1
|
Holtes LK, de Bruijn SE, Cremers FPM, Roosing S. Dual inheritance patterns: a spectrum of non-syndromic inherited retinal disease phenotypes with varying molecular mechanisms. Prog Retin Eye Res 2024:101308. [PMID: 39486507 DOI: 10.1016/j.preteyeres.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Inherited retinal diseases (IRDs) encompass a variety of disease phenotypes and are known to display both clinical and genetic heterogeneity. A further complexity is that for several IRD-associated genes, pathogenic variants have been reported to cause either autosomal dominant (AD) or autosomal recessive (AR) diseases. The possibility of dual inheritance can create a challenge for variant interpretation as well as the genetic counselling of patients. This review aims to determine whether the molecular mechanisms behind the dual inheritance of each IRD-associated gene is well established, not yet properly understood, or if the association is questionable. Each gene is discussed individually in detail due to different protein structures and functions, but there are overlapping characteristics. For example, eight genes only have a limited number of reported pathogenic variants or a hotspot region implicated in the second inheritance pattern. Whereas CRX and RP1 display distinct spatial patterns for AR and AD pathogenic variants based on the variant type and/or location. The genes with a questionable dual inheritance, namely AIPL1, CRB1, and RCBTB1 highlight the importance of carefully considering allele frequency data. Finally, the crucial role relevant functional studies in animal and cell models play in validating a variant's biochemical or molecular effect is emphasised.
Collapse
Affiliation(s)
- Lara K Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Basharat R, de Bruijn SE, Zahid M, Rodenburg K, Hitti-Malin RJ, Rodríguez-Hidalgo M, Boonen EGM, Jarral A, Mahmood A, Corominas J, Khalil S, Zai JA, Ali G, Ruiz-Ederra J, Gilissen C, Cremers FPM, Ansar M, Panneman DM, Roosing S. Next-generation sequencing to genetically diagnose a diverse range of inherited eye disorders in 15 consanguineous families from Pakistan. Exp Eye Res 2024; 244:109945. [PMID: 38815792 DOI: 10.1016/j.exer.2024.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Inherited retinal dystrophies (IRDs) are characterized by photoreceptor dysfunction or degeneration. Clinical and phenotypic overlap between IRDs makes the genetic diagnosis very challenging and comprehensive genomic approaches for accurate diagnosis are frequently required. While there are previous studies on IRDs in Pakistan, causative genes and variants are still unknown for a significant portion of patients. Therefore, there is a need to expand the knowledge of the genetic spectrum of IRDs in Pakistan. Here, we recruited 52 affected and 53 normal individuals from 15 consanguineous Pakistani families presenting non-syndromic and syndromic forms of IRDs. We employed single molecule Molecular Inversion Probes (smMIPs) based panel sequencing and whole genome sequencing to identify the probable disease-causing variants in these families. Using this approach, we obtained a 93% genetic solve rate and identified 16 (likely) causative variants in 14 families, of which seven novel variants were identified in ATOH7, COL18A1, MERTK, NDP, PROM1, PRPF8 and USH2A while nine recurrent variants were identified in CNGA3, CNGB1, HGSNAT, NMNAT1, SIX6 and TULP1. The novel MERTK variant and one recurrent TULP1 variant explained the intra-familial locus heterogeneity in one of the screened families while two recurrent CNGA3 variants explained compound heterozygosity in another family. The identification of variants in known disease-associated genes emphasizes the utilization of time and cost-effective screening approaches for rapid diagnosis. The timely genetic diagnosis will not only identify any associated systemic issues in case of syndromic IRDs, but will also aid in the acceleration of personalized medicine for patients affected with IRDs.
Collapse
Affiliation(s)
- Rabia Basharat
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Zahid
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebekkah J Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - María Rodríguez-Hidalgo
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Erica G M Boonen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Afeefa Jarral
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, (AJK), Pakistan
| | - Arif Mahmood
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sharqa Khalil
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jawaid Ahmed Zai
- Department of Physiology and MLT, University of Sindh, Jamshoro, Pakistan
| | - Ghazanfar Ali
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Javier Ruiz-Ederra
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Muhammad Ansar
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Daan M Panneman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Grunin M, Triffon D, Beykin G, Rahmani E, Schweiger R, Tiosano L, Khateb S, Hagbi-Levi S, Rinsky B, Munitz R, Winkler TW, Heid IM, Halperin E, Carmi S, Chowers I. Genome wide association study and genomic risk prediction of age related macular degeneration in Israel. Sci Rep 2024; 14:13034. [PMID: 38844476 PMCID: PMC11156861 DOI: 10.1038/s41598-024-63065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
The risk of developing age-related macular degeneration (AMD) is influenced by genetic background. In 2016, the International AMD Genomics Consortium (IAMDGC) identified 52 risk variants in 34 loci, and a polygenic risk score (PRS) from these variants was associated with AMD. The Israeli population has a unique genetic composition: Ashkenazi Jewish (AJ), Jewish non-Ashkenazi, and Arab sub-populations. We aimed to perform a genome-wide association study (GWAS) for AMD in Israel, and to evaluate PRSs for AMD. Our discovery set recruited 403 AMD patients and 256 controls at Hadassah Medical Center. We genotyped individuals via custom exome chip. We imputed non-typed variants using cosmopolitan and AJ reference panels. We recruited additional 155 cases and 69 controls for validation. To evaluate predictive power of PRSs for AMD, we used IAMDGC summary-statistics excluding our study and developed PRSs via clumping/thresholding or LDpred2. In our discovery set, 31/34 loci reported by IAMDGC were AMD-associated (P < 0.05). Of those, all effects were directionally consistent with IAMDGC and 11 loci had a P-value under Bonferroni-corrected threshold (0.05/34 = 0.0015). At a 5 × 10-5 threshold, we discovered four suggestive associations in FAM189A1, IGDCC4, C7orf50, and CNTNAP4. Only the FAM189A1 variant was AMD-associated in the replication cohort after Bonferroni-correction. A prediction model including LDpred2-based PRS + covariates had an AUC of 0.82 (95% CI 0.79-0.85) and performed better than covariates-only model (P = 5.1 × 10-9). Therefore, previously reported AMD-associated loci were nominally associated with AMD in Israel. A PRS developed based on a large international study is predictive in Israeli populations.
Collapse
Affiliation(s)
- Michelle Grunin
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, POB 12271, 9112102, Jerusalem, Israel
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Daria Triffon
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, POB 12271, 9112102, Jerusalem, Israel
| | - Gala Beykin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Elior Rahmani
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Regev Schweiger
- Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
- Department of Genetics, University of Cambridge, CB21TN, Cambridge, UK
| | - Liran Tiosano
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Refael Munitz
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Eran Halperin
- Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, POB 12271, 9112102, Jerusalem, Israel.
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel.
| |
Collapse
|
4
|
Shalom S, Hanany M, Eilat A, Chowers I, Ben-Yosef T, Khateb S, Banin E, Sharon D. Simultaneous Detection of Common Founder Mutations Using a Cost-Effective Deep Sequencing Panel. Genes (Basel) 2024; 15:646. [PMID: 38790275 PMCID: PMC11120920 DOI: 10.3390/genes15050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of diseases which cause visual loss due to Mendelian mutations in over 250 genes, making genetic diagnosis challenging and time-consuming. Here, we developed a new tool, CDIP (Cost-effective Deep-sequencing IRD Panel) in which a simultaneous sequencing of common mutations is performed. CDIP is based on simultaneous amplification of 47 amplicons harboring common mutations followed by next-generation sequencing (NGS). Following five rounds of calibration of NGS-based steps, CDIP was used in 740 IRD samples. The analysis revealed 151 mutations in 131 index cases. In 54 (7%) of these cases, CDIP identified the genetic cause of disease (the remaining were single-heterozygous recessive mutations). These include a patient that was clinically diagnosed with retinoschisis and found to be homozygous for NR2E3-c.932G>A (p.R311Q), and a patient with RP who is hemizygous for an RPGR variant, c.292C>A (p.H98N), which was not included in the analysis but is located in proximity to one of these mutations. CDIP is a cost-effective deep sequencing panel for simultaneous detection of common founder mutations. This protocol can be implemented for additional populations as well as additional inherited diseases, and mainly in populations with strong founder effects.
Collapse
Affiliation(s)
- Sapir Shalom
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (S.S.); (M.H.); (A.E.); (I.C.); (S.K.); (E.B.)
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, Hebrew University of Jerusalem and Medical Corps, Israel Defense Forces, Jerusalem 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (S.S.); (M.H.); (A.E.); (I.C.); (S.K.); (E.B.)
| | - Avital Eilat
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (S.S.); (M.H.); (A.E.); (I.C.); (S.K.); (E.B.)
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (S.S.); (M.H.); (A.E.); (I.C.); (S.K.); (E.B.)
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (S.S.); (M.H.); (A.E.); (I.C.); (S.K.); (E.B.)
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (S.S.); (M.H.); (A.E.); (I.C.); (S.K.); (E.B.)
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (S.S.); (M.H.); (A.E.); (I.C.); (S.K.); (E.B.)
| |
Collapse
|
5
|
Hayman T, Millo T, Hendler K, Chowers I, Gross M, Banin E, Sharon D. Whole exome sequencing of 491 individuals with inherited retinal diseases reveals a large spectrum of variants and identification of novel candidate genes. J Med Genet 2024; 61:224-231. [PMID: 37798099 DOI: 10.1136/jmg-2023-109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Inherited retinal diseases (IRDs) include a range of vision loss conditions caused by variants in different genes. The clinical and genetic heterogeneity make identification of the genetic cause challenging. Here, a cohort of 491 unsolved cases from our cohort of Israeli and Palestinian families with IRDs underwent whole exome sequencing (WES), including detection of CNVs as well as single nucleotide variants (SNVs). METHODS All participants underwent clinical examinations. Following WES on DNA samples by 3 billion, initial SNV analysis was performed by 3 billion and SNV and CNV analysis by Franklin Genoox. The CNVs indicated by the programme were confirmed by PCR followed by gel electrophoresis. RESULTS WES of 491 IRD cases revealed the genetic cause of disease in 51% of cases, of which 11% were due wholly or in part to CNVs. In two cases, we clarified previously incorrect or unclear clinical diagnoses. This analysis also identified ESRRB and DNM1 as potential novel genes. CONCLUSION This analysis is the most extensive one to include CNVs to examine IRD causing genes in the Israeli and Palestinian populations. It has allowed us to identify the causative variant of many patients with IRDs including ones with unclear diagnoses and potential novel genes.
Collapse
Affiliation(s)
- Tamar Hayman
- Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Talya Millo
- Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karen Hendler
- Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itay Chowers
- Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Menachem Gross
- Otolaryngology/Head and Neck Surgery, Hadassah Medical Center, Jerusalem, Jerusalem, Israel
| | - Eyal Banin
- Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dror Sharon
- Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Chen YS, Gehring K. New insights into the structure and function of CNNM proteins. FEBS J 2023; 290:5475-5495. [PMID: 37222397 DOI: 10.1111/febs.16872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Magnesium (Mg2+ ) is the most abundant divalent cation in cells and plays key roles in almost all biological processes. CBS-pair domain divalent metal cation transport mediators (CNNMs) are a newly characterized class of Mg2+ transporters present throughout biology. Originally discovered in bacteria, there are four CNNM proteins in humans, which are involved in divalent cation transport, genetic diseases, and cancer. Eukaryotic CNNMs are composed of four domains: an extracellular domain, a transmembrane domain, a cystathionine-β-synthase (CBS)-pair domain, and a cyclic nucleotide-binding homology domain. The transmembrane and CBS-pair core are the defining features of CNNM proteins with over 20 000 protein sequences known from over 8000 species. Here, we review the structural and functional studies of eukaryotic and prokaryotic CNNMs that underlie our understanding of their regulation and mechanism of ion transport. Recent structures of prokaryotic CNNMs confirm the transmembrane domain mediates ion transport with the CBS-pair domain likely playing a regulatory role through binding divalent cations. Studies of mammalian CNNMs have identified new binding partners. These advances are driving progress in understanding this deeply conserved and widespread family of ion transporters.
