1
|
Shekhar, Chowdhary S, Mosnier J, Fonta I, Pradines B, Kumar V. Design, synthesis and mechanistic insights into triclosan derived dimers as potential anti-plasmodials. RSC Med Chem 2024:d4md00494a. [PMID: 39464649 PMCID: PMC11503656 DOI: 10.1039/d4md00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
In pursuit of novel anti-plasmodial agents, a library of triclosan-based dimers both with and without a 1H-1,2,3 triazole core were designed and synthesized in order to achieve a multitargeted approach. In vitro assessment against chloroquine-susceptible (3D7) and resistant (W2) P. falciparum strains identified that two of the synthesized dimers containing triazole were the most potent in the series. The most potent of the synthesized compounds exhibited IC50 values of 9.27 and 12.09 μM against the CQ-resistant (W2) and CQ-susceptible (3D7) strains of P. falciparum, with an RI of 0.77, suggesting little or no cross-resistance with CQ. Heme binding and molecular modelling studies revealed the most promising scaffold as a dual inhibitor for hemozoin formation and a P. falciparum chloroquine resistance transporter (PfCRT), respectively. In silico studies of the most potent compound revealed that it shows better binding affinity with PfACP and PfCRT compared to TCS. To the best of our knowledge, this is the first report of triclosan-based compounds demonstrating promising heme-inhibition behaviour, with binding values comparable to those of chloroquine (CQ).
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Shefali Chowdhary
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| |
Collapse
|
2
|
Zhang J, Shahbaz M, Ijaz M, Zhang H. Bibliometric analysis of antimalarial drug resistance. Front Cell Infect Microbiol 2024; 14:1270060. [PMID: 38410722 PMCID: PMC10895045 DOI: 10.3389/fcimb.2024.1270060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024] Open
Abstract
Background Malaria has always been a serious infectious disease prevalent in the world. Antimalarial drugs such as chloroquine and artemisinin have been the main compounds used to treat malaria. However, the massive use of this type of drugs accelerates the evolution and spread of malaria parasites, leading to the development of resistance. A large number of related data have been published by researchers in recent years. CiteSpace software has gained popularity among us researchers in recent years, because of its ability to help us obtain the core information we want in a mass of articles. In order to analyze the hotspots and develop trends in this field through visual analysis, this study used CiteSpace software to summarize the available data in the literature to provide insights. Method Relevant literature was collected from the Web of Science Core Collection (WOSCC) from 1 January 2015 to 29 March 2023. CiteSpace software and Microsoft Excel were used to analyze and present the data, respectively. Results A total of 2,561 literatures were retrieved and 2,559 literatures were included in the analysis after the removal of duplicates. An irrefutable witness of the ever-growing interest in the topic of antimalarial drug resistance could be expressed by the exponentially increased number of publications and related citations from 2015 to 2022, and its sustained growth trend by 2023. During the past 7 years, USA, Oxford University, and David A Fidock are the country, institution, and author with the most publications in this field of research, respectively. We focused on the references and keywords from literature and found that the research and development of new drugs is the newest hotspot in this field. A growing number of scientists are devoted to finding new antimalarial drugs. Conclusion This study is the first visual metrological analysis of antimalarial drug resistance, using bibliometric methods. As a baseline information, it is important to analyze research output published globally on antimalarial drug resistance. In order to better understand the current research situation and future research plan agenda, such baseline data are needed accordingly.
Collapse
Affiliation(s)
- Jialu Zhang
- Shandong University of Traditional Chinese Medicine, College of Pharmacy, Jinan, China
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
| | - Muhammad Shahbaz
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
- Department of Radiology, Qilu Hospital Affiliated to Shandong University, Jinan, China
- Research Center for Sectional and Imaging Anatomy, Digital Human Institute, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Muhammad Ijaz
- The Faculty of Medicine, Qilu Institute of Technology, Jinan, China
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan, China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
| |
Collapse
|
3
|
Hagenah LM, Dhingra SK, Small-Saunders JL, Qahash T, Willems A, Schindler KA, Rangel GW, Gil-Iturbe E, Kim J, Akhundova E, Yeo T, Okombo J, Mancia F, Quick M, Roepe PD, Llinás M, Fidock DA. Additional PfCRT mutations driven by selective pressure for improved fitness can result in the loss of piperaquine resistance and altered Plasmodium falciparum physiology. mBio 2024; 15:e0183223. [PMID: 38059639 PMCID: PMC10790694 DOI: 10.1128/mbio.01832-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Our study leverages gene editing techniques in Plasmodium falciparum asexual blood stage parasites to profile novel mutations in mutant PfCRT, an important mediator of piperaquine resistance, which developed in Southeast Asian field isolates or in parasites cultured for long periods of time. We provide evidence that increased parasite fitness of these lines is the primary driver for the emergence of these PfCRT variants. These mutations differentially impact parasite susceptibility to piperaquine and chloroquine, highlighting the multifaceted effects of single point mutations in this transporter. Molecular features of drug resistance and parasite physiology were examined in depth using proteoliposome-based drug uptake studies and peptidomics, respectively. Energy minimization calculations, showing how these novel mutations might impact the PfCRT structure, suggested a small but significant effect on drug interactions. This study reveals the subtle interplay between antimalarial resistance, parasite fitness, PfCRT structure, and intracellular peptide availability in PfCRT-mediated parasite responses to changing drug selective pressures.
