1
|
Yue Z, Shi X, Zhang H, Wu Z, Gao C, Wei B, Du C, Peng Y, Yang X, Lu J, Cheng Y, Zhou L, Zou X, Chen L, Li Y, Hu Q. The viral trends and genotype diversity of norovirus in the wastewater of Shenzhen, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174884. [PMID: 39034007 DOI: 10.1016/j.scitotenv.2024.174884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Norovirus (NoV) is the primary cause of acute gastroenteritis (AGE) on a global scale. Numerous studies have demonstrated the immense potential of wastewater surveillance in monitoring the prevalence and spread of NoV within communities. This study employed a one-step reverse transcription-quantitative PCR to quantify NoV GI/GII in wastewater samples (n = 2574), which were collected once or twice a week from 38 wastewater treatment plants from March 2023 to February 2024 in Shenzhen. The concentrations of NoV GI and GII ranged from 5.0 × 104 to 1.7 × 106 copies/L and 4.1 × 105 to 4.5 × 106 copies/L, respectively. The concentrations of NoV GII were higher than those of NoV GI. Spearman's correlation analysis revealed a moderate correlation between the concentration of NoV in wastewater and the detection rates of NoV infections in sentinel hospitals. Baseline values were established for NoV concentrations in Shenzhen's wastewater, providing a crucial reference point for implementing early warning systems and nonpharmaceutical interventions to mitigate the impact of potential outbreaks. A total of 24 NoV genotypes were identified in 100 wastewater samples by sequencing. Nine genotypes of NoV GI were detected, with the major genotypes being GI.4 (38.6 %) and GI.3 (21.8 %); Fifteen genotypes of NoV GII were identified, with GII.4 (53.6 %) and GII.17 (26.0 %) being dominant. The trends in the relative abundance of NoV GI/GII were significantly different, and the trends in the relative abundance of NoV GII.4 over time were similar across all districts, suggesting a potential risk of cross-regional spread. Our findings underscore the effectiveness of wastewater surveillance in reflecting population-level NoV infections, capturing the diverse array of NoV genotypes, and utilizing NoV RNA in wastewater as a specific indicator to supplement clinical surveillance data, ultimately enhancing our ability to predict the timing and intensity of NoV epidemics.
Collapse
Affiliation(s)
- Zhijiao Yue
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiuyuan Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southern University of Science and Technology, Shenzhen 518055, China
| | - Hailong Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ziqi Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chenxi Gao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Shanxi Medical University, Taiyuan 030001, China
| | - Bincai Wei
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Du
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuejing Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xi Yang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jing Lu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yanpeng Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Liping Zhou
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Qinghua Hu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
2
|
Yu L, Zhou Y, Shi XC, Wang GY, Fu ZH, Liang CG, Wang JZ. An amplification-free CRISPR-Cas12a assay for titer determination and composition analysis of the rAAV genome. Mol Ther Methods Clin Dev 2024; 32:101304. [PMID: 39193315 PMCID: PMC11347852 DOI: 10.1016/j.omtm.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
The viral genome titer is a crucial indicator for the clinical dosing, manufacturing, and analytical testing of recombinant adeno-associated virus (rAAV) gene therapy products. Although quantitative PCR and digital PCR are the common methods used for quantifying the rAAV genome titer, they are limited by inadequate accuracy and robustness. The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a biosensor is being increasingly used in virus detection; however, there is currently no report on its application in the titer determination of gene therapy products. In the present study, an amplification-free CRISPR-Cas12a assay was developed, optimized, and applied for rAAV genome titer determination. The assay demonstrated high precision and accuracy within the detection range of 4 × 109 and 1011 vg/mL. No significant difference was observed between the Cas12a and qPCR assay results (p < 0.05, t test). Moreover, Cas12a exhibited similar activity on both single-stranded and double-stranded DNA substrates. Based on this characteristic, the titers of positive-sense and negative-sense strands were determined separately, which revealed a significant difference between their titers for an in-house reference AAV5-IN. This study presents the inaugural report of a Cas12a assay developed for the titer determination and composition analysis of the rAAV genome.
Collapse
Affiliation(s)
- Lei Yu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, P.R. China
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Yong Zhou
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Xin-chang Shi
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Guang-yu Wang
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Zhi-hao Fu
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Cheng-gang Liang
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| | - Jun-zhi Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, P.R. China
- State Key Laboratory of Drug Regulatory Science & NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31 Huatuo St, Daxing District, Beijing 100050, P.R. China
| |
Collapse
|
3
|
Li C, Kang N, Ye S, Huang W, Wang X, Wang C, Li Y, Liu YF, Lan Y, Ma L, Zhao Y, Han Y, Fu J, Shen D, Dong L, Du W. All-In-One OsciDrop Digital PCR System for Automated and Highly Multiplexed Molecular Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309557. [PMID: 38516754 DOI: 10.1002/advs.202309557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Indexed: 03/23/2024]
Abstract
Digital PCR (dPCR) holds immense potential for precisely detecting nucleic acid markers essential for personalized medicine. However, its broader application is hindered by high consumable costs, complex procedures, and restricted multiplexing capabilities. To address these challenges, an all-in-one dPCR system is introduced that eliminates the need for microfabricated chips, offering fully automated operations and enhanced multiplexing capabilities. Using this innovative oscillation-induced droplet generation technique, OsciDrop, this system supports a comprehensive dPCR workflow, including precise liquid handling, pipette-based droplet printing, in situ thermocycling, multicolor fluorescence imaging, and machine learning-driven analysis. The system's reliability is demonstrated by quantifying reference materials and evaluating HER2 copy number variation in breast cancer. Its multiplexing capability is showcased with a quadruplex dPCR assay that detects key EGFR mutations, including 19Del, L858R, and T790M in lung cancer. Moreover, the digital stepwise melting analysis (dSMA) technique is introduced, enabling high-multiplex profiling of seven major EGFR variants spanning 35 subtypes. This innovative dPCR system presents a cost-effective and versatile alternative, overcoming existing limitations and paving the way for transformative advances in precision diagnostics.
Collapse
Affiliation(s)
- Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Nan Kang
- Department of Pathology, Peking University People's Hospital, Beijing, 100044, China
| | - Shun Ye
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Weihang Huang
- Center for Corpus Research, Department of English Language and Linguistics, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Xia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Cheng Wang
- Department of Breast Surgery Huangpu Branch, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuchen Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Biomedical Sciences College & Shandong Medical Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yan-Fei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Ma
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Yuhang Zhao
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Yong Han
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Jun Fu
- Maccura Biotechnology Co., Ltd, Chengdu, 611730, China
| | - Danhua Shen
- Department of Pathology, Peking University People's Hospital, Beijing, 100044, China
| | - Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
4
|
Zhang H, Liu X, Wang X, Yan Z, Xu Y, Gaňová M, Řezníček T, Korabečná M, Neuzil P. SPEED: an integrated, smartphone-operated, handheld digital PCR Device for point-of-care testing. MICROSYSTEMS & NANOENGINEERING 2024; 10:62. [PMID: 38770032 PMCID: PMC11102901 DOI: 10.1038/s41378-024-00689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 05/22/2024]
Abstract
This study elaborates on the design, fabrication, and data analysis details of SPEED, a recently proposed smartphone-based digital polymerase chain reaction (dPCR) device. The dPCR chips incorporate partition diameters ranging from 50 μm to 5 μm, and these partitions are organized into six distinct blocks to facilitate image processing. Due to the superior thermal conductivity of Si and its potential for mass production, the dPCR chips were fabricated on a Si substrate. A temperature control system based on a high-power density Peltier element and a preheating/cooling PCR protocol user interface shortening the thermal cycle time. The optical design employs four 470 nm light-emitting diodes as light sources, with filters and mirrors effectively managing the light emitted during PCR. An algorithm is utilized for image processing and illumination nonuniformity correction including conversion to a monochromatic format, partition identification, skew correction, and the generation of an image correction mask. We validated the device using a range of deoxyribonucleic acid targets, demonstrating its potential applicability across multiple fields. Therefore, we provide guidance and verification of the design and testing of the recently proposed SPEED device.
Collapse
Affiliation(s)
- Haoqing Zhang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 PR China
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education; School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 PR China
| | - Xiaocheng Liu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 PR China
| | - Xinlu Wang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 PR China
| | - Zhiqiang Yan
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 PR China
| | - Ying Xu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 PR China
| | - Martina Gaňová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61300 Brno, Czech Republic
| | - Tomáš Řezníček
- ITD Tech S.R.O, Osvoboditelu, 1005, 735 81 Bohumín, Czech Republic
| | - Marie Korabečná
- Institute of Biology and Medical Genetics; First Faculty of Medicine, Charles University and General University Hospital of Prague, Albertov 4, 12800 Prague, Czech Republic
| | - Pavel Neuzil
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 PR China
| |
Collapse
|
5
|
Ju DU, Park D, Kim IH, Kim S, Yoo HM. Development of Human Rhinovirus RNA Reference Material Using Digital PCR. Genes (Basel) 2023; 14:2210. [PMID: 38137032 PMCID: PMC10742479 DOI: 10.3390/genes14122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The human rhinovirus (RV) is a positive-stranded RNA virus that causes respiratory tract diseases affecting both the upper and lower halves of the respiratory system. RV enhances its replication by concentrating RNA synthesis within a modified host membrane in an intracellular compartment. RV infections often occur alongside infections caused by other respiratory viruses, and the RV virus may remain asymptomatic for extended periods. Alongside qualitative detection, it is essential to accurately quantify RV RNA from clinical samples to explore the relationships between RV viral load, infections caused by the virus, and the resulting symptoms observed in patients. A reference material (RM) is required for quality evaluation, the performance evaluation of molecular diagnostic products, and evaluation of antiviral agents in the laboratory. The preparation process for the RM involves creating an RV RNA mixture by combining RV viral RNA with RNA storage solution and matrix. The resulting RV RNA mixture is scaled up to a volume of 25 mL, then dispensed at 100 µL per vial and stored at -80 °C. The process of measuring the stability and homogeneity of RV RMs was conducted by employing reverse transcription droplet digital polymerase chain reaction (RT-ddPCR). Digital PCR is useful for the analysis of standards and can help to improve measurement compatibility: it represents the equivalence of a series of outcomes for reference materials and samples being analyzed when a few measurement procedures are employed, enabling objective comparisons between quantitative findings obtained through various experiments. The number of copies value represents a measured result of approximately 1.6 × 105 copies/μL. The RM has about an 11% bottle-to-bottle homogeneity and shows stable results for 1 week at temperatures of 4 °C and -20 °C and for 12 months at a temperature of -80 °C. The developed RM can enhance the dependability of RV molecular tests by providing a precise reference value for the absolute copy number of a viral target gene. Additionally, it can serve as a reference for diverse studies.
