1
|
McConville R, Krol JMM, Steel RWJ, O’Neill MT, Davey BK, Hodder AN, Nebl T, Cowman AF, Kneteman N, Boddey JA. Flp/ FRT-mediated disruption of ptex150 and exp2 in Plasmodium falciparum sporozoites inhibits liver-stage development. Proc Natl Acad Sci U S A 2024; 121:e2403442121. [PMID: 38968107 PMCID: PMC11252984 DOI: 10.1073/pnas.2403442121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.
Collapse
Affiliation(s)
- Robyn McConville
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jelte M. M. Krol
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Ryan W. J. Steel
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Matthew T. O’Neill
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
| | - Bethany K. Davey
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Anthony N. Hodder
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Thomas Nebl
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Alan F. Cowman
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| | - Norman Kneteman
- Departments of Surgery, University of Alberta, Edmonton, ABT6G 2E1, Canada
| | - Justin A. Boddey
- Division of Infectious Diseases & Immune Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC3010, Australia
| |
Collapse
|
2
|
Oelschlegel AM, Bhattacharjee R, Wenk P, Harit K, Rothkötter HJ, Koch SP, Boehm-Sturm P, Matuschewski K, Budinger E, Schlüter D, Goldschmidt J, Nishanth G. Beyond the microcirculation: sequestration of infected red blood cells and reduced flow in large draining veins in experimental cerebral malaria. Nat Commun 2024; 15:2396. [PMID: 38493187 PMCID: PMC10944460 DOI: 10.1038/s41467-024-46617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Sequestration of infected red blood cells (iRBCs) in the microcirculation is a hallmark of cerebral malaria (CM) in post-mortem human brains. It remains controversial how this might be linked to the different disease manifestations, in particular brain swelling leading to brain herniation and death. The main hypotheses focus on iRBC-triggered inflammation and mechanical obstruction of blood flow. Here, we test these hypotheses using murine models of experimental CM (ECM), SPECT-imaging of radiolabeled iRBCs and cerebral perfusion, MR-angiography, q-PCR, and immunohistochemistry. We show that iRBC accumulation and reduced flow precede inflammation. Unexpectedly, we find that iRBCs accumulate not only in the microcirculation but also in large draining veins and sinuses, particularly at the rostral confluence. We identify two parallel venous streams from the superior sagittal sinus that open into the rostral rhinal veins and are partially connected to infected skull bone marrow. The flow in these vessels is reduced early, and the spatial patterns of pathology correspond to venous drainage territories. Our data suggest that venous efflux reductions downstream of the microcirculation are causally linked to ECM pathology, and that the different spatiotemporal patterns of edema development in mice and humans could be related to anatomical differences in venous anatomy.
Collapse
Affiliation(s)
- A M Oelschlegel
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Research group Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - R Bhattacharjee
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - P Wenk
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - K Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - H-J Rothkötter
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - S P Koch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - P Boehm-Sturm
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charité 3R | Replace, Reduce, Refine, Charitéplatz 1, 10117, Berlin, Germany
| | - K Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany
| | - E Budinger
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - D Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany
| | - J Goldschmidt
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center of Behavioural Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - G Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Fierro MA, Hussain T, Campin LJ, Beck JR. Knock-sideways by inducible ER retrieval enables a unique approach for studying Plasmodium-secreted proteins. Proc Natl Acad Sci U S A 2023; 120:e2308676120. [PMID: 37552754 PMCID: PMC10433460 DOI: 10.1073/pnas.2308676120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Malaria parasites uniquely depend on protein secretion for their obligate intracellular lifestyle but approaches for dissecting Plasmodium-secreted protein functions are limited. We report knockER, a unique DiCre-mediated knock-sideways approach to sequester secreted proteins in the ER by inducible fusion with a KDEL ER-retrieval sequence. We show conditional ER sequestration of diverse proteins is not generally toxic, enabling loss-of-function studies. We employed knockER in multiple Plasmodium species to interrogate the trafficking, topology, and function of an assortment of proteins that traverse the secretory pathway to diverse compartments including the apicoplast (ClpB1), rhoptries (RON6), dense granules, and parasitophorous vacuole (EXP2, PTEX150, HSP101). Taking advantage of the unique ability to redistribute secreted proteins from their terminal destination to the ER, we reveal that vacuolar levels of the PTEX translocon component HSP101 but not PTEX150 are maintained in excess of what is required to sustain effector protein export into the erythrocyte. Intriguingly, vacuole depletion of HSP101 hypersensitized parasites to a destabilization tag that inhibits HSP101-PTEX complex formation but not to translational knockdown of the entire HSP101 pool, illustrating how redistribution of a target protein by knockER can be used to query function in a compartment-specific manner. Collectively, our results establish knockER as a unique tool for dissecting secreted protein function with subcompartmental resolution that should be widely amenable to genetically tractable eukaryotes.
Collapse
Affiliation(s)
- Manuel A. Fierro
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
| | - Tahir Hussain
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
| | - Liam J. Campin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
4
|
Levray YS, Bana B, Tarr SJ, McLaughlin EJ, Rossi-Smith P, Waltho A, Charlton GH, Chiozzi RZ, Straton CR, Thalassinos K, Osborne AR. Formation of ER-lumenal intermediates during export of Plasmodium proteins containing transmembrane-like hydrophobic sequences. PLoS Pathog 2023; 19:e1011281. [PMID: 37000891 PMCID: PMC10096305 DOI: 10.1371/journal.ppat.1011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/12/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER-lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway.
Collapse
|
5
|
Zanghi G, Patel H, Camargo N, Smith JL, Bae Y, Flannery EL, Chuenchob V, Fishbaugher ME, Mikolajczak SA, Roobsoong W, Sattabongkot J, Hayes K, Vaughan AM, Kappe SHI. Global gene expression of human malaria parasite liver stages throughout intrahepatocytic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522945. [PMID: 36711670 PMCID: PMC9881933 DOI: 10.1101/2023.01.05.522945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plasmodium falciparum (Pf) is causing the greatest malaria burden, yet the liver stages (LS) of this most important parasite species have remained poorly studied. Here, we used a human liver-chimeric mouse model in combination with a novel fluorescent PfNF54 parasite line (PfNF54cspGFP) to isolate PfLS-infected hepatocytes and generate transcriptomes that cover the major LS developmental phases in human hepatocytes. RNA-seq analysis of early Pf LS trophozoites two days after infection, revealed a central role of translational regulation in the transformation of the extracellular invasive sporozoite into intracellular LS. The developmental time course gene expression analysis indicated that fatty acid biosynthesis, isoprenoid biosynthesis and iron metabolism are sustaining LS development along with amino acid metabolism and biosynthesis. Countering oxidative stress appears to play an important role during intrahepatic LS development. Furthermore, we observed expression of the variant PfEMP1 antigen-encoding var genes, and we confirmed expression of PfEMP1 protein during LS development. Transcriptome comparison of the late Pf liver stage schizonts with P. vivax (Pv) late liver stages revealed highly conserved gene expression profiles among orthologous genes. A notable difference however was the expression of genes regulating sexual stage commitment. While Pv schizonts expressed markers of sexual commitment, the Pf LS parasites were not sexually committed and showed expression of gametocytogenesis repression factors. Our results provide the first comprehensive gene expression profile of the human malaria parasite Pf LS isolated during in vivo intrahepatocytic development. This data will inform biological studies and the search for effective intervention strategies that can prevent infection.
