1
|
Wang BT, Hu S, Oh DN, Jin CZ, Jin L, Lee JM, Jin FJ. Insights into the Lignocellulose-Degrading Enzyme System Based on the Genome Sequence of Flavodon sp. x-10. Int J Mol Sci 2025; 26:866. [PMID: 39940637 PMCID: PMC11816945 DOI: 10.3390/ijms26030866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
The efficient hydrolysis of lignocellulosic biomass relies on the action of enzymes, which are crucial for the development of economically feasible cellulose bioconversion processes. However, low hydrolysis efficiency and the inhibition of cellulase production by carbon catabolite repression (CCR) have been significant obstacles in this process. The aim of this study was to identify the patterns of cellulose degradation and related genes through the genome analysis of a newly isolated lignocellulose-degrading fungus Flavodon sp. x-10. The whole-genome sequencing showed that the genome size of Flavodon sp. x-10 was 37.1 Mb, with a GC content of 49.48%. A total of 11,277 genes were predicted, with a total length of 18,218,150 bp and an average length of 1615 bp. Additionally, 157 tRNA genes responsible for transporting different amino acids were predicted, and the repeats and tandem repeats accounted for only 0.76% of the overall sequences. A total of 5039 genes were annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, representing 44.68% of all genes, and 368 metabolic pathways were involved. Of the 595 genes annotated in the carbohydrate-active enzyme (CAZy) database, 183 are associated with plant cell wall-degrading enzymes (PCWDEs), surpassing those of Aspergillus niger (167), Trichoderma reesei (64), and Neurospora crassa (86). Compared to these three fungi, Flavodon sp. x-10 has a higher number of enzyme genes related to lignin degradation in its genome. Transporters were further identified by matching the whole-genome sequence to the Transporter Classification Database (TCDB), which includes 20 sugar transporters (STs) closely linked to sugar utilization. Through the comprehensive exploration of the whole-genome sequence, this study uncovered more vital lignocellulase genes and their degradation mechanisms, providing feasible strategies for improving the strains to reduce the cost of biofuel production.
Collapse
Affiliation(s)
- Bao-Teng Wang
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| | - Shuang Hu
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| | - Dong Nyoung Oh
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea;
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| | - Jong Min Lee
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea;
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| |
Collapse
|
2
|
Loew N, Miura C, Sawahara C, Otobe S, Ogura T, Takasaki Y, Watanabe H, Shitanda I, Itagaki M. Electrochemical Small-Angle X-ray Scattering for Potential-Dependent Structural Analysis of Redox Enzymes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:383-391. [PMID: 39810351 PMCID: PMC11736843 DOI: 10.1021/acs.langmuir.4c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Various methods exist for exploring different aspects of these mechanisms. However, techniques for investigating structural differences between the reduced and oxidized forms of an enzyme are limited. Here, we propose electrochemical small-angle X-ray scattering (EC-SAXS) as a novel method for potential-dependent structural analysis of redox enzymes and redox-active proteins. While similar approaches have been employed previously in battery and fuel cell research, biological samples have not yet been analyzed using this technique. Using EC-SAXS, we elucidated the structures of oxidized and reduced bilirubin oxidase (BOD). The oxidized BOD favors an open state, enhancing accessibility to the active center, whereas the reduced BOD prefers a closed state. EC-SAXS not only broadens our understanding of redox enzymes but also offers insights that could aid in developing customized enzyme immobilization strategies. These strategies could considerably improve the performance of biosensors, biofuel cells, and other bioelectronics.
Collapse
Affiliation(s)
- Noya Loew
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chika Miura
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chiaki Sawahara
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Saki Otobe
- Nikko
Chemicals Co. Ltd., 3-24-3 Hasune, Itabashi-ku, Tokyo 174-0046, Japan
| | - Taku Ogura
- Nikko
Chemicals Co. Ltd., 3-24-3 Hasune, Itabashi-ku, Tokyo 174-0046, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Takasaki
- Anton
Paar Japan K.K., Riverside Sumida 1F, 1-19-9, Tsutsumi-dori, Sumida-ku, Tokyo 131-0034, Japan
| | - Hikari Watanabe
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Isao Shitanda
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masayuki Itagaki
- Department
of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Science and Technology, Tokyo
University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
3
|
Fujii T, Honda M, Fujii W, Shimada Y, Takeuchi M, Ogawa J. Discovery and characterization of an FAD-dependent glucose 6-dehydrogenase (74 characters including spaces). J Biol Chem 2025:108189. [PMID: 39814229 DOI: 10.1016/j.jbc.2025.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
Many patients with diabetes use self-measurement devices for blood glucose to understand their blood glucose levels. Most of these devices utilize FAD-dependent glucose dehydrogenase (FAD-GDH) to determine blood glucose levels. For this purpose, FAD-GDHs specifically oxidizing glucose among the sugars present in blood is required. Many FAD-GDHs with high substrate specificity have been reported previously; however, their substrate specificity is insufficient as they also react with xylose. Therefore, we aimed to identify FAD-GDHs without xylose reactivity. We screened and obtained a new enzyme from Colletotrichum plurivorum (CpGDH). CpGDH showed high activity to glucose in the presence of electron mediators but low activity to xylose. We prepared the glucose oxidation products using CpGDH and subjected to TLC, HPLC, MS, and NMR analyses. The results demonstrated that CpGDH is a previously unknown FAD-dependent glucose 6-dehydrogenase (FAD-G6DH) that oxidizes glucose to glucuronic acid. The stoichiometric ratio of the substrate and electron mediator was 1:2, suggesting that CpGDH catalyzes two-step oxidation reactions, including oxidation of primary alcohols to aldehydes and of aldehydes to carboxylic acids. We concluded that CpGDH has the unique substrate-binding manner based on the result of docking simulation of CpGDH with a substrate glucose. We then constructed a phylogenetic tree of carbohydrate-related flavoproteins including FAD-G6DHs, indicating that FAD-G6DHs are different from the known FAD-dependent oxidoreductases. Overall, this study is the first to report FAD-G6DHs. These results will likely contribute to the development of more accurate blood glucose sensors and further research on the metabolisms of glucosides and their metabolites.
Collapse
Affiliation(s)
- Takahiro Fujii
- Ikeda Food Research Co., Ltd, 95-7 Minoshima, Fukuyama Hiroshima 721-0956, Japan
| | - Michinari Honda
- Ikeda Food Research Co., Ltd, 95-7 Minoshima, Fukuyama Hiroshima 721-0956, Japan
| | - Wataru Fujii
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshimi Shimada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Michiki Takeuchi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan; Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Kerrigan JA, Yoshida H, Okuda-Shimazaki J, Temple B, Kojima K, Sode K. Improvement of substrate specificity of the direct electron transfer type FAD-dependent glucose dehydrogenase catalytic subunit. J Biotechnol 2024; 395:170-179. [PMID: 39326560 DOI: 10.1016/j.jbiotec.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The heterotrimeric flavin adenine dinucleotide (FAD) dependent glucose dehydrogenase derived from Burkholderia cepacia (BcGDH) has many exceptional features for its use in glucose sensing-including that this enzyme is capable of direct electron transfer with an electrode in its heterotrimeric configuration. However, this enzyme's high catalytic activity towards not only glucose but also galactose presents an engineering challenge. To increase the substrate specificity of this enzyme, it must be engineered to reduce its activity towards galactose while maintaining its activity towards glucose. To aid in these mutagenesis studies, the crystal structure composed of BcGDH's small subunit and catalytic subunit (BcGDHγα), in complex with D-glucono-1,5-lactone was elucidated and used to construct the three-dimensional model for targeted, site-directed mutagenesis. BcGDHγα was then mutated at three different residues, glycine 322, asparagine 474 and asparagine 475. The single mutations that showed the greatest glucose selectivity were combined to create the resulting mutant, α-G322Q-N474S-N475S. The α-G322Q-N474S-N475S mutant and BcGDHγα wild type were then characterized with dye-mediated dehydrogenase activity assays to determine their kinetic parameters. The α-G322Q-N474S-N475S mutant showed more than a 2-fold increase in Vmax towards glucose and this mutant showed a lower activity towards galactose in the physiological range (5 mM) of 4.19 U mg-1, as compared to the wild type, 86.6 U mg-1. This resulting increase in specificity lead to an 81.7 gal/glc % activity for the wild type while the α-G322Q-N474S-N475S mutant had just 10.9 gal/glc % activity at 5 mM. While the BcGDHγα wild type has high specificity towards galactose, our engineering α-G322Q-N474S-N475S mutant showed concentration dependent response to glucose and was not affected by galactose.