Collapse
Affiliation(s)
- Dong U Ju
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongju Park
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Il-Hwan Kim
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Seil Kim
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Rashid SA, Nazakat R, Muhamad Robat R, Ismail R, Suppiah J, Rajendran K, Raj Louis Masalamany ASS, Muhamad Hendri NA, Mohamad N, Khairul Hasni NA, Suib FA, Nik Hassan NMN, Pahrol MA, Shaharudin R. Droplet digital PCR application for the detection of SARS-CoV-2 in air sample. Front Public Health 2023; 11:1208348. [PMID: 37965510 PMCID: PMC10641526 DOI: 10.3389/fpubh.2023.1208348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may transmit through airborne route particularly when the aerosol particles remain in enclosed spaces with inadequate ventilation. There has been no standard recommended method of determining the virus in air due to limitations in pre-analytical and technical aspects. Furthermore, the presence of low virus loads in air samples could result in false negatives. Our study aims to explore the feasibility of detecting SARS-CoV-2 ribonucleic acid (RNA) in air samples using droplet digital polymerase chain reaction (ddPCR). Active and passive air sampling was conducted between December 2021 and February 2022 with the presence of COVID-19 confirmed cases in two hospitals and a quarantine center in Klang Valley, Malaysia. SARS-CoV-2 RNA in air was detected and quantified using ddPCR and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The comparability of two different digital PCR platforms (QX200 and QIAcuity) to RT-PCR were also investigated. Additionally negative staining transmission electron microscopy was performed to visualize virus ultrastructure. Detection rates of SARS-CoV-2 in air samples using ddPCR were higher compared to RT-PCR, which were 15.2% (22/145) and 3.4% (5/145), respectively. The sensitivity and specificity of ddPCR was 100 and 87%, respectively. After excluding 17 negative samples (50%) by both QX200 and QIAcuity, 15% samples (5/34) were found to be positive both ddPCR and dPCR. There were 23.5% (8/34) samples that were detected positive by ddPCR but negative by dPCR. In contrast, there were 11.7% (4/34) samples that were detected positive by dPCR but negative by ddPCR. The SARS-CoV-2 detection method by ddPCR is precise and has a high sensitivity for viral RNA detection. It could provide advances in determining low viral titter in air samples to reduce false negative reports, which could complement detection by RT-PCR.
Collapse
Affiliation(s)
- Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Raheel Nazakat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Rosnawati Muhamad Robat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Rohaida Ismail
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Jeyanthi Suppiah
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Kamesh Rajendran
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - A. S. Santhana Raj Louis Masalamany
- Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nur Afrina Muhamad Hendri
- Special Resource Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nadia Mohamad
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Fatin Amirah Suib
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Nik Muhamad Nizam Nik Hassan
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Muhammad Alfatih Pahrol
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Rafiza Shaharudin
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| |
Collapse
|
7
|
Kavita U, Sun K, Braun M, Lembke W, Mody H, Kamerud J, Yang TY, Braun IV, Fang X, Gao W, Gupta S, Hofer M, Liao MZ, Loo L, McBlane F, Menochet K, Stubenrauch KG, Upreti VV, Vigil A, Wiethoff CM, Xia CQ, Zhu X, Jawa V, Chemuturi N. PK/PD and Bioanalytical Considerations of AAV-Based Gene Therapies: an IQ Consortium Industry Position Paper. AAPS J 2023; 25:78. [PMID: 37523051 DOI: 10.1208/s12248-023-00842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Interest and efforts to use recombinant adeno-associated viruses (AAV) as gene therapy delivery tools to treat disease have grown exponentially. However, gaps in understanding of the pharmacokinetics/pharmacodynamics (PK/PD) and disposition of this modality exist. This position paper comes from the Novel Modalities Working Group (WG), part of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). The pan-industry WG effort focuses on the nonclinical PK and clinical pharmacology aspects of AAV gene therapy and related bioanalytical considerations.Traditional PK concepts are generally not applicable to AAV-based therapies due to the inherent complexity of a transgene-carrying viral vector, and the multiple steps and analytes involved in cell transduction and transgene-derived protein expression. Therefore, we explain PK concepts of biodistribution of AAV-based therapies and place key terminologies related to drug exposure and PD in the proper context. Factors affecting biodistribution are presented in detail, and guidelines are provided to design nonclinical studies to enable a stage-gated progression to Phase 1 testing. The nonclinical and clinical utility of transgene DNA, mRNA, and protein analytes are discussed with bioanalytical strategies to measure these analytes. The pros and cons of qPCR vs. ddPCR technologies for DNA/RNA measurement and qualitative vs. quantitative methods for transgene-derived protein are also presented. Last, best practices and recommendations for use of clinical and nonclinical data to project human dose and response are discussed. Together, the manuscript provides a holistic framework to discuss evolving concepts of PK/PD modeling, bioanalytical technologies, and clinical dose selection in gene therapy.
Collapse
Affiliation(s)
- Uma Kavita
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA.
| | - Kefeng Sun
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA.
| | - Manuela Braun
- Bayer AG, Pharmaceuticals R&D, 13342, Berlin, Germany
| | - Wibke Lembke
- Integrated Biologix GmbH, 4051, Basel, Switzerland
| | - Hardik Mody
- Genentech Inc., South San Francisco, California, USA
| | | | - Tong-Yuan Yang
- Janssen R&D LLC., Spring House, Pennsylvania, 19477, USA
| | | | - Xiaodong Fang
- Asklepios BioPharmaceutical, Inc., Research Triangle, North Carolina, 27709, USA
| | - Wei Gao
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, 01821, USA
| | - Swati Gupta
- AbbVie, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Magdalena Hofer
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA
| | | | - LiNa Loo
- Vertex Pharmaceuticals Boston, Boston, Massachusetts, 02210, USA
| | | | | | | | | | - Adam Vigil
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, 06877, USA
| | | | - Cindy Q Xia
- ReNAgade Therapeutics, Cambridge, Massachusetts, 02142, USA
| | - Xu Zhu
- AstraZeneca, Waltham, Massachusetts, 02451, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrence Township, New Jersey, 08648, USA
| | - Nagendra Chemuturi
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA
| |
Collapse
|
8
|
Luo T, Li L, Wang S, Cheng N. Research Progress of Nucleic Acid Detection Technology for Genetically Modified Maize. Int J Mol Sci 2023; 24:12247. [PMID: 37569623 PMCID: PMC10418336 DOI: 10.3390/ijms241512247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Genetically modified (GM) maize is one of the earliest GM crops to have achieved large-scale commercial cultivation globally, and it is of great significance to excel in the development and implementation of safety policy regarding GM, and in its technical oversight. This article describes the general situation regarding genetically modified maize, including its varieties, applications, relevant laws and regulations, and so on. From a technical point of view, we summarize and critically analyze the existing methods for detecting nucleic acid levels in genetically modified maize. The nucleic acid extraction technology used for maize is explained, and the introduction of traditional detection techniques, which cover variable-temperature and isothermal amplification detection technology and gene chip technology, applications in maize are described. Moreover, new technologies are proposed, with special attention paid to nucleic acid detection methods using sensors. Finally, we review the current limitations and challenges of GM maize nucleic acid testing and share our vision for the future direction of this field.
Collapse
Affiliation(s)
- Tongyun Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Lujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Shirui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Nan Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
9
|
Niu C, Dong L, Zhang J, Wang D, Gao Y. Reference material development for detection of human respiratory syncytial virus using digital PCR. Anal Bioanal Chem 2023:10.1007/s00216-023-04704-9. [PMID: 37160423 PMCID: PMC10169126 DOI: 10.1007/s00216-023-04704-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Nucleic acid testing is a powerful tool for the detection of various pathogens. Respiratory syncytial virus (RSV) is a major cause of acute respiratory infection, especially in young children and infants. To improve the confidence and reliability of nucleic acid testing results for RSV, reference materials (RMs) of both type A and B of RSV were developed by the National Institute of Metrology, China, code numbers NIM-RM 4057 and 4058. The reference material was composed of in vitro transcribed RNA containing the nucleocapsid (N) gene, matrix (M) gene, and partial polymerase (L) gene of RSV. A duplex reverse transcription digital PCR method was established with limit of blank (LoB), limit of detection (LoD) and limit of quantification (LoQ) of 2, 5, and 23 copies per reaction for RSV-A and 4, 8, and 20 copies per reaction for RSV-B. The certified value and expanded uncertainty (U, k = 2) of the two RMs were determined to be (6.1 ± 1.4) × 104 copies/μL for RSV-A and (5.3 ± 1.2) × 104 copies/μL for RSV-B. The developed RMs can be used as standards to evaluate the performance of RSV detection assays.
Collapse
Affiliation(s)
- Chunyan Niu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China.
| | - Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Jiejie Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, China
| |
Collapse
|
10
|
Chaudhuri R, Prasanth T, Dash J. Expanding the Toolbox of Target Directed Bio-Orthogonal Synthesis: In Situ Direct Macrocyclization by DNA Templates. Angew Chem Int Ed Engl 2023; 62:e202215245. [PMID: 36437509 DOI: 10.1002/anie.202215245] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Herein, we demonstrate for the first time that noncanonical DNA can direct macrocyclization-like challenging reactions to synthesize gene modulators. The planar G-quartets present in DNA G-quadruplexes (G4s) provide a size complementary reaction platform for the bio-orthogonal macrocyclization of bifunctional azide and alkyne fragments over oligo- and polymerization. G4s immobilized on gold-coated magnetic nanoparticles have been used as target templates to enable easy identification of a selective peptidomimetic macrocycle. Structurally similar macrocycles have been synthesized to understand their functional role in the modulation of gene function. The innate fluorescence of the in situ formed macrocycle has been utilized to monitor its cellular localization using a G4 antibody and its in cell formation from the corresponding azide and alkyne fragments. The successful execution of in situ macrocyclization in vitro and in cells would open up a new dimension for target-directed therapeutic applications.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India
| | - Thumpati Prasanth
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Chunilal Bhawan,168, Maniktala Main Road, P.O. Bengal Chemicals, P.S. Phoolbagan, Kolkata, 700054, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700099, India
| |
Collapse
|
11
|
Abstract
Droplet digital polymerase chain reaction (ddPCR) is a new quantitative PCR method based on water-oil emulsion droplet technology. ddPCR enables highly sensitive and accurate quantification of nucleic acid molecules, especially when their copy numbers are low. In ddPCR, a sample is fractionated into ~20,000 droplets, and every nanoliter-sized droplet undergoes PCR amplification of the target molecule. The fluorescence signals of droplets are then recorded by an automated droplet reader. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitously expressed in animals and plants. CircRNAs are promising as biomarkers for cancer diagnosis and prognosis and as therapeutic targets or agents to inhibit oncogenic microRNAs or proteins (Kristensen LS, Jakobsen T, Hager H, Kjems J, Nat Rev Clin Oncol 19:188-206, 2022). In this chapter, the procedures for the quantitation of a circRNA in single pancreatic cancer cells using ddPCR are described.
Collapse
Affiliation(s)
- Jiayi Peng
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Feng Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xiangdong Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Shen Hu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Gezer U, Bronkhorst AJ, Holdenrieder S. The Clinical Utility of Droplet Digital PCR for Profiling Circulating Tumor DNA in Breast Cancer Patients. Diagnostics (Basel) 2022; 12:diagnostics12123042. [PMID: 36553049 PMCID: PMC9776872 DOI: 10.3390/diagnostics12123042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Breast cancer is the most common cancer affecting women worldwide. It is a malignant and heterogeneous disease with distinct molecular subtypes, which has prognostic and predictive implications. Circulating tumor DNA (ctDNA), cell-free fragmented tumor-derived DNA in blood plasma, is an invaluable source of specific cancer-associated mutations and holds great promise for the development of minimally invasive diagnostic tests. Furthermore, serial monitoring of ctDNA over the course of systemic and targeted therapies not only allows unparalleled efficacy assessments but also enables the identification of patients who are at risk of progression or recurrence. Droplet digital PCR (ddPCR) is a powerful technique for the detection and monitoring of ctDNA. Due to its relatively high accuracy, sensitivity, reproducibility, and capacity for absolute quantification, it is increasingly used as a tool for managing cancer patients through liquid biopsies. In this review paper, we gauge the clinical utility of ddPCR as a technique for mutational profiling in breast cancer patients and focus on HER2, PIK3CA, ESR1, and TP53, which represent the most frequently mutated genes in breast cancers.