Collapse
Affiliation(s)
- Laura M. Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L. Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Tarrick Qahash
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andreas Willems
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, USA
| | - Kyra A. Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Gabriel W. Rangel
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Emiliya Akhundova
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
- Area Neuroscience - Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Paul D. Roepe
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, USA
| | - Manuel Llinás
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Parikesit AA, Hermantara R, Gregorius K, Siddharta E. Designing hybrid CRISPR-Cas12 and LAMP detection systems for treatment-resistant Plasmodium falciparum with in silico method. NARRA J 2023; 3:e301. [PMID: 38455618 PMCID: PMC10919703 DOI: 10.52225/narra.v3i3.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/21/2023] [Indexed: 03/09/2024]
Abstract
Genes associated with drug resistance of first line drugs for Plasmodium falciparum have been identified and characterized of which three genes most commonly associated with drug resistance are P. falciparum chloroquine resistance transporter gene (PfCRT), P. falciparum multidrug drug resistance gene 1 (PfMDR1), and P. falciparum Kelch protein K13 gene (PfKelch13). Polymorphism in these genes could be used as molecular markers for identifying drug resistant strains. Nucleic acid amplification test (NAAT) along with DNA sequencing is a powerful diagnostic tool that could identify these polymorphisms. However, current NAAT and DNA sequencing technologies require specific instruments which might limit its application in rural areas. More recently, a combination of isothermal amplification and CRISPR detection system showed promising results in detecting mutations at a nucleic acid level. Moreover, the Loop-mediated isothermal amplification (LAMP)-CRISPR systems offer robust and straightforward detection, enabling it to be deployed in rural and remote areas. The aim of this study was to develop a novel diagnostic method, based on LAMP of targeted genes, that would enable the identification of drug-resistant P. falciparum strains. The methods were centered on sequence analysis of P. falciparum genome, LAMP primers design, and CRISPR target prediction. Our designed primers are satisfactory for identifying polymorphism associated with drug resistant in PfCRT, PfMDR1, and PfKelch13. Overall, the developed system is promising to be used as a detection method for P. falciparum treatment-resistant strains. However, optimization and further validation the developed CRISPR-LAMP assay are needed to ensure its accuracy, reliability, and feasibility.
Collapse
Affiliation(s)
- Arli A. Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Rio Hermantara
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Kevin Gregorius
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| | - Elizabeth Siddharta
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia
| |
Collapse
|
5
|
Anand A, Chandana M, Ghosh S, Das R, Singh N, Vaishalli PM, Gantasala NP, Padmanaban G, Nagaraj VA. Significance of Plasmodium berghei Amino Acid Transporter 1 in Food Vacuole Functionality and Its Association with Cerebral Pathogenesis. Microbiol Spectr 2023; 11:e0494322. [PMID: 36976018 PMCID: PMC10101031 DOI: 10.1128/spectrum.04943-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and in vivo animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed in vivo characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. IMPORTANCE Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | |
Collapse
|
6
|
Cortopassi WA, Gunderson E, Annunciato Y, Silva A, dos Santos Ferreira A, Garcia Teles CB, Pimentel AS, Ramamoorthi R, Gazarini ML, Meneghetti MR, Guido R, Pereira DB, Jacobson MP, Krettli AU, Caroline C Aguiar A. Fighting Plasmodium chloroquine resistance with acetylenic chloroquine analogues. Int J Parasitol Drugs Drug Resist 2022; 20:121-128. [PMID: 36375339 PMCID: PMC9771834 DOI: 10.1016/j.ijpddr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Malaria is among the tropical diseases that cause the most deaths in Africa. Around 500,000 malaria deaths are reported yearly among African children under the age of five. Chloroquine (CQ) is a low-cost antimalarial used worldwide for the treatment of Plasmodium vivax malaria. Due to resistance mechanisms, CQ is no longer effective against most malaria cases caused by P. falciparum. The World Health Organization recommends artemisinin combination therapies for P. falciparum malaria, but resistance is emerging in Southeast Asia and some parts of Africa. Therefore, new medicines for treating malaria are urgently needed. Previously, our group identified the 4-aminoquinoline DAQ, a CQ analog containing an acetylenic bond in its side chain, which overcomes CQ resistance in K1 P. falciparum strains. In this work, the antiplasmodial profile, drug-like properties, and pharmacokinetics of DAQ were further investigated. DAQ showed no cross-resistance against standard CQ-resistant strains (e.g., Dd2, IPC 4912, RF12) nor against P. falciparum and P. vivax isolates from patients in the Brazilian Amazon. Using drug pressure assays, DAQ showed a low propensity to generate resistance. DAQ showed considerable solubility but low metabolic stability. The main metabolite was identified as a mono N-deethylated derivative (DAQM), which also showed significant inhibitory activity against CQ-resistant P. falciparum strains. Our findings indicated that the presence of a triple bond in CQ-analogues may represent a low-cost opportunity to overcome known mechanisms of resistance in the malaria parasite.