Collapse
Affiliation(s)
- Joseph A Kerrigan
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Hiromi Yoshida
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Junko Okuda-Shimazaki
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Brenda Temple
- Department of Bioinformatics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katsuhiro Kojima
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Sowa K, Okuda-Shimazaki J, Fukawa E, Sode K. Direct Electron Transfer-Type Oxidoreductases for Biomedical Applications. Annu Rev Biomed Eng 2024; 26:357-382. [PMID: 38424090 DOI: 10.1146/annurev-bioeng-110222-101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Among the various types of enzyme-based biosensors, sensors utilizing enzymes capable of direct electron transfer (DET) are recognized as the most ideal. However, only a limited number of redox enzymes are capable of DET with electrodes, that is, dehydrogenases harboring a subunit or domain that functions specifically to accept electrons from the redox cofactor of the catalytic site and transfer the electrons to the external electron acceptor. Such subunits or domains act as built-in mediators for electron transfer between enzymes and electrodes; consequently, such enzymes enable direct electron transfer to electrodes and are designated as DET-type enzymes. DET-type enzymes fall into several categories, including redox cofactors of catalytic reactions, built-in mediators for DET with electrodes and by their protein hierarchic structures, DET-type oxidoreductases with oligomeric structures harboring electron transfer subunits, and monomeric DET-type oxidoreductases harboring electron transfer domains. In this review, we cover the science of DET-type oxidoreductases and their biomedical applications. First, we introduce the structural biology and current understanding of DET-type enzyme reactions. Next, we describe recent technological developments based on DET-type enzymes for biomedical applications, such as biosensors and biochemical energy harvesting for self-powered medical devices. Finally, after discussing how to further engineer and create DET-type enzymes, we address the future prospects for DET-type enzymes in biomedical engineering.
Collapse
Affiliation(s)
- Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Junko Okuda-Shimazaki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Kogane, Tokyo, Japan
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA;
| | - Eole Fukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA;
| |
Collapse
|
6
|
Fahim AM, Dacrory S, Hashem AH, Kamel S. Antimicrobial, anticancer activities, molecular docking, and DFT/B3LYP/LANL2DZ analysis of heterocyclic cellulose derivative and their Cu-complexes. Int J Biol Macromol 2024; 269:132027. [PMID: 38702001 DOI: 10.1016/j.ijbiomac.2024.132027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/05/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
In this study, novel Cu-complexes of heterocyclic cellulose which were synthesized via the reaction of carboxymethyl cellulose (CMC) from bagasse pulp with NH2NH2 to give hydrazide cellulose which easily reacted with CS2 to form salt and then cyclized in the presence of HCl to afford cellulose oxadiazole, or with hydrazine hydrate to give cellulose triazole. Furthermore, the cellulose oxadiazole and triazole moieties acting as chelating agents with metal ion Cu (II), and all synthesized compounds were examined for their spectral analysis to show the adsorption of Cu (II) on the surface of cellulose through intramolecular hydrogen bonding. Results illustrated that cellulose oxadiazole and Cu- cellulose oxadiazole exhibited antimicrobial activities more than triazole and Cu- cellulose triazole. Furthermore, anticancer results showed that both cellulose oxadiazole and triazole exhibited activity higher than Cu-cellulose oxadiazole and Cu-cellulose triazole, where the cellulose triazole showed the highest activity (IC50 = 58.7 μg/μL). Additionally, the docking simulation of the synthesized cellulose complexes with different proteins such as PDBID:3t88, PDBID:4ynt, PDBID:1tgh, PDBID:2wje, and PDBID:4hdq and shortage bond length to confirm the experimental results. Optimization of metal complexes utilized the DFT/B3LYP/LANL2DZ basis set to confirm the stability of these metals theoretically and their physical descriptors and FMO analysis.
Collapse
Affiliation(s)
- Asmaa M Fahim
- Department of Green Chemistry, National Research Centre, Dokki, P.O. Box.12622, Cairo, Egypt
| | - Sawsan Dacrory
- Cellulose and paper Department, National Research Centre, Giza 12622, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Samir Kamel
- Cellulose and paper Department, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
7
|
Lublin V, Kauffmann B, Engilberge S, Durola F, Gounel S, Bichon S, Jean C, Mano N, Giraud MF, Chavas L, Thureau A, Thompson A, Stines-Chaumeil C. Does Acinetobacter calcoaceticus glucose dehydrogenase produce self-damaging H2O2? Biosci Rep 2024; 44:BSR20240102. [PMID: 38687614 PMCID: PMC11130540 DOI: 10.1042/bsr20240102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024] Open
Abstract
The soluble glucose dehydrogenase (sGDH) from Acinetobacter calcoaceticus has been widely studied and is used, in biosensors, to detect the presence of glucose, taking advantage of its high turnover and insensitivity to molecular oxygen. This approach, however, presents two drawbacks: the enzyme has broad substrate specificity (leading to imprecise blood glucose measurements) and shows instability over time (inferior to other oxidizing glucose enzymes). We report the characterization of two sGDH mutants: the single mutant Y343F and the double mutant D143E/Y343F. The mutants present enzyme selectivity and specificity of 1.2 (Y343F) and 5.7 (D143E/Y343F) times higher for glucose compared with that of the wild-type. Crystallographic experiments, designed to characterize these mutants, surprisingly revealed that the prosthetic group PQQ (pyrroloquinoline quinone), essential for the enzymatic activity, is in a cleaved form for both wild-type and mutant structures. We provide evidence suggesting that the sGDH produces H2O2, the level of production depending on the mutation. In addition, spectroscopic experiments allowed us to follow the self-degradation of the prosthetic group and the disappearance of sGDH's glucose oxidation activity. These studies suggest that the enzyme is sensitive to its self-production of H2O2. We show that the premature aging of sGDH can be slowed down by adding catalase to consume the H2O2 produced, allowing the design of a more stable biosensor over time. Our research opens questions about the mechanism of H2O2 production and the physiological role of this activity by sGDH.
Collapse
Affiliation(s)
- Victoria Lublin
- Centre de Recherche Paul Pascal (CRPP), University Bordeaux, CNRS, UMR 5031, Pessac, France
- Synchrotron SOLEIL (CNRS - CEA), Saint-Aubin, France
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie (IECB), Univ. Bordeaux, CNRS, INSERM, US1, UAR 3033, Pessac, France
| | - Sylvain Engilberge
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 avenue des Martyrs, Grenoble 38044, France
| | - Fabien Durola
- Centre de Recherche Paul Pascal (CRPP), University Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Sébastien Gounel
- Centre de Recherche Paul Pascal (CRPP), University Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Sabrina Bichon
- Centre de Recherche Paul Pascal (CRPP), University Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Cloée Jean
- Centre de Recherche Paul Pascal (CRPP), University Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal (CRPP), University Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Marie-France Giraud
- Institute of Chemistry and Biology of Membranes and Nano-objects (CBMN), Pessac, France
| | | | | | | | - Claire Stines-Chaumeil
- Centre de Recherche Paul Pascal (CRPP), University Bordeaux, CNRS, UMR 5031, Pessac, France
| |
Collapse
|
8
|
Zhao H, Karppi J, Mototsune O, Poshina D, Svartström J, Nguyen TTM, Vo TM, Tsang A, Master E, Tenkanen M. Substrate specificity mapping of fungal CAZy AA3_2 oxidoreductases. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:47. [PMID: 38539167 PMCID: PMC10967070 DOI: 10.1186/s13068-024-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/13/2024] [Indexed: 11/11/2024]
Abstract
BACKGROUND Oxidative enzymes targeting lignocellulosic substrates are presently classified into various auxiliary activity (AA) families within the carbohydrate-active enzyme (CAZy) database. Among these, the fungal AA3 glucose-methanol-choline (GMC) oxidoreductases with varying auxiliary activities are attractive sustainable biocatalysts and important for biological function. CAZy AA3 enzymes are further subdivided into four subfamilies, with the large AA3_2 subfamily displaying diverse substrate specificities. However, limited numbers of enzymes in the AA3_2 subfamily are currently biochemically characterized, which limits the homology-based mining of new AA3_2 oxidoreductases. Importantly, novel enzyme activities may be discovered from the uncharacterized parts of this large subfamily. RESULTS In this study, phylogenetic analyses employing a sequence similarity network (SSN) and maximum likelihood trees were used to cluster AA3_2 sequences. A total of 27 AA3_2 proteins representing different clusters were selected for recombinant production. Among them, seven new AA3_2 oxidoreductases were successfully produced, purified, and characterized. These enzymes included two glucose dehydrogenases (TaGdhA and McGdhA), one glucose oxidase (ApGoxA), one aryl alcohol oxidase (PsAaoA), two aryl alcohol dehydrogenases (AsAadhA and AsAadhB), and one novel oligosaccharide (gentiobiose) dehydrogenase (KiOdhA). Notably, two dehydrogenases (TaGdhA and KiOdhA) were found with the ability to utilize phenoxy radicals as an electron acceptor. Interestingly, phenoxy radicals were found to compete with molecular oxygen in aerobic environments when serving as an electron acceptor for two oxidases (ApGoxA and PsAaoA), which sheds light on their versatility. Furthermore, the molecular determinants governing their diverse enzymatic functions were discussed based on the homology model generated by AlphaFold. CONCLUSIONS The phylogenetic analyses and biochemical characterization of AA3_2s provide valuable guidance for future investigation of AA3_2 sequences and proteins. A clear correlation between enzymatic function and SSN clustering was observed. The discovery and biochemical characterization of these new AA3_2 oxidoreductases brings exciting prospects for biotechnological applications and broadens our understanding of their biological functions.