Collapse
Affiliation(s)
- Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jenny L. Smith
- Research Scientific Computing, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Yeji Bae
- Research Scientific Computing, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Erika L. Flannery
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Vorada Chuenchob
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Matthew E. Fishbaugher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Novartis Institute for Tropical Diseases, Emeryville, CA, United State
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kiera Hayes
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Hussain T, Linera-Gonzalez J, Beck JM, Fierro MA, Mair GR, Smith RC, Beck JR. The PTEX Pore Component EXP2 Is Important for Intrahepatic Development during the Plasmodium Liver Stage. mBio 2022; 13:e0309622. [PMID: 36445080 PMCID: PMC9765067 DOI: 10.1128/mbio.03096-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
During vertebrate infection, obligate intracellular malaria parasites develop within a parasitophorous vacuole, which constitutes the interface between the parasite and its hepatocyte or erythrocyte host cells. To traverse this barrier, Plasmodium spp. utilize a dual-function pore formed by EXP2 for nutrient transport and, in the context of the PTEX translocon, effector protein export across the vacuole membrane. While critical to blood-stage survival, less is known about EXP2/PTEX function in the liver stage, although major differences in the export mechanism are suggested by absence of the PTEX unfoldase HSP101 in the intrahepatic vacuole. Here, we employed the glucosamine-activated glmS ribozyme to study the role of EXP2 during Plasmodium berghei liver-stage development in hepatoma cells. Insertion of the glmS sequence into the exp2 3' untranslated region (UTR) enabled glucosamine-dependent depletion of EXP2 after hepatocyte invasion, allowing separation of EXP2 function during intrahepatic development from a recently reported role in hepatocyte invasion. Postinvasion EXP2 knockdown reduced parasite size and largely abolished expression of the mid- to late-liver-stage marker LISP2. As an orthogonal approach to monitor development, EXP2-glmS parasites and controls were engineered to express nanoluciferase. Activation of glmS after invasion substantially decreased luminescence in hepatoma monolayers and in culture supernatants at later time points corresponding to merosome detachment, which marks the culmination of liver-stage development. Collectively, our findings extend the utility of the glmS ribozyme to study protein function in the liver stage and reveal that EXP2 is important for intrahepatic parasite development, indicating that PTEX components also function at the hepatocyte-parasite interface. IMPORTANCE After the mosquito bite that initiates a Plasmodium infection, parasites first travel to the liver and develop in hepatocytes. This liver stage is asymptomatic but necessary for the parasite to transition to the merozoite form, which infects red blood cells and causes malaria. To take over their host cells, avoid immune defenses, and fuel their growth, these obligately intracellular parasites must import nutrients and export effector proteins across a vacuole membrane in which they reside. In the blood stage, these processes depend on a translocon called PTEX, but it is unclear if PTEX also functions during the liver stage. Here, we adapted the glmS ribozyme to control expression of EXP2, the membrane pore component of PTEX, during the liver stage of the rodent malaria parasite Plasmodium berghei. Our results show that EXP2 is important for intracellular development in the hepatocyte, revealing that PTEX components are also functionally important during liver-stage infection.
Collapse
Affiliation(s)
- Tahir Hussain
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | | | - John M. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Manuel A. Fierro
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Gunnar R. Mair
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
7
|
A member of the tryptophan-rich protein family is required for efficient sequestration of Plasmodium berghei schizonts. PLoS Pathog 2022; 18:e1010846. [PMID: 36126089 PMCID: PMC9524624 DOI: 10.1371/journal.ppat.1010846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Protein export and host membrane remodeling are crucial for multiple Plasmodium species to establish a niche in infected hosts. To better understand the contribution of these processes to successful parasite infection in vivo, we sought to find and characterize protein components of the intraerythrocytic Plasmodium berghei-induced membrane structures (IBIS) that form in the cytoplasm of infected erythrocytes. We identified proteins that immunoprecipitate with IBIS1, a signature member of the IBIS in P. berghei-infected erythrocytes. In parallel, we also report our data describing proteins that co-precipitate with the PTEX (Plasmodium translocon of exported proteins) component EXP2. To validate our findings, we examined the location of three candidate IBIS1-interactors that are conserved across multiple Plasmodium species, and we found they localized to IBIS in infected red blood cells and two further colocalized with IBIS1 in the liver-stage parasitophorous vacuole membrane. Successful gene deletion revealed that these two tryptophan-rich domain-containing proteins, termed here IPIS2 and IPIS3 (for intraerythrocytic Plasmodium-induced membrane structures), are required for efficient blood-stage growth. Erythrocytes infected with IPIS2-deficient schizonts in particular fail to bind CD36 as efficiently as wild-type P. berghei-infected cells and therefore fail to effectively sequester out of the circulating blood. Our findings support the idea that intra-erythrocytic membrane compartments are required across species for alterations of the host erythrocyte that facilitate interactions of infected cells with host tissues.
Collapse
|
8
|
Gabriela M, Matthews KM, Boshoven C, Kouskousis B, Jonsdottir TK, Bullen HE, Modak J, Steer DL, Sleebs BE, Crabb BS, de Koning-Ward TF, Gilson PR. A revised mechanism for how Plasmodium falciparum recruits and exports proteins into its erythrocytic host cell. PLoS Pathog 2022; 18:e1009977. [PMID: 35192672 PMCID: PMC8896661 DOI: 10.1371/journal.ppat.1009977] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/04/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum exports ~10% of its proteome into its host erythrocyte to modify the host cell's physiology. The Plasmodium export element (PEXEL) motif contained within the N-terminus of most exported proteins directs the trafficking of those proteins into the erythrocyte. To reach the host cell, the PEXEL motif of exported proteins is processed by the endoplasmic reticulum (ER) resident aspartyl protease plasmepsin V. Then, following secretion into the parasite-encasing parasitophorous vacuole, the mature exported protein must be unfolded and translocated across the parasitophorous vacuole membrane by the Plasmodium translocon of exported proteins (PTEX). PTEX is a protein-conducting channel consisting of the pore-forming protein EXP2, the protein unfoldase HSP101, and structural component PTEX150. The mechanism of how exported proteins are specifically trafficked from the parasite's ER following PEXEL cleavage to PTEX complexes on the parasitophorous vacuole membrane is currently not understood. Here, we present evidence that EXP2 and PTEX150 form a stable subcomplex that facilitates HSP101 docking. We also demonstrate that HSP101 localises both within the parasitophorous vacuole and within the parasite's ER throughout the ring and trophozoite stage of the parasite, coinciding with the timeframe of protein export. Interestingly, we found that HSP101 can form specific interactions with model PEXEL proteins in the parasite's ER, irrespective of their PEXEL processing status. Collectively, our data suggest that HSP101 recognises and chaperones PEXEL proteins from the ER to the parasitophorous vacuole and given HSP101's specificity for the EXP2-PTEX150 subcomplex, this provides a mechanism for how exported proteins are specifically targeted to PTEX for translocation into the erythrocyte.
