 ug/kg) intraperitoneally 1 h before intratracheal LPS instillation. Then, whole lung lavage was collected for analysis of total protein levels and proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. The lungs were tested for Western blot, transferase-mediated dUTP nick-end labeling (TUNEL) stain and immunohistochemistry. Results showed that PKR phosphorylation increased significantly after LPS instillation. Furthermore, PKR specific inhibition attenuated LPS-induced lung injury (hematoxylin and eosin stain), reduced lung protein permeability (total protein levels in whole lung lavage) and suppressed proinflammatory cytokines (TNF-α, IL-1β and IL-6) and lung apoptosis (TUNEL stain and caspase3 activation). Moreover, mechanism-study showed that C16 significantly suppressed I kappa B kinase (IKK)/I kappa B alpha (IκBα)/NF-κB signaling pathway after LPS challenge. These findings suggested that PKR inhibition ameliorated LPS-induced lung inflammation and apoptosis in mice by suppressing NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yinjiao Li
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jinglei Xiao
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yongchang Tan
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun Wang
- b Department of Anesthesiology and Intensive Care , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Yan Zhang
- b Department of Anesthesiology and Intensive Care , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Xiaoming Deng
- b Department of Anesthesiology and Intensive Care , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Yan Luo
- a Department of Anesthesiology , Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
46
|
Wang X, Liu C, Wang G. Propofol Protects Rats and Human Alveolar Epithelial Cells Against Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting HMGB1 Expression. Inflammation 2017; 39:1004-16. [PMID: 26956470 DOI: 10.1007/s10753-016-0330-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-mobility group box 1 (HMGB1) plays a key role in the development of acute lung injury (ALI). Propofol, a general anesthetic with anti-inflammatory properties, has been suggested to be able to modulate lipopolysaccharide (LPS)-induced ALI. In this study, we investigated the effects of propofol on the expression of HMGB1 in a rat model of LPS-induced ALI. Rats underwent intraperitoneal injection of LPS to mimic sepsis-induced ALI. Propofol bolus (1, 5, or 10 mg/kg) was infused continuously 30 min after LPS administration, followed by infusion at 5 mg/(kg · h) through the left femoral vein cannula. LPS increased wet to dry weight ratio and myeloperoxidase activity in lung tissues and caused the elevation of total protein and cells, neutrophils, macrophages, and neutrophils in bronchoalveolar lavage fluid (BALF). Moreover, HMGB1 and other cytokine levels were increased in BALF and lung tissues and pathological changes of lung tissues were excessively aggravated in rats after LPS administration. Propofol inhibited all the above effects. It also inhibited LPS-induced toll-like receptor (TLR)2/4 protein upexpression and NF-κB activation in lung tissues and human alveolar epithelial cells. Propofol protects rats and human alveolar epithelial cells against HMGB1 expression in a rat model of LPS-induced ALI. These effects may partially result from reductions in TLR2/4 and NF-κB activation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China
| | - Chengxiao Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China.