Collapse
Affiliation(s)
- Hongbo Zhao
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - Johanna Karppi
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Owen Mototsune
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Daria Poshina
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jenny Svartström
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thi Truc Minh Nguyen
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Tri Minh Vo
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Maija Tenkanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Komiya E, Takamatsu S, Miura D, Tsukakoshi K, Tsugawa W, Sode K, Ikebukuro K, Asano R. Exploration and Application of DNA-Binding Proteins to Make a Versatile DNA-Protein Covalent-Linking Patch (D-Pclip): The Case of a Biosensing Element. J Am Chem Soc 2024; 146:4087-4097. [PMID: 38295327 PMCID: PMC10870700 DOI: 10.1021/jacs.3c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
DNA-protein complexes are attractive components with broad applications in various research fields, such as DNA aptamer-enzyme complexes as biosensing elements. However, noncovalent DNA-protein complexes often decrease detection sensitivity because they are highly susceptible to environmental conditions. In this study, we developed a versatile DNA-protein covalent-linking patch (D-Pclip) for fabricating covalent and stoichiometric DNA-protein complexes. We comprehensively explored the database to determine the DNA-binding ability of the candidates and selected UdgX as the only uracil-DNA glycosylase known to form covalent bonds with DNA via uracil, with a binding efficiency >90%. We integrated a SpyTag/SpyCatcher protein-coupling system into UdgX to create a universal and convenient D-Pclip. The usability of D-Pclip was shown by preparing a stoichiometric model complex of a hemoglobin (Hb)-binding aptamer and glucose oxidase (GOx) by mixing at 4 °C. The prepared aptamer-GOx complexes detected Hb in a dose-dependent manner within the clinically required detection range in buffer and human serum without any washing procedures. D-Pclip covalently connects any uracil-inserted DNA sequence and any SpyCatcher-fused protein stoichiometrically; therefore, it has a high potential for various applications.
Collapse
Affiliation(s)
- Erika Komiya
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shouhei Takamatsu
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daimei Miura
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kaori Tsukakoshi
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Wakako Tsugawa
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Sode
- Joint
Department of Biomedical Engineering, University
of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
- Institute
of Global Innovation Research, Tokyo University
of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8509, Japan
| | - Kazunori Ikebukuro
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ryutaro Asano
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Institute
of Global Innovation Research, Tokyo University
of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
10
|
Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System. Int J Mol Sci 2023; 24:ijms24031837. [PMID: 36768169 PMCID: PMC9915066 DOI: 10.3390/ijms24031837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The electrochemical enzyme sensors based on direct electron transfer (DET)-type oxidoreductase-based enzymes are ideal for continuous and in vivo monitoring. However, the number and types of DET-type oxidoreductases are limited. The aim of this research is the development of a versatile method to create a DET-type oxidoreductase complex based on the SpyCatcher/SpyTag technique by preparing SpyCatcher-fused heme c and SpyTag-fused non-DET-type oxidoreductases, and by the in vitro formation of DET-type oxidoreductase complexes. A heme c containing an electron transfer protein derived from Rhizobium radiobacter (CYTc) was selected to prepare SpyCatcher-fused heme c. Three non-DET-type oxidoreductases were selected as candidates for the SpyTag-fused enzyme: fungi-derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH), an engineered FAD-dependent d-amino acid oxidase (DAAOx), and an engineered FMN-dependent l-lactate oxidase (LOx). CYTc-SpyCatcher (CYTc-SC) and SpyTag-Enzymes (ST-GDH, ST-DAAOx, ST-LOx) were prepared as soluble molecules while maintaining their redox properties and catalytic activities, respectively. CYTc-SC/ST-Enzyme complexes were formed by mixing CYTc-SpyCatcher and SpyTag-Enzymes, and the complexes retained their original enzymatic activity. Remarkably, the heme domain served as an electron acceptor from complexed enzymes by intramolecular electron transfer; consequently, all constructed CYTc-SC/ST-Enzyme complexes showed DET ability to the electrode, demonstrating the versatility of this method.
Collapse
|
11
|
Synthesis, spectral investigation, biological activities and docking stimulation of novel metal complexes of Trifluoro phenylthiazol derivative with computational studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Yang Y, Luo X, Xie Y, Li X, Liu S, Liu N, Chen X. Regulation of different protonated states of two intimate histidine residues on the reductive half-reaction of glucose oxidase. Phys Chem Chem Phys 2022; 24:25788-25800. [PMID: 36263785 DOI: 10.1039/d2cp03502b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose oxidase (GOx) can catalyze the oxidation of β-D-glucose under mild conditions to directly convert biological energy into electrical energy, which has great potential for applications in the fields of enzyme biofuel cells and glucose biosensors. In enzymatic biofuel cells, GOx is often used as an anodic catalyst to improve the performance. The important role of two intimate histidine residues, His505 and His548 (PDB code 4YNU), in the GOx active center has been highlighted in the catalytic oxidation of β-D-glucose, but there is still a lack of systematic examination on the influence of different protonated states of His505 and His548 on the catalytic oxidation of β-D-glucose in GOx. Therefore, in the present work, the GOx active center under the possible protonated states of His548 and His505 is systematically examined by using ONIOM calculations, as well as the influence of remote Arg210 is considered. The calculations reveal that the intimate His505 and His548 can modulate the interaction of the β-D-glucose substrate with isoalloxazine and then control the deprotonization of the hydroxyl group bound to the anomeric carbon of β-D-glucose like controllers. The remote Arg210 provides the driving force for the transfer of two electrons from β-D-glucose to isoalloxazine of FAD via the long-range electrostatic attraction like a horse. Specially, the protonated His505 can serve as a good helper of Arg210 to promote the occurring of the two-proton-coupled two-electron transfer from β-D-glucose to isoalloxazine and His548 in the active center of GOx. These findings provide much insight into the catalytic reactions of GOx in a low pH environment, which may be beneficial to expand the applications of GOx.
Collapse
Affiliation(s)
- Yuning Yang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Luo
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Sijun Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
13
|
A stable glucose sensor with direct electron transfer, based on glucose dehydrogenase and chitosan hydro bonded multi-walled carbon nanotubes. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Fiedorova K, Augustynek M, Kubicek J, Kudrna P, Bibbo D. Review of present method of glucose from human blood and body fluids assessment. Biosens Bioelectron 2022; 211:114348. [DOI: 10.1016/j.bios.2022.114348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
15
|
Synthesis of novel antipyrine-azole-S-alkyl derivatives antimicrobial activity, molecular docking, and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Synthesis, X-ray crystal structure, Hirshfeld analysis and computational investigation of bis(methylthio)acrylonitrile with antimicrobial and docking evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Nakase K, Ichihara S, Matsumoto J, Koh S, Mizuno M, Okada T. Acceleration of the Dehydrogenation of d-Glucose to 2-Keto-d-gluconate in Aqueous Amino Acid via Hydrated Stacked Clay Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6076-6085. [PMID: 35507550 DOI: 10.1021/acs.langmuir.2c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The assembly of discrete active species to form periodical nanostructures is essential in realizing low-cost artificial enzymes that mimic natural enzymatic functions in extraordinary bio(chemo)selective reactions. In this study, we developed artificial bifunctional glucose/gluconic acid dehydrogenase from naturally abundant resources: l-aspartic acid (Asp) and montmorillonite (a subgroup of smectite natural clay minerals). β-d-Glucose (Glc) was dehydrogenated to 2-keto-d-gluconate (2-KGA) at 25 and 30 °C in an aqueous acidic solution (pH = 3, 4, and 5). The reaction involved sequential steps that yielded d-gluconic acid (GA) as an intermediate. The second step of the dehydrogenation (GA to 2-KGA) occurred at a higher rate than the first (Glc to GA), which is comparable to the natural process. A negatively charged carboxylate in Asp was required for the dehydrogenation, which donates an electron pair (COO:-) to the hydroxyl group bonded to the C(1)-position of Glc. The acidic sites in clay served as coenzymatic sites (electron acceptor), promoting the Glc dehydrogenation as the Glc reduced by Asp approached the clay coenzymatic sites. The active coenzymatic structures were developed in 48 h (induction period) through the rearrangement of the adsorbed Asp and Glc molecules on montmorillonite in water (intermediate structure). The spontaneous assembling of the intermediate structures facilitated the one-pot dehydrogenation of Glc to 2-KGA via periodic "hydrated stacked layers" comprising clay nanosheets, Asp, and Glc. The facile synthetic route proposed here is inexpensive and would be beneficial without using both GDH and GADH enzymes bound to a cell membrane.