Collapse
Affiliation(s)
- Ugur Gezer
- Institute of Oncology, Department of Basic Oncology, Istanbul University, Istanbul 34093, Turkey
| | - Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich Technical University Munich, 80636 München, Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Munich Technical University Munich, 80636 München, Germany
- Correspondence:
| |
Collapse
|
13
|
Xia Y, Chu X, Zhao C, Wang N, Yu J, Jin Y, Sun L, Ma S. A Glass-Ultra-Thin PDMS Film-Glass Microfluidic Device for Digital PCR Application Based on Flexible Mold Peel-Off Process. MICROMACHINES 2022; 13:mi13101667. [PMID: 36296020 PMCID: PMC9608979 DOI: 10.3390/mi13101667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 05/27/2023]
Abstract
The microfluidic device (MFD) with a glass−PDMS−glass (G-P-G) structure is of interest for a wide range of applications. However, G-P-G MFD fabrication with an ultra-thin PDMS film (especially thickness less than 200 μm) is still a big challenge because the ultra-thin PDMS film is easily deformed, curled, and damaged during demolding and transferring. This study aimed to report a thickness-controllable and low-cost fabrication process of the G-P-G MFD with an ultra-thin PDMS film based on a flexible mold peel-off process. A patterned photoresist layer was deposited on a polyethylene terephthalate (PET) film to fabricate a flexible mold that could be demolded softly to achieve a rigid structure of the glass−PDMS film. The thickness of ultra-thin patterned PDMS could reach less than 50 μm without damage to the PDMS film. The MFD showcased the excellent property of water evaporation inhibition (water loss < 10%) during PCR thermal cycling because of the ultra-thin PDMS film. Its low-cost fabrication process and excellent water evaporation inhibition present extremely high prospects for digital PCR application.
Collapse
Affiliation(s)
- Yanming Xia
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Xianglong Chu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| | - Caiming Zhao
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanxin Wang
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Juan Yu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| | - Yufeng Jin
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lijun Sun
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shenglin Ma
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Tiwari A, Ahmed W, Oikarinen S, Sherchan SP, Heikinheimo A, Jiang G, Simpson SL, Greaves J, Bivins A. Application of digital PCR for public health-related water quality monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155663. [PMID: 35523326 DOI: 10.1016/j.scitotenv.2022.155663] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 05/25/2023]
Abstract
Digital polymerase chain reaction (dPCR) is emerging as a reliable platform for quantifying microorganisms in the field of water microbiology. This paper reviews the fundamental principles of dPCR and its application for health-related water microbiology. The relevant literature indicates increasing adoption of dPCR for measuring fecal indicator bacteria, microbial source tracking marker genes, and pathogens in various aquatic environments. The adoption of dPCR has accelerated recently due to increasing use for wastewater surveillance of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) - the virus that causes Coronavirus Disease 2019 (COVID-19). The collective experience in the scientific literature indicates that well-optimized dPCR assays can quantify genetic material from microorganisms without the need for a calibration curve and often with superior analytical performance (i.e., greater sensitivity, precision, and reproducibility) than quantitative polymerase chain reaction (qPCR). Nonetheless, dPCR should not be viewed as a panacea for the fundamental uncertainties and limitations associated with measuring microorganisms in water microbiology. With dPCR platforms, the sample analysis cost and processing time are typically greater than qPCR. However, if improved analytical performance (i.e., sensitivity and accuracy) is critical, dPCR can be an alternative option for quantifying microorganisms, including pathogens, in aquatic environments.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, Queensland, Australia
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA; Department of Biology, Morgan State University, Baltimore, MD 21251, USA; BioEnvironmental Science Program, Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | | | - Justin Greaves
- School of Environmental Sustainability, Loyola University Chicago, 6364 N. Sheridan Rd, Chicago, IL 60660, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, LA, USA.
| |
Collapse
|
15
|
Xiong Y, Huang Q, Canady TD, Barya P, Liu S, Arogundade OH, Race CM, Che C, Wang X, Zhou L, Wang X, Kohli M, Smith AM, Cunningham BT. Photonic crystal enhanced fluorescence emission and blinking suppression for single quantum dot digital resolution biosensing. Nat Commun 2022; 13:4647. [PMID: 35941132 PMCID: PMC9360002 DOI: 10.1038/s41467-022-32387-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2022] [Indexed: 12/21/2022] Open
Abstract
While nanoscale quantum emitters are effective tags for measuring biomolecular interactions, their utilities for applications that demand single-unit observations are limited by the requirements for large numerical aperture (NA) objectives, fluorescence intermittency, and poor photon collection efficiency resulted from omnidirectional emission. Here, we report a nearly 3000-fold signal enhancement achieved through multiplicative effects of enhanced excitation, highly directional extraction, quantum efficiency improvement, and blinking suppression through a photonic crystal (PC) surface. The approach achieves single quantum dot (QD) sensitivity with high signal-to-noise ratio, even when using a low-NA lens and an inexpensive optical setup. The blinking suppression capability of the PC improves the QDs on-time from 15% to 85% ameliorating signal intermittency. We developed an assay for cancer-associated miRNA biomarkers with single-molecule resolution, single-base mutation selectivity, and 10-attomolar detection limit. Additionally, we observed differential surface motion trajectories of QDs when their surface attachment stringency is altered by changing a single base in a cancer-specific miRNA sequence.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Qinglan Huang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Taylor D Canady
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Priyash Barya
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shengyan Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H Arogundade
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Caitlin M Race
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Congnyu Che
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiaojing Wang
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lifeng Zhou
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xing Wang
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Manish Kohli
- Department of Oncology, Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Andrew M Smith
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle Illinois College of Medicine, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Urbana, IL, 61801, USA
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
International co-validation on absolute quantification of single nucleotide variants of KRAS by digital PCR. Anal Bioanal Chem 2022; 414:5899-5906. [DOI: 10.1007/s00216-022-04155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/15/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
|
17
|
Gentilini F, Palgrave CJ, Neta M, Tornago R, Furlanello T, McKay JS, Sacchini F, Turba ME. Validation of a Liquid Biopsy Protocol for Canine BRAFV595E Variant Detection in Dog Urine and Its Evaluation as a Diagnostic Test Complementary to Cytology. Front Vet Sci 2022; 9:909934. [PMID: 35711804 PMCID: PMC9195143 DOI: 10.3389/fvets.2022.909934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
A significant proportion of canine urothelial carcinomas carry the driver valine to glutamic acid variation (V595E) in BRAF kinase. The detection of V595E may prove suitable to guide molecularly targeted therapies and support non-invasive diagnosis of the urogenital system by means of a liquid biopsy approach using urine. Three cohorts and a control group were included in this multi-step validation study which included setting up a digital PCR assay. This was followed by investigation of preanalytical factors and two alternative PCR techniques on a liquid biopsy protocol. Finally, a blind study using urine as diagnostic sample has been carried out to verify its suitability as diagnostic test to complement cytology. The digital PCR (dPCR) assay proved consistently specific, sensitive, and linear. Using the dPCR assay, the prevalence of V595E in 22 urothelial carcinomas was 90.9%. When compared with histopathology as gold standard in the blind-label cases, the diagnostic accuracy of using the canine BRAF (cBRAF) variation as a surrogate assay against the histologic diagnosis was 85.7% with 92.3% positive predictive value and 80.0% negative predictive value. In all the cases, in which both biopsy tissue and the associated urine were assayed, the findings matched completely. Finally, when combined with urine sediment cytology examination in blind-label cases with clinical suspicion of malignancy, the dPCR assay significantly improved the overall diagnostic accuracy. A liquid biopsy approach on urine using the digital PCR may be a valuable breakthrough in the diagnostic of urothelial carcinomas in dogs.
Collapse
Affiliation(s)
- Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | | | - Michal Neta
- IDEXX Laboratories Ltd., Wetherby, West Yorkshire, United Kingdom
| | - Raimondo Tornago
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | | | - Jennifer S McKay
- IDEXX Laboratories Ltd., Wetherby, West Yorkshire, United Kingdom
| | | | | |
Collapse
|
18
|
Zaytseva M, Usman N, Salnikova E, Sanakoeva A, Valiakhmetova A, Chervova A, Papusha L, Novichkova G, Druy A. Methodological Challenges of Digital PCR Detection of the Histone H3 K27M Somatic Variant in Cerebrospinal Fluid. Pathol Oncol Res 2022; 28:1610024. [PMID: 35498161 PMCID: PMC9039021 DOI: 10.3389/pore.2022.1610024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022]
Abstract
Cell-free DNA (cfDNA) in body fluids is invaluable for cancer diagnostics. Despite the impressive potential of liquid biopsies for the diagnostics of central nervous system (CNS) tumors, a number of challenges prevent introducing this approach into routine laboratory practice. In this study, we adopt a protocol for sensitive detection of the H3 K27M somatic variant in cerebrospinal fluid (CSF) by using digital polymerase chain reaction (dPCR). Optimization of the protocol was carried out stepwise, including preamplification of the H3 target region and adjustment of dPCR conditions. The optimized protocol allowed detection of the mutant allele starting from DNA quantities as low as 9 picograms. Analytical specificity was tested using a representative group of tumor tissue samples with known H3 K27M status, and no false-positive cases were detected. The protocol was applied to a series of CSF samples collected from patients with CNS tumors (n = 18) using two alternative dPCR platforms, QX200 Droplet Digital PCR system (Bio-Rad) and QIAcuity Digital PCR System (Qiagen). In three out of four CSF specimens collected from patients with H3 K27M-positive diffuse midline glioma, both platforms allowed detection of the mutant allele. The use of ventricular access for CSF collection appears preferential, as lumbar CSF samples may produce ambiguous results. All CSF samples collected from patients with H3 wild-type tumors were qualified as H3 K27M-negative. High agreement of the quantitative data obtained with the two platforms demonstrates universality of the approach.
Collapse
Affiliation(s)
- Margarita Zaytseva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natalia Usman
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Salnikova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Agunda Sanakoeva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Andge Valiakhmetova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Almira Chervova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Ludmila Papusha
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexander Druy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Research Institute of Medical Cell Technologies, Yekaterinburg, Russia
| |
Collapse
|
19
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
20
|
Fang X, Li W, Gao T, Ain Zahra QU, Luo Z, Pei R. Rapid screening of aptamers for fluorescent targets by integrated digital PCR and flow cytometry. Talanta 2022; 242:123302. [PMID: 35180537 DOI: 10.1016/j.talanta.2022.123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
In this paper, we report the development of a new strategy termed integrated digital PCR-fluorescence activated sorting based SELEX (IFS-SELEX) that enables rapid screening of aptamers against fluorescent targets. Initially, this strategy employs an integrated digital PCR system to amplify each sequence of a preliminarily enriched library, which is obtained by a traditional SELEX method, on the surface of polystyrene beads. Then, the as-prepared beads are incubated with the fluorescent target and then subjected to fluorescence-activated sorting. Since only those sequences with high binding affinity for the target are collected and sequenced, unnecessary analysis of ineligible sequences is avoided by this method, and the aptamer selection process is thereby greatly streamlined. As a proof-of-concept, we applied this strategy for the screening of aptamers against two fluorescent targets, i.e., ciprofloxacin (CFX) and thioflavin T (ThT), and successfully obtained corresponding sequences with low dissociation constants. The binding affinities of aptamers for ThT were well associated with the sorting regions defined in the fluorescence channel of the flow cytometry process. The experimental results demonstrated that the as-designed IFS-SELEX method can serve as a universal platform for rapid, facile, and efficient aptamer selection against various fluorescent targets.