Collapse
Affiliation(s)
- Wilian A. Cortopassi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Emma Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Yasmin Annunciato
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Antony.E.S. Silva
- Group of Catalysis and Chemical Reactivity Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | | | | - Andre S. Pimentel
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, RJ, Brazil
| | | | - Marcos L Gazarini
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Mario R. Meneghetti
- Group of Catalysis and Chemical Reactivity Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Rafael.V.C. Guido
- São Carlos Institute of Physics, University of Sao Paulo, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Dhelio B. Pereira
- Research Center in Tropical Medicine of Rondônia, Porto Velho, Rondônia, Brazil
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Antoniana U. Krettli
- Malaria Laboratory, René Rachou Research Center, FIOCRUZ, Belo Horizonte, MG, Brazil,Corresponding author.
| | - Anna Caroline C Aguiar
- Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil,São Carlos Institute of Physics, University of Sao Paulo, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13563-120, Brazil,Corresponding author.Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil.
| |
Collapse
|
7
|
Sanchez CP, Manson EDT, Moliner Cubel S, Mandel L, Weidt SK, Barrett MP, Lanzer M. The Knock-Down of the Chloroquine Resistance Transporter PfCRT Is Linked to Oligopeptide Handling in Plasmodium falciparum. Microbiol Spectr 2022; 10:e0110122. [PMID: 35867395 PMCID: PMC9431119 DOI: 10.1128/spectrum.01101-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The chloroquine resistance transporter, PfCRT, is an essential factor during intraerythrocytic development of the human malaria parasite Plasmodium falciparum. PfCRT resides at the digestive vacuole of the parasite, where hemoglobin taken up by the parasite from its host cell is degraded. PfCRT can acquire several mutations that render PfCRT a drug transporting system expelling compounds targeting hemoglobin degradation from the digestive vacuole. The non-drug related function of PfCRT is less clear, although a recent study has suggested a role in oligopeptide transport based on studies conducted in a heterologous expression system. The uncertainty about the natural function of PfCRT is partly due to a lack of a null mutant and a dearth of functional assays in the parasite. Here, we report on the generation of a conditional PfCRT knock-down mutant in P. falciparum. The mutant accumulated oligopeptides 2 to at least 8 residues in length under knock-down conditions, as shown by comparative global metabolomics. The accumulated oligopeptides were structurally diverse, had an isoelectric point between 4.0 and 5.4 and were electrically neutral or carried a single charge at the digestive vacuolar pH of 5.2. Fluorescently labeled dipeptides and live cell imaging identified the digestive vacuole as the compartment where oligopeptides accumulated. Our findings suggest a function of PfCRT in oligopeptide transport across the digestive vacuolar membrane in P. falciparum and associated with it a role in nutrient acquisition and the maintenance of the colloid osmotic balance. IMPORTANCE The chloroquine resistance transporter, PfCRT, is important for the survival of the human malaria parasite Plasmodium falciparum. It increases the tolerance to many antimalarial drugs, and it is essential for the development of the parasite within red blood cells. While we understand the role of PfCRT in drug resistance in ever increasing detail, the non-drug resistance functions are still debated. Identifying the natural substrate of PfCRT has been hampered by a paucity of functional assays to test putative substrates in the parasite system and the absence of a parasite mutant deficient for the PfCRT encoding gene. By generating a conditional PfCRT knock-down mutant, together with comparative metabolomics and uptake studies using fluorescently labeled oligopeptides, we could show that PfCRT is an oligopeptide transporter. The oligopeptides were structurally diverse and were electrically neutral or carried a single charge. Our data support a function of PfCRT in oligopeptide transport.