Collapse
Affiliation(s)
- Katsunori Nakase
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Shunta Ichihara
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Jumpei Matsumoto
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Sangho Koh
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Masahiro Mizuno
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Tomohiko Okada
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| |
Collapse
|
18
|
Eno EA, Mbonu JI, Louis H, Patrick-Inezi FS, Gber TE, Unimke TO, Okon EE, Benjamin I, Offiong OE. Antimicrobial activities of 1-phenyl-3-methyl-4-trichloroacetyl-pyrazolone: Experimental, DFT studies, and molecular docking investigation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Bauer JA, Zámocká M, Majtán J, Bauerová-Hlinková V. Glucose Oxidase, an Enzyme "Ferrari": Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022; 12:472. [PMID: 35327664 PMCID: PMC8946809 DOI: 10.3390/biom12030472] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Glucose oxidase (GOx) is an important oxidoreductase enzyme with many important roles in biological processes. It is considered an "ideal enzyme" and is often called an oxidase "Ferrari" because of its fast mechanism of action, high stability and specificity. Glucose oxidase catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone and hydrogen peroxide in the presence of molecular oxygen. d-glucono-δ-lactone is sequentially hydrolyzed by lactonase to d-gluconic acid, and the resulting hydrogen peroxide is hydrolyzed by catalase to oxygen and water. GOx is presently known to be produced only by fungi and insects. The current main industrial producers of glucose oxidase are Aspergillus and Penicillium. An important property of GOx is its antimicrobial effect against various pathogens and its use in many industrial and medical areas. The aim of this review is to summarize the structure, function, production strains and biophysical and biochemical properties of GOx in light of its various industrial, biotechnological and medical applications.
Collapse
Affiliation(s)
- Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Monika Zámocká
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| |
Collapse
|
20
|
Characterization of Fungal FAD-Dependent AA3_2 Glucose Oxidoreductases from Hitherto Unexplored Phylogenetic Clades. J Fungi (Basel) 2021; 7:jof7100873. [PMID: 34682294 PMCID: PMC8537048 DOI: 10.3390/jof7100873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/29/2023] Open
Abstract
The CAZy auxiliary activity family 3 (AA3) comprises FAD-dependent enzymes belonging to the superfamily of glucose-methanol-choline (GMC) oxidoreductases. Glucose oxidase (GOx; EC 1.1.3.4) and glucose dehydrogenase (GDH; EC 1.1.5.9) are part of subfamily AA3_2 and catalyze the oxidation of β-D-glucose at its anomeric carbon to D-glucono-1,5-lactone. Recent phylogenetic analysis showed that AA3_2 glucose oxidoreductases can be grouped into four major clades, GOx I and GDH I–III, and in minor clades such as GOx II or distinct subclades. This wide sequence space of AA3_2 glucose oxidoreductases has, however, not been studied in detail, with mainly members of GOx I and GDH I studied biochemically or structurally. Here, we report the biochemical characterization of four fungal glucose oxidoreductases from distinct, hitherto unexplored clades or subclades. The enzyme from Aureobasidium subglaciale, belonging to the minor GOx II clade, showed a typical preference for oxygen and glucose, confirming the correct annotation of this clade. The other three enzymes exhibited strict dehydrogenase activity with different substrate specificities. GDH II from Trichoderma virens showed an almost six-fold higher catalytic efficiency for maltose compared to glucose. The preferred substrate for the two GDH III enzymes from Rhizoctonia solani and Ustilago maydis was gentiobiose, a β(1→6) disaccharide, as judged from the catalytic efficiency. Overall, the newly studied AA3_2 glucose oxidoreductases showed a much broader substrate spectrum than the archetypal GOx from Aspergillus niger, which belongs to clade GOx I.
Collapse
|
21
|
Enhancement of Molecular imprinted polymer as organic fillers on bagasse cellulose fibers with biological evaluation and computational calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Taylor JT, Wang KD, Horwitz B, Kolomiets M, Kenerley CM. Early Transcriptome Response of Trichoderma virens to Colonization of Maize Roots. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:718557. [PMID: 37744095 PMCID: PMC10512331 DOI: 10.3389/ffunb.2021.718557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 09/26/2023]
Abstract
Trichoderma virens is a well-known mycoparasitic fungal symbiont that is valued for its biocontrol capabilities. T. virens initiates a symbiotic relationship with a plant host through the colonization of its roots. To achieve colonization, the fungus must communicate with the host and evade its innate defenses. In this study, we explored the genes involved with the host communication and colonization process through transcriptomic profiling of the wild-type fungus and selected deletion mutants as they colonized maize roots. Transcriptome profiles of the T. virens colonization of maize roots over time revealed that 24 h post inoculation appeared to be a key time for plant-microbe communication, with many key gene categories, including signal transduction mechanisms and carbohydrate transport and metabolism, peaking in expression at this early colonization time point. The transcriptomic profiles of Sm1 and Sir1 deletion mutants in the presence of plants demonstrated that Sir1, rather than Sm1, appears to be the key regulator of the fungal response to maize, with 64% more unique differentially expressed genes compared to Sm1. Additionally, we developed a novel algorithm utilizing gene clustering and coexpression network analyses to select potential colonization-related gene targets for characterization. About 40% of the genes identified by the algorithm would have been missed using previous methods for selecting gene targets.
Collapse
Affiliation(s)
- James T. Taylor
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Ken-Der Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Benjamin Horwitz
- Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Michael Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Charles M. Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
23
|
Cerutti G, Gugole E, Montemiglio LC, Turbé-Doan A, Chena D, Navarro D, Lomascolo A, Piumi F, Exertier C, Freda I, Vallone B, Record E, Savino C, Sciara G. Crystal structure and functional characterization of an oligosaccharide dehydrogenase from Pycnoporus cinnabarinus provides insights into fungal breakdown of lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:161. [PMID: 34294139 PMCID: PMC8296622 DOI: 10.1186/s13068-021-02003-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Fungal glucose dehydrogenases (GDHs) are FAD-dependent enzymes belonging to the glucose-methanol-choline oxidoreductase superfamily. These enzymes are classified in the "Auxiliary Activity" family 3 (AA3) of the Carbohydrate-Active enZymes database, and more specifically in subfamily AA3_2, that also includes the closely related flavoenzymes aryl-alcohol oxidase and glucose 1-oxidase. Based on sequence similarity to known fungal GDHs, an AA3_2 enzyme active on glucose was identified in the genome of Pycnoporus cinnabarinus, a model Basidiomycete able to completely degrade lignin. RESULTS In our work, substrate screening and functional characterization showed an unexpected preferential activity of this enzyme toward oligosaccharides containing a β(1→3) glycosidic bond, with the highest efficiency observed for the disaccharide laminaribiose. Despite its sequence similarity to GDHs, we defined a novel enzymatic activity, namely oligosaccharide dehydrogenase (ODH), for this enzyme. The crystallographic structures of ODH in the sugar-free form and in complex with glucose and laminaribiose unveiled a peculiar saccharide recognition mechanism which is not shared with previously characterized AA3 oxidoreductases and accounts for ODH preferential activity toward oligosaccharides. The sugar molecules in the active site of ODH are mainly stabilized through CH-π interactions with aromatic residues rather than through hydrogen bonds with highly conserved residues, as observed instead for the fungal glucose dehydrogenases and oxidases characterized to date. Finally, three sugar-binding sites were identified on ODH external surface, which were not previously observed and might be of importance in the physiological scenario. CONCLUSIONS Structure-function analysis of ODH is consistent with its role as an auxiliary enzyme in lignocellulose degradation and unveils yet another enzymatic function within the AA3 family of the Carbohydrate-Active enZymes database. Our findings allow deciphering the molecular determinants of substrate binding and provide insight into the physiological role of ODH, opening new perspectives to exploit biodiversity for lignocellulose transformation into fuels and chemicals.