Collapse
Affiliation(s)
- Xiaona Fang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tian Gao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
21
|
Hyung JH, Hwang J, Moon SJ, Kim EJ, Kim DW, Park J. Development of a Method for Detecting Alexandrium pacificum Based on the Quantification of sxtA4 by Chip-Based Digital PCR. Toxins (Basel) 2022; 14:111. [PMID: 35202138 PMCID: PMC8877084 DOI: 10.3390/toxins14020111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/18/2022] Open
Abstract
Alexandrium pacificum, which produces the paralytic shellfish toxin (PST) saxitoxin (STX), is one of the causative species of paralytic shellfish poisoning outbreaks in coastal areas of Korea. In this study, we developed a chip-based digital PCR (dPCR) method for A. pacificum detection and tested it for monitoring in Jinhae-Masan Bay. Using the sequence of an A. pacificum strain isolated in 2017, species-specific primers targeting sxtA4 (a STX biosynthesis-related gene) were designed and used in a dPCR, detecting 2.0 ± 0.24 gene copies per cell of A. pacificum. Cell abundance in field samples, estimated by a chip-based dPCR, was compared with the PST content, and measured using a mouse bioassay. A comparison with shellfish PST concentrations indicated that cell concentrations above 500 cells L-1, as measured using the dPCR assay, may cause shellfish PST concentrations to exceed the allowed limits for PSTs. Concordance rates between dPCR and PST results were 62.5% overall in 2018-2021, reaching a maximum of 91.7% in 2018-2019. The sensitivity of the dPCR assay was higher than that of microscopy and sxtA4-based qPCRs. Absolute quantification by chip-based dPCRs targeting sxtA4 in A. pacificum exhibits potential as a complementary approach to mouse bioassay PST monitoring for the prevention of toxic blooms.
Collapse
Affiliation(s)
- Jun-Ho Hyung
- Environment and Resource Convergence Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea; (J.-H.H.); (S.-J.M.); (E.-J.K.)
| | - Jinik Hwang
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 22383, Korea;
| | - Seung-Joo Moon
- Environment and Resource Convergence Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea; (J.-H.H.); (S.-J.M.); (E.-J.K.)
| | - Eun-Joo Kim
- Environment and Resource Convergence Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea; (J.-H.H.); (S.-J.M.); (E.-J.K.)
| | - Dong-Wook Kim
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Korea;
| | - Jaeyeon Park
- Environment and Resource Convergence Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea; (J.-H.H.); (S.-J.M.); (E.-J.K.)
| |
Collapse
|
22
|
Lee SS, Kim S, Yoo HM, Lee DH, Bae YK. Development of SARS-CoV-2 packaged RNA reference material for nucleic acid testing. Anal Bioanal Chem 2022; 414:1773-1785. [PMID: 34958396 PMCID: PMC8711077 DOI: 10.1007/s00216-021-03846-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Nucleic acid tests to detect the SARS-CoV-2 virus have been performed worldwide since the beginning of the COVID-19 pandemic. For the quality assessment of testing laboratories and the performance evaluation of molecular diagnosis products, reference materials (RMs) are required. In this work, we report the production of a lentiviral SARS-CoV-2 RM containing approximately 12 kilobases of its genome including common diagnostics targets such as RdRp, N, E, and S genes. The RM was measured with multiple assays using two different digital PCR platforms. To measure the homogeneity and stability of the lentiviral SARS-CoV-2 RM, reverse transcription droplet digital PCR (RT-ddPCR) was used with in-house duplex assays. The copy number concentration of each target gene in the extracted RNA solution was then converted to that of the RM solution. Their copy number values are measured to be from 1.5 × 105 to 2.0 × 105 copies/mL. The RM has a between-bottle homogeneity of 4.80-8.23% and is stable at 4 °C for 1 week and at -70 °C for 6 months. The lentiviral SARS-CoV-2 RM closely mimics real samples that undergo identical pre-analytical processes for SARS-CoV-2 molecular testing. By offering accurate reference values for the absolute copy number of viral target genes, the developed RM can be used to improve the reliability of SARS-CoV-2 molecular testing.
Collapse
Affiliation(s)
- Sang-Soo Lee
- Bio-Metrology Group, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Seil Kim
- Bio-Metrology Group, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Korea
- Department of Bio-Analytical Science, University of Science & Technology (UST), Daejeon, 34113, Korea
- Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Hee Min Yoo
- Bio-Metrology Group, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Korea
- Department of Bio-Analytical Science, University of Science & Technology (UST), Daejeon, 34113, Korea
| | - Da-Hye Lee
- Bio-Metrology Group, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| | - Young-Kyung Bae
- Bio-Metrology Group, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
23
|
A Practical Approach for Quantitative Polymerase Chain Reaction, the Gold Standard in Microbiological Diagnosis. SCI 2022. [DOI: 10.3390/sci4010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
From gene expression studies to identifying microbes, quantitative polymerase chain reaction (qPCR) is widely used in research and medical diagnostics. In transmittable diseases like the Ebola outbreak in West Africa (2014–2016), or the present SARS-CoV2 pandemic qPCR plays a key role in the detection of infected patients. Although the technique itself is decades old with reliable approaches (e.g., TaqMan assay) in the diagnosis of pathogens many people showed distrust in it during the SARS-CoV2 outbreak. This came mainly from not understanding or misunderstanding the principles of qPCR. This situation motivated us to design a simple laboratory practical class, in which students have opportunities to understand the underlying principles of qPCR and its advantages in microbiological diagnosis. Moreover, during the exercise, students can develop skills such as handling experimental assays, and the ability to solve problems, discuss their observations. Finally, this activity brings them closer to the clinical practice and they can see the impact of the science on real life. The class is addressed to undergraduate students of biological sciences.
Collapse
|
24
|
Supervised learning based on tumor imaging and biopsy transcriptomics predicts response of hepatocellular carcinoma to transarterial chemoembolization. Cell Rep Med 2021; 2:100444. [PMID: 34841291 PMCID: PMC8606904 DOI: 10.1016/j.xcrm.2021.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022]
Abstract
Although transarterial chemoembolization (TACE) is the most widely used treatment for intermediate-stage, unresectable hepatocellular carcinoma (HCC), it is only effective in a subset of patients. In this study, we combine clinical, radiological, and genomics data in supervised machine-learning models toward the development of a clinically applicable predictive classifier of response to TACE in HCC patients. Our study consists of a discovery cohort of 33 tumors through which we identify predictive biomarkers, which are confirmed in a validation cohort. We find that radiological assessment of tumor area and several transcriptomic signatures, primarily the expression of FAM111B and HPRT1, are most predictive of response to TACE. Logistic regression decision support models consisting of tumor area and RNA-seq gene expression estimates for FAM111B and HPRT1 yield a predictive accuracy of ∼90%. Reverse transcription droplet digital PCR (RT-ddPCR) confirms these genes in combination with tumor area as a predictive classifier for response to TACE. Tumor imaging and transcriptomics enables patient selection for good response to TACE PRETACE is a LR model based on tumor area and expression of FAM111B and HPRT1 PRETACE predicts response to TACE with ∼90% accuracy
Collapse
|
25
|
Niu C, Wang X, Zhang Y, Lu L, Wang D, Gao Y, Wang S, Luo J, Jiang Y, Wang N, Guo Y, Zhu L, Dong L. Interlaboratory assessment of quantification of SARS-CoV-2 RNA by reverse transcription digital PCR. Anal Bioanal Chem 2021; 413:7195-7204. [PMID: 34697653 PMCID: PMC8545465 DOI: 10.1007/s00216-021-03680-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 01/23/2023]
Abstract
The pandemic of the novel coronavirus disease 2019 (COVID-19) has caused severe harm to the health of people all around the world. Molecular detection of the pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), played a crucial role in the control of the disease. Reverse transcription digital PCR (RT-dPCR) has been developed and used in the detection of SARS-CoV-2 RNA as an absolute quantification method. Here, an interlaboratory assessment of quantification of SARS-CoV-2 RNA was organized by the National Institute of Metrology, China (NIMC), using in vitro transcribed RNA samples, among ten laboratories on six different dPCR platforms. Copy number concentrations of three genes of SARS-CoV-2 were measured by all participants. Consistent results were obtained with dispersion within 2.2-fold and CV% below 23% among different dPCR platforms and laboratories, and Z′ scores of all the reported results being satisfactory. Possible reasons for the dispersion included PCR assays, partition volume, and reverse transcription conditions. This study demonstrated the comparability and applicability of RT-dPCR method for quantification of SARS-CoV-2 RNA and showed the capability of the participating laboratories at SARS-CoV-2 test by RT-dPCR platform.
Collapse
Affiliation(s)
- Chunyan Niu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yongzhuo Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Lin Lu
- Center for Reference Materials Research and Management (Office of National Research Center for Certified Reference Materials), National Institute of Metrology, Beijing, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Shangjun Wang
- Biological Metrology Center, Nanjing Institute of Measurement and Testing Technology, Nanjing, China
| | - Jingyan Luo
- R & D Department, Guangdong Forevergen Medical Technology Co., Ltd, Foshan, China
| | - Ying Jiang
- R & D Department, Mission Medical Technologies (Ningbo) Co., Ltd, Ningbo, China
| | - Nuo Wang
- Key Laboratory of Emerging Pathogens and Biosafety, Centre for Biosafety Mega-Sciences, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yong Guo
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
| | | | - Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
| |
Collapse
|
26
|
Cao L, Guo X, Mao P, Ren Y, Li Z, You M, Hu J, Tian M, Yao C, Li F, Xu F. A Portable Digital Loop-Mediated Isothermal Amplification Platform Based on Microgel Array and Hand-Held Reader. ACS Sens 2021; 6:3564-3574. [PMID: 34606243 DOI: 10.1021/acssensors.1c00603] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Digital polymerase chain reaction (dPCR) has found widespread applications in molecular diagnosis of various diseases owing to its sensitive single-molecule detection capability. However, the existing dPCR platforms rely on the auxiliary procedure to disperse DNA samples, which needs complicated operation, expensive apparatus, and consumables. Besides, the complex and costly dPCR readers also impede the applications of dPCR for point-of-care testing (POCT). Herein, we developed a portable digital loop-mediated isothermal amplification (dLAMP) platform, integrating a microscale hydrogel (microgel) array chip for sample partition, a miniaturized heater for DNA amplification, and a hand-held reader for digital readout. In the platform, the chip with thousands of isolated microgels holds the capability of self-absorption and partition of DNA samples, thus avoiding auxiliary equipment and professional personnel operations. Using the integrated dLAMP platform, λDNA templates have been quantified with a good linear detection range of 2-1000 copies/μL and a detection limit of 1 copy/μL. As a demonstration, the epidermal growth factor receptor L858R gene mutation, a crucial factor for the susceptibility of the tyrosine kinase inhibitor in non-small-cell lung cancer treatment, has been accurately identified by the dLAMP platform with a spiked plasma sample. This work shows that the developed dLAMP platform provides a low-cost, facile, and user-friendly solution for the absolute quantification of DNA, showing great potential for the POCT of nucleic acids.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaojin Guo
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
- Department of Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ping Mao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yulin Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Jie Hu
- Suzhou DiYinAn Biotechnology Company Ltd., Suzhou 215000, China
| | - Miao Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
27
|
Diagnostic Techniques for COVID-19: A Mini-review of Early Diagnostic Methods. JOURNAL OF ANALYSIS AND TESTING 2021; 5:314-326. [PMID: 34631199 PMCID: PMC8488931 DOI: 10.1007/s41664-021-00198-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022]
Abstract
The outbreak of severe pneumonia at the end of 2019 was proved to be caused by the SARS-CoV-2 virus spreading out the world. And COVID-19 spread rapidly through a terrible transmission way by human-to-human, which led to many suspected cases waiting to be diagnosed and huge daily samples needed to be tested by an effective and rapid detection method. With an increasing number of COVID-19 infections, medical pressure is severe. Therefore, more efficient and accurate diagnosis methods were keen urgently established. In this review, we summarized several methods that can rapidly and sensitively identify COVID-19; some of them are widely used as the diagnostic techniques for SARS-CoV-2 in various countries, some diagnostic technologies refer to SARS (Severe Acute Respiratory Syndrome) or/and MERS (Middle East Respiratory Syndrome) detection, which may provide potential diagnosis ideas.