Collapse
Affiliation(s)
- Mikha Gabriela
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Kathryn M. Matthews
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Cas Boshoven
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Betty Kouskousis
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Thorey K. Jonsdottir
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Hayley E. Bullen
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Joyanta Modak
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - David L. Steer
- Monash Biomedical Proteomics and Metabolomics Facility, Monash University, Melbourne, Australia
| | - Brad E. Sleebs
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Brendan S. Crabb
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Paul R. Gilson
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
9
|
Kreutzfeld O, Grützke J, Ingmundson A, Müller K, Matuschewski K. Absence of PEXEL-Dependent Protein Export in Plasmodium Liver Stages Cannot Be Restored by Gain of the HSP101 Protein Translocon ATPase. Front Genet 2021; 12:742153. [PMID: 34956312 PMCID: PMC8693896 DOI: 10.3389/fgene.2021.742153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Host cell remodeling is critical for successful Plasmodium replication inside erythrocytes and achieved by targeted export of parasite-encoded proteins. In contrast, during liver infection the malarial parasite appears to avoid protein export, perhaps to limit exposure of parasite antigens by infected liver cells. HSP101, the force-generating ATPase of the protein translocon of exported proteins (PTEX) is the only component that is switched off during early liver infection. Here, we generated transgenic Plasmodium berghei parasite lines that restore liver stage expression of HSP101. HSP101 expression in infected hepatocytes was achieved by swapping the endogenous promoter with the ptex150 promoter and by inserting an additional copy under the control of the elongation one alpha (ef1α) promoter. Both promoters drive constitutive and, hence, also pre-erythrocytic expression. Transgenic parasites were able to complete the life cycle, but failed to export PEXEL-proteins in early liver stages. Our results suggest that PTEX-dependent early liver stage export cannot be restored by addition of HSP101, indicative of alternative export complexes or other functions of the PTEX core complex during liver infection.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Josephine Grützke
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Biological Safety, Federal Institute for Risk Assessment, Berlin, Germany
| | - Alyssa Ingmundson
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Katja Müller
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Molecular Parasitology, Institute of Biology/Faculty for Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
10
|
Garten M, Beck JR. Structured to conquer: transport across the Plasmodium parasitophorous vacuole. Curr Opin Microbiol 2021; 63:181-188. [PMID: 34375857 PMCID: PMC8463430 DOI: 10.1016/j.mib.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
During the vertebrate stage of the Plasmodium life cycle, obligate intracellular malaria parasites establish a vacuolar niche for replication, first within host hepatocytes at the pre-patent liver-stage and subsequently in erythrocytes during the pathogenic blood-stage. Survival in this protective microenvironment requires diverse transport mechanisms that enable the parasite to transcend the vacuolar barrier. Effector proteins exported out of the vacuole modify the erythrocyte membrane, increasing access to serum nutrients which then cross the vacuole membrane through a nutrient-permeable channel, supporting rapid parasite growth. This review highlights the most recent insights into the organization of the parasite vacuole to facilitate the solute, lipid and effector protein trafficking that establishes a nutrition pipeline in the terminally differentiated, organelle-free red blood cell.
Collapse
Affiliation(s)
- Matthias Garten
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Josh R Beck
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
11
|
Sylvester K, Maher SP, Posfai D, Tran MK, Crawford MC, Vantaux A, Witkowski B, Kyle DE, Derbyshire ER. Characterization of the Tubovesicular Network in Plasmodium vivax Liver Stage Hypnozoites and Schizonts. Front Cell Infect Microbiol 2021; 11:687019. [PMID: 34195101 PMCID: PMC8236947 DOI: 10.3389/fcimb.2021.687019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022] Open
Abstract
Plasmodium is a genus of apicomplexan parasites which replicate in the liver before causing malaria. Plasmodium vivax can also persist in the liver as dormant hypnozoites and cause clinical relapse upon activation, but the molecular mechanisms leading to activation have yet to be discovered. In this study, we use high-resolution microscopy to characterize temporal changes of the P. vivax liver stage tubovesicular network (TVN), a parasitophorous vacuole membrane (PVM)-derived network within the host cytosol. We observe extended membrane clusters, tubules, and TVN-derived vesicles present throughout P. vivax liver stage development. Additionally, we demonstrate an unexpected presence of the TVN in hypnozoites and observe some association of this network to host nuclei. We also reveal that the host water and solute channel aquaporin-3 (AQP3) associates with TVN-derived vesicles and extended membrane clusters. AQP3 has been previously shown to localize to the PVM of P. vivax hypnozoites and liver schizonts but has not yet been shown in association to the TVN. Our results highlight host-parasite interactions occur in both dormant and replicating liver stage P. vivax forms and implicate AQP3 function during this time. Together, these findings enhance our understanding of P. vivax liver stage biology through characterization of the TVN with an emphasis on the presence of this network in dormant hypnozoites.
Collapse
Affiliation(s)
- Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Dora Posfai
- Chemistry Department, Duke University, Durham, NC, United States
| | - Michael K Tran
- Chemistry Department, Duke University, Durham, NC, United States
| | | | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Benoît Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States.,Chemistry Department, Duke University, Durham, NC, United States
| |
Collapse
|
12
|
Abstract
Obligate intracellular malaria parasites reside within a vacuolar compartment generated during invasion which is the principal interface between pathogen and host. To subvert their host cell and support their metabolism, these parasites coordinate a range of transport activities at this membrane interface that are critically important to parasite survival and virulence, including nutrient import, waste efflux, effector protein export, and uptake of host cell cytosol. Here, we review our current understanding of the transport mechanisms acting at the malaria parasite vacuole during the blood and liver-stages of development with a particular focus on recent advances in our understanding of effector protein translocation into the host cell by the Plasmodium Translocon of EXported proteins (PTEX) and small molecule transport by the PTEX membrane-spanning pore EXP2. Comparison to Toxoplasma gondii and other related apicomplexans is provided to highlight how similar and divergent mechanisms are employed to fulfill analogous transport activities.