Collapse
Affiliation(s)
- Gabriele Cerutti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10029, USA
| | - Elena Gugole
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Linda Celeste Montemiglio
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Biology and Pathology, P.le A. Moro 5, 00185, Rome, Italy
| | - Annick Turbé-Doan
- INRAE, Aix Marseille Université, BBF UMR1163 Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13009, Marseille, France
| | - Dehbia Chena
- INRAE, Aix Marseille Université, BBF UMR1163 Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13009, Marseille, France
| | - David Navarro
- INRAE, Aix Marseille Université, BBF UMR1163 Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13009, Marseille, France
| | - Anne Lomascolo
- INRAE, Aix Marseille Université, BBF UMR1163 Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13009, Marseille, France
| | - François Piumi
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, UMR1161 Virologie, Maisons-Alfort, France
- INRAE, Aix Marseille Université, BBF UMR1163 Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13009, Marseille, France
| | - Cécile Exertier
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Ida Freda
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Biology and Pathology, P.le A. Moro 5, 00185, Rome, Italy
| | - Eric Record
- INRAE, Aix Marseille Université, BBF UMR1163 Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13009, Marseille, France
| | - Carmelinda Savino
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Biology and Pathology, P.le A. Moro 5, 00185, Rome, Italy.
| | - Giuliano Sciara
- INRAE, Aix Marseille Université, BBF UMR1163 Biodiversité et Biotechnologie Fongiques, 163 Avenue de Luminy, 13009, Marseille, France.
| |
Collapse
|
24
|
Miura D, Kimura H, Tsugawa W, Ikebukuro K, Sode K, Asano R. Rapid, convenient, and highly sensitive detection of human hemoglobin in serum using a high-affinity bivalent antibody-enzyme complex. Talanta 2021; 234:122638. [PMID: 34364447 DOI: 10.1016/j.talanta.2021.122638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
Human hemoglobin (Hb) is a biomarker of several diseases, and monitoring of Hb levels is required during emergent surgery. However, rapid and sensitive Hb detection methods are yet to be developed. The present study established a rapid, convenient, and highly sensitive detection method for Hb in human serum using a bivalent antibody-enzyme complex (AEC). AECs are promising sensing elements because of their ability to bind specific targets and their catalytic activity that produce signals. We recently reported a convenient and universal method to fabricate bivalent AECs with two antibody fragments, using the SpyCatcher/SpyTag system. The present study applied a bivalent AEC for highly sensitive and quantitative detection of human Hb. The bivalent anti-Hb AEC was successfully prepared by incubating both N- and C-terminus SpyCatcher-fused glucose dehydrogenase and SpyTag-fused anti-Hb single-chain variable fragments at 4 °C. As expected, the bivalent AEC for Hb with a multimeric structure showed higher affinity than the monovalent AEC, by means of avidity effects, unlike that for soluble epidermal growth factor receptor with a monomeric structure; this contributed to a great improvement in sensitivity. Finally, we established a rapid and wash-free homogeneous electrochemical detection system for Hb by integrating magnetic beads. The linear range of the system completely covered the clinically required Hb levels, even in human serum. This technology provides an ideal point-of-care test for Hb and other multimeric biomarkers.
Collapse
Affiliation(s)
- Daimei Miura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Hayato Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| |
Collapse
|
25
|
Electrochemical quantification of accelerated FADGDH rates in aqueous nanodroplets. Proc Natl Acad Sci U S A 2021; 118:2025726118. [PMID: 34161273 DOI: 10.1073/pnas.2025726118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enzymes are molecules that catalyze reactions critical to life. These catalysts are often studied in bulk water, where the influence of water volume on reactivity is neglected. Here, we demonstrate rate enhancement of up to two orders of magnitude for enzymes trapped in submicrometer water nanodroplets suspended in 1,2-dichloroethane. When single nanodroplets irreversibly adsorb onto an ultramicroelectrode surface, enzymatic activity is apparent in the amperometric current-time trace if the ultramicroelectrode generates the enzyme cofactor. Nanodroplet volume is easily accessible by integrating the current-time response and using Faraday's Law. The single nanodroplet technique allows us to plot the enzyme's activity as a function of nanodroplet size, revealing a strong inverse relationship. Finite element simulations confirm our experimental results and offer insights into parameters influencing single nanodroplet enzymology. These results provide a framework to profoundly influence the understanding of chemical reactivity at the nanoscale.
Collapse
|
26
|
Fahim AM, Ismael EHI, Elsayed GH, Farag AM. Synthesis, antimicrobial, anti-proliferative activities, molecular docking and DFT studies of novel pyrazolo[5,1-c][1, 2, 4]triazine-3-carboxamide derivatives. J Biomol Struct Dyn 2021; 40:9177-9193. [PMID: 34106038 DOI: 10.1080/07391102.2021.1930582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this investigation, we studied the reactivity of 5-aminouracil (1) with ethyl cyanoacetate (2) utilizing microwave irradiation to afford the corresponding 2-cyano-N-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acetamide (3) in excellent yield. The electrophilic azo-coupling reaction of acetamide 3 with aromatic diazonium salts afforded the corresponding hydrazone derivatives 4a-d. The Michael addition cyclization of hydrazone in pyridine to give pyrazolo[5,1-c][1, 2, 4]triazine-3-carboxamide 5a-d derivatives. The obtained compounds were elucidated against antimicrobial activity and antitumor activity breast cancer cells (MCF-7) and liver cancer cells (HepG2) utilized MTT assay. Compounds 5b, 5c and 5d revealed more inhibitory influence on MCF7 and HepG2 growth than the reference drug doxorubicin (Dox) after 48 h incubation. Furthermore, molecular docking studies were carried out on one of the most effective compound 4-amino-N-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-7-(4-fluorophenyl) pyrazole [5,1-c][1, 2, 4]triazine-3-carboxamide (5c) (TFC) with (PDB: 3t88), (PDB: 2wje) , (PDB: 4ynt), (PDB: 1tgh), (PDB: 4hdq) and (PDB: 3pxe) which attached with different proteins with different energies and shortage bond distance. Also; the comprehensive theoretical and experimental mechanical studies of compound TFC and TMC were compatible with FTIR and 1H NMR spectral data. The optimized molecular structure of TFC with FTIR was examined via DFT/ B3LYP/6-31G (d) level.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Asmaa M Fahim
- Department of Green Chemistry, National Research Center, Dokki, Cairo, Egypt
| | - Eman H I Ismael
- Department of Organometallic and Organ Metalloid Chemistry, National Research Centre, Dokki, Cairo, Egypt
| | - Ghada H Elsayed
- Hormones Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmad M Farag
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| |
Collapse
|
27
|
Švecová L, Østergaard LH, Skálová T, Schnorr KM, Koval’ T, Kolenko P, Stránský J, Sedlák D, Dušková J, Trundová M, Hašek J, Dohnálek J. Crystallographic fragment screening-based study of a novel FAD-dependent oxidoreductase from Chaetomium thermophilum. Acta Crystallogr D Struct Biol 2021; 77:755-775. [PMID: 34076590 PMCID: PMC8171062 DOI: 10.1107/s2059798321003533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 11/20/2022] Open
Abstract
The FAD-dependent oxidoreductase from Chaetomium thermophilum (CtFDO) is a novel thermostable glycoprotein from the glucose-methanol-choline (GMC) oxidoreductase superfamily. However, CtFDO shows no activity toward the typical substrates of the family and high-throughput screening with around 1000 compounds did not yield any strongly reacting substrate. Therefore, protein crystallography, including crystallographic fragment screening, with 42 fragments and 37 other compounds was used to describe the ligand-binding sites of CtFDO and to characterize the nature of its substrate. The structure of CtFDO reveals an unusually wide-open solvent-accessible active-site pocket with a unique His-Ser amino-acid pair putatively involved in enzyme catalysis. A series of six crystal structures of CtFDO complexes revealed five different subsites for the binding of aryl moieties inside the active-site pocket and conformational flexibility of the interacting amino acids when adapting to a particular ligand. The protein is capable of binding complex polyaromatic substrates of molecular weight greater than 500 Da.
Collapse
Affiliation(s)
- Leona Švecová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | | | - Tereza Skálová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | | | - Tomáš Koval’
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Kolenko
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Jan Stránský
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - David Sedlák
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jarmila Dušková
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jindřich Hašek
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
28
|
Orientated Immobilization of FAD-Dependent Glucose Dehydrogenase on Electrode by Carbohydrate-Binding Module Fusion for Efficient Glucose Assay. Int J Mol Sci 2021; 22:ijms22115529. [PMID: 34073858 PMCID: PMC8197230 DOI: 10.3390/ijms22115529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
The discovery or engineering of fungus-derived FAD-dependent glucose 1-dehydrogenase (FAD-GDH) is especially important in the fabrication and performance of glucose biosensors. In this study, a novel FAD-GDH gene, phylogenetically distantly with other FAD-GDHs from Aspergillus species, was identified. Additionally, the wild-type GDH enzyme, and its fusion enzyme (GDH-NL-CBM2) with a carbohydrate binding module family 2 (CBM2) tag attached by a natural linker (NL), were successfully heterogeneously expressed. In addition, while the GDH was randomly immobilized on the electrode by conventional methods, the GDH-NL-CBM2 was orientationally immobilized on the nanocellulose-modified electrode by the CBM2 affinity adsorption tag through a simple one-step approach. A comparison of the performance of the two electrodes demonstrated that both electrodes responded linearly to glucose in the range of 0.12 to 40.7 mM with a coefficient of determination R2 > 0.999, but the sensitivity of immobilized GDH-NL-CBM2 (2.1362 × 10−2 A/(M*cm2)) was about 1-fold higher than that of GDH (1.2067 × 10−2 A/(M*cm2)). Moreover, a lower detection limit (51 µM), better reproducibility (<5%) and stability, and shorter response time (≈18 s) and activation time were observed for the GDH-NL-CBM2-modified electrode. This facile and easy immobilization approach used in the preparation of a GDH biosensor may open up new avenues in the development of high-performance amperometric biosensors.