Collapse
Affiliation(s)
- Yu Seby Chen
- Department of Biochemistry & Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Kalle Gehring
- Department of Biochemistry & Centre de Recherche en Biologie Structurale, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Grunin M, Triffon D, Beykin G, Rahmani E, Schweiger R, Tiosano L, Khateb S, Hagbi-Levi S, Rinsky B, Munitz R, Winkler TW, Heid IM, Halperin E, Carmi S, Chowers I. Genome-wide association study and genomic risk prediction of age-related macular degeneration in Israel. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.06.23295126. [PMID: 37732190 PMCID: PMC10508791 DOI: 10.1101/2023.09.06.23295126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Purpose The risk of developing age-related macular degeneration(AMD) is influenced by genetic background. In 2016, International AMD Genomics Consortium(IAMDGC) identified 52 risk variants in 34 loci, and a polygenic risk score(PRS) based on these variants was associated with AMD. The Israeli population has a unique genetic composition: Ashkenazi Jewish(AJ), Jewish non-Ashkenazi, and Arab sub-populations. We aimed to perform a genome-wide association study(GWAS) for AMD in Israel, and to evaluate PRSs for AMD. Methods For our discovery set, we recruited 403 AMD patients and 256 controls at Hadassah Medical Center. We genotyped all individuals via custom exome chip. We imputed non-typed variants using cosmopolitan and AJ reference panels. We recruited additional 155 cases and 69 controls for validation. To evaluate predictive power of PRSs for AMD, we used IAMDGC summary statistics excluding our study and developed PRSs via either clumping/thresholding or LDpred2. Results In our discovery set, 31/34 loci previously reported by the IAMDGC were AMD associated with P<0.05. Of those, all effects were directionally consistent with the IAMDGC and 11 loci had a p-value under Bonferroni-corrected threshold(0.05/34=0.0015). At a threshold of 5x10 -5 , we discovered four suggestive associations in FAM189A1 , IGDCC4 , C7orf50 , and CNTNAP4 . However, only the FAM189A1 variant was AMD associated in the replication cohort after Bonferroni-correction. A prediction model including LDpred2-based PRS and other covariates had an AUC of 0.82(95%CI:0.79-0.85) and performed better than a covariates-only model(P=5.1x10 -9 ). Conclusions Previously reported AMD-associated loci were nominally associated with AMD in Israel. A PRS developed based on a large international study is predictive in Israeli populations.
Collapse
|
8
|
Lee BJH, Tham YC, Tan TE, Bylstra Y, Lim WK, Jain K, Chan CM, Mathur R, Cheung CMG, Fenner BJ. Characterizing the genotypic spectrum of retinitis pigmentosa in East Asian populations: a systematic review. Ophthalmic Genet 2023; 44:109-118. [PMID: 36856324 DOI: 10.1080/13816810.2023.2182329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Ongoing trials for retinitis pigmentosa (RP) are genotype-specific, with most trials conducted on European cohorts. Due to genetic differences across diverse ancestries and populations, these therapies may not be efficacious in East Asians. MATERIALS AND METHODS A literature search was conducted from 1966 to September 2022 for cohort studies on East Asian populations reporting on non-syndromic RP genotypes and variants. Population-weighted prevalence was used to determine the genotypes and individual variants across the entire cohort. The carrier prevalence of common variants was compared against those in Europe. RESULTS A total of 12 articles describing 2,932 clinically diagnosed East Asian RP probands were included. We identified 876 variants across 54 genes. The most common genotypes included USH2A, EYS, RPGR, ABCA4, PRPF31, RHO, RP1, RP2, PDE6B and SNRNP200, with USH2A as the most common (17.1%). Overall, 60.5% of probands with clinically relevant variants were found to have one of the genotypes above, with 543/876 (62.0%) of the variants occurring in these genes. The most frequently reported variant was USH2A missense variant c.2802T>G/p.C934W (4.9%). Carrier prevalence of these variants was significantly different (p < 0.0001) than in Europe. CONCLUSIONS USH2A was the most commonly affected RP gene in this East Asian cohort, although sub-population analysis revealed distinct genotype prevalence patterns. While the genotypes are similar between East Asia and European cohorts, variants are specific to East Asia. The identification of several prevalent variants in USH2A and EYS provides an opportunity for the development of therapeutics that are relevant for East Asia patients.
Collapse
Affiliation(s)
- Brian Juin Hsien Lee
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yih-Chung Tham
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Innovation & Precision Eye Health, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Tien-En Tan
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Yasmin Bylstra
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore Health Services, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore Health Services, Singapore
| | - Kanika Jain
- POLARIS, Genome Institute of Singapore, Singapore
| | - Choi Mun Chan
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Ranjana Mathur
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Chui Ming Gemmy Cheung
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Beau J Fenner
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| |
Collapse
|
9
|
Majander A, Sankila EM, Falck A, Vasara LK, Seitsonen S, Kulmala M, Haavisto AK, Avela K, Turunen JA. Natural history and biomarkers of retinal dystrophy caused by the biallelic TULP1 variant c.148delG. Acta Ophthalmol 2023; 101:215-221. [PMID: 36128853 DOI: 10.1111/aos.15252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To report clinical features and potential disease markers of inherited retinal dystrophy (IRD) caused by the biallelic c.148delG variant in the tubby-like protein 1 (TULP1) gene. METHODS A retrospective observational study of 16 IRD patients carrying a homozygous pathogenic TULP1 c.148delG variant. Clinical data including fundus spectral-domain optical coherence tomography (SD-OCT) were assessed. A meta-analysis of visual acuity of previously reported other pathogenic TULP1 variants was performed for reference. RESULTS The biallelic TULP1 variant c.148delG was associated with infantile and early childhood onset IRD. Retinal ophthalmoscopy was primarily normal converting to peripheral pigmentary retinopathy and maculopathy characterized by progressive extra-foveal loss of the ellipsoid zone (EZ), the outer plexiform layer (OPL), and the outer nuclear layer (ONL) bands in the SD-OCT images. The horizontal width of the foveal EZ showed significant regression with the best-corrected visual acuity (BCVA) of the eye (p < 0.0001, R2 = 0.541, F = 26.0), the age of the patient (p < 0.0001, R2 = 0.433, F = 16.8), and mild correlation with the foveal OPL-ONL thickness (p = 0.014, R2 = 0.245, F = 7.2). Modelling of the BCVA data suggested a mean annual loss of logMAR 0.027. The level of visual loss was similar to that previously reported in patients carrying other truncating TULP1 variants. CONCLUSIONS This study describes the progression of TULP1 IRD suggesting a potential time window for therapeutic interventions. The width of the foveal EZ and the thickness of the foveal OPL-ONL layers could serve as biomarkers of the disease stage.
Collapse
Affiliation(s)
- Anna Majander
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eeva-Marja Sankila
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aura Falck
- Department of Ophthalmology, PEDEGO Research Unit and Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Laura Kristiina Vasara
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sanna Seitsonen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maarit Kulmala
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna-Kaisa Haavisto
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristiina Avela
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joni A Turunen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Eye Genetics Group, Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
10
|
Hanany M, Yang RR, Lam CM, Beryozkin A, Sundaresan Y, Sharon D. An In-Depth Single-Gene Worldwide Carrier Frequency and Genetic Prevalence Analysis of CYP4V2 as the Cause of Bietti Crystalline Dystrophy. Transl Vis Sci Technol 2023; 12:27. [PMID: 36795063 PMCID: PMC9940774 DOI: 10.1167/tvst.12.2.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Conclusions Our analysis estimates BCD prevalence and revealed large differences among various populations. Moreover, it highlights advantages and limitations of the gnomAD database. Methods CYP4V2 gnomAD data and reported mutations were used to calculate carrier frequency of each variant. An evolutionary-based sliding window analysis was used to detect conserved protein regions. Potential exonic splicing enhancers (ESEs) were identified using ESEfinder. Purpose Bietti crystalline dystrophy (BCD) is a rare monogenic autosomal recessive (AR) chorioretinal degenerative disease caused by biallelic mutations in CYP4V2. The aim of the current study was to perform an in-depth calculation of worldwide carrier frequency and genetic prevalence of BCD using gnomAD data and comprehensive literature CYP4V2 analysis. Results We identified 1171 CYP4V2 variants, 156 of which were considered pathogenic, including 108 reported in patients with BCD. Carrier frequency and genetic prevalence calculations confirmed that BCD is more common in the East Asian population, with ∼19 million healthy carriers and 52,000 individuals who carry biallelic CYP4V2 mutations and are expected to be affected. Additionally, we generated BCD prevalence estimates of other populations, including African, European, Finnish, Latino, and South Asian. Worldwide, the estimated overall carrier frequency of CYP4V2 mutation is 1:210, and therefore, ∼37 million individuals are expected to be healthy carriers of a CYP4V2 mutation. The estimated genetic prevalence of BCD is about 1:116,000, and we predict that ∼67,000 individuals are affected with BCD worldwide. Translational Relevance This analysis is likely to have important implications for genetic counseling in each studied population and for developing clinical trials for potential BCD treatments.
Collapse
Affiliation(s)
- Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Chun Man Lam
- Reflection Biotechnologies Limited, Hong Kong, China
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
The Diagnostic Yield of Next Generation Sequencing in Inherited Retinal Diseases: A Systematic Review and Meta-analysis. Am J Ophthalmol 2022; 249:57-73. [PMID: 36592879 DOI: 10.1016/j.ajo.2022.12.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Accurate genotyping of individuals with inherited retinal diseases (IRD) is essential for patient management and identifying suitable candidates for gene therapies. This study evaluated the diagnostic yield of next generation sequencing (NGS) in IRDs. DESIGN Systematic review and meta-analysis. METHODS This systematic review was prospectively registered (CRD42021293619). Ovid MEDLINE and Ovid Embase were searched on 6 June 2022. Clinical studies evaluating the diagnostic yield of NGS in individuals with IRDs were eligible for inclusion. Risk of bias assessment was performed. Studies were pooled using a random...effects inverse variance model. Sources of heterogeneity were explored using stratified analysis, meta-regression, and sensitivity analysis. RESULTS This study included 105 publications from 28 countries. Most studies (90 studies) used targeted gene panels. The diagnostic yield of NGS was 61.3% (95% confidence interval: 57.8-64.7%; 51 studies) in mixed IRD phenotypes, 58.2% (51.6-64.6%; 41 studies) in rod-cone dystrophies, 57.7% (46.8-68.3%; eight studies) in macular and cone/cone-rod dystrophies, and 47.6% (95% CI: 41.0-54.3%; four studies) in familial exudative vitreoretinopathy. For mixed IRD phenotypes, a higher diagnostic yield was achieved pooling studies published between 2018-2022 (64.2% [59.5-68.7%]), studies using exome sequencing (73.5% [58.9-86.1%]), and studies using the American College of Medical Genetics variant interpretation standards (65.6% [60.8-70.4%]). CONCLUSION The current diagnostic yield of NGS in IRDs is between 52-74%. The certainty of the evidence was judged as low or very low. A key limitation of the current evidence is the significant heterogeneity between studies. Adoption of standardized reporting guidelines could improve confidence in future meta-analyses.
Collapse
|
12
|
Liu Y, Chen J, Sager R, Sasaki E, Hu H. Interactions between C8orf37 and FAM161A, Two Ciliary Proteins Essential for Photoreceptor Survival. Int J Mol Sci 2022; 23:12033. [PMID: 36233334 PMCID: PMC9570145 DOI: 10.3390/ijms231912033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in C8orf37 cause Bardet-Biedl syndrome (BBS), retinitis pigmentosa (RP), and cone-rod dystrophy (CRD), all manifest in photoreceptor degeneration. Little is known about which proteins C8orf37 interacts with to contribute to photoreceptor survival. To determine the proteins that potentially interact with C8orf37, we carried out a yeast two-hybrid (Y2H) screen using C8orf37 as a bait. FAM161A, a microtubule-binding protein localized at the photoreceptor cilium required for photoreceptor survival, was identified as one of the preys. Double immunofluorescence staining and proximity ligation assay (PLA) of marmoset retinal sections showed that C8orf37 was enriched and was co-localized with FAM161A at the ciliary base of photoreceptors. Epitope-tagged C8orf37 and FAM161A, expressed in HEK293 cells, were also found to be co-localized by double immunofluorescence staining and PLA. Furthermore, interaction domain mapping assays identified that the N-terminal region of C8orf37 and amino acid residues 341-517 within the PFAM UPF0564 domain of FAM161A were critical for C8orf37-FAM161A interaction. These data suggest that the two photoreceptor survival proteins, C8orf37 and FAM161A, interact with each other which may contribute to photoreceptor health.