| |
Collapse
|
47
|
Vilander LM, Kaunisto MA, Vaara ST, Pettilä V. Genetic variants in SERPINA4 and SERPINA5, but not BCL2 and SIK3 are associated with acute kidney injury in critically ill patients with septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:47. [PMID: 28270177 PMCID: PMC5341446 DOI: 10.1186/s13054-017-1631-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Background Acute kidney injury (AKI) is a multifactorial syndrome, but knowledge about its pathophysiology and possible genetic background is limited. Recently the first hypothesis-free genetic association studies have been published to explore individual susceptibility to AKI. We aimed to replicate the previously identified associations between five candidate single nucleotide polymorphisms (SNP) in apoptosis-related genes BCL2, SERPINA4, SERPINA5, and SIK3 and the development of AKI, using a prospective cohort of critically ill patients with sepsis/septic shock, in Finland. Methods This is a prospective, observational multicenter study. Of 2567 patients without chronic kidney disease and with genetic samples included in the Finnish Acute Kidney Injury (FINNAKI) study, 837 patients had sepsis and 627 patients had septic shock. AKI was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) criteria, considering stages 2 and 3 affected (severe AKI), stage 0 unaffected, and stage 1 indecisive. Genotyping was done using iPLEXTM Assay (Agena Bioscience). The genotyped SNPs were rs8094315 and rs12457893 in the intron of the BCL2 gene, rs2093266 in the SERPINA4 gene, rs1955656 in the SERPINA5 gene and rs625145 in the SIK3 gene. Association analyses were performed using logistic regression with PLINK software. Results We found no significant associations between the SNPs and severe AKI in patients with sepsis/septic shock, even after adjustment for confounders. Among patients with septic shock (252 with severe AKI and 226 without AKI (149 with KDIGO stage 1 excluded)), the SNPs rs2093266 and rs1955656 were significantly (odds ratio 0.63, p = 0.04276) associated with stage 2–3 AKI after adjusting for clinical and demographic variables. Conclusions The SNPs rs2093266 in the SERPINA4 and rs1955656 in the SERPINA5 were associated with the development of severe AKI (KDIGO stage 2–3) in critically ill patients with septic shock. For the other SNPs, we did not confirm the previously reported associations. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1631-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura M Vilander
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Suvi T Vaara
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Pettilä
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
48
|
Luo Y, Che W, Zhao M. Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells. Int J Mol Med 2016; 39:297-306. [PMID: 27959396 PMCID: PMC5358699 DOI: 10.3892/ijmm.2016.2828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/16/2016] [Indexed: 01/11/2023] Open
Abstract
Ulinastatin (UTI), a serine protease inhibitor, possesses anti-inflammatory properties and has been suggested to modulate lipopolysaccharide (LPS)-induced acute lung injury (ALI). High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, plays a key role in the development of ALI. The aim of this study was to investigate whether UTI attenuates ALI through the inhibition of HMGB1 expression and to elucidate the underlying molecular mechanisms. ALI was induced in male rats by the intratracheal instillation of LPS (5 mg/kg). UTI was administered intraperitoneally 30 min following exposure to LPS. A549 alveolar epithelial cells were incubated with LPS in the presence or absence of UTI. An enzyme-linked immunosorbent assay was used to detect the levels of inflammatory cytokines. Western blot analysis was performed to detect the changes in the expression levels of Toll-like receptor 2/4 (TLR2/4) and the activation of nuclear factor-κB (NF-κB). The results revealed that UTI significantly protected the animals from LPS-induced ALI, as evidenced by the decrease in the lung wet to dry weight ratio, total cells, neutrophils, macrophages and myeloperoxidase activity, associated with reduced lung histological damage. We also found that UTI post-treatment markedly inhibited the release of HMGB1 and other pro-inflammatory cytokines. Furthermore, UTI significantly inhibited the LPS-induced increase in TLR2/4 protein expression and NF-κB activation in lung tissues. In vitro, UTI markedly inhibited the expression of TLR2/4 and the activation of NF-κB in LPS-stimulated A549 alveolar epithelial cells. The findings of our study indicate that UTI attenuates LPS-induced ALI through the inhibition of HMGB1 expression in rats. These benefits are associated with the inhibition of the activation of the TLR2/4-NF-κB pathway by UTI.
Collapse
Affiliation(s)
- Yunpeng Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wen Che
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mingyan Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
49
|
Jang YJ, Back MJ, Fu Z, Lee JH, Won JH, Ha HC, Lee HK, Jang JM, Choi JM, Kim DK. Protective effect of sesquiterpene lactone parthenolide on LPS-induced acute lung injury. Arch Pharm Res 2016; 39:1716-1725. [DOI: 10.1007/s12272-016-0716-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/28/2016] [Indexed: 12/27/2022]
|
50
|
Tan ZX, Chen YH, Xu S, Qin HY, Wang H, Zhang C, Xu DX, Zhao H. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice. Steroids 2016; 112:81-7. [PMID: 27216047 DOI: 10.1016/j.steroids.2016.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/07/2016] [Accepted: 05/18/2016] [Indexed: 12/29/2022]
Abstract
Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury.
Collapse
Affiliation(s)
- Zhu-Xia Tan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei, China; Department of Histology and Embryology, Anhui Medical University, Hefei, China
| | - Shen Xu
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hou-Ying Qin
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China.
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|