Collapse
|
29
|
Performance efficiency of MIPOH polymers as organic filler on cellulose pulp waste to form cellulosic paper sheets with biological evaluation and computational studies. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03685-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Soror S, Fahim AM, Elabbady S, Nassar E, Aboelnaga A. Synthesis, antimicrobial activities, docking studies and computational calculations of new bis-1,4-phenylene -1 H-1,2,3-triazole derivatives utilized ultrasonic energy. J Biomol Struct Dyn 2021; 40:5409-5426. [PMID: 33522432 DOI: 10.1080/07391102.2021.1875051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this elucidation, we studied the utility of condensation reaction between 1,4-phenylenediamine (1) with acetyl acetone (2) with hydrazine hydrate utilized ultrasonic energy in one step reaction to afford the corresponding 1,1'-(1,4-phenylenebis (5-methyl-1H-1,2,3-triazole-1,4-diyl))bis(ethan-1-one) (4) in excellent yield. The ethanol solution of bis triazole (4) and different aldehyde derivatives were sonicated at 75 °C for 2 h to afford chalcone derivatives 5a-d which were confirmed via spectral data such as FTIR, 1HNMR, 13CNMR and mass spectra. Moreover, the intermolecular cyclization of chalcone (5a) with NH2NH2 in sodium hydroxide solution to give the corresponding 4,5-dihydro-1H-pyrazol-5-yl)-1H-indole (6) using ultrasonic energy for 4 h, while the Michael addition of chalcones (5a) and (5 b) with thiourea in basic condition to afford the corresponding pyrimidine-2-thiol derivatives (7) and (9). Treatment of compound (7) with NH2NH2 to afford 1,4-bis(4-(2-hydrazineyl-6-(1H-indol-3-yl)pyrimidin-4-yl) derivatives (8). The synthesized compounds were screened against various microbial strains and displayed excellent antimicrobial potential. Additionally, the docking studies of these nine compounds were carried out with (PDB ID:3t88), (PDB ID:2wje), (PDB ID:4ynt) and (PDB ID:1tgh) which were attached with different amino acids with shortage bond length, and it was noticed that PMTS1, PMTS2 and PMTS3 were the most stable compounds with the lowest energy affinity which is compatible with biological study. Furthermore, the theoretical investigation of bis-triazole compounds were optimized via DFT/B3LYP/6-31G(d) level which showed the hyperconjugation of nitrogen atoms and elucidated their physical parameters and NBO charges and confirmed their stability and biological activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sahar Soror
- Chemistry Department, Faculty of Women of Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
| | - Asmaa M Fahim
- Green Chemistry Department, National Research Center, Cairo, Egypt
| | - Samia Elabbady
- Chemistry Department, Faculty of Women of Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
| | - Ekhlass Nassar
- Chemistry Department, Faculty of Women of Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
| | - Asmaa Aboelnaga
- Chemistry Department, Faculty of Women of Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
| |
Collapse
|
31
|
Riedel M, Höfs S, Ruff A, Schuhmann W, Lisdat F. A Tandem Solar Biofuel Cell: Harnessing Energy from Light and Biofuels. Angew Chem Int Ed Engl 2021; 60:2078-2083. [PMID: 33006812 PMCID: PMC7894536 DOI: 10.1002/anie.202012089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/12/2022]
Abstract
We report on a photobioelectrochemical fuel cell consisting of a glucose‐oxidase‐modified BiFeO3 photobiocathode and a quantum‐dot‐sensitized inverse opal TiO2 photobioanode linked to FAD glucose dehydrogenase via a redox polymer. Both photobioelectrodes are driven by enzymatic glucose conversion. Whereas the photobioanode can collect electrons from sugar oxidation at rather low potential, the photobiocathode shows reduction currents at rather high potential. The electrodes can be arranged in a sandwich‐like manner due to the semi‐transparent nature of BiFeO3, which also guarantees a simultaneous excitation of the photobioanode when illuminated via the cathode side. This tandem cell can generate electricity under illumination and in the presence of glucose and provides an exceptionally high OCV of about 1 V. The developed semi‐artificial system has significant implications for the integration of biocatalysts in photoactive entities for bioenergetic purposes, and it opens up a new path toward generation of electricity from sunlight and (bio)fuels.
Collapse
Affiliation(s)
- Marc Riedel
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Soraya Höfs
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - Adrian Ruff
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätstr. 150, 44780, Bochum, Germany.,PPG (Deutschland) Business Support GmbH, EMEA Packaging Coatings, Erlenbrunnenstr. 20, 72411, Bodelshausen, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätstr. 150, 44780, Bochum, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| |
Collapse
|
32
|
Cohen R, Cohen Y, Mukha D, Yehezkeli O. Oxygen insensitive amperometric glucose biosensor based on FAD dependent glucose dehydrogenase co-entrapped with DCPIP or DCNQ in a polydopamine layer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Tragni V, Cotugno P, De Grassi A, Cavalluzzi MM, Mincuzzi A, Lentini G, Sanzani SM, Ippolito A, Pierri CL. Targeting Penicillium expansum GMC Oxidoreductase with High Affinity Small Molecules for Reducing Patulin Production. BIOLOGY 2020; 10:biology10010021. [PMID: 33396459 PMCID: PMC7824139 DOI: 10.3390/biology10010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary With the urgent necessity of potential treatments for limiting mycotoxin production and postharvest fungal rots, we propose a combined in silico/in vitro/in vivo strategy for the rapid and effective identification of bioactive small molecules, chosen among a chemical library hosting approved drugs and phytochemicals, to be used after harvest. The molecular target of our analysis was the GMC oxidoreductase from Penicillium expansum involved in the biosynthesis of patulin, a mycotoxin that can contaminate many foods, especially fruits and fruit-based products. The employed in silico/in vitro/in vivo assays described in our study proved the effectiveness of our strategy and in particular of two small molecules, 6-hydroxycoumarin (structurally related to umbelliferon, an already characterized patulin synthase inhibitor) and meticrane (an already approved drug) in reducing patulin accumulation. Our findings highly recommend the mentioned ligands to be subjected to further analysis for being used in the next future in place of other more toxic compounds, in postharvest treatments based on dipping or drenching methods. Abstract Flavine adenine dinucleotide (FAD) dependent glucose methanol choline oxidoreductase (GMC oxidoreductase) is the terminal key enzyme of the patulin biosynthetic pathway. GMC oxidoreductase catalyzes the oxidative ring closure of (E)-ascladiol to patulin. Currently, no protein involved in the patulin biosynthesis in Penicillium expansum has been experimentally characterized or solved by X-ray diffraction. Consequently, nothing is known about P. expansum GMC oxidoreductase substrate-binding site and mode of action. In the present investigation, a 3D comparative model for P. expansum GMC oxidoreductase has been described. Furthermore, a multistep computational approach was used to identify P. expansum GMC oxidoreductase residues involved in the FAD binding and in substrate recognition. Notably, the obtained 3D comparative model of P. expansum GMC oxidoreductase was used for performing a virtual screening of a chemical/drug library, which allowed to predict new GMC oxidoreductase high affinity ligands to be tested in in vitro/in vivo assays. In vitro assays performed in presence of 6-hydroxycoumarin and meticrane, among the highly affinity predicted binders, confirmed a dose-dependent inhibition (17–81%) of patulin production by 6-hydroxycoumarin (10 µM–1 mM concentration range), whereas the approved drug meticrane inhibited patulin production by 43% already at 10 µM. Furthermore, 6-hydroxycoumarin and meticrane caused a 60 and 41% reduction of patulin production, respectively, in vivo on apples at 100 µg/wound.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (V.T.); (A.M.)
| | - Pietro Cotugno
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy;
| | - Anna De Grassi
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy;
- BROWSer S.r.l., c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70126 Bari, Italy
| | - Maria Maddalena Cavalluzzi
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy; (M.M.C.); (G.L.)
| | - Annamaria Mincuzzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (V.T.); (A.M.)
| | - Giovanni Lentini
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy; (M.M.C.); (G.L.)
| | - Simona Marianna Sanzani
- CIHEAM Bari, Via Ceglie 9, 70010 Valenzano (BA), Italy
- Correspondence: (S.M.S.); (A.I.); ; (C.L.P.); Tel.: +39-0805443614 (C.L.P.); Fax: +39-0805442770 (C.L.P.)
| | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (V.T.); (A.M.)