Collapse
Affiliation(s)
- Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Chi-Min Ho
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| |
Collapse
|
13
|
Jonsdottir TK, Gabriela M, Gilson PR. The Role of Malaria Parasite Heat Shock Proteins in Protein Trafficking and Remodelling of Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:141-167. [PMID: 34569024 DOI: 10.1007/978-3-030-78397-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The genus Plasmodium comprises intracellular eukaryotic parasites that infect many vertebrate groups and cause deadly malaria disease in humans. The parasites employ a suite of heat shock proteins to help traffic other proteins to different compartments within their own cells and that of the host cells they parasitise. This review will cover the role of these chaperones in protein export and host cell modification in the asexual blood stage of the human parasite P. falciparum which is the most deadly and well-studied parasite species. We will examine the role chaperones play in the import of proteins into the secretory pathway from where they are escorted to the vacuole space surrounding the intraerythrocytic parasite. Here, other heat shock proteins unfold protein cargoes and extrude them into the red blood cell (RBC) cytosol from where additional chaperones of parasite and possibly host origin refold the cargo proteins and guide them to their final functional destinations within their RBC host cells. The secretory pathway also serves as a launch pad for proteins targeted to the non-photosynthetic apicoplast organelle of endosymbiotic origin, and the role of heat shock proteins in trafficking proteins here will be reviewed. Finally, the function of chaperones in protein trafficking into the mitochondrion, the remaining organelle of endosymbiotic origin, will be discussed.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, VIC, Australia.,School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
14
|
Mello-Vieira J, Enguita FJ, de Koning-Ward TF, Zuzarte-Luís V, Mota MM. Plasmodium translocon component EXP2 facilitates hepatocyte invasion. Nat Commun 2020; 11:5654. [PMID: 33159090 PMCID: PMC7648069 DOI: 10.1038/s41467-020-19492-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Plasmodium parasites possess a translocon that exports parasite proteins into the infected erythrocyte. Although the translocon components are also expressed during the mosquito and liver stage of infection, their function remains unexplored. Here, using a combination of genetic and chemical assays, we show that the translocon component Exported Protein 2 (EXP2) is critical for invasion of hepatocytes. EXP2 is a pore-forming protein that is secreted from the sporozoite upon contact with the host cell milieu. EXP2-deficient sporozoites are impaired in invasion, which can be rescued by the exogenous administration of recombinant EXP2 and alpha-hemolysin (an S. aureus pore-forming protein), as well as by acid sphingomyelinase. The latter, together with the negative impact of chemical and genetic inhibition of acid sphingomyelinase on invasion, reveals that EXP2 pore-forming activity induces hepatocyte membrane repair, which plays a key role in parasite invasion. Overall, our findings establish a novel and critical function for EXP2 that leads to an active participation of the host cell in Plasmodium sporozoite invasion, challenging the current view of the establishment of liver stage infection. While the role of Plasmodium EXP2 protein as translocon component of blood stage parasites is established, its functional role in liver stage parasites remains unclear. Here, Mello-Vieira et al. reveal that EXP2 pore-forming activity induces hepatocyte membrane repair and hence is critical for hepatocyte invasion.
Collapse
Affiliation(s)
- João Mello-Vieira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | | | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| |
Collapse
|
15
|
Matz JM, Drepper B, Blum TB, van Genderen E, Burrell A, Martin P, Stach T, Collinson LM, Abrahams JP, Matuschewski K, Blackman MJ. A lipocalin mediates unidirectional heme biomineralization in malaria parasites. Proc Natl Acad Sci U S A 2020; 117:16546-16556. [PMID: 32601225 PMCID: PMC7368307 DOI: 10.1073/pnas.2001153117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During blood-stage development, malaria parasites are challenged with the detoxification of enormous amounts of heme released during the proteolytic catabolism of erythrocytic hemoglobin. They tackle this problem by sequestering heme into bioinert crystals known as hemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control heme crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of hemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multidirectional crystal branching. Although hemoglobin processing remains unaffected, PV5-deficient parasites generate less hemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology, neither the crystalline order nor unit cell of hemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in hemozoin formation and underscore the heme biomineralization pathway as an attractive target for therapeutic exploitation.
Collapse
Affiliation(s)
- Joachim M Matz
- Malaria Biochemistry Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom;
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Benjamin Drepper
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Thorsten B Blum
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Eric van Genderen
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Peer Martin
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Thomas Stach
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Jan Pieter Abrahams
- Laboratory of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4051 Basel, Switzerland
- Institute of Biology, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, WC1E 7HT London, United Kingdom
| |
Collapse
|
16
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
17
|
Matthews KM, Kalanon M, de Koning-Ward TF. Uncoupling the Threading and Unfoldase Actions of Plasmodium HSP101 Reveals Differences in Export between Soluble and Insoluble Proteins. mBio 2019; 10:e01106-19. [PMID: 31164473 PMCID: PMC6550532 DOI: 10.1128/mbio.01106-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/02/2022] Open
Abstract
Plasmodium parasites must export proteins into their erythrocytic host to survive. Exported proteins must cross the parasite plasma membrane (PPM) and the parasitophorous vacuolar membrane (PVM) encasing the parasite to access the host cell. Crossing the PVM requires protein unfolding and passage through a translocon, the Plasmodium translocon of exported proteins (PTEX). In this study, we provide the first direct evidence that heat shock protein 101 (HSP101), a core component of PTEX, unfolds proteins for translocation across the PVM by creating transgenic Plasmodium parasites in which the unfoldase and translocation functions of HSP101 have become uncoupled. Strikingly, while these parasites could export native proteins, they were unable to translocate soluble, tightly folded reporter proteins bearing the Plasmodium export element (PEXEL) across the PVM into host erythrocytes under the same conditions. In contrast, an identical PEXEL reporter protein but harboring a transmembrane domain could be exported, suggesting that a prior unfolding step occurs at the PPM. Together, these results demonstrate that the export of parasite proteins is dependent on how these proteins are presented to the secretory pathway before they reach PTEX as well as their folded status. Accordingly, only tightly folded soluble proteins secreted into the vacuolar space and not proteins containing transmembrane domains or the majority of erythrocyte-stage exported proteins have an absolute requirement for the full unfoldase activity of HSP101 to be exported.IMPORTANCE The Plasmodium parasites that cause malaria export hundreds of proteins into their host red blood cell (RBC). These exported proteins drastically alter the structural and functional properties of the RBC and play critical roles in parasite virulence and survival. To access the RBC cytoplasm, parasite proteins must pass through the Plasmodium translocon of exported proteins (PTEX) located at the membrane interfacing the parasite and host cell. Our data provide evidence that HSP101, a component of PTEX, serves to unfold protein cargo requiring translocation. We also reveal that addition of a transmembrane domain to soluble cargo influences its ability to be translocated by parasites in which the HSP101 motor and unfolding activities have become uncoupled. Therefore, we propose that proteins with transmembrane domains use an alternative unfolding pathway prior to PTEX to facilitate export.
Collapse
Affiliation(s)
| | - Ming Kalanon
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | |
Collapse
|
18
|
Bertschi NL, Voorberg-van der Wel A, Zeeman AM, Schuierer S, Nigsch F, Carbone W, Knehr J, Gupta DK, Hofman SO, van der Werff N, Nieuwenhuis I, Klooster E, Faber BW, Flannery EL, Mikolajczak SA, Chuenchob V, Shrestha B, Beibel M, Bouwmeester T, Kangwanrangsan N, Sattabongkot J, Diagana TT, Kocken CH, Roma G. Transcriptomic analysis reveals reduced transcriptional activity in the malaria parasite Plasmodium cynomolgi during progression into dormancy. eLife 2018; 7:41081. [PMID: 30589413 PMCID: PMC6344078 DOI: 10.7554/elife.41081] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023] Open
Abstract
Relapses of Plasmodium dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old P. cynomolgi liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel et al., 2017). We now extend these findings by transcriptome profiling of 9 to 10 day-old liver stage parasites, thus revealing for the first time the maturation of the dormant stage over time. Although progression of dormancy leads to a 10-fold decrease in transcription and expression of only 840 genes, including genes associated with housekeeping functions, we show that pathways involved in quiescence, energy metabolism and maintenance of genome integrity remain the prevalent pathways active in mature hypnozoites.