Collapse
Affiliation(s)
- Cecilia P. Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Sonia Moliner Cubel
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Stefan K. Weidt
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
- The Wellcome Centre for Integrative Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Moss S, Mańko E, Krishna S, Campino S, Clark TG, Last A. How has mass drug administration with dihydroartemisinin-piperaquine impacted molecular markers of drug resistance? A systematic review. Malar J 2022; 21:186. [PMID: 35690758 PMCID: PMC9188255 DOI: 10.1186/s12936-022-04181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
The World Health Organization (WHO) recommends surveillance of molecular markers of resistance to anti-malarial drugs. This is particularly important in the case of mass drug administration (MDA), which is endorsed by the WHO in some settings to combat malaria. Dihydroartemisinin-piperaquine (DHA-PPQ) is an artemisinin-based combination therapy which has been used in MDA. This review analyses the impact of MDA with DHA-PPQ on the evolution of molecular markers of drug resistance. The review is split into two parts. Section I reviews the current evidence for different molecular markers of resistance to DHA-PPQ. This includes an overview of the prevalence of these molecular markers in Plasmodium falciparum Whole Genome Sequence data from the MalariaGEN Pf3k project. Section II is a systematic literature review of the impact that MDA with DHA-PPQ has had on the evolution of molecular markers of resistance. This systematic review followed PRISMA guidelines. This review found that despite being a recognised surveillance tool by the WHO, the surveillance of molecular markers of resistance following MDA with DHA-PPQ was not commonly performed. Of the total 96 papers screened for eligibility in this review, only 20 analysed molecular markers of drug resistance. The molecular markers published were also not standardized. Overall, this warrants greater reporting of molecular marker prevalence following MDA implementation. This should include putative pfcrt mutations which have been found to convey resistance to DHA-PPQ in vitro.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Emilia Mańko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sanjeev Krishna
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
9
|
Mania With Psychotic Symptoms After Malaria Prophylaxis With Atovaquone-Proguanil: A Case Report. J Clin Psychopharmacol 2022; 42:331-333. [PMID: 35489033 DOI: 10.1097/jcp.0000000000001541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Molecular characterization of glyceraldehyde-3-phosphate dehydrogenase from Eimeria tenella. Parasitol Res 2022; 121:1749-1760. [PMID: 35366097 DOI: 10.1007/s00436-022-07508-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
Abstract
Chicken coccidiosis is an extremely common and lethally epidemic disease caused by Eimeria spp. The control measures of coccidiosis depend mainly on drugs. However, the ensuing drug resistance problem has brought considerable economic loss to the poultry industry. In our previous study, comparative transcriptome analyses of a drug-sensitive (DS) strain and two drug-resistant strains (diclazuril-resistant (DZR) and maduramicin-resistant (MRR) strains) of Eimeria tenella were carried out by transcriptome sequencing. The expression of glyceraldehyde-3-phosphate dehydrogenase of E. tenella (EtGAPDH) was upregulated in the two resistant strains. In this study, we cloned and characterized EtGAPDH. Indirect immunofluorescence localization was used to observe the distribution of EtGAPDH in E. tenella. The results showed that the protein was distributed mainly on the surface of sporozoites and merozoites, and in the cytoplasm of merozoites. qPCR was performed to detect the transcription level of EtGAPDH in the different developmental stages of the E. tenella DS strain. The transcription level of EtGAPDH was significantly higher in second-generation merozoites than in the other three stages. The transcription level of EtGAPDH in the different drug-resistant strains and DS strain of E. tenella was also analyzed by qPCR. The results showed that the transcription level was significantly higher in the two drug-resistant strains (MRR and DZR) than in the DS strain. As the concentration of diclazuril and maduramicin increased, the transcription levels also increased. Western blot results showed that EtGAPDH protein was upregulated in the DZR and MRR strains. Enzyme activity showed that the enzyme activity of EtGAPDH was higher in the two resistant strains than in the DS strain. These results showed that EtGAPDH possess several roles that separate and distinct from its glycolytic function and maybe involved in the development of E. tenella resistance to anticoccidial drugs.
Collapse
|
11
|
Chaniad P, Phuwajaroanpong A, Techarang T, Horata N, Chukaew A, Punsawad C. Evaluation of the antimalarial activity and toxicity of Mahanil-Tang-Thong formulation and its plant ingredients. BMC Complement Med Ther 2022; 22:51. [PMID: 35219319 PMCID: PMC8882293 DOI: 10.1186/s12906-022-03531-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Novel potent antimalarial agents are urgently needed to overcome the problem of drug-resistant malaria. Herbal treatments are of interest because plants are the source of many pharmaceutical compounds. The Mahanil-Tang-Thong formulation is a Thai herbal formulation in the national list of essential medicines and is used for the treatment of fever. Therefore, this study aimed to evaluate the antimalarial activity of medicinal plants in the Mahanil-Tang-Thong formulation.