- Correspondence: (S.M.S.); (A.I.); ; (C.L.P.); Tel.: +39-0805443614 (C.L.P.); Fax: +39-0805442770 (C.L.P.)
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy;
- BROWSer S.r.l., c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70126 Bari, Italy
- Correspondence: (S.M.S.); (A.I.); ; (C.L.P.); Tel.: +39-0805443614 (C.L.P.); Fax: +39-0805442770 (C.L.P.)
| |
Collapse
|
34
|
Quaye JA, Gadda G. Kinetic and Bioinformatic Characterization of d-2-Hydroxyglutarate Dehydrogenase from Pseudomonas aeruginosa PAO1. Biochemistry 2020; 59:4833-4844. [PMID: 33301690 DOI: 10.1021/acs.biochem.0c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
d-2-Hydroxyglutarate dehydrogenase from Pseudomonas aeruginosa PAO1 (PaD2HGDH) catalyzes the oxidation of d-2-hydroxyglutarate to 2-ketoglutarate, which is a necessary step in the serine biosynthetic pathway. The dependence of P. aeruginosa on PaD2HGDH makes the enzyme a potential therapeutic target against P. aeruginosa. In this study, recombinant His-tagged PaD2HGDH was expressed and purified to high levels from gene PA0317, which was previously annotated as an FAD-binding PCMH-type domain-containing protein. The enzyme cofactor was identified as FAD with fluorescence emission after phosphodiesterase treatment and with mass spectrometry analysis. PaD2HGDH had a kcat value of 11 s-1 and a Km value of 60 μM with d-2-hydroxyglutarate at pH 7.4 and 25 °C. The enzyme was also active with d-malate but did not react with molecular oxygen. Steady-state kinetics with d-malate and phenazine methosulfate as an electron acceptor established a mechanism that was consistent with ping-pong bi-bi steady-state kinetics at pH 7.4. A comparison of the kcat/Km values with d-2-hydroxyglutarate and d-malate suggested that the C5 carboxylate of d-2-hydroxyglutarate is important for the substrate specificity of the enzyme. Other homologues of the enzyme have been previously grouped in the VAO/PMCH family of flavoproteins. PaD2HGDH shares fully conserved residues with other α-hydroxy acid oxidizing enzymes, and these conserved residues are found in the active site of the PaD2HDGH homology model. An Enzyme Function Initiative-Enzyme Similarity Tool Sequence Similarity Network analysis suggests a functional difference between PaD2HGDH and human D2HGDH, and no relationship with VAO. A phylogenetic tree analysis of PaD2HGDH, VAO, and human D2HGDH establishes genetic diversity among these enzymes.
Collapse
|
35
|
Riedel M, Höfs S, Ruff A, Schuhmann W, Lisdat F. A Tandem Solar Biofuel Cell: Harnessing Energy from Light and Biofuels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marc Riedel
- Biosystems Technology Institute of Life Sciences and Biomedical Technologies Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| | - Soraya Höfs
- Biosystems Technology Institute of Life Sciences and Biomedical Technologies Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| | - Adrian Ruff
- Analytical Chemistry—Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätstr. 150 44780 Bochum Germany
- PPG (Deutschland) Business Support GmbH EMEA Packaging Coatings Erlenbrunnenstr. 20 72411 Bodelshausen Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätstr. 150 44780 Bochum Germany
| | - Fred Lisdat
- Biosystems Technology Institute of Life Sciences and Biomedical Technologies Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| |
Collapse
|
36
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
37
|
Phylogeny and Structure of Fatty Acid Photodecarboxylases and Glucose-Methanol-Choline Oxidoreductases. Catalysts 2020. [DOI: 10.3390/catal10091072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucose-methanol-choline (GMC) oxidoreductases are a large and diverse family of flavin-binding enzymes found in all kingdoms of life. Recently, a new related family of proteins has been discovered in algae named fatty acid photodecarboxylases (FAPs). These enzymes use the energy of light to convert fatty acids to the corresponding Cn-1 alkanes or alkenes, and hold great potential for biotechnological application. In this work, we aimed at uncovering the natural diversity of FAPs and their relations with other GMC oxidoreductases. We reviewed the available GMC structures, assembled a large dataset of GMC sequences, and found that one active site amino acid, a histidine, is extremely well conserved among the GMC proteins but not among FAPs, where it is replaced with alanine. Using this criterion, we found several new potential FAP genes, both in genomic and metagenomic databases, and showed that related bacterial, archaeal and fungal genes are unlikely to be FAPs. We also identified several uncharacterized clusters of GMC-like proteins as well as subfamilies of proteins that lack the conserved histidine but are not FAPs. Finally, the analysis of the collected dataset of potential photodecarboxylase sequences revealed the key active site residues that are strictly conserved, whereas other residues in the vicinity of the flavin adenine dinucleotide (FAD) cofactor and in the fatty acid-binding pocket are more variable. The identified variants may have different FAP activity and selectivity and consequently may prove useful for new biotechnological applications, thereby fostering the transition from a fossil carbon-based economy to a bio-economy by enabling the sustainable production of hydrocarbon fuels.
Collapse
|
38
|
Yanase T, Okuda-Shimazaki J, Mori K, Kojima K, Tsugawa W, Sode K. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b 562 as an electron transfer domain. Biochem Biophys Res Commun 2020; 530:82-86. [PMID: 32828319 DOI: 10.1016/j.bbrc.2020.06.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
Fungi-derived flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenases (FADGDHs) are the most popular and advanced enzymes for SMBG sensors because of their high substrate specificity toward glucose and oxygen insensitivity. However, this type of FADGDH hardly shows direct electron transfer (DET) ability. In this study, we developed a new DET-type FADGDH by harboring Cytochrome b562 (cyt b562) derived from Escherichia coli as the electron transfer domain. The structural genes encoding fusion enzymes composed of cyt b562 at either the N- or C-terminus of fungal FADGDH, (cyt b562-GDH or GDH-cyt b562), were constructed, recombinantly expressed, and characteristics of the fusion proteins were investigated. Both constructed fusion enzymes were successfully expressed in E. coli, as the soluble and GDH active proteins, showing cyt b562 specific redox properties. Thusconstructed fusion proteins showed internal electron transfer between FAD in FADGDH and fused cyt b562. Consequently, both cyt b562-GDH and GDH-cyt b562 showed DET abilities toward electrode. Interestingly, cyt b562-GDH showed much rapid internal electron transfer and higher DET ability than GDH-cyt b562. Thus, we demonstrated the construction and production of a new DET-type FADGDH using E.coli as the host cells, which is advantageous for future industrial application and further engineering.
Collapse
Affiliation(s)
- Takumi Yanase
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Junko Okuda-Shimazaki
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599, USA
| | - Kazushige Mori
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Katsuhiro Kojima
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Wakako Tsugawa
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599, USA.
| |
Collapse
|
39
|
Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases. Int J Mol Sci 2020; 21:ijms21113797. [PMID: 32471202 PMCID: PMC7312611 DOI: 10.3390/ijms21113797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 11/30/2022] Open
Abstract
In this review, recent progress in the engineering of the oxidative half-reaction of flavin-dependent oxidases and dehydrogenases is discussed, considering their current and future applications in bioelectrochemical studies, such as for the development of biosensors and biofuel cells. There have been two approaches in the studies of oxidative half-reaction: engineering of the oxidative half-reaction with oxygen, and engineering of the preference for artificial electron acceptors. The challenges for engineering oxidative half-reactions with oxygen are further categorized into the following approaches: (1) mutation to the putative residues that compose the cavity where oxygen may be located, (2) investigation of the vicinities where the reaction with oxygen may take place, and (3) investigation of possible oxygen access routes to the isoalloxazine ring. Among these approaches, introducing a mutation at the oxygen access route to the isoalloxazine ring represents the most versatile and effective strategy. Studies to engineer the preference of artificial electron acceptors are categorized into three different approaches: (1) engineering of the charge at the residues around the substrate entrance, (2) engineering of a cavity in the vicinity of flavin, and (3) decreasing the glycosylation degree of enzymes. Among these approaches, altering the charge in the vicinity where the electron acceptor may be accessed will be most relevant.
Collapse
|
40
|
Engineered Glucose Oxidase Capable of Quasi-Direct Electron Transfer after a Quick-and-Easy Modification with a Mediator. Int J Mol Sci 2020; 21:ijms21031137. [PMID: 32046321 PMCID: PMC7036908 DOI: 10.3390/ijms21031137] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Glucose oxidase (GOx) has been widely utilized for monitoring glycemic levels due to its availability, high activity, and specificity toward glucose. Among the three generations of electrochemical glucose sensor principles, direct electron transfer (DET)-based third-generation sensors are considered the ideal principle since the measurements can be carried out in the absence of a free redox mediator in the solution without the impact of oxygen and at a low enough potential for amperometric measurement to avoid the effect of electrochemically active interferences. However, natural GOx is not capable of DET. Therefore, a simple and rapid strategy to create DET-capable GOx is desired. In this study, we designed engineered GOx, which was made readily available for single-step modification with a redox mediator (phenazine ethosulfate, PES) on its surface via a lysine residue rationally introduced into the enzyme. Thus, PES-modified engineered GOx showed a quasi-DET response upon the addition of glucose. This strategy and the obtained results will contribute to the further development of quasi-DET GOx-based glucose monitoring dedicated to precise and accurate glycemic control for diabetic patient care.