Collapse
Affiliation(s)
- Nicole L Bertschi
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Europe
| | | | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Europe
| | - Florian Nigsch
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Europe
| | - Walter Carbone
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Europe
| | - Judith Knehr
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Europe
| | - Devendra K Gupta
- Novartis Institute for Tropical Diseases, Novartis Pharma AG, Emeryville, United States
| | - Sam O Hofman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Nicole van der Werff
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Ivonne Nieuwenhuis
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Els Klooster
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Erika L Flannery
- Novartis Institute for Tropical Diseases, Novartis Pharma AG, Emeryville, United States
| | | | - Vorada Chuenchob
- Novartis Institute for Tropical Diseases, Novartis Pharma AG, Emeryville, United States
| | - Binesh Shrestha
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Europe
| | - Martin Beibel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Europe
| | - Tewis Bouwmeester
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Europe
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thierry T Diagana
- Novartis Institute for Tropical Diseases, Novartis Pharma AG, Emeryville, United States
| | - Clemens Hm Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Europe
| |
Collapse
|
19
|
De Niz M, Heussler VT. Rodent malaria models: insights into human disease and parasite biology. Curr Opin Microbiol 2018; 46:93-101. [PMID: 30317152 DOI: 10.1016/j.mib.2018.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
Abstract
The use of rodents as model organisms to study human disease is based on the genetic and physiological similarities between the species. Successful molecular methods to generate transgenic reporter or humanized rodents has rendered rodents as powerful tools for understanding biological processes and host-pathogen interactions relevant to humans. In malaria research, rodent models have been pivotal for the study of liver stages, syndromes arising from blood stages of infection, and malaria transmission to and from the mammalian host. Importantly, many in vivo findings are comparable to pathology observed in humans only when adequate combinations of rodent strains and Plasmodium parasites are used.
Collapse
Affiliation(s)
- Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Glasgow, G12 8TA, UK; Institute for Cell Biology, University of Bern, CH-3012, Switzerland
| | - Volker T Heussler
- Institute for Cell Biology, University of Bern, CH-3012, Switzerland.
| |
Collapse
|
20
|
Matz JM, Matuschewski K. An in silico down-scaling approach uncovers novel constituents of the Plasmodium-containing vacuole. Sci Rep 2018; 8:14055. [PMID: 30232409 PMCID: PMC6145888 DOI: 10.1038/s41598-018-32471-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023] Open
Abstract
During blood stage development the malaria parasite resides in a membrane-bound compartment, termed the parasitophorous vacuole (PV). The reasons for this intravacuolar life style and the molecular functions of this parasite-specific compartment remain poorly defined, which is mainly due to our limited knowledge about the molecular make-up of this unique niche. We used an in silico down-scaling approach to select for Plasmodium-specific candidates that harbour signatures of PV residency. Live co-localisation of five endogenously tagged proteins confirmed expression in the PV of Plasmodium berghei blood and liver stages. ER retention was ruled out by addition of the respective carboxyterminal tetrapeptides to a secreted reporter protein. Although all five PV proteins are highly expressed, four proved to be dispensable for parasite development in the mammalian and mosquito host, as revealed by targeted gene deletion. In good agreement with their redundant roles, the knockout parasites displayed no detectable deficiencies in protein export, sequestration, or PV morphology. Together, our approach improved the catalogue of the Plasmodium PV proteome and provides experimental genetics evidence for functional redundancy of several PV proteins.
Collapse
Affiliation(s)
- Joachim Michael Matz
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany. .,Parasitology Unit, Max Planck Institute for Infection Biology, 10117, Berlin, Germany.
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10115, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| |
Collapse
|
21
|
Charnaud SC, Jonsdottir TK, Sanders PR, Bullen HE, Dickerman BK, Kouskousis B, Palmer CS, Pietrzak HM, Laumaea AE, Erazo AB, McHugh E, Tilley L, Crabb BS, Gilson PR. Spatial organization of protein export in malaria parasite blood stages. Traffic 2018; 19:605-623. [DOI: 10.1111/tra.12577] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Affiliation(s)
| | - Thorey K. Jonsdottir
- Burnet Institute; Melbourne Australia
- Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne Australia
| | | | | | | | - Betty Kouskousis
- Burnet Institute; Melbourne Australia
- Monash Micro Imaging, Monash University; Melbourne Australia
| | - Catherine S. Palmer
- Burnet Institute; Melbourne Australia
- Monash Micro Imaging, Monash University; Melbourne Australia
| | | | | | | | - Emma McHugh
- Department of Biochemistry and Molecular Biology, University of Melbourne; Melbourne Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne; Melbourne Australia
| | - Brendan S. Crabb
- Burnet Institute; Melbourne Australia
- Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne Australia
- Department of Microbiology, Monash University; Melbourne Australia
| | - Paul R. Gilson
- Burnet Institute; Melbourne Australia
- Department of Microbiology, Monash University; Melbourne Australia
| |
Collapse
|
22
|
Sherling ES, van Ooij C. Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes. FEMS Microbiol Rev 2017; 40:701-21. [PMID: 27587718 PMCID: PMC5007283 DOI: 10.1093/femsre/fuw016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria is caused by infection of erythrocytes by parasites of the genus Plasmodium. To survive inside erythrocytes, these parasites induce sweeping changes within the host cell, one of the most dramatic of which is the formation of multiple membranous compartments, collectively referred to as the exomembrane system. As an uninfected mammalian erythrocyte is devoid of internal membranes, the parasite must be the force and the source behind the formation of these compartments. Even though the first evidence of the presence these of internal compartments was obtained over a century ago, their functions remain mostly unclear, and in some cases completely unknown, and the mechanisms underlying their formation are still mysterious. In this review, we provide an overview of the different parts of the exomembrane system, describing the parasitophorous vacuole, the tubovesicular network, Maurer's clefts, the caveola-vesicle complex, J dots and other mobile compartments, and the small vesicles that have been observed in Plasmodium-infected cells. Finally, we combine the data into a simplified view of the exomembrane system and its relation to the alterations of the host erythrocyte. Plasmodium parasites remodel the host erythrocyte in various ways, including the formation of several membranous compartments, together referred to as the exomembrane system, within the erythrocyte cytosol that together are key to the sweeping changes in the host cell.