Collapse
Affiliation(s)
- Yu Liu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jinjun Chen
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rachel Sager
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Tonomachi, Kawasaki 210-0821, Kanagawa, Japan
| | - Huaiyu Hu
- Center for Vision Research, Departments of Neuroscience and Physiology and of Ophthalmology and Visual Sciences, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
13
|
Iarossi G, Sinibaldi L, Passarelli C, Coppe’ AM, Cappelli A, Petrocelli G, Catena G, Perrone C, Falsini B, Novelli A, Bartuli A, Buzzonetti L. A Novel Autosomal Recessive Variant of the NRL Gene Causing Enhanced S-Cone Syndrome: A Morpho-Functional Analysis of Two Unrelated Pediatric Patients. Diagnostics (Basel) 2022; 12:2183. [PMID: 36140584 PMCID: PMC9497687 DOI: 10.3390/diagnostics12092183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Enhanced S-cone syndrome (ESCS) is a rare autosomal recessive retinal degeneration mainly associated with pathogenic variations in the NR2E3 gene. Only a few pathogenic variations in the NRL gene associated with ESCS have been reported to date. Here, we describe the clinical and genetic findings of two unrelated pediatric patients with a novel frameshift homozygous variant in the NRL gene. Fundus examinations showed signs of peripheral degeneration in both patients, more severe in Proband 2, with relative sparing of the macular area. Spectral domain optical coherence tomography (SD-OCT) revealed a significant macular involvement with cysts in Proband 1, and minimal foveal alteration with peripheral retina involvement in Proband 2. Visual acuity was abnormal in both patients, but more severely affected in Proband 1 than Proband 2. The electroretinogram recordings showed reduced scotopic, mixed and single flash cone responses, with a typical supernormal S-cone response, meeting the criteria for a clinical diagnosis of ESCS in both patients. The present report expands the clinical and genetic spectrum of NRL-associated ESCS, and confirms the age-independent variability of phenotypic presentation already described in the NR2E3-associated ESCS.
Collapse
Affiliation(s)
- Giancarlo Iarossi
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Lorenzo Sinibaldi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
- Rare Disease and Medical Genetics, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Chiara Passarelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Andrea Maria Coppe’
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Alessandro Cappelli
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gianni Petrocelli
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Gino Catena
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Chiara Perrone
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Andrea Bartuli
- Rare Disease and Medical Genetics, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Luca Buzzonetti
- Department of Ophthalmology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy
| |
Collapse
|
14
|
El-Asrag ME, Corton M, McKibbin M, Avila-Fernandez A, Mohamed MD, Blanco-Kelly F, Toomes C, Inglehearn CF, Ayuso C, Ali M. Novel homozygous mutations in the transcription factor NRL cause non-syndromic retinitis pigmentosa. Mol Vis 2022; 28:48-56. [PMID: 35693422 PMCID: PMC9122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/15/2022] [Indexed: 11/02/2022] Open
Abstract
Purpose To describe the clinical phenotype and genetic basis of non-syndromic retinitis pigmentosa (RP) in one family and two sporadic cases with biallelic mutations in the transcription factor neural retina leucine zipper (NRL). Methods Exome sequencing was performed in one affected family member. Microsatellite genotyping was used for haplotype analysis. PCR and Sanger sequencing were used to confirm mutations in and screen other family members where they were available. The SMART tool for domain prediction helped us build the protein schematic diagram. Results For family MM1 of Pakistani origin, whole-exome sequencing and microsatellite genotyping revealed homozygosity on chromosome 14 and identified a homozygous stop-loss mutation in NRL, NM_006177.5: c.713G>T, p.*238Lext57, which is predicted to add an extra 57 amino acids to the normal protein chain. The variant segregated with disease symptoms in the family. For case RP-3051 of Spanish ancestry, clinical exome sequencing focusing on the morbid genome highlighted a homozygous nonsense mutation in NRL, c.238C>T, p.Gln80*, as the most likely disease candidate. For case RP-1553 of Romanian ethnicity, targeted-exome sequencing of 73 RP/LCA genes identified a homozygous nonsense mutation in NRL, c.544C>T, p.Gln182*. The variants were either rare or absent in the gnomAD database. Conclusions NRL mutations predominantly cause dominant retinal disease, but there have been five published reports of mutations causing recessive disease. Here, we present three further examples of recessive RP due to NRL mutations. The phenotypes observed are consistent with those in the previous reports, and the observed mutation types and distribution further confirm distinct patterns for variants in NRL causing recessive and dominant diseases.
Collapse
Affiliation(s)
- Mohammed E. El-Asrag
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, UK
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, UK
- The Eye Department, St. James’s University Hospital, Leeds, UK
| | - Almudena Avila-Fernandez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | | | - Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, UK
| | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, UK
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Manir Ali
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
16
|
Millo T, Rivera A, Obolensky A, Marks-Ohana D, Xu M, Li Y, Wilhelm E, Gopalakrishnan P, Gross M, Rosin B, Hanany M, Webster A, Tracewska AM, Koenekoop RK, Chen R, Arno G, Schueler-Furman O, Roosing S, Banin E, Sharon D. Identification of autosomal recessive novel genes and retinal phenotypes in members of the solute carrier (SLC) superfamily. Genet Med 2022; 24:1523-1535. [PMID: 35486108 DOI: 10.1016/j.gim.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022] Open
Abstract
PURPOSE This study aimed to investigate the clinical and genetic aspects of solute carrier (SLC) genes in inherited retinal diseases (IRDs). METHODS Exome sequencing data were filtered to identify pathogenic variants in SLC genes. Analysis of transcript and protein expression was performed on fibroblast cell lines and retinal sections. RESULTS Comprehensive analysis of 433 SLC genes in 913 exome sequencing IRD samples revealed homozygous pathogenic variants in 6 SLC genes, including 2 candidate novel genes, which were 2 variants in SLC66A1, causing autosomal recessive retinitis pigmentosa (ARRP), and a variant in SLC39A12, causing autosomal recessive mild widespread retinal degeneration with marked macular involvement. In addition, we present 4 families with ARRP and homozygous null variants in SLC37A3 that were previously suggested to cause retinitis pigmentosa, 2 of which cause exon skipping. The recently reported SLC4A7- c.2007dup variant was found in 2 patients with ARRP resulting in the absence of protein. Finally, variants in SLC24A1 were found in 4 individuals with either ARRP or congenital stationary night blindness. CONCLUSION We report on SLC66A1 and SLC39A12 as candidate novel IRD genes, establish SLC37A3 pathogenicity, and provide further evidence of SLC4A7 as IRD genes. We extend the phenotypic spectrum of SLC24A1 and suggest that its ARRP phenotype may be more common than previously reported.
Collapse
Affiliation(s)
- Talya Millo
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Antonio Rivera
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexey Obolensky
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Devora Marks-Ohana
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mingchu Xu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Enosh Wilhelm
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prakadeeswari Gopalakrishnan
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Menachem Gross
- Department of Otolaryngology/Head and Neck Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Boris Rosin
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Hanany
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrew Webster
- University College London, Institute of Ophthalmology, London, United Kingdom; Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
| | - Anna Maria Tracewska
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka, Wrocław, Poland
| | - Robert K Koenekoop
- Department of Paediatric surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Gavin Arno
- University College London, Institute of Ophthalmology, London, United Kingdom; Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Susanne Roosing
- Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Eyal Banin
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Dror Sharon
- Division of Ophthalmology, Hadassah University Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
17
|
Backwell L, Marsh JA. Diverse Molecular Mechanisms Underlying Pathogenic Protein Mutations: Beyond the Loss-of-Function Paradigm. Annu Rev Genomics Hum Genet 2022; 23:475-498. [PMID: 35395171 DOI: 10.1146/annurev-genom-111221-103208] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most known disease-causing mutations occur in protein-coding regions of DNA. While some of these involve a loss of protein function (e.g., through premature stop codons or missense changes that destabilize protein folding), many act via alternative molecular mechanisms and have dominant-negative or gain-of-function effects. In nearly all cases, these non-loss-of-function mutations can be understood by considering interactions of the wild-type and mutant protein with other molecules, such as proteins, nucleic acids, or small ligands and substrates. Here, we review the diverse molecular mechanisms by which pathogenic mutations can have non-loss-of-function effects, including by disrupting interactions, increasing binding affinity, changing binding specificity, causing assembly-mediated dominant-negative and dominant-positive effects, creating novel interactions, and promoting aggregation and phase separation. We believe that increased awareness of these diverse molecular disease mechanisms will lead to improved diagnosis (and ultimately treatment) of human genetic disorders. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa Backwell
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
18
|
A Novel Pathogenic Variant in the RDH5 Gene in a Patient with Fundus Albipunctatus and Severe Macular Atrophy. Case Rep Genet 2022; 2022:1183772. [PMID: 35433063 PMCID: PMC9007684 DOI: 10.1155/2022/1183772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To report a novel 11-cis retinol dehydrogenase gene (RDH5) variant discovered in a 57-year-old male with fundus albipunctatus (FA) complicated by severe macular atrophy. Methods The patient was evaluated with a complete ophthalmic examination, optical coherence tomography (OCT), color fundus photography, green wavelength fundus autofluorescence, visual field testing, full-field ERG (ffERG), and multifocal ERG (mfERG). Genetic analysis investigating gene variants involved in inherited retinal disorders was performed. Results The patient presented with a rapid decline in visual acuity and a history of poor night vision. On fundoscopy, he exhibited a phenotype characteristic of FA accompanied by severe macular atrophy bilaterally. Heterozygous variants in the RDH5 gene were identified, including a novel missense variant, c.814_815del (p.Leu272Aspfs∗63), and a known pathogenic nonsense variant, c.160C > T (p.Arg54∗). Fundus autofluorescence demonstrated bull's eye maculopathy and hyperautofluorescent perifoveal rings bilaterally. OCT showed foveal atrophy of the outer retina and scattered hyper-reflective lesions in the peripheral macula. The ffERG results showed a severely diminished scotopic and photopic response. The mfERG results demonstrated minimal response in the central macula. Conclusions Fundus albipunctatus is a rare, congenital form of stationary night blindness caused almost exclusively by the RDH5 gene. This patient's clinical presentation, diagnostic studies, and genetic testing confirmed the diagnosis of FA. Additionally, he exhibited severe macular atrophy, not typically found in FA. Two RDH5 gene variants were identified, one of which is the novel variant, c.814_815del (p.Leu272Aspfs∗63). We suggest that this RDH5 genotype may be associated with a more progressive phenotype of FA contributing to macular atrophy.
Collapse
|
19
|
Clinical and Genetic Re-Evaluation of Inherited Retinal Degeneration Pedigrees following Initial Negative Findings on Panel-Based Next Generation Sequencing. Int J Mol Sci 2022; 23:ijms23020995. [PMID: 35055178 PMCID: PMC8780304 DOI: 10.3390/ijms23020995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Although rare, inherited retinal degenerations (IRDs) are the most common reason for blind registration in the working age population. They are highly genetically heterogeneous (>300 known genetic loci), and confirmation of a molecular diagnosis is a prerequisite for many therapeutic clinical trials and approved treatments. First-tier genetic testing of IRDs with panel-based next-generation sequencing (pNGS) has a diagnostic yield of ≈70-80%, leaving the remaining more challenging cases to be resolved by second-tier testing methods. This study describes the phenotypic reassessment of patients with a negative result from first-tier pNGS and the rationale, outcomes, and cost of second-tier genetic testing approaches. Removing non-IRD cases from consideration and utilizing case-appropriate second-tier genetic testing techniques, we genetically resolved 56% of previously unresolved pedigrees, bringing the overall resolve rate to 92% (388/423). At present, pNGS remains the most cost-effective first-tier approach for the molecular assessment of diverse IRD populations Second-tier genetic testing should be guided by clinical (i.e., reassessment, multimodal imaging, electrophysiology), and genetic (i.e., single alleles in autosomal recessive disease) indications to achieve a genetic diagnosis in the most cost-effective manner.