Methods
Nine medicinal plant ingredients of the Mahanil-Tang-Thong formulation were used in this study. Aqueous and ethanolic extracts of all the plants were analyzed for their phytochemical constituents. All the extracts were used to investigate the in vitro antimalarial activity against Plasmodium falciparum K1 (chloroquine-resistant strain) by using the lactate dehydrogenase (pLDH) method and cytotoxicity in Vero cells by using the 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, an extract with potent in vitro antimalarial activity and no toxicity was selected to determine the in vivo antimalarial activity with Peters’ 4-day suppressive test against the Plasmodium berghei ANKA strain. Acute toxicity was evaluated in mice for 14 days after the administration of a single oral dose of 2000 mg/kg.
Results
This study revealed that ethanolic extracts of Sapindus rarak DC., Tectona grandis L.f., Myristica fragrans Houtt. and Dracaena loureiri Gagnep. exhibited potent antimalarial activity, with half-maximal inhibitory concentration (IC50) values of 2.46, 3.21, 8.87 and 10.47 μg/ml, respectively, while the ethanolic of the formulation exhibited moderate activity with an IC50 value of 37.63 μg/ml and its aqueous extract had no activity (IC50 = 100.49 μg/ml). According to the in vitro study, the ethanolic wood extract of M. fragrans was selected for further investigation in an in vivo mouse model. M. fragrans extract at doses of 200, 400, and 600 mg/kg body weight produced a dose-dependent reduction in parasitemia by 8.59, 31.00, and 52.58%, respectively. No toxic effects were observed at a single oral dose of 2000 mg/kg body weight.
Conclusion
This study demonstrates that M. fragrans is a potential candidate for the development of antimalarial agents.
Collapse
|
12
|
Edgar RCS, Counihan NA, McGowan S, de Koning-Ward TF. Methods Used to Investigate the Plasmodium falciparum Digestive Vacuole. Front Cell Infect Microbiol 2022; 11:829823. [PMID: 35096663 PMCID: PMC8794586 DOI: 10.3389/fcimb.2021.829823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum malaria remains a global health problem as parasites continue to develop resistance to all antimalarials in use. Infection causes clinical symptoms during the intra-erythrocytic stage of the lifecycle where the parasite infects and replicates within red blood cells (RBC). During this stage, P. falciparum digests the main constituent of the RBC, hemoglobin, in a specialized acidic compartment termed the digestive vacuole (DV), a process essential for survival. Many therapeutics in use target one or multiple aspects of the DV, with chloroquine and its derivatives, as well as artemisinin, having mechanisms of action within this organelle. In order to better understand how current therapeutics and those under development target DV processes, techniques used to investigate the DV are paramount. This review outlines the involvement of the DV in therapeutics currently in use and focuses on the range of techniques that are currently utilized to study this organelle including microscopy, biochemical analysis, genetic approaches and metabolomic studies. Importantly, continued development and application of these techniques will aid in our understanding of the DV and in the development of new therapeutics or therapeutic partners for the future.
Collapse
Affiliation(s)
- Rebecca C. S. Edgar
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Natalie A. Counihan
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Monash University, Clayton, VIC, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
13
|
Wicht KJ, Mok S, Fidock DA. Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. Annu Rev Microbiol 2021; 74:431-454. [PMID: 32905757 DOI: 10.1146/annurev-micro-020518-115546] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding and controlling the spread of antimalarial resistance, particularly to artemisinin and its partner drugs, is a top priority. Plasmodium falciparum parasites resistant to chloroquine, amodiaquine, or piperaquine harbor mutations in the P. falciparum chloroquine resistance transporter (PfCRT), a transporter resident on the digestive vacuole membrane that in its variant forms can transport these weak-base 4-aminoquinoline drugs out of this acidic organelle, thus preventing these drugs from binding heme and inhibiting its detoxification. The structure of PfCRT, solved by cryogenic electron microscopy, shows mutations surrounding an electronegative central drug-binding cavity where they presumably interact with drugs and natural substrates to control transport. P. falciparum susceptibility to heme-binding antimalarials is also modulated by overexpression or mutations in the digestive vacuole membrane-bound ABC transporter PfMDR1 (P. falciparum multidrug resistance 1 transporter). Artemisinin resistance is primarily mediated by mutations in P. falciparum Kelch13 protein (K13), a protein involved in multiple intracellular processes including endocytosis of hemoglobin, which is required for parasite growth and artemisinin activation. Combating drug-resistant malaria urgently requires the development of new antimalarial drugs with novel modes of action.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , ,
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , ,
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , , .,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
14
|