Collapse
Affiliation(s)
- Emma S Sherling
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
23
|
Santi-Rocca J, Blanchard N. Membrane trafficking and remodeling at the host-parasite interface. Curr Opin Microbiol 2017; 40:145-151. [PMID: 29175340 DOI: 10.1016/j.mib.2017.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/14/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022]
Abstract
Membrane shape is functionally linked with many cellular processes. The limiting membrane of vacuoles containing Toxoplasma gondii and Plasmodium apicomplexan parasites lies at the host-parasite interface. This membrane comprises intra-vacuolar and extra-vacuolar tubulo-vesicular deformations, which influence host-parasite cross-talk. Here, underscoring specificities and similarities between the T. gondii and Plasmodium contexts, we present recent findings about vacuolar membrane remodeling and its potential roles in parasite fitness and immune recognition. We review in particular the implication of tubulo-vesicular structures in trapping and/or transporting host and parasite components. Understanding how membrane remodeling influences host-pathogen interactions is expected to be critical in the battle against many intracellular pathogens beyond parasites.
Collapse
Affiliation(s)
- Julien Santi-Rocca
- Centre de Physiopathologie de Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Nicolas Blanchard
- Centre de Physiopathologie de Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France.
| |
Collapse
|
24
|
Abstract
Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria.
Collapse
|
25
|
Nyboer B, Heiss K, Mueller AK, Ingmundson A. The Plasmodium liver-stage parasitophorous vacuole: A front-line of communication between parasite and host. Int J Med Microbiol 2017; 308:107-117. [PMID: 28964681 DOI: 10.1016/j.ijmm.2017.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/19/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
The intracellular development and differentiation of the Plasmodium parasite in the host liver is a prerequisite for the actual onset of malaria disease pathology. Since liver-stage infection is clinically silent and can be completely eliminated by sterilizing immune responses, it is a promising target for urgently needed innovative antimalarial drugs and/or vaccines. Discovered more than 65 years ago, these stages remain poorly understood regarding their molecular repertoire and interaction with their host cells in comparison to the pathogenic erythrocytic stages. The differentiating and replicative intrahepatic parasite resides in a membranous compartment called the parasitophorous vacuole, separating it from the host-cell cytoplasm. Here we outline seminal work that contributed to our present understanding of the fundamental dynamic cellular processes of the intrahepatic malarial parasite with both specific host-cell factors and compartments.
Collapse
Affiliation(s)
- Britta Nyboer
- Centre for Infectious Diseases, Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Centre for Infection Research (DZIF), D 69120 Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Centre for Infection Research (DZIF), D 69120 Heidelberg, Germany,.
| | - Alyssa Ingmundson
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|
26
|
Agop-Nersesian C, De Niz M, Niklaus L, Prado M, Eickel N, Heussler VT. Shedding of host autophagic proteins from the parasitophorous vacuolar membrane of Plasmodium berghei. Sci Rep 2017; 7:2191. [PMID: 28526861 PMCID: PMC5438358 DOI: 10.1038/s41598-017-02156-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023] Open
Abstract
The hepatic stage of the malaria parasite Plasmodium is accompanied by an autophagy-mediated host response directly targeting the parasitophorous vacuolar membrane (PVM) harbouring the parasite. Removal of the PVM-associated autophagic proteins such as ubiquitin, p62, and LC3 correlates with parasite survival. Yet, it is unclear how Plasmodium avoids the deleterious effects of selective autophagy. Here we show that parasites trap host autophagic factors in the tubovesicular network (TVN), an expansion of the PVM into the host cytoplasm. In proliferating parasites, PVM-associated LC3 becomes immediately redirected into the TVN, where it accumulates distally from the parasite’s replicative centre. Finally, the host factors are shed as vesicles into the host cytoplasm. This strategy may enable the parasite to balance the benefits of the enhanced host catabolic activity with the risk of being eliminated by the cell’s cytosolic immune defence.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland. .,Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, MA, 02118, USA.
| | - Mariana De Niz
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.,Wellcome Centre for Molecular Parasitology, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Livia Niklaus
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Monica Prado
- Bernhard Nocht Institute of Tropical Medicine, 20359, Hamburg, Germany.,Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica, USA
| | - Nina Eickel
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.,CSL Behring, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
27
|
Ghosh S, Kennedy K, Sanders P, Matthews K, Ralph SA, Counihan NA, de Koning-Ward TF. ThePlasmodiumrhoptry associated protein complex is important for parasitophorous vacuole membrane structure and intraerythrocytic parasite growth. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12733] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/13/2017] [Accepted: 02/09/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Sreejoyee Ghosh
- School of Medicine; Deakin University; Waurn Ponds Victoria Australia
| | - Kit Kennedy
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Victoria Australia
| | - Paul Sanders
- The Burnet Institute; Melbourne Victoria Australia
| | - Kathryn Matthews
- School of Medicine; Deakin University; Waurn Ponds Victoria Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; Melbourne Victoria Australia
| | | | | |
Collapse
|
28
|
Plasmodium berghei EXP-1 interacts with host Apolipoprotein H during Plasmodium liver-stage development. Proc Natl Acad Sci U S A 2017; 114:E1138-E1147. [PMID: 28137845 DOI: 10.1073/pnas.1606419114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first, obligatory replication phase of malaria parasite infections is characterized by rapid expansion and differentiation of single parasites in liver cells, resulting in the formation and release of thousands of invasive merozoites into the bloodstream. Hepatic Plasmodium development occurs inside a specialized membranous compartment termed the parasitophorous vacuole (PV). Here, we show that, during the parasite's hepatic replication, the C-terminal region of the parasitic PV membrane protein exported protein 1 (EXP-1) binds to host Apolipoprotein H (ApoH) and that this molecular interaction plays a pivotal role for successful Plasmodium liver-stage development. Expression of a truncated EXP-1 protein, missing the specific ApoH interaction site, or down-regulation of ApoH expression in either hepatic cells or mouse livers by RNA interference resulted in impaired intrahepatic development. Furthermore, infection of mice with sporozoites expressing a truncated version of EXP-1 resulted in both a significant reduction of liver burden and delayed blood-stage patency, leading to a disease outcome different from that generally induced by infection with wild-type parasites. This study identifies a host-parasite protein interaction during the hepatic stage of infection by Plasmodium parasites. The identification of such vital interactions may hold potential toward the development of novel malaria prevention strategies.
Collapse
|
29
|
Abstract
Over the past decade, major advances in imaging techniques have enhanced our understanding of Plasmodium spp. parasites and their interplay with mammalian hosts and mosquito vectors. Cryoelectron tomography, cryo-X-ray tomography and super-resolution microscopy have shifted paradigms of sporozoite and gametocyte structure, the process of erythrocyte invasion by merozoites, and the architecture of Maurer's clefts. Intravital time-lapse imaging has been revolutionary for our understanding of pre-erythrocytic stages of rodent Plasmodium parasites. Furthermore, high-speed imaging has revealed the link between sporozoite structure and motility, and improvements in time-lapse microscopy have enabled imaging of the entire Plasmodium falciparum erythrocytic cycle and the complete Plasmodium berghei pre-erythrocytic stages for the first time. In this Review, we discuss the contribution of key imaging tools to these and other discoveries in the malaria field over the past 10 years.