Collapse
|
20
|
Dawood M, Lin S, Din TU, Shah IU, Khan N, Jan A, Marwan M, Sultan K, Nowshid M, Tahir R, Ahmed AN, Yasin M, Baple EL, Crosby AH, Saleha S. Novel mutations in PDE6A and CDHR1 cause retinitis pigmentosa in Pakistani families. Int J Ophthalmol 2021; 14:1843-1851. [PMID: 34926197 PMCID: PMC8640774 DOI: 10.18240/ijo.2021.12.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the genetic basis of autosomal recessive retinitis pigmentosa (arRP) in two consanguineous/ endogamous Pakistani families. METHODS Whole exome sequencing (WES) was performed on genomic DNA samples of patients with arRP to identify disease causing mutations. Sanger sequencing was performed to confirm familial segregation of identified mutations, and potential pathogenicity was determined by predictions of the mutations' functions. RESULTS A novel homozygous frameshift mutation [NM_000440.2:c.1054delG, p. (Gln352Argfs*4); Chr5:g.149286886del (GRCh37)] in the PDE6A gene in an endogamous family and a novel homozygous splice site mutation [NM_033100.3:c.1168-1G>A, Chr10:g.85968484G>A (GRCh37)] in the CDHR1 gene in a consanguineous family were identified. The PDE6A variant p. (Gln352Argfs*4) was predicted to be deleterious or pathogenic, whilst the CDHR1 variant c.1168-1G>A was predicted to result in potential alteration of splicing. CONCLUSION This study expands the spectrum of genetic variants for arRP in Pakistani families.
Collapse
Affiliation(s)
- Muhammad Dawood
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Siying Lin
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon EX2 5DW, UK
| | - Taj Ud Din
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Irfan Ullah Shah
- Department of Ophthalmology, KMU Institute of Medical Sciences (KIMS) Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Abid Jan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Marwan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Komal Sultan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Maha Nowshid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Raheel Tahir
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Emma L. Baple
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon EX2 5DW, UK
| | - Andrew H. Crosby
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon EX2 5DW, UK
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
21
|
Beryozkin A, Aweidah H, Carrero Valenzuela RD, Berman M, Iguzquiza O, Cremers FPM, Khan MI, Swaroop A, Amer R, Khateb S, Ben-Yosef T, Sharon D, Banin E. Retinal Degeneration Associated With RPGRIP1: A Review of Natural History, Mutation Spectrum, and Genotype-Phenotype Correlation in 228 Patients. Front Cell Dev Biol 2021; 9:746781. [PMID: 34722527 PMCID: PMC8551679 DOI: 10.3389/fcell.2021.746781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose:RPGRIP1 encodes a ciliary protein expressed in the photoreceptor connecting cilium. Mutations in this gene cause ∼5% of Leber congenital amaurosis (LCA) worldwide, but are also associated with cone–rod dystrophy (CRD) and retinitis pigmentosa (RP) phenotypes. Our purpose was to clinically characterize RPGRIP1 patients from our cohort, collect clinical data of additional RPGRIP1 patients reported previously in the literature, identify common clinical features, and seek genotype–phenotype correlations. Methods: Clinical data were collected from 16 patients of our cohort and 212 previously reported RPGRIP1 patients and included (when available) family history, best corrected visual acuity (BCVA), refraction, comprehensive ocular examination, optical coherence tomography (OCT) imaging, visual fields (VF), and full-field electroretinography (ffERG). Results: Out of 228 patients, the majority (197, 86%) were diagnosed with LCA, 18 (7%) with RP, and 13 (5%) with CRD. Age of onset was during early childhood (n = 133, average of 1.7 years). All patients but 6 had moderate hyperopia (n = 59, mean of 4.8D), and average BCVA was 0.06 Snellen (n = 124; only 10 patients had visual acuity [VA] > 0.10 Snellen). On funduscopy, narrowing of blood vessels was noted early in life. Most patients had mild bone spicule-like pigmentation starting in the midperiphery and later encroaching upon the posterior pole. OCT showed thinning of the outer nuclear layer (ONL), while cystoid changes and edema were relatively rare. VF were usually very constricted from early on. ffERG responses were non-detectable in the vast majority of cases. Most of the mutations are predicted to be null (363 alleles), and 93 alleles harbored missense mutations. Missense mutations were identified only in two regions: the RPGR-interacting domain and the C2 domains. Biallelic null mutations are mostly associated with a severe form of the disease, whereas biallelic missense mutations usually cause a milder disease (mostly CRD). Conclusion: Our results indicate that RPGRIP1 biallelic mutations usually cause severe retinal degeneration at an early age with a cone–rod pattern. However, most of the patients exhibit preservation of some (usually low) BCVA for a long period and can potentially benefit from gene therapy. Missense changes appear only in the conserved domains and are associated with a milder phenotype.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hamzah Aweidah
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Myriam Berman
- Ophthalmology, Clinical Department, Faculty of Medicine, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Oscar Iguzquiza
- Neurology, Clinical Department, Faculty of Medicine, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Radgonde Amer
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Ben-Yosef
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Hernández-Juárez J, Rodríguez-Uribe G, Borooah S. Toward the Treatment of Inherited Diseases of the Retina Using CRISPR-Based Gene Editing. Front Med (Lausanne) 2021; 8:698521. [PMID: 34660621 PMCID: PMC8517184 DOI: 10.3389/fmed.2021.698521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal dystrophies [IRDs] are a common cause of severe vision loss resulting from pathogenic genetic variants. The eye is an attractive target organ for testing clinical translational approaches in inherited diseases. This has been demonstrated by the approval of the first gene supplementation therapy to treat an autosomal recessive IRD, RPE65-linked Leber congenital amaurosis (type 2), 4 years ago. However, not all diseases are amenable for treatment using gene supplementation therapy, highlighting the need for alternative strategies to overcome the limitations of this supplementation therapeutic modality. Gene editing has become of increasing interest with the discovery of the CRISPR-Cas9 platform. CRISPR-Cas9 offers several advantages over previous gene editing technologies as it facilitates targeted gene editing in an efficient, specific, and modifiable manner. Progress with CRISPR-Cas9 research now means that gene editing is a feasible strategy for the treatment of IRDs. This review will focus on the background of CRISPR-Cas9 and will stress the differences between gene editing using CRISPR-Cas9 and traditional gene supplementation therapy. Additionally, we will review research that has led to the first CRISPR-Cas9 trial for the treatment of CEP290-linked Leber congenital amaurosis (type 10), as well as outline future directions for CRISPR-Cas9 technology in the treatment of IRDs.
Collapse
Affiliation(s)
- Jennifer Hernández-Juárez
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, United States
| | - Genaro Rodríguez-Uribe
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico.,Department of Ocular Genetics and Research, CODET Vision Institute, Tijuana, Mexico
| | - Shyamanga Borooah
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
23
|
Biswas P, Villanueva AL, Soto-Hermida A, Duncan JL, Matsui H, Borooah S, Kurmanov B, Richard G, Khan SY, Branham K, Huang B, Suk J, Bakall B, Goldberg JL, Gabriel L, Khan NW, Raghavendra PB, Zhou J, Devalaraja S, Huynh A, Alapati A, Zawaydeh Q, Weleber RG, Heckenlively JR, Hejtmancik JF, Riazuddin S, Sieving PA, Riazuddin SA, Frazer KA, Ayyagari R. Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genet 2021; 17:e1009848. [PMID: 34662339 PMCID: PMC8589175 DOI: 10.1371/journal.pgen.1009848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/12/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Adda L. Villanueva
- Retina and Genomics Institute, Yucatán, México
- Laboratoire de Diagnostic Moleculaire, Hôpital Maisonneuve Rosemont, Montreal, Quebec, Canada
| | - Angel Soto-Hermida
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Jacque L. Duncan
- Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Berzhan Kurmanov
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | | | - Shahid Y. Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kari Branham
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Bonnie Huang
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - John Suk
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Benjamin Bakall
- Ophthalmology, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, United States of America
| | - Jeffrey L. Goldberg
- Byers Eye Institute, Stanford, Palo Alto, California, United States of America
| | - Luis Gabriel
- Genetics and Ophthalmology, Genelabor, Goiânia, Brazil
| | - Naheed W. Khan
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Pongali B. Raghavendra
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
- School of Regenerative Medicine, Manipal University, Bengaluru, Karnataka, India
| | - Jason Zhou
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Sindhu Devalaraja
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Andrew Huynh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Akhila Alapati
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Qais Zawaydeh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Richard G. Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John R. Heckenlively
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Paul A. Sieving
- National Eye Institute, Bethesda, Maryland, United States of America
- Ophthalmology & Vision Science, UC Davis Medical Center, California, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly A. Frazer
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, Rady Children’s Hospital, Division of Genome Information Sciences, San Diego, California, United States of America
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
24
|
Ali Khan I. Do second generation sequencing techniques identify documented genetic markers for neonatal diabetes mellitus? Heliyon 2021; 7:e07903. [PMID: 34584998 PMCID: PMC8455689 DOI: 10.1016/j.heliyon.2021.e07903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/15/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is noted as a genetic, heterogeneous, and rare disease in infants. NDM occurs due to a single-gene mutation in neonates. A common source for developing NDM in an infant is the existence of mutations/variants in the KCNJ11 and ABCC8 genes, encoding the subunits of the voltage-dependent potassium channel. Both KCNJ11 and ABCC8 genes are useful in diagnosing monogenic diabetes during infancy. Genetic analysis was previously performed using first-generation sequencing techniques, such as DNA-Sanger sequencing, which uses chain-terminating inhibitors. Sanger sequencing has certain limitations; it can screen a limited region of exons in one gene, but it cannot screen large regions of the human genome. In the last decade, first generation sequencing techniques have been replaced with second-generation sequencing techniques, such as next-generation sequencing (NGS), which sequences nucleic-acids more rapidly and economically than Sanger sequencing. NGS applications are involved in whole exome sequencing (WES), whole genome sequencing (WGS), and targeted gene panels. WES characterizes a substantial breakthrough in human genetics. Genetic testing for custom genes allows the screening of the complete gene, including introns and exons. The aim of this review was to confirm if the 22 genetic variations previously documented to cause NDM by Sanger sequencing could be detected using second generation sequencing techniques. The author has cross-checked global studies performed in NDM using NGS, ES/WES, WGS, and targeted gene panels as second-generation sequencing techniques; WES confirmed the similar variants, which have been previously documented with Sanger sequencing. WES is documented as a powerful tool and WGS as the most comprehensive test for verified the documented variants, as well as novel enhancers. This review recommends for the future studies should be performed with second generation sequencing techniques to identify the verified 22 genetic and novel variants by screening in NDM (PNDM or TNMD) children.
Collapse
Affiliation(s)
- Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, PO Box-10219, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
25
|
Ratnapriya R, Jacobson SG, Cideciyan AV, English MA, Roman AJ, Sumaroka A, Sheplock R, Swaroop A. A Novel ARL3 Gene Mutation Associated With Autosomal Dominant Retinal Degeneration. Front Cell Dev Biol 2021; 9:720782. [PMID: 34485303 PMCID: PMC8416110 DOI: 10.3389/fcell.2021.720782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Despite major progress in the discovery of causative genes, many individuals and families with inherited retinal degenerations (IRDs) remain without a molecular diagnosis. We applied whole exome sequencing to identify the genetic cause in a family with an autosomal dominant IRD. Eye examinations were performed and affected patients were studied with electroretinography and kinetic and chromatic static perimetry. Sequence variants were analyzed in genes (n = 271) associated with IRDs listed on the RetNet database. We applied a stepwise filtering process involving the allele frequency in the control population, in silico prediction tools for pathogenicity, and evolutionary conservation to prioritize the potential causal variant(s). Sanger sequencing and segregation analysis were performed on the proband and other family members. The IRD in this family is expressed as a widespread progressive retinal degeneration with maculopathy. A novel heterozygous variant (c.200A > T) was identified in the ARL3 gene, leading to the substitution of aspartic acid to valine at position 67. The Asp67 residue is evolutionary conserved, and the change p.Asp67Val is predicted to be pathogenic. This variant was segregated in affected members of the family and was absent from an unaffected individual. Two previous reports of a de novo missense mutation in the ARL3 gene, each describing a family with two affected generations, are the only examples to date of autosomal dominant IRD associated with this photoreceptor gene. Our results, identifying a novel pathogenic variant in ARL3 in a four-generation family with a dominant IRD, augment the evidence that the ARL3 gene is another cause of non-syndromic retinal degeneration.