Collapse
|
41
|
Synthesis, antimicrobial evaluation, molecular docking and theoretical calculations of novel pyrazolo[1,5-a]pyrimidine derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Okuda-Shimazaki J, Yoshida H, Sode K. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes. Bioelectrochemistry 2019; 132:107414. [PMID: 31838457 DOI: 10.1016/j.bioelechem.2019.107414] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 11/10/2019] [Indexed: 11/17/2022]
Abstract
The history of the development of glucose sensors goes hand-in-hand with the history of the discovery and the engineering of glucose-sensing enzymes. Glucose oxidase (GOx) has been used for glucose sensing since the development of the first electrochemical glucose sensor. The principle utilizing oxygen as the electron acceptor is designated as the first-generation electrochemical enzyme sensors. With increasing demand for hand-held and cost-effective devices for the "self-monitoring of blood glucose (SMBG)", second-generation electrochemical sensor strips employing electron mediators have become the most popular platform. To overcome the inherent drawback of GOx, namely, the use of oxygen as the electron acceptor, various glucose dehydrogenases (GDHs) have been utilized in second-generation principle-based sensors. Among the various enzymes employed in glucose sensors, GDHs harboring FAD as the redox cofactor, FADGDHs, especially those derived from fungi, fFADGDHs, are currently the most popular enzymes in the sensor strips of second-generation SMBG sensors. In addition, the third-generation principle, employing direct electron transfer (DET), is considered the most elegant approach and is ideal for use in electrochemical enzyme sensors. However, glucose oxidoreductases capable of DET are limited. One of the most prominent GDHs capable of DET is a bacteria-derived FADGDH complex (bFADGDH). bFADGDH has three distinct subunits; the FAD harboring the catalytic subunit, the small subunit, and the electron-transfer subunit, which makes bFADGDH capable of DET. In this review, we focused on the two representative glucose sensing enzymes, fFADGDHs and bFADGDHs, by presenting their discovery, sources, and protein and enzyme properties, and the current engineering strategies to improve their potential in sensor applications.
Collapse
Affiliation(s)
- Junko Okuda-Shimazaki
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.
| |
Collapse
|
43
|
Yoshida H, Kojima K, Shiota M, Yoshimatsu K, Yamazaki T, Ferri S, Tsugawa W, Kamitori S, Sode K. X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein. Acta Crystallogr D Struct Biol 2019; 75:841-851. [PMID: 31478907 PMCID: PMC6719666 DOI: 10.1107/s2059798319010878] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
The bacterial flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase complex derived from Burkholderia cepacia (BcGDH) is a representative molecule of direct electron transfer-type FAD-dependent dehydrogenase complexes. In this study, the X-ray structure of BcGDHγα, the catalytic subunit (α-subunit) of BcGDH complexed with a hitchhiker protein (γ-subunit), was determined. The most prominent feature of this enzyme is the presence of the 3Fe-4S cluster, which is located at the surface of the catalytic subunit and functions in intramolecular and intermolecular electron transfer from FAD to the electron-transfer subunit. The structure of the complex revealed that these two molecules are connected through disulfide bonds and hydrophobic interactions, and that the formation of disulfide bonds is required to stabilize the catalytic subunit. The structure of the complex revealed the putative position of the electron-transfer subunit. A comparison of the structures of BcGDHγα and membrane-bound fumarate reductases suggested that the whole BcGDH complex, which also includes the membrane-bound β-subunit containing three heme c moieties, may form a similar overall structure to fumarate reductases, thus accomplishing effective electron transfer.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Katsuhiro Kojima
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Masaki Shiota
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keiichi Yoshimatsu
- Department of Chemistry, Missouri State University, Springfield, MO 65897, USA
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Stefano Ferri
- Department of Applied Chemistry and Biochemical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| |
Collapse
|
44
|
Improvement in the thermal stability of Mucor prainii-derived FAD-dependent glucose dehydrogenase via protein chimerization. Enzyme Microb Technol 2019; 132:109387. [PMID: 31731974 DOI: 10.1016/j.enzmictec.2019.109387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 11/23/2022]
Abstract
FAD-dependent glucose dehydrogenase (FAD-GDH, EC 1.1.5.9) is an enzyme utilized industrially in glucose sensors. Previously, FAD-GDH isolated from Mucor prainii (MpGDH) was demonstrated to have high substrate specificity for glucose. However, MpGDH displays poor thermostability and is inactivated after incubation at 45 °C for only 15 min, which prevents its use in industrial applications, especially in continuous glucose monitoring (CGM) systems. Therefore, in this study, a chimeric MpGDH (Mr144-297) was engineered from the glucose-specific MpGDH and the highly thermostable FAD-GDH obtained from Mucor sp. RD056860 (MrdGDH). Mr144-297 demonstrated significantly higher heat resistance, with stability at even 55 °C. In addition, Mr144-297 maintained both high affinity and accurate substrate specificity for D-glucose. Furthermore, eight mutation sites that contributed to improved thermal stability and increased productivity in Escherichia coli were identified. Collectively, chimerization of FAD-GDHs can be an effective method for the construction of an FAD-GDH with greater stability, and the chimeric FAD-GDH described herein could be adapted for use in continuous glucose monitoring sensors.
Collapse
|
45
|
Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 2019; 128:218-240. [DOI: 10.1016/j.bioelechem.2019.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/18/2023]
|
46
|
Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:118. [PMID: 31168323 PMCID: PMC6509819 DOI: 10.1186/s13068-019-1457-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/02/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The glucose-methanol-choline (GMC) superfamily is a large and functionally diverse family of oxidoreductases that share a common structural fold. Fungal members of this superfamily that are characterised and relevant for lignocellulose degradation include aryl-alcohol oxidoreductase, alcohol oxidase, cellobiose dehydrogenase, glucose oxidase, glucose dehydrogenase, pyranose dehydrogenase, and pyranose oxidase, which together form family AA3 of the auxiliary activities in the CAZy database of carbohydrate-active enzymes. Overall, little is known about the extant sequence space of these GMC oxidoreductases and their phylogenetic relations. Although some individual forms are well characterised, it is still unclear how they compare in respect of the complete enzyme class and, therefore, also how generalizable are their characteristics. RESULTS To improve the understanding of the GMC superfamily as a whole, we used sequence similarity networks to cluster large numbers of fungal GMC sequences and annotate them according to functionality. Subsequently, different members of the GMC superfamily were analysed in detail with regard to their sequences and phylogeny. This allowed us to define the currently characterised sequence space and show that complete clades of some enzymes have not been studied in any detail to date. Finally, we interpret our results from an evolutionary perspective, where we could show, for example, that pyranose dehydrogenase evolved from aryl-alcohol oxidoreductase after a change in substrate specificity and that the cytochrome domain of cellobiose dehydrogenase was regularly lost during evolution. CONCLUSIONS This study offers new insights into the sequence variation and phylogenetic relationships of fungal GMC/AA3 sequences. Certain clades of these GMC enzymes identified in our phylogenetic analyses are completely uncharacterised to date, and might include enzyme activities of varying specificities and/or activities that are hitherto unstudied.
Collapse
Affiliation(s)
- Leander Sützl
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Gabriel Foley
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Mikael Bodén
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
47
|
Effect of individual plasma components on the performance of a glucose enzyme electrode based on redox polymer mediation of a flavin adenine dinucleotide-dependent glucose dehydrogenase. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Iwasa H, Ozawa K, Sasaki N, Kinoshita N, Yokoyama K, Hiratsuka A. Fungal FAD-dependent glucose dehydrogenases concerning high activity, affinity, and thermostability for maltose-insensitive blood glucose sensor. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Kimura H, Asano R, Tsukamoto N, Tsugawa W, Sode K. Convenient and Universal Fabrication Method for Antibody–Enzyme Complexes as Sensing Elements Using the SpyCatcher/SpyTag System. Anal Chem 2018; 90:14500-14506. [DOI: 10.1021/acs.analchem.8b04344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | | | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
50
|
Deng L, Hu C, Qin X, Li L, Zhang Y, Li P, Chen X. The remote arginine promoting the dehydrogenation of glucose in glucose oxidase via a proton-coupled double-electron transfer mechanism. J Catal 2018. [DOI: 10.1016/j.jcat.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|