Roux AT, Maharaj L, Oyegoke O, Akoniyon OP, Adeleke MA, Maharaj R, Okpeku M. Chloroquine and Sulfadoxine-Pyrimethamine Resistance in Sub-Saharan Africa-A Review. Front Genet 2021; 12:668574. [PMID: 34249090 PMCID: PMC8267899 DOI: 10.3389/fgene.2021.668574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Malaria is a great concern for global health and accounts for a large amount of morbidity and mortality, particularly in Africa, with sub-Saharan Africa carrying the greatest burden of the disease. Malaria control tools such as insecticide-treated bed nets, indoor residual spraying, and antimalarial drugs have been relatively successful in reducing the burden of malaria; however, sub-Saharan African countries encounter great challenges, the greatest being antimalarial drug resistance. Chloroquine (CQ) was the first-line drug in the 20th century until it was replaced by sulfadoxine-pyrimethamine (SP) as a consequence of resistance. The extensive use of these antimalarials intensified the spread of resistance throughout sub-Saharan Africa, thus resulting in a loss of efficacy for the treatment of malaria. SP was replaced by artemisinin-based combination therapy (ACT) after the emergence of resistance toward SP; however, the use of ACTs is now threatened by the emergence of resistant parasites. The decreased selective pressure on CQ and SP allowed for the reintroduction of sensitivity toward those antimalarials in regions of sub-Saharan Africa where they were not the primary drug for treatment. Therefore, the emergence and spread of antimalarial drug resistance should be tracked to prevent further spread of the resistant parasites, and the re-emergence of sensitivity should be monitored to detect the possible reappearance of sensitivity in sub-Saharan Africa.
Collapse
Affiliation(s)
- Alexandra T. Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Olukunle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Oluwasegun P. Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
15
|
Deelder W, Benavente ED, Phelan J, Manko E, Campino S, Palla L, Clark TG. Using deep learning to identify recent positive selection in malaria parasite sequence data. Malar J 2021; 20:270. [PMID: 34126997 PMCID: PMC8201710 DOI: 10.1186/s12936-021-03788-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malaria, caused by Plasmodium parasites, is a major global public health problem. To assist an understanding of malaria pathogenesis, including drug resistance, there is a need for the timely detection of underlying genetic mutations and their spread. With the increasing use of whole-genome sequencing (WGS) of Plasmodium DNA, the potential of deep learning models to detect loci under recent positive selection, historically signals of drug resistance, was evaluated. METHODS A deep learning-based approach (called "DeepSweep") was developed, which can be trained on haplotypic images from genetic regions with known sweeps, to identify loci under positive selection. DeepSweep software is available from https://github.com/WDee/Deepsweep . RESULTS Using simulated genomic data, DeepSweep could detect recent sweeps with high predictive accuracy (areas under ROC curve > 0.95). DeepSweep was applied to Plasmodium falciparum (n = 1125; genome size 23 Mbp) and Plasmodium vivax (n = 368; genome size 29 Mbp) WGS data, and the genes identified overlapped with two established extended haplotype homozygosity methods (within-population iHS, across-population Rsb) (~ 60-75% overlap of hits at P < 0.0001). DeepSweep hits included regions proximal to known drug resistance loci for both P. falciparum (e.g. pfcrt, pfdhps and pfmdr1) and P. vivax (e.g. pvmrp1). CONCLUSION The deep learning approach can detect positive selection signatures in malaria parasite WGS data. Further, as the approach is generalizable, it may be trained to detect other types of selection. With the ability to rapidly generate WGS data at low cost, machine learning approaches (e.g. DeepSweep) have the potential to assist parasite genome-based surveillance and inform malaria control decision-making.
Collapse
Affiliation(s)
- Wouter Deelder
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Dalberg Advisors, 7 Rue de Chantepoulet, CH-1201, Geneva, Switzerland
| | | | - Jody Phelan
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Emilia Manko
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Susana Campino
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Luigi Palla
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Taane G Clark
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
16
|
Jeandupeux E, Alameh MG, Ghattas M, De Crescenzo G, Lavertu M. Poly(2-Propylacrylic Acid) Increases In Vitro Bioactivity of Chitosan/mRNA Nanoparticles. J Pharm Sci 2021; 110:3439-3449. [PMID: 34090900 DOI: 10.1016/j.xphs.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
Chitosan-based nanoparticles have been extensively studied for the delivery of nucleic acids. Previous results suggest that these nanoparticles have limited ability to escape the endosome, one of the main cellular barriers hindering nucleic acid delivery. Escape can be improved by the addition of endosomolytic agents during the formulation process or by developing delivery systems with intrinsic properties to disrupt endosomal membranes. In this study, Poly(2-Propylacrylic Acid) (PPAA), an anionic synthetic polymer with known membrane lytic activity was added to the binary chitosan/mRNA nanoparticles to improve bioactivity. The ionization behavior of PPAA was characterized to identify conditions in which PPAA is sufficiently charged to interact electrostatically with chitosan and thus form nanoparticles. The physicochemical characteristics (hydrodynamic diameter, polydispersity index, ζ-potential) and the in vitro transfection efficiency (bioactivity) of this new family of CS/mRNA/PPAA ternary nanoparticles were evaluated. The addition of PPAA to CS/mRNA nanoparticles was shown to be an efficient strategy to augment in vitro bioactivity. The optimal formulation reached an expression level ~86% of the commercial lipid control at pH 6.5 without any signs of metabolic toxicity. In this paper, we report the effect of salt and pH on the ionization behavior of PPAA and demonstrate 1) successful incorporation of PPAA into/onto nanoparticles, 2) improved bioactivity with PPAA, and 3) that the kosmotropic effects of trehalose play a minimal role in the apparent increase in bioactivity in presence of trehalose.