Collapse
Affiliation(s)
- Rinki Ratnapriya
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Samuel G. Jacobson
- Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Artur V. Cideciyan
- Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Milton A. English
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alejandro J. Roman
- Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander Sumaroka
- Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Sheplock
- Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Unique Variant Spectrum in a Jordanian Cohort with Inherited Retinal Dystrophies. Genes (Basel) 2021; 12:genes12040593. [PMID: 33921607 PMCID: PMC8074154 DOI: 10.3390/genes12040593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Whole Exome Sequencing (WES) is a powerful approach for detecting sequence variations in the human genome. The aim of this study was to investigate the genetic defects in Jordanian patients with inherited retinal dystrophies (IRDs) using WES. WES was performed on proband patients' DNA samples from 55 Jordanian families. Sanger sequencing was used for validation and segregation analysis of the detected, potential disease-causing variants (DCVs). Thirty-five putatively causative variants (6 novel and 29 known) in 21 IRD-associated genes were identified in 71% of probands (39 of the 55 families). Three families showed phenotypes different from the typically reported clinical findings associated with the causative genes. To our knowledge, this is the largest genetic analysis of IRDs in the Jordanian population to date. Our study also confirms that WES is a powerful tool for the molecular diagnosis of IRDs in large patient cohorts.
Collapse
|
27
|
Maggi J, Koller S, Bähr L, Feil S, Kivrak Pfiffner F, Hanson JVM, Maspoli A, Gerth-Kahlert C, Berger W. Long-Range PCR-Based NGS Applications to Diagnose Mendelian Retinal Diseases. Int J Mol Sci 2021; 22:ijms22041508. [PMID: 33546218 PMCID: PMC7913364 DOI: 10.3390/ijms22041508] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
The purpose of this study was to develop a flexible, cost-efficient, next-generation sequencing (NGS) protocol for genetic testing. Long-range polymerase chain reaction (PCR) amplicons of up to 20 kb in size were designed to amplify entire genomic regions for a panel (n = 35) of inherited retinal disease (IRD)-associated loci. Amplicons were pooled and sequenced by NGS. The analysis was applied to 227 probands diagnosed with IRD: (A) 108 previously molecularly diagnosed, (B) 94 without previous genetic testing, and (C) 25 undiagnosed after whole-exome sequencing (WES). The method was validated with 100% sensitivity on cohort A. Long-range PCR-based sequencing revealed likely causative variant(s) in 51% and 24% of proband from cohorts B and C, respectively. Breakpoints of 3 copy number variants (CNVs) could be characterized. Long-range PCR libraries spike-in extended coverage of WES. Read phasing confirmed compound heterozygosity in 5 probands. The proposed sequencing protocol provided deep coverage of the entire gene, including intronic and promoter regions. Our method can be used (i) as a first-tier assay to reduce genetic testing costs, (ii) to elucidate missing heritability cases, (iii) to characterize breakpoints of CNVs at nucleotide resolution, (iv) to extend WES data to non-coding regions by spiking-in long-range PCR libraries, and (v) to help with phasing of candidate variants.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Luzy Bähr
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Fatma Kivrak Pfiffner
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - James V. M. Hanson
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (J.V.M.H.); (C.G.-K.)
| | - Alessandro Maspoli
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (J.V.M.H.); (C.G.-K.)
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (L.B.); (S.F.); (F.K.P.); (A.M.)
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-556-33-50
| |
Collapse
|
28
|
Liu X, Tao T, Zhao L, Li G, Yang L. Molecular diagnosis based on comprehensive genetic testing in 800 Chinese families with non-syndromic inherited retinal dystrophies. Clin Exp Ophthalmol 2020; 49:46-59. [PMID: 33090715 DOI: 10.1111/ceo.13875] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Inherited retinal dystrophies (IRDs) are a group of monogenic diseases, one of the leading causes of blindness. BACKGROUND Introducing a comprehensive genetic testing strategy by combining single gene Sanger sequencing, next-generation sequencing (NGS) including whole exome sequencing (WES), and a specific hereditary eye disease enrichment panel (HEDEP) sequencing, to identify the disease-causing variants of 800 Chinese probands affected with non-syndromic IRDs. DESIGN Retrospective analysis. PARTICIPANTS Eight hundred Chinese non-syndromic IRDs probands and their families. METHODS A total of 149 patients were subjected to Sanger sequencing. Of the 651 patients subjected to NGS, 86 patients underwent WES and 565 underwent HEDEP. Patients that likely carried copy number variations (CNVs) detected by HEDEP were further validated by multiplex ligation-dependent probe amplification (MLPA) or quantitative fluorescence PCR (QF-PCR). MAIN OUTCOME MEASURES The diagnostic rate. RESULTS (Likely) pathogenic variants were determined in 481 cases (60.13% detection rate). The detection rates of single gene Sanger sequencing, WES and HEDEP were 86.58%, 31.40% and 56.99%, respectively. Approximately 11.64% of 481 cases carried autosomal dominant variants, 72.97% carried AR variants and 15.39% were found to be X-linked. CNVs were confirmed by MLPA or QF-PCR in 17 families. Fourteen genes that each caused disease in 1% or more of the cohort were detected, and these genes were collectively responsible for disease in almost one half (46.38%) of the families. CONCLUSIONS AND RELEVANCE Sanger sequencing is ideal to detect pathogenic variants of clinical homogeneous diseases, whereas NGS is more appropriate for patients without an explicit clinical diagnosis.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Tianchang Tao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Lin Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
29
|
柳 小, 李 莹, 杨 丽. [Comparison study of whole exome sequencing and targeted panel sequencing in molecular diagnosis of inherited retinal dystrophies]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:836-844. [PMID: 33047716 PMCID: PMC7653409 DOI: 10.19723/j.issn.1671-167x.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To evaluate and compare whole exome sequencing (WES) and targeted panel sequencing in the clinical molecular diagnosis of the Chinese families affected with inherited retinal dystrophies (IRDs). METHODS The clinical information of 182 probands affected with IRDs was collected, including their family history and the ophthalmic examination results. Blood samples of all probands and their relatives were collected and genomic DNA was extracted by standard protocols. The first 91 cases were subjected to the WES and the other 91 cases were subjected to a specific hereditary eye disease enrichment panel (HEDEP) designed by us. All likely pathogenic and pathogenic variants in the candidate genes were determined by Sanger sequencing and co-segregation analyses were performed in available family members. Copy number variations (CNVs) detected by HEDEP were further validated by multiplex ligation-dependent probe amplification (MLPA). As PRGR ORF15 was difficult to capture by next generation sequencing (NGS), all the samples were subjected to Sanger sequencing for this region. All sequence changes identified by NGS were classified according to the American College of Medical Gene-tics and Genomics and the Association for Molecular Pathology (ACMG/AMP) variant interpretation guidelines. In this study, only variants identified as pathogenic or likely pathogenic were included, while those variants of uncertain significance, likely benign or benign were not included. RESULTS In 91 cases with WES, pathogenic or likely pathogenic variants were determined in 30 cases, obtaining a detection rate of 33.00% (30/91); While in 91 cases with HEDEP sequencing, pathogenic or likely pathogenic variants were determined in 51 cases, achieving the diagnostic rate of 56.04% (51/91), and totally, the diagnostic rate was 44.51%. HEDEP had better sequencing coverage and read depth than WES, therefore HEDEP had higher detection rate. In addition, HEDEP could detect CNVs. In this study, we detected disease-causing variants in 29 distinct IRD-associated genes, USH2A, ABCA4 and RPGR were the three most common disease-causing genes, and the frequency of these genes in Chinese IRDs population was 11.54% (21/182), 6.59% (12/182) and 3.85% (7/182), respectively. We found 43 novel variants and 6 cases carried variants in RPGR ORF15. CONCLUSION NGS in conjunction with Sanger sequencing offers a reliable and effective approach for the genetic diagnosis of IRDs, and after evaluating the pros and cons of the two sequencing methods, we conclude that HEDEP should be used as a first-tier test for IRDs patients, WES can be used as a supplementary molecular diagnostic method due to its merit of detecting novel IRD-associated genes if HEDEP or other methods could not detect disease-causing va-riants in reported genes. In addition, our results enriched the mutational spectra of IRDs genes, and our methods paves the way of genetic counselling, family planning and up-coming gene-based therapies for these families.
Collapse
Affiliation(s)
- 小珍 柳
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - 莹莹 李
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - 丽萍 杨
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
30
|
柳 小, 李 莹, 杨 丽. [Comparison study of whole exome sequencing and targeted panel sequencing in molecular diagnosis of inherited retinal dystrophies]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:836-844. [PMID: 33047716 PMCID: PMC7653409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 08/11/2024]
Abstract
OBJECTIVE To evaluate and compare whole exome sequencing (WES) and targeted panel sequencing in the clinical molecular diagnosis of the Chinese families affected with inherited retinal dystrophies (IRDs). METHODS The clinical information of 182 probands affected with IRDs was collected, including their family history and the ophthalmic examination results. Blood samples of all probands and their relatives were collected and genomic DNA was extracted by standard protocols. The first 91 cases were subjected to the WES and the other 91 cases were subjected to a specific hereditary eye disease enrichment panel (HEDEP) designed by us. All likely pathogenic and pathogenic variants in the candidate genes were determined by Sanger sequencing and co-segregation analyses were performed in available family members. Copy number variations (CNVs) detected by HEDEP were further validated by multiplex ligation-dependent probe amplification (MLPA). As PRGR ORF15 was difficult to capture by next generation sequencing (NGS), all the samples were subjected to Sanger sequencing for this region. All sequence changes identified by NGS were classified according to the American College of Medical Gene-tics and Genomics and the Association for Molecular Pathology (ACMG/AMP) variant interpretation guidelines. In this study, only variants identified as pathogenic or likely pathogenic were included, while those variants of uncertain significance, likely benign or benign were not included. RESULTS In 91 cases with WES, pathogenic or likely pathogenic variants were determined in 30 cases, obtaining a detection rate of 33.00% (30/91); While in 91 cases with HEDEP sequencing, pathogenic or likely pathogenic variants were determined in 51 cases, achieving the diagnostic rate of 56.04% (51/91), and totally, the diagnostic rate was 44.51%. HEDEP had better sequencing coverage and read depth than WES, therefore HEDEP had higher detection rate. In addition, HEDEP could detect CNVs. In this study, we detected disease-causing variants in 29 distinct IRD-associated genes, USH2A, ABCA4 and RPGR were the three most common disease-causing genes, and the frequency of these genes in Chinese IRDs population was 11.54% (21/182), 6.59% (12/182) and 3.85% (7/182), respectively. We found 43 novel variants and 6 cases carried variants in RPGR ORF15. CONCLUSION NGS in conjunction with Sanger sequencing offers a reliable and effective approach for the genetic diagnosis of IRDs, and after evaluating the pros and cons of the two sequencing methods, we conclude that HEDEP should be used as a first-tier test for IRDs patients, WES can be used as a supplementary molecular diagnostic method due to its merit of detecting novel IRD-associated genes if HEDEP or other methods could not detect disease-causing va-riants in reported genes. In addition, our results enriched the mutational spectra of IRDs genes, and our methods paves the way of genetic counselling, family planning and up-coming gene-based therapies for these families.
Collapse
Affiliation(s)
- 小珍 柳
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - 莹莹 李
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - 丽萍 杨
- />北京大学第三医院眼科,北京 100191Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
31
|
Beryozkin A, Khateb S, Idrobo-Robalino CA, Khan MI, Cremers FPM, Obolensky A, Hanany M, Mezer E, Chowers I, Newman H, Ben-Yosef T, Sharon D, Banin E. Unique combination of clinical features in a large cohort of 100 patients with retinitis pigmentosa caused by FAM161A mutations. Sci Rep 2020; 10:15156. [PMID: 32938956 PMCID: PMC7495424 DOI: 10.1038/s41598-020-72028-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023] Open
Abstract
FAM161A mutations are the most common cause of autosomal recessive retinitis pigmentosa in the Israeli-Jewish population. We aimed to characterize the spectrum of FAM161A-associated phenotypes and identify characteristic clinical features. We identified 114 bi-allelic FAM161A patients and obtained clinical records of 100 of these patients. The most frequent initial symptom was night blindness. Best-corrected visual acuity was largely preserved through the first three decades of life and severely deteriorated during the 4th–5th decades. Most patients manifest moderate-high myopia. Visual fields were markedly constricted from early ages, but maintained for decades. Bone spicule-like pigmentary changes appeared relatively late, accompanied by nummular pigmentation. Full-field electroretinography responses were usually non-detectable at first testing. Fundus autofluorescence showed a hyper-autofluorescent ring around the fovea in all patients already at young ages. Macular ocular coherence tomography showed relative preservation of the outer nuclear layer and ellipsoid zone in the fovea, and frank cystoid macular changes were very rare. Interestingly, patients with a homozygous nonsense mutation manifest somewhat more severe disease. Our clinical analysis is one of the largest ever reported for RP caused by a single gene allowing identification of characteristic clinical features and may be relevant for future application of novel therapies.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Carlos Alberto Idrobo-Robalino
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Eedy Mezer
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel
| | - Hadas Newman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Ophthalmology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel.