Collapse
|
28
|
Zhu L, Jiang M, Wang H, Sun H, Zhu J, Zhao W, Fang Q, Yu J, Chen P, Wu S, Zheng Z, He Y. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1351. [PMID: 34532488 PMCID: PMC8422119 DOI: 10.21037/atm-21-1948] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022]
Abstract
Objective To accurately evaluate tumor heterogeneity, make multidimensional diagnosis according to the causes and phenotypes of tumor heterogeneity, and assist in the individualized treatment of tumors. Background Tumor heterogeneity is one of the most essential characteristics of malignant tumors. In tumor recurrence, development, and evolution, tumor heterogeneity can lead to the formation of different cell groups with other molecular characteristics. Tumor heterogeneity can be characterized by the uneven distribution of tumor cell subsets of other genes between and within the disease site (spatial heterogeneity) or the time change of cancer cell molecular composition (temporal heterogeneity). The discovery of tumor targeting drugs has dramatically promoted tumor therapy. However, the existence of heterogeneity seriously affects the effect of tumor treatment and the prognosis of patients. Methods The literature discussing tumor heterogeneity and its resistance to tumor therapy was broadly searched to analyze tumor heterogeneity as well as the challenges and solutions for gene detection and tumor drug therapy. Conclusions Tumor heterogeneity is affected by many factors consist of internal cell factors and cell microenvironment. Tumor heterogeneity greatly hinders effective and individualized tumor treatment. Understanding the fickle of tumors in multiple dimensions and flexibly using a variety of detection methods to capture the changes of tumors can help to improve the design of diagnosis and treatment plans for cancer and benefit millions of patients.
Collapse
Affiliation(s)
- Liang Zhu
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Minlin Jiang
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Hao Wang
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Hui Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jun Zhu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Qiyu Fang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jia Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Peixin Chen
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shengyu Wu
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Zixuan Zheng
- Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Nykel A, Woźniak R, Gach A. The Influence of Maternal Cell Contamination on Fetal Aneuploidy Detection Using Chip-Based Digital PCR Testing. Diagnostics (Basel) 2021; 11:diagnostics11091607. [PMID: 34573950 PMCID: PMC8466443 DOI: 10.3390/diagnostics11091607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Prenatal samples obtained by amniocentesis or chorionic villus sampling are at risk of maternal cell contamination (MCC). In traditional prenatal analysis, MCC is recommended to be assayed by special tests, such as the short tandem repeat analysis and, if detected at a high level, may result in failed analysis report. The objective of this study was to test the ability of chip-based digital PCR to detect fetal aneuploidies in the presence of MCC. To determine the level of accuracy of MCC detection, an aneuploid male sample was subjected to serial dilution with an euploid female sample. DNA was extracted from prenatal samples and analyzed with QuantStudio 3D Digital PCR. Digital PCR analysis allowed the detection of trisomy 21, trisomy 18, and X monosomy accurately in samples with 90%, 85%, and 92% of MCC, respectively. Moreover, our results indicated that digital PCR was able to accurately confirm the presence of Y chromosome at up to 95% contamination. The amniotic fluid and chorionic villus sampling (CVS) received in our clinical laboratory was subjected to further analysis of MCC based on the aneuploidy assessment algorithm, resulting in the identification of 10 contaminated samples and four cases of true fetal mosaicism. We conclude that chip-based digital PCR analysis enables the detection of fetal aneuploidy with high levels of accuracy, even in cases of significant MCC. Importantly, the algorithm eliminates the need for maternal DNA and additional MCC tests, which reduces costs and simplifies the diagnostic procedure. The method is easy to set up and suitable for routine clinical practice.
Collapse
Affiliation(s)
- Anna Nykel
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
- Correspondence: (A.N.); (A.G.); Tel.: +48-42271-1271 (A.G.)
| | - Rafał Woźniak
- Chair of Statistics and Econometrics, Faculty of Economic Sciences, University of Warsaw, 00-241 Warsaw, Poland;
| | - Agnieszka Gach
- Chair of Statistics and Econometrics, Faculty of Economic Sciences, University of Warsaw, 00-241 Warsaw, Poland;
- Correspondence: (A.N.); (A.G.); Tel.: +48-42271-1271 (A.G.)
| |
Collapse
|
30
|
Nykel A, Woźniak R, Gach A. Clinical Validation of Novel Chip-Based Digital PCR Platform for Fetal Aneuploidies Screening. Diagnostics (Basel) 2021; 11:diagnostics11071131. [PMID: 34206187 PMCID: PMC8306616 DOI: 10.3390/diagnostics11071131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
Fetal aneuploidy is routinely diagnosed by karyotyping. The development of techniques for rapid aneuploidy detection based on the amplification reaction allows cheaper and rapid diagnosis. However, the currently available solutions have limitations. We tested a novel approach as a diagnostic tool in clinical practice. The objective of this study was to provide a clinical performance of the sensitivity and specificity of a novel chip-based digital PCR approach for fetal aneuploidy screening. The study was conducted in 505 pregnant women with increased risk for fetal aneuploidy undergoing invasive prenatal diagnostics. DNA extracted from amniotic fluid or CVS was analyzed for the copy number of chromosomes 13, 18, 21, X, and Y using a new chip-based solution. Performance was assessed by comparing results with findings from karyotyping. Aneuploidy was confirmed in 65/505 cases positive for trisomy 21, 30/505 cases positive for trisomy 18, 14/505 cases positive for trisomy 13 and 21/505 with SCAs. Moreover, 2 cases with triploidy and 2 cases with confirmed mosaicisms of 21 and X chromosomes were detected. Clinical sensitivity and specificity within this study was determined at 100% for T21 (95% CI, 99.26–100%), T18 (95% CI, 99.26–100%), and T13 (95% CI, 99.26–100%). Chip-based digital PCR provides equally high sensitivity and specificity in rapid aneuploidy screening and can be implemented into routine prenatal diagnostics.
Collapse
Affiliation(s)
- Anna Nykel
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
- Correspondence: (A.N.); (A.G.); Tel.: +48-42271-1271 (A.G.)
| | - Rafał Woźniak
- Chair of Statistics and Econometrics, Faculty of Economic Sciences, University of Warsaw, 00-241 Warsaw, Poland;
| | - Agnieszka Gach
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
- Correspondence: (A.N.); (A.G.); Tel.: +48-42271-1271 (A.G.)
| |
Collapse
|
31
|
Gaňová M, Zhang H, Zhu H, Korabečná M, Neužil P. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens Bioelectron 2021; 181:113155. [PMID: 33740540 DOI: 10.1016/j.bios.2021.113155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/13/2021] [Accepted: 03/06/2021] [Indexed: 01/30/2023]
Abstract
The digital polymerase chain reaction (dPCR) multiplexing method can simultaneously detect and quantify closely related deoxyribonucleic acid sequences in complex mixtures. The dPCR concept is continuously improved by the development of microfluidics and micro- and nanofabrication, and different complex techniques are introduced. In this review, we introduce dPCR techniques based on sample compartmentalization, droplet- and chip-based systems, and their combinations. We then discuss dPCR multiplexing methods in both laboratory research settings and advanced or routine clinical applications. We focus on their strengths and weaknesses with regard to the character of biological samples and to the required precision of such analysis, as well as showing recently published work based on those methods. Finally, we envisage possible future achievements in this field.
Collapse
Affiliation(s)
- Martina Gaňová
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Haoqing Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Hanliang Zhu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Marie Korabečná
- 1st Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital, 12800, Prague, Czech Republic
| | - Pavel Neužil
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; The Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic.
| |
Collapse
|
32
|
Lashnits E, Maggi R, Jarskog F, Bradley J, Breitschwerdt E, Frohlich F. Schizophrenia and Bartonella spp. Infection: A Pilot Case-Control Study. Vector Borne Zoonotic Dis 2021; 21:413-421. [PMID: 33728987 PMCID: PMC8170724 DOI: 10.1089/vbz.2020.2729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, infections with emerging zoonotic bacteria of the genus Bartonella have been reported in association with a range of central nervous system (CNS) symptoms. Currently, it remains unknown if Bartonella spp. infection is associated with symptoms of schizophrenia/schizoaffective disorder (SCZ/SAD). The objective of this study was to determine if there is an association between Bartonella species infection and SCZ/SAD. A secondary objective was to determine if SCZ/SAD symptoms were more severe among participants with documented Bartonella spp. infection. Using a case-control study design, 17 cases and 13 controls were evaluated with a series of clinical and cognitive assessments. Blood samples were collected and tested for Bartonella spp. infection using serological, microbiological, and molecular techniques. People with SCZ/SAD were more likely than healthy volunteers to have Bartonella spp. DNA in their bloodstream, with 11 of 17 cases (65%) positive by Bartonella spp. droplet digital PCR (ddPCR). In comparison, only one healthy volunteer was Bartonella spp. ddPCR positive (8%, p = 0.0024). Based on serology, Bartonella spp. exposure was common among people with SCZ/SAD (12 of 17) as well as among healthy volunteers (12 of 13), with no significant difference between the groups (p = 0.196). Within the case group of people with SCZ/SAD, there was no significant difference in SCZ/SAD severity scores between people with and without ddPCR evidence of Bartonella spp. infection. This pilot study provides preliminary evidence in support of future investigations that should examine a potential contribution of Bartonella spp. infection to SCZ/SAD.