Collapse
Affiliation(s)
- Etienne Jeandupeux
- Polytechnique Montreal, Institute of Biomedical Engineering, Montreal, QC, Canada
| | | | - Majed Ghattas
- Polytechnique Montreal, Institute of Biomedical Engineering, Montreal, QC, Canada
| | - Gregory De Crescenzo
- Polytechnique Montreal, Institute of Biomedical Engineering, Montreal, QC, Canada; Polytechnique Montreal, Department of Chemical Engineering, Montreal, QC, Canada
| | - Marc Lavertu
- Polytechnique Montreal, Institute of Biomedical Engineering, Montreal, QC, Canada; Polytechnique Montreal, Department of Chemical Engineering, Montreal, QC, Canada.
| |
Collapse
|
17
|
Buyon LE, Elsworth B, Duraisingh MT. The molecular basis of antimalarial drug resistance in Plasmodium vivax. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:23-37. [PMID: 33957488 PMCID: PMC8113647 DOI: 10.1016/j.ijpddr.2021.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Plasmodium vivax is the most geographically widespread cause of human malaria and is responsible for the majority of cases outside of the African continent. While great progress has been made towards eliminating human malaria, drug resistant parasite strains pose a threat towards continued progress. Resistance has arisen to multiple antimalarials in P. vivax, including to chloroquine, which is currently the first line therapy for P. vivax in most regions. Despite its importance, an understanding of the molecular mechanisms of drug resistance in this species remains elusive, in large part due to the complex biology of P. vivax and the lack of in vitro culture. In this review, we will cover the extent and challenges of measuring clinical and in vitro drug resistance in P. vivax. We will consider the roles of candidate drug resistance genes. We will highlight the development of molecular approaches for studying P. vivax biology that provide the opportunity to validate the role of putative drug resistance mutations as well as identify novel mechanisms of drug resistance in this understudied parasite. Validated molecular determinants and markers of drug resistance are essential for the rapid and cost-effective monitoring of drug resistance in P. vivax, and will be useful for optimizing drug regimens and for informing drug policy in control and elimination settings. Drug resistance is emerging in Plasmodium vivax, an important cause of malaria. The complex biology of P. vivax and the limited range of research tools make it difficult to identify drug resistance. The molecular mechanisms of drug resistance in P. vivax remain elusive. This review highlights the extent of drug resistance, the putative mechanisms of resistance and new technologies for the study of P. vivax drug resistance.
Collapse
Affiliation(s)
- Lucas E Buyon
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
18
|
Kayamba F, Malimabe T, Ademola IK, Pooe OJ, Kushwaha ND, Mahlalela M, van Zyl RL, Gordon M, Mudau PT, Zininga T, Shonhai A, Nyamori VO, Karpoormath R. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. Eur J Med Chem 2021; 217:113330. [PMID: 33744688 DOI: 10.1016/j.ejmech.2021.113330] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/16/2023]
Abstract
Presently, artemisinin-based combination therapy (ACT) is the first-line therapy of Plasmodium falciparum malaria. With the emergence of malaria parasites that are resistant to ACT, alternative antimalarial therapies are urgently needed. In line with this, we designed and synthesised a series of novel N-(7-chloroquinolin-4-yl)-N'-(4,6-diphenylpyrimidin-2-yl)alkanediamine hybrids (6a-7c) and evaluated their inhibitory activity against the NF54 chloroquine-susceptible strain as a promising class of antimalarial compounds. The antiplasmodial screening revealed that seven analogues showed promising to good activity with half-maximal inhibitory concentration (IC50) = 0.32 μM-4.30 μM. Compound 7a with 1,4-diamine butyl linker and 4-hydroxyl phenyl on fourth and sixth position of pyrimidine core showed the most prominent activity with an IC50 value of 0.32 ± 0.06 μM, with a favourable safety profile of 9.79 to human kidney epithelial (HEK293) cells. The remaining six analogues showed moderate activity with IC50 values ranging from 7.50 μM to 83.01 μM. We further investigated the binding affinities of the molecules to two essential cytosolic P. falciparum heat shock protein 70 homologues; PfHsp70-1 and PfHsp70-z. Compound 7a exhibited the highest binding affinity for both PfHsp70s with KD in a lower nanomolar range (4.4-11.4 nM). Furthermore, molecular docking revealed that compounds 6, 6k, 7b and 7a exhibited better fitness in PfHsp70-1 with compound 7a showing the highest and lowest binding scores of -9.8 kcal/mol. Therefore, we speculate that PfHsp70-1 is one of the targets of these inhibitors. The bioisoteric replacement of the groups at phenyl ring at the fourth and sixth position of the pyrimidine core had a constructive association with antiplasmodial activity. The promising antiplasmodial activity of the synthesised analogues illustrates how crucial molecular hybridisation is as a strategy in the development of quinoline-pyrimidine hybrids as prospective antiprotozoal agents.