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem, Israel.
| |
Collapse
|
32
|
Targeting of the NRL Pathway as a Therapeutic Strategy to Treat Retinitis Pigmentosa. J Clin Med 2020; 9:jcm9072224. [PMID: 32668775 PMCID: PMC7408925 DOI: 10.3390/jcm9072224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal dystrophy (IRD) with a prevalence of 1:4000, characterized by initial rod photoreceptor loss and subsequent cone photoreceptor loss with accompanying nyctalopia, visual field deficits, and visual acuity loss. A diversity of causative mutations have been described with autosomal dominant, autosomal recessive, and X-linked inheritance and sporadic mutations. The diversity of mutations makes gene therapy challenging, highlighting the need for mutation-agnostic treatments. Neural leucine zipper (NRL) and NR2E3 are factors important for rod photoreceptor cell differentiation and homeostasis. Germline mutations in NRL or NR2E3 leads to a loss of rods and an increased number of cones with short wavelength opsin in both rodents and humans. Multiple groups have demonstrated that inhibition of NRL or NR2E3 activity in the mature retina could endow rods with certain properties of cones, which prevents cell death in multiple rodent RP models with diverse mutations. In this review, we summarize the literature on NRL and NR2E3, therapeutic strategies of NRL/NR2E3 modulation in preclinical RP models, as well as future directions of research. In summary, inhibition of the NRL/NR2E3 pathway represents an intriguing mutation agnostic and disease-modifying target for the treatment of RP.
Collapse
|
33
|
Abstract
We report the molecular basis of the largest Tunisian cohort with inherited retinal dystrophies (IRD) reported to date, identify disease-causing pathogenic variants and describe genotype-phenotype correlations. A subset of 26 families from a cohort of 73 families with clinical diagnosis of autosomal recessive IRD (AR-IRD) excluding Usher syndrome was analyzed by whole exome sequencing and autozygosity mapping. Causative pathogenic variants were identified in 50 families (68.4%), 42% of which were novel. The most prevalent pathogenic variants were observed in ABCA4 (14%) and RPE65, CRB1 and CERKL (8% each). 26 variants (8 novel and 18 known) in 19 genes were identified in 26 families (14 missense substitutions, 5 deletions, 4 nonsense pathogenic variants and 3 splice site variants), with further allelic heterogeneity arising from different pathogenic variants in the same gene. The most common phenotype in our cohort is retinitis pigmentosa (23%) and cone rod dystrophy (23%) followed by Leber congenital amaurosis (19.2%). We report the association of new disease phenotypes. This research was carried out in Tunisian patients with IRD in order to delineate the genetic population architecture.
Collapse
|
34
|
Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci U S A 2020; 117:2710-2716. [PMID: 31964843 DOI: 10.1073/pnas.1913179117] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One of the major questions in human genetics is what percentage of individuals in the general population carry a disease-causing mutation. Based on publicly available information on genotypes from six main world populations, we created a database including data on 276,921 sequence variants, present within 187 genes associated with autosomal recessive (AR) inherited retinal diseases (IRDs). Assessment of these variants revealed that 10,044 were categorized as disease-causing mutations. We developed an algorithm to compute the gene-specific prevalence of disease, as well as the mutational burden in healthy subjects. We found that the genetic prevalence of AR-IRDs corresponds approximately to 1 case in 1,380 individuals, with 5.5 million people expected to be affected worldwide. In addition, we calculated that unaffected carriers of mutations are numerous, ranging from 1 in 2.26 individuals in Europeans to 1 in 3.50 individuals in the Finnish population. Our analysis indicates that about 2.7 billion people worldwide (36% of the population) are healthy carriers of at least one mutation that can cause AR-IRD, a value that is probably the highest across any group of Mendelian conditions in humans.
Collapse
|
35
|
Xiao X, Sun W, Li S, Jia X, Zhang Q. Spectrum, frequency, and genotype-phenotype of mutations in SPATA7. Mol Vis 2019; 25:821-833. [PMID: 31908400 PMCID: PMC6925664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/30/2019] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To describe the mutation spectrum of SPATA7 and associated ocular phenotypes. METHODS As part of a continuing examination of the genetic basis of inherited ophthalmic diseases, sequencing variations in SPATA7 were identified in sequencing data from 5,090 probands. Mutations in SPATA7 were identified in 12 Chinese patients from ten families. Family history and clinical data were examined in detail in these patients. To evaluate possible gene-specific fundus changes, the results were combined with data from 66 patients from 50 families previously reported in the literature. RESULTS Seven homozygous or compound heterozygous mutations, including two novel mutations (c.367C>T, p.Q123* and c.1083-2A>G) and five known mutations in SPATA7, were identified in ten families, including six families with Leber congenital amaurosis (LCA), three families with juvenile retinitis pigmentosa, and one family with early-onset high myopia. These families accounted for approximately 2.2% (6/269) of LCA and 0.4% (10/2,252) of inherited retinal dystrophies in this case series. A combined analysis of data from the present study and data from 60 families reported in the literature showed that 93.3% (112/120) of mutant alleles were truncation mutations, whereas only about 5.0% were missense mutations, and 1.7% were non-frameshift indels. Common SPATA7-associated fundus changes, including narrow arterioles, a relatively well-preserved macular region, and widespread RPE atrophy resulting in diffuse mottled hypopigmentation in the midperipheral retina, were identified in this cohort and in patients in the literature. Missense mutations were not associated with specific phenotypic features or severity. CONCLUSIONS Narrow arterioles, a relatively well-preserved macular region, and widespread RPE atrophy resulting in diffuse mottling hypopigmentation in the midperipheral retina may be considered early and common fundus changes specific to SPATA7-associated retinopathy. The fact that similar mutations result in varied phenotypes points to the existence of other potential modifiers of the disease. Uncovering the identity of these modifiers might aid the development of novel treatments.
Collapse
|
36
|
Identification of a CNGB1 Frameshift Mutation in a Han Chinese Family with Retinitis Pigmentosa. Optom Vis Sci 2019; 95:1155-1161. [PMID: 30451805 DOI: 10.1097/opx.0000000000001305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SIGNIFICANCE Retinitis pigmentosa (RP) is a severe hereditary retinal disorder characterized by progressive degeneration of rod and cone photoreceptors. This study identified a novel frameshift mutation, c.385delC, p.(L129WfsTer148), in the cyclic nucleotide-gated channel beta 1 (CNGB1) gene of a consanguineous Han Chinese family with autosomal recessive RP (arRP). This expands the spectrum of CNGB1 gene variants in RP cases and possibly refines future genetic counseling. PURPOSE The present study sought to identify potential pathogenetic gene mutations in a five-generation consanguineous Han Chinese family with RP. METHODS Two members of a five-generation consanguineous Han Chinese pedigree with arRP and 100 normal individuals were enrolled in this study. Exome sequencing was performed on the 70-year-old male proband from a consanguineous family to screen potential pathogenic mutations according to the American College of Medical Genetics and Genomics for the interpretation of sequence variants. Sanger sequencing was performed on the proband, the proband's unaffected son, and 100 normal individuals to verify the disease-causing mutation. RESULTS A novel frameshift mutation, c.385delC, p.(L129WfsTer148), with homozygous status in the CNGB1 gene was identified in the proband of the family with arRP, and the mutation with heterozygous status was carried by the asymptomatic son. CONCLUSIONS The c.385delC (p.(L129WfsTer148)) mutation in the CNGB1 gene screened by exome sequencing is probably responsible for the RP phenotype in this family. The result expands the spectrum of CNGB1 gene variants in RP cases and possibly refines future genetic counseling.
Collapse
|
37
|
Abu Diab A, AlTalbishi A, Rosin B, Kanaan M, Kamal L, Swaroop A, Chowers I, Banin E, Sharon D, Khateb S. The combination of whole-exome sequencing and clinical analysis allows better diagnosis of rare syndromic retinal dystrophies. Acta Ophthalmol 2019; 97:e877-e886. [PMID: 30925032 PMCID: PMC11377105 DOI: 10.1111/aos.14095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/03/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE To identify the accurate clinical diagnosis of rare syndromic inherited retinal diseases (IRDs) based on the combination of clinical and genetic analyses. METHODS Four unrelated families with various autosomal recessive syndromic inherited retinal diseases were genetically investigated using whole-exome sequencing (WES). RESULTS Two affected subjects in family MOL0760 presented with a distinctive combination of short stature, developmental delay, congenital mental retardation, microcephaly, facial dysmorphism and retinitis pigmentosa (RP). Subjects were clinically diagnosed with suspected Kabuki syndrome. WES revealed a homozygous nonsense mutation (c.5492dup, p.Asn1831Lysfs*8) in VPS13B that is known to cause Cohen syndrome. The index case of family MOL1514 presented with both RP and liver dysfunction, suspected initially to be related. WES identified a homozygous frameshift mutation (c.1787_1788del, p.His596Argfs*47) in AGBL5, associated with nonsyndromic RP. The MOL1592 family included three affected subjects with crystalline retinopathy, skin ichthyosis, short stature and congenital adrenal hypoplasia, and were found to harbour a homozygous nonsense mutation (c.682C>T, p.Arg228Cys) in ALDH3A2, reported to cause Sjögren-Larsson syndrome (SLS). In the fourth family, SJ002, two siblings presented with hypotony, psychomotor delay, dysmorphic facial features, pathologic myopia, progressive external ophthalmoplegia and diffuse retinal atrophy. Probands were suspected to have atypical Kearns-Sayre syndrome, but were diagnosed with combined oxidative phosphorylation deficiency-20 due to a novel suspected missense variant (c.1691C>T, p.Ala564Val) in VARS2. CONCLUSION Our findings emphasize the important complement of WES and thorough clinical investigation in establishing precise clinical diagnosis. This approach constitutes the basis for personalized medicine in rare IRDs.
Collapse
Affiliation(s)
- Alaa Abu Diab
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Boris Rosin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Moien Kanaan
- Hereditary Research Lab, Bethlehem University, Jerusalem, Israel
| | - Lara Kamal
- Hereditary Research Lab, Bethlehem University, Jerusalem, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
38
|
García-García GP, Martínez-Rubio M, Moya-Moya MA, Pérez-Santonja JJ, Escribano J. Current perspectives in Bietti crystalline dystrophy. Clin Ophthalmol 2019; 13:1379-1399. [PMID: 31440027 PMCID: PMC6679682 DOI: 10.2147/opth.s185744] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023] Open
Abstract
Bietti crystalline dystrophy (BCD) is a rare-inherited disease caused by mutations in the CYP4V2 gene and characterized by the presence of multiple shimmering yellow-white deposits in the posterior pole of the retina in association with atrophy of the retinal pigment epithelium (RPE) and chorioretinal atrophy. The additional presence of glittering dots located at the corneal limbus is also a frequent finding. The CYP4V2 protein belongs to the cytochrome P450 subfamily 4 and is mainly expressed in the retina and the RPE and less expressed in the cornea. The disease has its metabolic origin in the diminished transformation of fatty acid substrates into n-3 polyunsaturated fatty acids due to a dysregulation of the lipid metabolism. In this review, we provide updated insights on clinical and molecular characteristics of BCD including underlying mechanisms of BCD, genetic diagnosis, progress in the identification of causative genetic and epigenetic factors, available techniques of exploration and development of novel therapies. This information will help clinicians to improve accuracy of BCD diagnosis, providing the patient reliable information regarding prognosis and clinical prediction of the disease course.