Collapse
Affiliation(s)
- Erin Lashnits
- Comparative Medicine Institute, Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Ricardo Maggi
- Comparative Medicine Institute, Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Fredrik Jarskog
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julie Bradley
- Comparative Medicine Institute, Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Edward Breitschwerdt
- Comparative Medicine Institute, Department of Clinical Sciences, Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Center for Neurostimulation and Neuroscience Center, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Neurology and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
33
|
Morcia C, Tumino G, Raimondi S, Schneider A, Terzi V. Muscat Flavor in Grapevine: A Digital PCR Assay to Track Allelic Variation in VvDXS Gene. Genes (Basel) 2021; 12:genes12050747. [PMID: 34065649 PMCID: PMC8156067 DOI: 10.3390/genes12050747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
The aroma of grapes and derived wines has long been one of the major traits considered in the selection of grapevine varieties through the centuries. In particular, Muscat aromatic grapes have been highly appreciated and widespread since ancient times. Monoterpenes are the key compounds responsible for the Muscat flavor. A major QTL affecting monoterpene level has been found to co-localize with the 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS) gene, encoding for the 1-deoxy-D-xylulose 5-phosphate synthase enzyme involved in the plastidial pathway of terpene biosynthesis. In more detail, a single nucleotide polymorphism (SNP 1822) in the coding region of the gene causes a "gain of function" mutation, which is involved in Muscat flavor. In this work, we have developed a digital PCR-based assay to target allelic variations in the VvDXS gene, SNP1822, with the aim to propose a fast and sensitive analytical tool for targeting Muscat-flavored grapevine genotypes. The assay accurately predicts the genetic structure at 1822 SNP, critical for the development of the aroma in the great majority of Muscats. In the case of grapes in which the aromatic component is due to mutations other than SNP 1822 (e.g., Chasselas Musqué and Chardonnay Muscat), further specific assays can be developed.
Collapse
Affiliation(s)
- Caterina Morcia
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy;
| | - Giorgio Tumino
- Wageningen UR Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Stefano Raimondi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (S.R.); (A.S.)
| | - Anna Schneider
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (S.R.); (A.S.)
| | - Valeria Terzi
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy;
- Correspondence: ; Tel.: +39-0523-983758
| |
Collapse
|
34
|
Rezaei Z, Mobasheri L, Sadri F. Molecular Insights into COVID-19 Pathophysiology, Immune Pathogenesis, Detection, and Treatment. DNA Cell Biol 2021; 40:858-868. [PMID: 33989051 DOI: 10.1089/dna.2021.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In late December 2019, a new kind of Coronavirus called severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) was officially identified in Wuhan, China. In March 2020, SARS-CoV-2 was declared a pandemic by the World Health Organization (WHO), and it has infected millions of people worldwide. SARS-CoV-2 is a highly contagious Coronavirus, which has led to an outbreak of acute respiratory tract infection called "Coronavirus disease 2019" (COVID-19), resulting in mild to severe respiratory infections in humans. The design of appropriate therapeutic approaches is dependent on the understanding of molecular and cellular pathways of Coronavirus infections. In this study, we summarized the characteristic features of SARS-CoV-2. In addition, we considered the recent information regarding COVID-19 molecular immune pathogenesis, diagnosis, and potential treatment, which may provide novel perspectives and therapeutic goals in combating SARS-CoV-2.
Collapse
Affiliation(s)
- Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Leila Mobasheri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Medical Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
35
|
Wang X, Zhang Y, Niu C, Wang S, Li L, Guo Y, Zhu L, Jin X, Gao H, Xu W, Zhu P, Lan Q, Du M, Cheng X, Gao Y, Dong L. Establishment of primary reference measurement procedures and reference materials for EGFR variant detection in non-small cell lung cancer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2114-2123. [PMID: 33870958 DOI: 10.1039/d1ay00328c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Circulating tumor DNA (ctDNA)-based mutation detection is promising to change the clinical practice of genotype-directed therapy for cancer. A growing number of non-invasive tests for cancer screening and monitoring that involve the detection of ctDNA have been commercialized. Primary reference measurement procedures (PRMPs) and reference materials (RMs) are urgently needed to assess the non-invasive tests. In this study, a PRMP based on digital PCR (dPCR) and ctDNA RMs for quantification of the frequently occurring variant in epidermal growth factor receptor (EGFR L858R, T790M, and 19Del) in non-small cell lung cancer (NSCLC) were established. The candidate dPCR PRMP showed high specificity (false positive rate 0-0.003%), good repeatability (coefficient of variance (CV), 2-3% for 104 copies/reaction), and high interlaboratory reproducibility (3-10%). A good linearity (0.97 < slope < 1.03, R2 ≥ 0.9999) between the measured mutant (MU) value and prepared value was observed for all assays over the fractional abundance (FA) range, between 25% and 0.05%. The limit of quantification (LoQ) was determined to be 34 L858R, 23 T790M, and 34 19Del copies/reaction, corresponding to a FA of 0.2%. An inter-laboratory study of using the EGFR ctDNA RMs and dPCR assays demonstrated that the participating laboratories produced consistent concentrations of MU and wild-type (WT), as well as FA. This study demonstrates that dPCR can act as a potential PRMP for EGFR mutation for validation of NSCLC genotyping tests and ctDNA quantitative tests. The PRMP and RMs established here could improve interlaboratory repeatability and reproducibility, which supports rapid translation and application of non-invasive tests into clinical practice.
Collapse
Affiliation(s)
- Xia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, People's Republic of China.
| | - Yongzhuo Zhang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, People's Republic of China.
| | - Chunyan Niu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, People's Republic of China.
| | - Shangjun Wang
- Nanjing Institute of Measurement and Testing Technology, Nanjing 210049, People's Republic of China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yong Guo
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lingxiang Zhu
- Human Genetic Resource Center, National Research Institute for Health and Family Planning, Beijing 100081, People's Republic of China
| | - Xiaohua Jin
- Human Genetic Resource Center, National Research Institute for Health and Family Planning, Beijing 100081, People's Republic of China
| | - Huafang Gao
- Human Genetic Resource Center, National Research Institute for Health and Family Planning, Beijing 100081, People's Republic of China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Pengyu Zhu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Qingkuo Lan
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin 300381, People's Republic of China
| | - Meihong Du
- Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing Center for Physical & Chemical Analysis, Beijing 100093, People's Republic of China
| | - Xiaoyan Cheng
- Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing Center for Physical & Chemical Analysis, Beijing 100093, People's Republic of China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, People's Republic of China.
| | - Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, People's Republic of China.
| |
Collapse
|
36
|
Wu X, Tay JK, Goh CK, Chan C, Lee YH, Springs SL, Wang DY, Loh KS, Lu TK, Yu H. Digital CRISPR-based method for the rapid detection and absolute quantification of nucleic acids. Biomaterials 2021; 274:120876. [PMID: 34034027 DOI: 10.1016/j.biomaterials.2021.120876] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022]
Abstract
Rapid diagnostics of adventitious agents in biopharmaceutical/cell manufacturing release testing and the fight against viral infection have become critical. Quantitative real-time PCR and CRISPR-based methods rapidly detect DNA/RNA in 1 h but suffer from inter-site variability. Absolute quantification of DNA/RNA by methods such as digital PCR reduce this variability but are currently too slow for wider application. Here, we report a RApid DIgital Crispr Approach (RADICA) for absolute quantification of nucleic acids in 40-60 min. Using SARS-CoV-2 as a proof-of-concept target, RADICA allows for absolute quantification with a linear dynamic range of 0.6-2027 copies/μL (R2 value > 0.99), high accuracy and low variability, no cross-reactivity to similar targets, and high tolerance to human background DNA. RADICA's versatility is validated against other targets such as Epstein-Barr virus (EBV) from human B cells and patients' serum. RADICA can accurately detect and absolutely quantify EBV DNA with similar dynamic range of 0.5-2100 copies/μL (R2 value > 0.98) in 1 h without thermal cycling, providing a 4-fold faster alternative to digital PCR-based detection. RADICA therefore enables rapid and sensitive absolute quantification of nucleic acids which can be widely applied across clinical, research, and biomanufacturing areas.
Collapse
Affiliation(s)
- Xiaolin Wu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Joshua K Tay
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore
| | - Chuan Keng Goh
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore
| | - Cheryl Chan
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Stacy L Springs
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - De Yun Wang
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore
| | - Timothy K Lu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA; Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02142, USA.
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore; Institute of Bioengineering and Bioimaging, A*STAR, The Nanos, #04-01, 31, Biopolis Way, 138669, Singapore; Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, 117411, Singapore; Department of Physiology & the Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, 117593, Singapore.
| |
Collapse
|
37
|
Huggett JF. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin Chem 2021; 66:1012-1029. [PMID: 32746458 DOI: 10.1093/clinchem/hvaa125] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology.
Collapse
|
38
|
Moreno-Manuel A, Calabuig-Fariñas S, Obrador-Hevia A, Blasco A, Fernández-Díaz A, Sirera R, Camps C, Jantus-Lewintre E. dPCR application in liquid biopsies: divide and conquer. Expert Rev Mol Diagn 2020; 21:3-15. [PMID: 33305634 DOI: 10.1080/14737159.2021.1860759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Precision medicine is already a reality in oncology, since biomarker-driven therapies have clearly improved patient survival. Furthermore, a new, minimally invasive strategy termed 'liquid biopsy' (LB) has revolutionized the field by allowing comprehensive cancer genomic profiling through the analysis of circulating tumor DNA (ctDNA). However, its detection requires extremely sensitive and efficient technologies. A powerful molecular tool based on the principle of 'divide and conquer' has emerged to solve this problem. Thus, digital PCR (dPCR) allows absolute and accurate quantification of target molecules.Areas covered: In this review we will discuss the fundamentals of dPCR and the most common approaches used for partition of samples and quantification. The advantages and limitations of dPCR will be mentioned in the context of LB in oncology.Expert opinion: In our opinion, dPCR has proven to be one of the most sensitive methods available for LB analysis, albeit some aspects such as its capacity of multiplexing and protocol standardization still require further improvements. Furthermore, the increasing sensitivities and lower costs of next generation sequencing (NGS) methods position dPCR as a confirmatory and complementary technique for NGS results which will likely prove to be very useful for treatment monitoring and assessing minimal residual disease.
Collapse
Affiliation(s)
- Andrea Moreno-Manuel
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario De Valencia, Valencia, Spain.,Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario De Valencia, Valencia, Spain.,Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain.,Department of Pathology, Universitat de València, València, Spain.,CIBERONC, Madrid, Spain
| | - Antonia Obrador-Hevia
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Health Research Institute of the Balearic Islands (Idisba), Son Espases University Hospital, Palma, Spain.,Molecular Diagnosis Unit, Son Espases University Hospital, Palma, Spain
| | - Ana Blasco
- CIBERONC, Madrid, Spain.,Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain
| | - Amaya Fernández-Díaz
- Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain
| | - Rafael Sirera
- Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain.,CIBERONC, Madrid, Spain.,Department of Biotechnology, Universitat Politècnica De València, Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario De Valencia, Valencia, Spain.,Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain.,CIBERONC, Madrid, Spain.,Medical Oncology Department, General University Hospital of Valencia, Valencia, Spain.,Department of Medicine, Universitat De València, Valencia, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario De Valencia, Valencia, Spain.,Mixed Unit TRIAL, (Príncipe Felipe Research Centre & Fundación Para La Investigación Del Hospital General Universitario De Valencia), Valencia, Spain.,CIBERONC, Madrid, Spain.,Department of Biotechnology, Universitat Politècnica De València, Valencia, Spain
| |
Collapse
|
39
|
Wang KC, Fang CY, Chang CC, Chiang CK, Chen YW. A rapid molecular diagnostic method for spinal muscular atrophy. J Neurogenet 2020; 35:29-32. [PMID: 33332175 DOI: 10.1080/01677063.2020.1853721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a common autosomal recessive disorder which has been considered as the second common cause of infant death, with an estimated prevalence of 1 in 10,000 live births. The disorder is caused by survival motor neuron 1 gene (SMN1) deficiency leading to limb weakness, difficult swallowing and abnormal breathing. Here, a fast and accurate method for SMA detection has been developed. Genomic DNA sample collected from whole blood, amniotic fluid, or dried blood spots can be analysed by using the Clarity™ Digital PCR (dPCR) System for determining the copy numbers of SMN1 and SMN2 genes. Two hundred and fourteen clinical samples determined by qPCR-based method were enrolled and used to establish the cut-off ranges for unaffected individual, SMA carrier and SMA patient categories. After setting the cut-off range for each group, 12 samples were analyzed by both dPCR-based method and MLPA (multiplex ligation-dependent probe amplification), the current testing golden standard for SMA, and 100% concordant results between the two testing methods were performed. CSB SMA Detection Kit combined with dPCR platform provides a robust and precise approach to distinguish unaffected individuals, SMA carrier and SMA patients. This rapid molecular diagnostic method can be adapted to pre-pregnancy eugenics inspection, prenatal testing as well as newborns screening and help physicians or genetic counselors to improve population SMA incidence.