Collapse
|
30
|
Fougère A, Jackson AP, Paraskevi Bechtsi D, Braks JAM, Annoura T, Fonager J, Spaccapelo R, Ramesar J, Chevalley-Maurel S, Klop O, van der Laan AMA, Tanke HJ, Kocken CHM, Pasini EM, Khan SM, Böhme U, van Ooij C, Otto TD, Janse CJ, Franke-Fayard B. Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole. PLoS Pathog 2016; 12:e1005917. [PMID: 27851824 PMCID: PMC5113031 DOI: 10.1371/journal.ppat.1005917] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites. Malaria-parasites invade and multiply in hepatocytes and erythrocytes. The human parasite P. falciparum transports proteins encoded by multigene families onto the surface of erythrocytes, mediating interactions between infected red blood cells (iRBCs) and other host-cells and are thought to play a key role in parasite survival during blood-stage development. The function of other exported Plasmodium protein families remains largely unknown. We provide novel insights into expression and cellular location of proteins encoded by three large multigene families of rodent malaria parasites (Fam-a, Fam-b and PIR). Multiple members of the same family are expressed in a single iRBC, unlike P. falciparum PfEMP1 proteins where individual iRBCs express only a single member. Most proteins we examined are located in the RBC cytoplasm and are not transported onto the iRBC surface membrane, indicating that these proteins are unlikely to mediate interactions between iRBCs and host-cells. Unexpectedly, liver stages also express many of these proteins, where they locate to the vacuole surrounding the parasite inside the hepatocyte. In support of a role of these proteins for parasite growth within their host cells we provide evidence that Fam-A proteins have a role in uptake and transport of (host) phosphatidylcholine for parasite-membrane synthesis.
Collapse
Affiliation(s)
- Aurélie Fougère
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Experimental Medicine, University of Perugia, Italy
| | - Andrew P. Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UnitedKingdom
| | | | - Joanna A. M. Braks
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Takeshi Annoura
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Jannik Fonager
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microbiological Diagnostics and Virology, Statens Serum Institute, Copenhagen, Denmark
| | | | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | | | - Hans J. Tanke
- Department of Molecular Cell Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Erica M. Pasini
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ulrike Böhme
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, UnitedKingdom
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Chris J. Janse
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Singer M, Frischknecht F. Time for Genome Editing: Next-Generation Attenuated Malaria Parasites. Trends Parasitol 2016; 33:202-213. [PMID: 27793562 DOI: 10.1016/j.pt.2016.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
Immunization with malaria parasites that developmentally arrest in or immediately after the liver stage is the only way currently known to confer sterilizing immunity in both humans and rodent models. There are various ways to attenuate parasite development resulting in different timings of arrest, which has a significant impact on vaccination efficiency. To understand what most impacts vaccination efficiency, newly developed gain-of-function methods can now be used to generate a wide array of differently attenuated parasites. The combination of multiple attenuation approaches offers the potential to engineer efficiently attenuated Plasmodium parasites and learn about their fascinating biology at the same time. Here we discuss recent studies and the potential of targeted parasite manipulation using genome editing to develop live attenuated malaria vaccines.
Collapse
Affiliation(s)
- Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Kaiser G, De Niz M, Zuber B, Burda PC, Kornmann B, Heussler VT, Stanway RR. High resolution microscopy reveals an unusual architecture of the Plasmodium berghei endoplasmic reticulum. Mol Microbiol 2016; 102:775-791. [PMID: 27566438 DOI: 10.1111/mmi.13490] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 02/04/2023]
Abstract
To fuel the tremendously fast replication of Plasmodium liver stage parasites, the endoplasmic reticulum (ER) must play a critical role as a major site of protein and lipid biosynthesis. In this study, we analysed the parasite's ER morphology and function. Previous studies exploring the parasite ER have mainly focused on the blood stage. Visualizing the Plasmodium berghei ER during liver stage development, we found that the ER forms an interconnected network throughout the parasite with perinuclear and peripheral localizations. Surprisingly, we observed that the ER additionally generates huge accumulations. Using stimulated emission depletion microscopy and serial block-face scanning electron microscopy, we defined ER accumulations as intricate dense networks of ER tubules. We provide evidence that these accumulations are functional subdivisions of the parasite ER, presumably generated in response to elevated demands of the parasite, potentially consistent with ER stress. Compared to higher eukaryotes, Plasmodium parasites have a fundamentally reduced unfolded protein response machinery for reacting to ER stress. Accordingly, parasite development is greatly impaired when ER stress is applied. As parasites appear to be more sensitive to ER stress than are host cells, induction of ER stress could potentially be used for interference with parasite development.
Collapse
Affiliation(s)
- Gesine Kaiser
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Mariana De Niz
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland.,Wellcome Trust Center for Molecular Parasitology, G12 8TA, Glasgow, UK
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Paul-Christian Burda
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland
| | - Benoît Kornmann
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland
| |
Collapse
|
33
|
de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR. Plasmodium species: master renovators of their host cells. Nat Rev Microbiol 2016; 14:494-507. [DOI: 10.1038/nrmicro.2016.79] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Ebine K, Hirai M, Sakaguchi M, Yahata K, Kaneko O, Saito-Nakano Y. Plasmodium Rab5b is secreted to the cytoplasmic face of the tubovesicular network in infected red blood cells together with N-acylated adenylate kinase 2. Malar J 2016; 15:323. [PMID: 27316546 PMCID: PMC4912828 DOI: 10.1186/s12936-016-1377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rab5 GTPase regulates membrane trafficking between the plasma membrane and endosomes and harbours a conserved C-terminal isoprenyl modification that is necessary for membrane recruitment. Plasmodium falciparum encodes three Rab5 isotypes, and one of these, Rab5b (PfRab5b), lacks the C-terminal modification but possesses the N-terminal myristoylation motif. PfRab5b was reported to localize to the parasite periphery. However, the trafficking pathway regulated by PfRab5b is unknown. METHODS A complementation analysis of Rab5 isotypes was performed in Plasmodium berghei. A constitutively active PfRab5b mutant was expressed under the regulation of a ligand-dependent destabilization domain (DD)-tag system in P. falciparum. The localization of PfRab5b was evaluated after removing the ligand followed by selective permeabilization of the membrane with different detergents. Furthermore, P. falciparum N-terminally myristoylated adenylate kinase 2 (PfAK2) was co-expressed with PfRab5b, and trafficking of PfAK2 to the parasitophorous vacuole membrane was examined by confocal microscopy. RESULTS PfRab5b complemented the function of PbRab5b, however, the conventional C-terminally isoprenylated Rab5, PbRab5a or PbRab5c, did not. The constitutively active PfRab5b mutant localized to the cytosol of the parasite and the tubovesicular network (TVN), a region that extends from the parasitophorous vacuole membrane (PVM) in infected red blood cells (iRBCs). By removing the DD-ligand, parasite cytosolic PfRab5b signal disappeared and a punctate structure adjacent to the endoplasmic reticulum (ER) and parasite periphery accumulated. The peripheral PfRab5b was sensitive to extracellular proteolysis after treatment with streptolysin O, which selectively permeabilizes the red blood cell plasma membrane, indicating that PfRab5b localized on the iRBC cytoplasmic face of the TVN. Transport of PfAK2 to the PVM was abrogated by overexpression of PfRab5b, and PfAK2 accumulated in the punctate structure together with PfRab5b. CONCLUSION N-myristoylated Plasmodium Rab5b plays a role that is distinct from that of conventional mammalian Rab5 isotypes. PfRab5b localizes to a compartment close to the ER, translocated to the lumen of the organelle, and co-localizes with PfAK2. PfRab5b and PfAK2 are then transported to the TVN, and PfRab5b localizes on the iRBC cytoplasmic face of TVN. These data demonstrate that PfRab5b is transported from the parasite cytosol to TVN together with N-myristoylated PfAK2 via an uncharacterized membrane-trafficking pathway.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-Ku, Tokyo, Japan. .,Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan.