Collapse
Affiliation(s)
- G P García-García
- Department of Ophthalmology, General University Hospital of Alicante, Alicante 03010, Spain
| | - M Martínez-Rubio
- Department of Ophthalmology, General University Hospital of Alicante, Alicante 03010, Spain
| | - M A Moya-Moya
- Department of Ophthalmology, General University Hospital of Alicante, Alicante 03010, Spain
| | - J J Pérez-Santonja
- Department of Ophthalmology, General University Hospital of Alicante, Alicante 03010, Spain
| | - J Escribano
- Cooperative Research Network on Ophthalmology (OftaRed), Visual and Life Quality, Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Human Molecular Genetics, Medicine Faculty/Research Institute on Neurological Disabilities (IDINE), University of Castilla La-Mancha, Albacete 02006, Spain
| |
Collapse
|
39
|
Hu YS, Song H, Li Y, Xiao ZY, Li T. Whole-exome sequencing identifies novel mutations in genes responsible for retinitis pigmentosa in 2 nonconsanguineous Chinese families. Int J Ophthalmol 2019; 12:915-923. [PMID: 31236346 DOI: 10.18240/ijo.2019.06.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
AIM To detect the pathogenetic mutations responsible for nonsyndromic autosomal recessive retinitis pigmentosa (RP) in 2 nonconsanguineous Chinese families. METHODS The clinical data, including detailed medical history, best corrected visual acuity (BCVA), slit-lamp biomicroscope examination, fundus photography, optical coherence tomography, static perimetry, and full field electroretinogram, were collected from the members of 2 nonconsanguineous Chinese families preliminarily diagnosed with RP. Genomic DNA was extracted from the probands and other available family members; whole-exome sequencing was conducted with the DNA samples provided by the probands, and all mutations detected by whole-exome sequencing were verified using Sanger sequencing in the probands and the other available family members. The verified novel mutations were further sequenced in 192 ethnicity matched healthy controls. RESULTS The patients from the 2 families exhibited the typical symptoms of RP, including night blindness and progressive constriction of the visual field, and the fundus examinations showed attenuated retinal arterioles, peripheral bone spicule pigment deposits, and waxy optic discs. Whole-exome sequencing revealed a novel nonsense mutation in FAM161A (c.943A>T, p.Lys315*) and compound heterozygous mutations in RP1L1 (c.56C>A, p.Pro19His; c.5470C>T, p.Gln1824*). The nonsense c.5470C>T, p.Gln1824* mutation was novel. All mutations were verified by Sanger sequencing. The mutation p.Lys315* in FAM161A co-segregated with the phenotype, and all the nonsense mutations were absent from the ethnicity matched healthy controls and all available databases. CONCLUSION We identify 2 novel mutations in genes responsible for autosomal recessive RP, and the mutation in FAM161A is reported for the first time in a Chinese population. Our result not only enriches the knowledge of the mutation frequency and spectrum in the genes responsible for nonsyndromic RP but also provides a new target for future gene therapy.
Collapse
Affiliation(s)
- Yan-Shan Hu
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Hui Song
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Yin Li
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Zi-Yun Xiao
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| | - Tuo Li
- Department of Ophthalmology, the Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, China
| |
Collapse
|
40
|
Littink KW, Stappers PTY, Riemslag FCC, Talsma HE, van Genderen MM, Cremers FPM, Collin RWJ, van den Born LI. Autosomal Recessive NRL Mutations in Patients with Enhanced S-Cone Syndrome. Genes (Basel) 2018; 9:genes9020068. [PMID: 29385733 PMCID: PMC5852564 DOI: 10.3390/genes9020068] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 01/20/2023] Open
Abstract
Enhanced S-cone syndrome (ESCS) is mainly associated with mutations in the NR2E3 gene. However, rare mutations in the NRL gene have been reported in patients with ESCS. We report on an ESCS phenotype in additional patients with autosomal recessive NRL (arNRL) mutations. Three Moroccan patients of two different families with arNRL mutations were enrolled in this study. The mutation in the DNA of one patient, from a consanguineous marriage, was detected by homozygosity mapping. The mutation in the DNA of two siblings from a second family was detected in a targeted next-generation sequencing project. Full ophthalmic examination was performed, including best-corrected visual acuity, slit-lamp biomicroscopy, funduscopy, Goldmann kinetic perimetry, optical coherence tomography, fundus autofluorescence, and extended electroretinography including an amber stimulus on a blue background and a blue stimulus on an amber background. One patient carried a homozygous missense mutation (c.508C>A; p.Arg170Ser) in the NRL gene, whereas the same mutation was identified heterozygously in the two siblings of a second family, in combination with a one base-pair deletion (c.654del; p.Cys219Valfs*4) on the other allele. All patients had reduced visual acuity and showed a typical clumped pigmentary retinal degeneration (CPRD). Foveal schisis-like changes were observed in the oldest patient. An electroretinogram (ERG) under dark-adapted conditions showed absent responses for low stimulus strengths and reduced responses for high stimulus strengths, with constant b-wave latencies despite increasing stimulus strength. A relatively high amplitude was detected with a blue stimulus on an amber background, while an amber stimulus on a blue background showed reduced responses. The arNRL mutations cause a phenotype with typical CPRD. This phenotype has previously been described in patients with ESCS caused by NR2E3 mutations, and rarely by NRL mutations. Based on our findings in ERG testing, we conclude that S-cone function is enhanced in our patients in a similar manner as in patients with NR2E3-associated ESCS, confirming previous reports of NRL as a second gene to cause ESCS.
Collapse
Affiliation(s)
- Karin W Littink
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands.
| | | | - Frans C C Riemslag
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands.
- Bartiméus Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands.
| | - Herman E Talsma
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands.
- Bartiméus Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands.
| | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | | |
Collapse
|
41
|
Astuti GDN, van den Born LI, Khan MI, Hamel CP, Bocquet B, Manes G, Quinodoz M, Ali M, Toomes C, McKibbin M, El-Asrag ME, Haer-Wigman L, Inglehearn CF, Black GCM, Hoyng CB, Cremers FPM, Roosing S. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes. Genes (Basel) 2018; 9:genes9010021. [PMID: 29320387 PMCID: PMC5793174 DOI: 10.3390/genes9010021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 (SNRNP200) and Zinc Finger Protein 513 (ZNF513), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 (DHX32) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.
Collapse
Affiliation(s)
- Galuh D. N. Astuti
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | | | - M. Imran Khan
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Christian P. Hamel
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Béatrice Bocquet
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Gaël Manes
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
| | - Mathieu Quinodoz
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Manir Ali
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Carmel Toomes
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Martin McKibbin
- Department of Ophthalmology, St. James’s University Hospital, LS9 7TF Leeds, UK;
| | - Mohammed E. El-Asrag
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
- Department of Zoology, Faculty of Science, Benha University, 13511 Benha, Egypt
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
| | - Chris F. Inglehearn
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Graeme C. M. Black
- Centre for Genomic Medicine, St. Mary’s Hospital, Manchester Academic Health Science Centre, University of Manchester, M13 9PL Manchester, UK;
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-(0)24-365-5266
| |
Collapse
|
42
|
A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genet Med 2018; 20:1004-1012. [PMID: 29300381 DOI: 10.1038/gim.2017.227] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
PURPOSE We aimed to identify the cause of disease in patients suffering from a distinctive, atypical form of Usher syndrome. METHODS Whole-exome and genome sequencing were performed in five patients from three families of Yemenite Jewish origin, suffering from distinctive retinal degeneration phenotype and sensorineural hearing loss. Functional analysis of the wild-type and mutant proteins was performed in human fibrosarcoma cells. RESULTS We identified a homozygous founder missense variant, c.133G>T (p.D45Y) in arylsulfatase G (ARSG). All patients shared a distinctive retinal phenotype with ring-shaped atrophy along the arcades engirdling the fovea, resulting in ring scotoma. In addition, patients developed moderate to severe sensorineural hearing loss. Both vision and hearing loss appeared around the age of 40 years. The identified variant affected a fully conserved amino acid that is part of the catalytic site of the enzyme. Functional analysis of the wild-type and mutant proteins showed no basal activity of p.D45Y. CONCLUSION Homozygosity for ARSG-p.D45Y in humans leads to protein dysfunction, causing an atypical combination of late-onset Usher syndrome. Although there is no evidence for generalized clinical manifestations of lysosomal storage diseases in this set of patients, we cannot rule out the possibility that mild and late-onset symptoms may appear.
Collapse
|
43
|
Kimchi A, Khateb S, Wen R, Guan Z, Obolensky A, Beryozkin A, Kurtzman S, Blumenfeld A, Pras E, Jacobson SG, Ben-Yosef T, Newman H, Sharon D, Banin E. Nonsyndromic Retinitis Pigmentosa in the Ashkenazi Jewish Population: Genetic and Clinical Aspects. Ophthalmology 2017; 125:725-734. [PMID: 29276052 DOI: 10.1016/j.ophtha.2017.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To analyze the genetic and clinical findings in retinitis pigmentosa (RP) patients of Ashkenazi Jewish (AJ) descent, aiming to identify genotype-phenotype correlations. DESIGN Cohort study. PARTICIPANTS Retinitis pigmentosa patients from 230 families of AJ origin. METHODS Sanger sequencing was performed to detect specific founder mutations known to be prevalent in the AJ population. Ophthalmologic analysis included a comprehensive clinical examination, visual acuity (VA), visual fields, electroretinography, color vision testing, and retinal imaging by OCT, pseudocolor, and autofluorescence fundus photography. MAIN OUTCOME MEASURES Inheritance pattern and causative mutation; retinal function as assessed by VA, visual fields, and electroretinography results; and retinal structural changes observed on clinical funduscopy as well as by pseudocolor, autofluorescence, and OCT imaging. RESULTS The causative mutation was identified in 37% of families. The most prevalent RP-causing mutations are the Alu insertion (c.1297_8ins353, p.K433Rins31*) in the male germ cell-associated kinase (MAK) gene (39% of families with a known genetic cause for RP) and c.124A>G, p.K42E in dehydrodolichol diphosphate synthase (DHDDS) (33%). Additionally, disease-causing mutations were identified in 11 other genes. Analysis of clinical parameters of patients with mutations in the 2 most common RP-causing genes revealed that MAK patients had better VA and visual fields at relatively older ages in comparison with DHDDS patients. Funduscopic findings of DHDDS patients matched those of MAK patients who were 20 to 30 years older. Patients with DHDDS mutations were referred for electrophysiologic evaluation at earlier ages, and their cone responses became nondetectable at a much younger age than MAK patients. CONCLUSIONS Our AJ cohort of RP patients is the largest reported to date and showed a substantial difference in the genetic causes of RP compared with cohorts of other populations, mainly a high rate of autosomal recessive inheritance and a unique composition of causative genes. The most common RP-causing genes in our cohort, MAK and DHDDS, were not described as major causative genes in other populations. The clinical data show that in general, patients with biallelic MAK mutations had a later age of onset and a milder retinal phenotype compared with patients with biallelic DHDDS mutations.
Collapse
Affiliation(s)
- Adva Kimchi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida
| | - Ziqiang Guan
- Duke University Medical Center, Durham, North Carolina
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shoshi Kurtzman
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Anat Blumenfeld
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eran Pras
- Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tamar Ben-Yosef
- The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hadas Newman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Ophthalmology, Sourasky Medical Center, Tel-Aviv, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
44
|
Stingl K, Mayer AK, Llavona P, Mulahasanovic L, Rudolph G, Jacobson SG, Zrenner E, Kohl S, Wissinger B, Weisschuh N. CDHR1 mutations in retinal dystrophies. Sci Rep 2017; 7:6992. [PMID: 28765526 PMCID: PMC5539332 DOI: 10.1038/s41598-017-07117-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
We report ophthalmic and genetic findings in patients with autosomal recessive retinitis pigmentosa (RP), cone-rod dystrophy (CRD) or cone dystrophy (CD) harboring potential pathogenic variants in the CDHR1 gene. Detailed ophthalmic examination was performed in seven sporadic and six familial subjects. Mutation screening was done using a customized next generation sequencing panel targeting 105 genes implicated in inherited retinal disorders. In one family, homozygosity mapping with subsequent candidate gene analysis was performed. Stringent filtering for rare and potentially disease causing variants following a model of autosomal recessive inheritance led to the identification of eleven different CDHR1 variants in nine index cases. All variants were novel at the time of their identification. In silico analyses confirmed their pathogenic potential. Minigene assays were performed for two non-canonical splice site variants and revealed missplicing for the mutant alleles. Mutations in CDHR1 are a rare cause of retinal dystrophy. Our study further expands the mutational spectrum of this gene and the associated clinical presentation.