Collapse
Affiliation(s)
- Kai-Chen Wang
- Cheng-Hsin General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming University, Taipei, Taiwan
| | | | | | | | - Yi-Wen Chen
- Cold Spring Biotech Corp, New Taipei City, Taiwan
| |
Collapse
|
40
|
Siu RHP, Liu Y, Chan KHY, Ridzewski C, Slaughter LS, Wu AR. Optimization of on-bead emulsion polymerase chain reaction based on single particle analysis. Talanta 2020; 221:121593. [PMID: 33076127 DOI: 10.1016/j.talanta.2020.121593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Emulsion polymerase chain reaction (ePCR) enables parallel amplification of millions of different DNA molecules while avoiding bias and chimeric byproducts, essential criteria for applications including next generation sequencing, aptamer selection, and protein-DNA interaction studies. Despite these advantages, ePCR remains underused due to the lack of optimal starting conditions, straightforward methods to evaluate success, and guidelines for tuning the reaction. This knowledge has been elusive for bulk emulsion generation methods, such as stirring and vortexing, the only methods that can emulsify libraries of ≥108 sequences within minutes, because these emulsions have not been characterized in ways that preserve the heterogeneity that defines successful ePCR. Our study quantifies the outcome of ePCR from conditions specified in the literature using single particle analysis, which preserves this heterogeneity. We combine ePCR with magnetic microbeads and quantify the amplification yield via qPCR and the proportion of clonal and saturated beads via flow cytometry. Our single particle level analysis of thousands of beads resolves two key criteria that define the success of ePCR: 1) whether the target fraction of 20% clonal beads predicted by the Poisson distribution is achieved, and 2) whether those beads are partially or maximally covered by amplified DNA. We found that among the two concentrations of polymerase tested, only the higher one, which is 20-fold more than the concentration recommended for conventional PCR, could yield sufficient PCR products. Dramatic increases in the concentrations of reverse primer and nucleotides recommended in literature gave no measurable change in outcome. We thus provide evidence-based starting conditions for effective and economical ePCR for real DNA libraries and a straightforward workflow for evaluating the success of tuning ePCR prior to downstream applications.
Collapse
Affiliation(s)
- Ryan H P Siu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong
| | - Yang Liu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong
| | - Kaitlin H Y Chan
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong
| | - Clara Ridzewski
- Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Germany
| | - Liane Siu Slaughter
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong.
| | - Angela R Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong; Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong.
| |
Collapse
|
41
|
Huang Q, Li N, Zhang H, Che C, Sun F, Xiong Y, Canady TD, Cunningham BT. Critical Review: digital resolution biomolecular sensing for diagnostics and life science research. LAB ON A CHIP 2020; 20:2816-2840. [PMID: 32700698 PMCID: PMC7485136 DOI: 10.1039/d0lc00506a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the frontiers in the field of biosensors is the ability to quantify specific target molecules with enough precision to count individual units in a test sample, and to observe the characteristics of individual biomolecular interactions. Technologies that enable observation of molecules with "digital precision" have applications for in vitro diagnostics with ultra-sensitive limits of detection, characterization of biomolecular binding kinetics with a greater degree of precision, and gaining deeper insights into biological processes through quantification of molecules in complex specimens that would otherwise be unobservable. In this review, we seek to capture the current state-of-the-art in the field of digital resolution biosensing. We describe the capabilities of commercially available technology platforms, as well as capabilities that have been described in published literature. We highlight approaches that utilize enzymatic amplification, nanoparticle tags, chemical tags, as well as label-free biosensing methods.
Collapse
Affiliation(s)
- Qinglan Huang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Nantao Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Hanyuan Zhang
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Congnyu Che
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Fu Sun
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Taylor D. Canady
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Illinois Cancer Center, University of Illinois at Urbana-Champaign Urbana, IL 61801
| |
Collapse
|
42
|
Maggi RG, Richardson T, Breitschwerdt EB, Miller JC. Development and validation of a droplet digital PCR assay for the detection and quantification of Bartonella species within human clinical samples. J Microbiol Methods 2020; 176:106022. [PMID: 32795640 DOI: 10.1016/j.mimet.2020.106022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
This report describes the development, optimization, and validation of a ddPCR assay for the detection of Bartonella spp. DNA within several sample matrices, including clinical blood samples from patients with or without documented Bartonella spp. bacteremia. The Bartonella spp. ddPCR assay was developed based upon previously published TaqMan-based qPCR assays that can amplify DNA of over 25 Bartonella spp. Host DNA (housekeeping gene) amplification serves as a reference target to facilitate quantification. The efficiency, sensitivity, and specificity of the Bartonella spp. ddPCR assay was assessed by direct comparison with the current qPCR methods used by the Intracellular Pathogens Research Laboratory (North Carolina State University, North Carolina, USA), and Galaxy Diagnostics (Research Triangle Park, North Carolina, USA). Bartonella spp. ddPCR assay parameters were successfully optimized to detect Bartonella concentrations equivalent to 0.5 bacterial genome copies per microliter of blood (0.001 pg/ul of bacterial DNA). The number of droplets detected (resolution) for each concentration was consistent across each of four assessed time points. The Bartonella spp. ddPCR assay detected 16 species/strains including B. henselae; B. quintana; B. vinsonii subsp. berkhoffii (genotypes I, II, III and IV); B. vinsonii subsp. vinsonii; B. melophagi; B. volans; B. monaki; B. alsatica; B. bovis; B. elizabethae; B. clarridgeiae; and B. koehlerae. Bartonella DNA was detected in only one previously negative patient sample (119/120 negative; 99% specificity). The ddPCR sensitivity (53/112) was significantly better than qPCR (6/112) when testing patient blood and enrichment blood culture samples. The development of commercial ddPCR systems with integrated technologies has significantly streamlined the DNA detection process, making it more efficient and standardized for clinical diagnostic testing. The assay described in this work is the first step toward the development of a multiplex ddPCR assay (i.e., using the QX One from Bio-Rad) for the simultaneous detection and absolute quantification of multiple vector-borne pathogens (such as Babesia, Bartonella and Borrelia) within clinical samples.
Collapse
Affiliation(s)
- Ricardo G Maggi
- Galaxy Diagnostics, Inc, 7020 Kit Creek Rd #130, Research Triangle Park, NC 27709, USA; Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Toni Richardson
- Galaxy Diagnostics, Inc, 7020 Kit Creek Rd #130, Research Triangle Park, NC 27709, USA
| | - Edward B Breitschwerdt
- Galaxy Diagnostics, Inc, 7020 Kit Creek Rd #130, Research Triangle Park, NC 27709, USA; Department of Clinical Sciences, The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| | - Jennifer C Miller
- Galaxy Diagnostics, Inc, 7020 Kit Creek Rd #130, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
43
|
Circulating Tumour DNAs and Non-Coding RNAs as Liquid Biopsies for the Management of Colorectal Cancer Patients. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circulating tumour DNAs and non-coding RNAs present in body fluids have been under investigation as tools for cancer diagnosis, disease monitoring, and prognosis for many years. These so-called liquid biopsies offer the opportunity to obtain information about the molecular make-up of a cancer in a minimal invasive way and offer the possibility to implement theranostics for precision oncology. Furthermore, liquid biopsies could overcome the limitations of tissue biopsies in capturing the complexity of tumour heterogeneity within the primary cancer and among different metastatic sites. Liquid biopsies may also be implemented to detect early tumour formation or to monitor cancer relapse of response to therapy with greater sensitivity compared with the currently available protein-based blood biomarkers. Most colorectal cancers are often diagnosed at late stages and have a high mortality rate. Hence, biomolecules as nucleic acids present in liquid biopsies might have prognostic potential and could serve as predictive biomarkers for chemotherapeutic regimens. This review will focus on the role of circulating tumour DNAs and non-coding RNAs as diagnostic, prognostic, and predictive biomarkers in the context of colorectal cancer.
Collapse
|
44
|
Li J, Qiu Y, Zhang Z, Li C, Li S, Zhang W, Guo Z, Yao J, Zhou L. Heterogeneous modification of through-hole microwell chips for ultralow cross-contamination digital polymerase chain reaction. Analyst 2020; 145:3116-3124. [PMID: 32162628 DOI: 10.1039/d0an00220h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chip-based dPCR (cdPCR) with a physical boundary between micro-units allows for high parallelism, robustness and sensitivity. However, cross-contamination between micro-units is still a problem that affects the accuracy of results. To overcome this problem, we introduced a heterogeneous modification strategy by microcontact printing to prepare a through-hole microwell chip (TMC) with a hydrophobic exterior surface and hydrophilic interior surface. The modified TMC can reduce cross-contamination (sample residual rate (SRR) of (4.9 ± 1.5)%) by an efficient partitioning yield (unit filling rate (UFR) of (91.1 ± 2.2)%). The sample-residual properties of modified TMCs could be tuned by the reaction conditions. As the contact time increased, the surface CA of the TMC increased, which caused decreases of the SRR and UFR. However, prolonging the contact time to 25 s would cause a sharp reduction of the UFR. The modified TMCs with high UFRs were used for further dPCR studies. The fluorescence images of dPCR chips were collected by fluorescence microscopy and a self-developed optical system, followed by image processing and data statistics to obtain quantitative results. The copy number variation results of the surface hydrophobic TMC was closer to the true value compared to that of the hydrophilic TMC. The results indicated that the sample residue on the hydrophilic TMC would increase the number of positive points, which would cause false positives and clustering error. The absolute quantitative results of gradient dilution plasmid DNA of JAK2 gene using modified TMC also proved that heterogeneous modification made the quantitative results more accurate. The heterogeneous modified TMC is expected to be used for high-throughput, high-sensitivity and high-specificity biological analyses, such as circulating tumor DNA and cell analysis.