| | - Makoto Hirai
- Department of Molecular and Cellular Parasitology, Graduate School of Medicine, Juntendo University, Bunkyo-Ku, Tokyo, Japan.,Department of Parasitology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Nagasaki, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-Ku, Tokyo, Japan.
| |
Collapse
|
35
|
Mesén-Ramírez P, Reinsch F, Blancke Soares A, Bergmann B, Ullrich AK, Tenzer S, Spielmann T. Stable Translocation Intermediates Jam Global Protein Export in Plasmodium falciparum Parasites and Link the PTEX Component EXP2 with Translocation Activity. PLoS Pathog 2016; 12:e1005618. [PMID: 27168322 PMCID: PMC4864081 DOI: 10.1371/journal.ppat.1005618] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/17/2016] [Indexed: 11/25/2022] Open
Abstract
Protein export is central for the survival and virulence of intracellular P. falciparum blood stage parasites. To reach the host cell, exported proteins cross the parasite plasma membrane (PPM) and the parasite-enclosing parasitophorous vacuole membrane (PVM), a process that requires unfolding, suggestive of protein translocation. Components of a proposed translocon at the PVM termed PTEX are essential in this phase of export but translocation activity has not been shown for the complex and questions have been raised about its proposed membrane pore component EXP2 for which no functional data is available in P. falciparum. It is also unclear how PTEX mediates trafficking of both, soluble as well as transmembrane proteins. Taking advantage of conditionally foldable domains, we here dissected the translocation events in the parasite periphery, showing that two successive translocation steps are needed for the export of transmembrane proteins, one at the PPM and one at the PVM. Our data provide evidence that, depending on the length of the C-terminus of the exported substrate, these steps occur by transient interaction of the PPM and PVM translocon, similar to the situation for protein transport across the mitochondrial membranes. Remarkably, we obtained constructs of exported proteins that remained arrested in the process of being translocated across the PVM. This clogged the translocation pore, prevented the export of all types of exported proteins and, as a result, inhibited parasite growth. The substrates stuck in translocation were found in a complex with the proposed PTEX membrane pore component EXP2, suggesting a role of this protein in translocation. These data for the first time provide evidence for EXP2 to be part of a translocating entity, suggesting that PTEX has translocation activity and provide a mechanistic framework for the transport of soluble as well as transmembrane proteins from the parasite boundary into the host cell. P. falciparum parasites, the deadliest agent of human malaria, develop within erythrocytes where they are surrounded by a parasitophorous vacuolar membrane (PVM). To ensure intracellular survival, the parasite exports a large repertoire of proteins into the host cell. Exported proteins require unfolding for trafficking across the membrane boundaries separating the parasite from the erythrocyte, typical for transport by protein translocating membrane channels. Here, we dissected the sequence of translocation events at the parasite boundary using substrates that can be conditionally arrested at translocation steps. We for the first time obtained exported proteins arrested in the process of being translocated across the PVM. This jammed the translocons for all other types of exported proteins and inhibited parasite growth. The constructs stuck in translocation were in a complex with EXP2, a component of a complex known to be essential for protein export that is termed PTEX. Our work links the need for unfolding and the function of this complex in export, giving experimental evidence that PTEX indeed is a translocon. Conditionally unfoldable domains have been instrumental in unravelling transport processes across membranes and here resolve the transport steps the different kinds of exported proteins require to reach the P. falciparum-infected host cell.
Collapse
Affiliation(s)
- Paolo Mesén-Ramírez
- Bernhard Nocht Institute for Tropical Medicine, Parasitology section, Hamburg, Germany
| | - Ferdinand Reinsch
- Bernhard Nocht Institute for Tropical Medicine, Parasitology section, Hamburg, Germany
| | | | - Bärbel Bergmann
- Bernhard Nocht Institute for Tropical Medicine, Parasitology section, Hamburg, Germany
| | - Ann-Katrin Ullrich
- Bernhard Nocht Institute for Tropical Medicine, Parasitology section, Hamburg, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Parasitology section, Hamburg, Germany
- * E-mail:
| |
Collapse
|
36
|
Protein trafficking in apicomplexan parasites: crossing the vacuolar Rubicon. Curr Opin Microbiol 2016; 32:38-45. [PMID: 27155394 DOI: 10.1016/j.mib.2016.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Although apicomplexans like the blood stages of Plasmodium and the actively replicating 'tachyzoite' stage of Toxoplasma infect very dissimilar host cells, recent studies suggest they share molecular commonalities amongst differences at the parasitophorous vacuolar membrane (PVM) surrounding these intracellular parasites. A protein translocation export (PTEX) complex in the PVM of Plasmodium, is functionally informed by findings in Toxoplasma. Lipids play a role in trafficking to and across the PVM. Toxoplasma exploit an orthologue of a plasmodial secretory aspartyl protease but substrate cleavage yields a signal for targeting to the PVM, rather than directly to the host cell. The studies significantly advance understanding of how trafficking to and across the host-pathogen PVM boundary induces virulence and disease in different host milieu.
Collapse
|
37
|
Kalanon M, Bargieri D, Sturm A, Matthews K, Ghosh S, Goodman CD, Thiberge S, Mollard V, McFadden GI, Ménard R, Koning‐Ward TF. The
Plasmodium
translocon of exported proteins component EXP2 is critical for establishing a patent malaria infection in mice. Cell Microbiol 2015; 18:399-412. [DOI: 10.1111/cmi.12520] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ming Kalanon
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| | - Daniel Bargieri
- Unité de Biologie et Génétique du PaludismeInstitut Pasteur Paris France
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São Paulo São Paulo SP Brazil
| | - Angelika Sturm
- School of BioSciencesThe University of Melbourne Parkville Victoria 3010 Australia
| | - Kathryn Matthews
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| | - Sreejoyee Ghosh
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| | | | - Sabine Thiberge
- Unité de Biologie et Génétique du PaludismeInstitut Pasteur Paris France
| | - Vanessa Mollard
- School of BioSciencesThe University of Melbourne Parkville Victoria 3010 Australia
| | - Geoffrey I. McFadden
- School of BioSciencesThe University of Melbourne Parkville Victoria 3010 Australia
| | - Robert Ménard
- Unité de Biologie et Génétique du PaludismeInstitut Pasteur Paris France
| | - Tania F. Koning‐Ward
- Molecular and Medical Research Unit, School of MedicineDeakin University Waurn Ponds Geelong Victoria 3216 Australia
| |
Collapse
|