Collapse
Affiliation(s)
- Katarina Stingl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Anja K Mayer
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Pablo Llavona
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | | | - Günther Rudolph
- University Eye Hospital, Ludwig Maximilians University, Munich, Germany
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tuebingen, Tuebingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
45
|
Van Schil K, Naessens S, Van de Sompele S, Carron M, Aslanidis A, Van Cauwenbergh C, Kathrin Mayer A, Van Heetvelde M, Bauwens M, Verdin H, Coppieters F, Greenberg ME, Yang MG, Karlstetter M, Langmann T, De Preter K, Kohl S, Cherry TJ, Leroy BP, De Baere E. Mapping the genomic landscape of inherited retinal disease genes prioritizes genes prone to coding and noncoding copy-number variations. Genet Med 2017; 20:202-213. [PMID: 28749477 PMCID: PMC5787040 DOI: 10.1038/gim.2017.97] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 01/08/2023] Open
Abstract
PurposePart of the hidden genetic variation in heterogeneous genetic conditions such as inherited retinal diseases (IRDs) can be explained by copy-number variations (CNVs). Here, we explored the genomic landscape of IRD genes listed in RetNet to identify and prioritize those genes susceptible to CNV formation.MethodsRetNet genes underwent an assessment of genomic features and of CNV occurrence in the Database of Genomic Variants and literature. CNVs identified in an IRD cohort were characterized using targeted locus amplification (TLA) on extracted genomic DNA.ResultsExhaustive literature mining revealed 1,345 reported CNVs in 81 different IRD genes. Correlation analysis between rankings of genomic features and CNV occurrence demonstrated the strongest correlation between gene size and CNV occurrence of IRD genes. Moreover, we identified and delineated 30 new CNVs in IRD cases, 13 of which are novel and three of which affect noncoding, putative cis-regulatory regions. Finally, the breakpoints of six complex CNVs were determined using TLA in a hypothesis-neutral manner.ConclusionWe propose a ranking of CNV-prone IRD genes and demonstrate the efficacy of TLA for the characterization of CNVs on extracted DNA. Finally, this IRD-oriented CNV study can serve as a paradigm for other genetically heterogeneous Mendelian diseases with hidden genetic variation.
Collapse
Affiliation(s)
- Kristof Van Schil
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sarah Naessens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stijn Van de Sompele
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Marjolein Carron
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Alexander Aslanidis
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | | | - Anja Kathrin Mayer
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Mattias Van Heetvelde
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Miriam Bauwens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marty G Yang
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Timothy J Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
46
|
Gootwine E, Abu-Siam M, Obolensky A, Rosov A, Honig H, Nitzan T, Shirak A, Ezra-Elia R, Yamin E, Banin E, Averbukh E, Hauswirth WW, Ofri R, Seroussi E. Gene Augmentation Therapy for a Missense Substitution in the cGMP-Binding Domain of Ovine CNGA3 Gene Restores Vision in Day-Blind Sheep. Invest Ophthalmol Vis Sci 2017; 58:1577-1584. [PMID: 28282490 PMCID: PMC5361581 DOI: 10.1167/iovs.16-20986] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Applying CNGA3 gene augmentation therapy to cure a novel causative mutation underlying achromatopsia (ACHM) in sheep. Methods Impaired vision that spontaneously appeared in newborn lambs was characterized by behavioral, electroretinographic (ERG), and histologic techniques. Deep-sequencing reads of an affected lamb and an unaffected lamb were compared within conserved genomic regions orthologous to human genes involved in similar visual impairment. Observed nonsynonymous amino acid substitutions were classified by their deleteriousness score. The putative causative mutation was assessed by producing compound CNGA3 heterozygotes and applying gene augmentation therapy using the orthologous human cDNA. Results Behavioral assessment revealed day blindness, and subsequent ERG examination showed attenuated photopic responses. Histologic and immunohistochemical examination of affected sheep eyes did not reveal degeneration, and cone photoreceptors expressing CNGA3 were present. Bioinformatics and sequencing analyses suggested a c.1618G>A, p.Gly540Ser substitution in the GMP-binding domain of CNGA3 as the causative mutation. This was confirmed by genetic concordance test and by genetic complementation experiment: All five compound CNGA3 heterozygotes, carrying both p.Arg236* and p.Gly540Ser mutations in CNGA3, were day-blind. Furthermore, subretinal delivery of the intact human CNGA3 gene using an adeno-associated viral vector (AAV) restored photopic vision in two affected p.Gly540Ser homozygous rams. Conclusions The c.1618G>A, p.Gly540Ser substitution in CNGA3 was identified as the causative mutation for a novel form of ACHM in Awassi sheep. Gene augmentation therapy restored vision in the affected sheep. This novel mutation provides a large-animal model that is valid for most human CNGA3 ACHM patients; the majority of them carry missense rather than premature-termination mutations.
Collapse
Affiliation(s)
- Elisha Gootwine
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | | | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Alex Rosov
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Hen Honig
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Tali Nitzan
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Andrey Shirak
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Raaya Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Esther Yamin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Edward Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, United States
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Eyal Seroussi
- Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
47
|
Roberts L, Ratnapriya R, du Plessis M, Chaitankar V, Ramesar RS, Swaroop A. Molecular Diagnosis of Inherited Retinal Diseases in Indigenous African Populations by Whole-Exome Sequencing. Invest Ophthalmol Vis Sci 2017; 57:6374-6381. [PMID: 27898983 PMCID: PMC5132076 DOI: 10.1167/iovs.16-19785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose A majority of genes associated with inherited retinal diseases (IRDs) have been identified in patients of European origin. Indigenous African populations exhibit rich genomic diversity, and evaluation of reported genetic mutations has yielded low returns so far. Our goal was to perform whole-exome sequencing (WES) to examine variants in known IRD genes in underrepresented African cohorts. Methods Whole-exome sequencing was performed on 56 samples from 16 families with diverse IRD phenotypes that had remained undiagnosed after screening for known mutations using genotyping-based microarrays (Asper Ophthalmics). Variants in reported IRD genes were identified using WES and validated by Sanger sequencing. Custom TaqMan assays were used to screen for identified mutations in 193 unrelated indigenous Africans with IRDs. Results A total of 3494 variants were identified in 217 known IRD genes, leading to the identification of seven different mutations (including six novel) in six genes (RHO, PRPF3, PRPF31, ABCA4, CERKL, and PDE6B) in six distinct families. TaqMan screening in additional probands revealed identical homozygous CERKL and PDE6B variants in four more patients. Conclusions This is the first report of WES of patients with IRDs in indigenous African populations. Our study identified genetic defects in almost 40% of the families analyzed, significantly enhancing the molecular diagnosis of IRD in South Africa. Thus, WES of understudied cohorts seems to present an effective strategy for determining novel mutations in heterogeneous retinal diseases.
Collapse
Affiliation(s)
- Lisa Roberts
- University of Cape Town/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rinki Ratnapriya
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Morné du Plessis
- University of Cape Town/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Vijender Chaitankar
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Raj S Ramesar
- University of Cape Town/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
48
|
Ghofrani M, Yahyaei M, Brunner HG, Cremers FP, Movasat M, Imran Khan M, Keramatipour M. Homozygosity Mapping and Targeted Sanger Sequencing Identifies Three Novel CRB1 (Crumbs homologue 1) Mutations in Iranian Retinal Degeneration Families. IRANIAN BIOMEDICAL JOURNAL 2017; 21:294-302. [PMID: 28460491 PMCID: PMC5548961 DOI: 10.18869/acadpub.ibj.21.5.294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Inherited retinal diseases (IRDs) are a group of genetic disorders with high degrees of clinical, genetic and allelic heterogeneity. IRDs generally show progressive retinal cell death resulting in gradual vision loss. IRDs constitute a broad spectrum of disorders including retinitis pigmentosa and Leber congenital amaurosis. In this study, we performed genotyping studies to identify the underlying mutations in three Iranian families. Methods: Having employed homozygosity mapping and Sanger sequencing, we identified the underlying mutations in the crumbs homologue 1 gene. The CRB1 protein is a part of a macromolecular complex with a vital role in retinal cell polarity, morphogenesis, and maintenance. Results: We identified a novel homozygous variant (c.1053_1061del; p.Gly352_Cys354del) in one family, a combination of a novel (c.2086T>C; p.Cys696Arg) and a known variant (c.2234C>T, p.Thr745Met) in another family and a homozygous novel variant (c.3090T>A; p.Asn1030Lys) in a third family. Conclusion: This study shows that mutations in CRB1 are relatively common in Iranian non-syndromic IRD patients.
Collapse
Affiliation(s)
- Mohammad Ghofrani
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mahin Yahyaei
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Han G. Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P.M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Morteza Movasat
- Eye Research Center, Tehran University of Medical Sciences, Farabi Eye Hospital, Tehran, Iran
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | |
Collapse
|
49
|
Pierrache LHM, Kimchi A, Ratnapriya R, Roberts L, Astuti GDN, Obolensky A, Beryozkin A, Tjon-Fo-Sang MJH, Schuil J, Klaver CCW, Bongers EMHF, Haer-Wigman L, Schalij N, Breuning MH, Fischer GM, Banin E, Ramesar RS, Swaroop A, van den Born LI, Sharon D, Cremers FPM. Whole-Exome Sequencing Identifies Biallelic IDH3A Variants as a Cause of Retinitis Pigmentosa Accompanied by Pseudocoloboma. Ophthalmology 2017; 124:992-1003. [PMID: 28412069 DOI: 10.1016/j.ophtha.2017.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To identify the genetic cause of and describe the phenotype in 4 families with autosomal recessive retinitis pigmentosa (arRP) that can be associated with pseudocoloboma. DESIGN Case series. PARTICIPANTS Seven patients from 4 unrelated families with arRP, among whom 3 patients had bilateral early-onset macular pseudocoloboma. METHODS We performed homozygosity mapping and whole-exome sequencing in 5 probands and 2 unaffected family members from 4 unrelated families. Subsequently, Sanger sequencing and segregation analysis were performed in additional family members. We reviewed the medical history of individuals carrying IDH3A variants and performed additional ophthalmic examinations, including full-field electroretinography, fundus photography, fundus autofluorescence imaging, and optical coherence tomography. MAIN OUTCOME MEASURES IDH3A variants, age at diagnosis, visual acuity, fundus appearance, visual field, and full-field electroretinography, fundus autofluorescence, and optical coherence tomography findings. RESULTS We identified 7 different variants in IDH3A in 4 unrelated families, that is, 5 missense, 1 nonsense, and 1 frameshift variant. All participants showed symptoms early in life, ranging from night blindness to decreased visual acuity, and were diagnosed between the ages of 1 and 11 years. Four participants with biallelic IDH3A variants displayed a typical arRP phenotype and 3 participants were diagnosed with arRP and pseudocoloboma of the macula. CONCLUSIONS IDH3A variants were identified as a novel cause of typical arRP in some individuals associated with macular pseudocoloboma. We observed both phenotypes in 2 siblings carrying the same compound heterozygous variants, which could be explained by variable disease expression and warrants caution when making assertions about genotype-phenotype correlations.
Collapse
Affiliation(s)
- Laurence H M Pierrache
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands; Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adva Kimchi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa Roberts
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands; Division of Human Genetics, Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Jose Schuil
- Bartiméus Institute for the Visually Impaired, Zeist, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicoline Schalij
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn H Breuning
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gratia M Fischer
- Department of Ophthalmology, Dr. George Mukhari Academic Hospital, Sefako Makgatho Health Sciences University (SMU), Ga-Rankuwa, Pretoria, South Africa
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Raj S Ramesar
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - L Ingeborgh van den Born
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands; Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Whole exome sequencing using Ion Proton system enables reliable genetic diagnosis of inherited retinal dystrophies. Sci Rep 2017; 7:42078. [PMID: 28181551 PMCID: PMC5299602 DOI: 10.1038/srep42078] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
Inherited retinal dystrophies (IRD) comprise a wide group of clinically and genetically complex diseases that progressively affect the retina. Over recent years, the development of next-generation sequencing (NGS) methods has transformed our ability to diagnose heterogeneous diseases. In this work, we have evaluated the implementation of whole exome sequencing (WES) for the molecular diagnosis of IRD. Using Ion ProtonTM system, we simultaneously analyzed 212 genes that are responsible for more than 25 syndromic and non-syndromic IRD. This approach was used to evaluate 59 unrelated families, with the pathogenic variant(s) successfully identified in 71.18% of cases. Interestingly, the mutation detection rate varied substantially depending on the IRD subtype. Overall, we found 63 different mutations (21 novel) in 29 distinct genes, and performed in vivo functional studies to determine the deleterious impact of variants identified in MERTK, CDH23, and RPGRIP1. In addition, we provide evidences that support CDHR1 as a gene responsible for autosomal recessive retinitis pigmentosa with early macular affectation, and present data regarding the disease mechanism of this gene. Altogether, these results demonstrate that targeted WES of all IRD genes is a reliable, hypothesis-free approach, and a cost- and time-effective strategy for the routine genetic diagnosis of retinal dystrophies.
Collapse
|