Collapse
Affiliation(s)
- Jinze Li
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Yajun Qiu
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Zhiqi Zhang
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. and University of Science and Technology of China, Hefei 230026, China
| | - Chuanyu Li
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. and University of Science and Technology of China, Hefei 230026, China
| | - Shuli Li
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. and Shanghai University, Shanghai 200444, China
| | - Wei Zhang
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Zhen Guo
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Jia Yao
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China. and Soochow University, Suzhou 215163, China
| | - Lianqun Zhou
- CAS key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
45
|
Padmanabhan S, Han JY, Nanayankkara I, Tran K, Ho P, Mesfin N, White I, DeVoe DL. Enhanced sample filling and discretization in thermoplastic 2D microwell arrays using asymmetric contact angles. BIOMICROFLUIDICS 2020; 14:014113. [PMID: 32095199 PMCID: PMC7028432 DOI: 10.1063/1.5126938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/09/2020] [Indexed: 05/04/2023]
Abstract
Sample filling and discretization within thermoplastic 2D microwell arrays is investigated toward the development of low cost disposable microfluidics for passive sample discretization. By using a high level of contact angle asymmetry between the filling channel and microwell surfaces, a significant increase in the range of well geometries that can be successfully filled is revealed. The performance of various array designs is characterized numerically and experimentally to assess the impact of contact angle asymmetry and device geometry on sample filling and discretization, resulting in guidelines to ensure robust microwell filling and sample isolation over a wide range of well dimensions. Using the developed design rules, reliable and bubble-free sample filling and discretization is achieved in designs with critical dimensions ranging from 20 μm to 800 μm. The resulting devices are demonstrated for discretized nucleic acid amplification by performing loop-mediated isothermal amplification for the detection of the mecA gene associated with methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- S. Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - J. Y. Han
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - I. Nanayankkara
- Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - K. Tran
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - P. Ho
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - N. Mesfin
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - I. White
- Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - D. L. DeVoe
- Author to whom correspondence should be addressed:. Tel.: +1-301-405-8125
| |
Collapse
|
46
|
Chip-Based Digital PCR Approach Provides A Sensitive and Cost-Effective Single-Day Screening Tool for Common Fetal Aneuploidies-A Proof of Concept Study. Int J Mol Sci 2019; 20:ijms20215486. [PMID: 31690017 PMCID: PMC6862520 DOI: 10.3390/ijms20215486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023] Open
Abstract
In the prenatal period, the copy number aberrations of chromosomes 13, 18, 21, X and Y account for over 80% of the clinically significant chromosome abnormalities. Classical cytogenetic analysis is the gold standard in invasive prenatal diagnostics but the long test waiting time affects its clinical utility. Several molecular rapid tests have been developed and employed in clinical practice, however all have substantial drawbacks. The aim of the study was to design and evaluate an optimized tool for rapid molecular detection of fetal aneuploidies. We established a novel single-day method using a chip-based platform, the QuantStudio 3D Digital PCR system. In order to assess the clinical usefulness of our screening test, we analyzed 133 prenatal samples. The difference in distributions of euploid and aneuploid samples identified the ploidy of each of the target chromosomes with high precision. The distribution of the chromosome ratio for euploid and aneuploid samples showed a statistically significant result (p = 0.003 for trisomy 13, p = 0.001 for trisomies 18 and 21, Mann–Whitney U test). Our results suggest that this novel chip-based approach provides a tool for rapid, technically simple, cost-effective screening for common fetal aneuploidies.
Collapse
|
47
|
Soda N, Rehm BHA, Sonar P, Nguyen NT, Shiddiky MJA. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B 2019; 7:6670-6704. [PMID: 31646316 DOI: 10.1039/c9tb01490j] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liquid biopsy is a new diagnostic concept that provides important information for monitoring and identifying tumor genomes in body fluid samples. Detection of tumor origin biomolecules like circulating tumor cells (CTCs), circulating tumor specific nucleic acids (circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), microRNAs (miRNAs), long non-coding RNAs (lnRNAs)), exosomes, autoantibodies in blood, saliva, stool, urine, etc. enables cancer screening, early stage diagnosis and evaluation of therapy response through minimally invasive means. From reliance on painful and hazardous tissue biopsies or imaging depending on sophisticated equipment, cancer management schemes are witnessing a rapid evolution towards minimally invasive yet highly sensitive liquid biopsy-based tools. Clinical application of liquid biopsy is already paving the way for precision theranostics and personalized medicine. This is achieved especially by enabling repeated sampling, which in turn provides a more comprehensive molecular profile of tumors. On the other hand, integration with novel miniaturized platforms, engineered nanomaterials, as well as electrochemical detection has led to the development of low-cost and simple platforms suited for point-of-care applications. Herein, we provide a comprehensive overview of the biogenesis, significance and potential role of four widely known biomarkers (CTCs, ctDNA, miRNA and exosomes) in cancer diagnostics and therapeutics. Furthermore, we provide a detailed discussion of the inherent biological and technical challenges associated with currently available methods and the possible pathways to overcome these challenges. The recent advances in the application of a wide range of nanomaterials in detecting these biomarkers are also highlighted.
Collapse
Affiliation(s)
- Narshone Soda
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan, QLD 4111, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Molecular Design and Synthesis, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
48
|
Dong L, Wang X, Wang S, Du M, Niu C, Yang J, Li L, Zhang G, Fu B, Gao Y, Wang J. Interlaboratory assessment of droplet digital PCR for quantification of BRAF V600E mutation using a novel DNA reference material. Talanta 2019; 207:120293. [PMID: 31594564 DOI: 10.1016/j.talanta.2019.120293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Droplet digital PCR (ddPCR) has attracted much attention in the detection of genetic signatures of cancer present at low levels in circulating tumor DNA (ctDNA) in blood. A growing number of laboratory-developed liquid biopsy tests based on such technology have become commercially available for clinical settings. To obtain consistent and comparable results, an international standard is necessary for validation of the analytical performance. In this study, a novel and SI-traceable "ctDNA" reference material (RM) carrying BRAF V600E was prepared by gravimetrically mixing a 152 bp PCR amplicon and sonicated wild-type genomic DNA. The ddPCR performance was evaluated by analyzing serial "ctDNA" dilutions using a competitive MGB assay. The mutant frequency concordance (k) between ddPCR and the gravimetrical value was 1.03 in the range from 53.9% to 0.1%. The limit of blank (LoB), detection (LoD) and quantification (LoQ) of ddPCR assay were determined to be 0.01%, 0.02% and 0.1%, respectively. Results from the interlaboratory study, using challenging low levels of BRAF V600E ctDNA RMs, demonstrated that the participating laboratories had the appropriate technical competency to perform accurate ddPCR-based low level of ratio measurements. However, a systematic error caused by uncorrected droplet volume in Naica Crystal ddPCR platform was found by using the ctDNA RM. Between-laboratory consistency in copy number measurement was greatly improved when a correct droplet volume was applied for the ddPCR measurement by using the ctDNA RM. This confirms that the "ctDNA" RM is fit for the validation of ddPCR systems for ctDNA quantification. This would also support translation of tests for circulating tumor DNA by ddPCR into routine use.
Collapse
Affiliation(s)
- Lianhua Dong
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China.
| | - Xia Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Shangjun Wang
- Nanjing Institute of Measurement and Testing Technology, Nanjing, 210049, PR China
| | - Meihong Du
- Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing Center for Physical & Chemical Analysis, Beijing, 100093, PR China
| | - Chunyan Niu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Jiayi Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Ganlin Zhang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Boqiang Fu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China
| | - Jing Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100013, PR China.
| |
Collapse
|
49
|
Digital PCR: a new technology for diagnosis of parasitic infections. Clin Microbiol Infect 2019; 25:1510-1516. [PMID: 31226445 DOI: 10.1016/j.cmi.2019.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Parasitic infections are responsible for a significant burden of disease worldwide as a result of international travel and immigration. More accurate diagnostic tools are necessary in support to parasite control and elimination programmes in endemic regions as well as for rapid case detection in non-endemic areas. Digital PCR (dPCR) is a powerful technology with recent applications in parasitology. AIMS This review provides for the first time an overview of dPCR as a novel technology applied to detection of parasitic infections, and highlights the most relevant potential benefits of this assay. SOURCES Peer-reviewed literature pertinent to this review based on PubMed, Cochrane and Embase databases as well as laboratory experience of authors. CONTENT Among the 86 studies retrieved, 17 used the dPCR applied to parasites belonging to protozoa (8), helminths (8) and arthropods (1) of clinical human interest. dPCR was adopted in four studies, respectively, for Plasmodium and Schistosoma japonicum. dPCR led to clear advantages over quantitative real-time PCR in P. falciparum and spp., and in S. japonicum showing higher sensitivity; and in Cryptosporidium with higher stability to inhibitors from stool. For all parasites, dPCR allows absolute quantitation without the need of a standard curve. Various dPCR platforms were used. A few critical factors need consideration: DNA load, choice of platform and reaction optimization. IMPLICATIONS Owing to its sensitivity and quantitative characteristics, dPCR is a potential candidate to become an appealing new method among the molecular technologies for parasite detection and quantitative analysis in the future. In general, it has more applications than genomic DNA detection only, such as quantitation in mixed infections, gene expression and mutation analysis. dPCR should be considered in malaria screening and diagnosis as a complement to routine assays and in schistosomiasis elimination programmes. Standardized strategies and further studies are needed for the integration of dPCR in routine clinical laboratory.
Collapse
|
50
|
Shebanits K, Günther T, Johansson ACV, Maqbool K, Feuk L, Jakobsson M, Larhammar D. Copy number determination of the gene for the human pancreatic polypeptide receptor NPY4R using read depth analysis and droplet digital PCR. BMC Biotechnol 2019; 19:31. [PMID: 31164119 PMCID: PMC6549351 DOI: 10.1186/s12896-019-0523-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
Background Copy number variation (CNV) plays an important role in human genetic diversity and has been associated with multiple complex disorders. Here we investigate a CNV on chromosome 10q11.22 that spans NPY4R, the gene for the appetite-regulating pancreatic polypeptide receptor Y4. This genomic region has been challenging to map due to multiple repeated elements and its precise organization has not yet been resolved. Previous studies using microarrays were interpreted to show that the most common copy number was 2 per genome. Results We have investigated 18 individuals from the 1000 Genomes project using the well-established method of read depth analysis and the new droplet digital PCR (ddPCR) method. We find that the most common copy number for NPY4R is 4. The estimated number of copies ranged from three to seven based on read depth analyses with Control-FREEC and CNVnator, and from four to seven based on ddPCR. We suggest that the difference between our results and those published previously can be explained by methodological differences such as reference gene choice, data normalization and method reliability. Three high-quality archaic human genomes (two Neanderthal and one Denisova) display four copies of the NPY4R gene indicating that a duplication occurred prior to the human-Neanderthal/Denisova split. Conclusions We conclude that ddPCR is a sensitive and reliable method for CNV determination, that it can be used for read depth calibration in CNV studies based on already available whole-genome sequencing data, and that further investigation of NPY4R copy number variation and its consequences are necessary due to the role of Y4 receptor in food intake regulation. Electronic supplementary material The online version of this article (10.1186/s12896-019-0523-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kateryna Shebanits
- Department of Neuroscience, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Anna C V Johansson
- Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Khurram Maqbool
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, SciLifeLab, Uppsala University, Uppsala, Sweden.,Centre for Anthropological Research and Department of Anthropology and Development Studies, University of Johannesburg, Johannesburg, South Africa
| | - Dan Larhammar
- Department of Neuroscience, SciLifeLab, Uppsala University, Uppsala, Sweden.
| |
Collapse
|