Collapse
Affiliation(s)
- Francis Kayamba
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Teboho Malimabe
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
| | - Idowu Kehinde Ademola
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Ofentse Jacob Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mavela Mahlalela
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Robyn L van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa; WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2193, South Africa
| | - Michelle Gordon
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Pertunia T Mudau
- Department of Biochemistry University of Venda, School of Mathematical and Natural Sciences, Thohoyandou, 0950, South Africa
| | - Tawanda Zininga
- Department of Biochemistry University of Venda, School of Mathematical and Natural Sciences, Thohoyandou, 0950, South Africa; Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Vincent O Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| |
Collapse
|
19
|
Molecular characterization and analysis of the ATPase ASNA1 homolog gene of Eimeria tenella in a drug sensitive strain and drug resistant strains. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:115-125. [PMID: 33639573 PMCID: PMC7910411 DOI: 10.1016/j.ijpddr.2021.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/03/2023]
Abstract
The widespread use of drugs has exacerbated the resistance of Eimeria tenalla to anti-coccidial drugs. Using RNA-seq, we previously found the ATPase ASNA1 homolog of E. tenella (EtASNA1) was differentially expressed in resistant strains and drug sensitive (DS) strain. In our study, we used western blotting and quantitative real-time PCR (qRT-PCR) to analyze the translational and transcriptional levels of EtASNA1 in a diclazuril-resistant (DZR) strain, maduramicin-resistant (MRR) strain, salinomycin-resistant (SMR) strain, and DS strain and found EtASNA1 was highly expressed in three drug-resistant strains. The qRT-PCR and western blotting results also showed that the expression levels of EtASNA1 increased with increasing drug concentration, and the transcription levels of the DZR strains isolated from the field were higher than those of the DS strain. In addition, we used in vivo and in vitro tests to analyze the changes of EtASNA1 expression after DZR, MRR, and DS strain infections in chickens, and in vitro inoculation of DF-1 cells in the presence of drugs. The addition of drugs caused expression to be upregulated. The results of qRT-PCR and western blotting also showed that the expression levels of EtASNA1 in second-generation merozoites (SM) and unsporulated oocysts (UO) were significantly higher than those in the other two developmental stages. The immunofluorescence localization of EtASNA1 indicated that the protein was distributed throughout the sporozoites (SZ) and SM, except for the refractile bodies of SZ. In vitro inhibition experiments showed that anti-EtASNA1 antibody incubation significantly inhibited SZ invasion of DF-1 cells. The above results showed that EtASNA1 may be related to host cell invasion of E. tenella and may be involved in the development of E. tenella resistance to some drugs.
Collapse
|
20
|
Atypical Molecular Basis for Drug Resistance to Mitochondrial Function Inhibitors in Plasmodium falciparum. Antimicrob Agents Chemother 2021; 65:AAC.02143-20. [PMID: 33361312 DOI: 10.1128/aac.02143-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
The continued emergence of drug-resistant Plasmodium falciparum parasites hinders global attempts to eradicate malaria, emphasizing the need to identify new antimalarial drugs. Attractive targets for chemotherapeutic intervention are the cytochrome (cyt) bc 1 complex, which is an essential component of the mitochondrial electron transport chain (mtETC) required for ubiquinone recycling and mitochondrially localized dihydroorotate dehydrogenase (DHODH) critical for de novo pyrimidine synthesis. Despite the essentiality of this complex, resistance to a novel acridone class of compounds targeting cyt bc 1 was readily attained, resulting in a parasite strain (SB1-A6) that was panresistant to both mtETC and DHODH inhibitors. Here, we describe the molecular mechanism behind the resistance of the SB1-A6 parasite line, which lacks the common cyt bc 1 point mutations characteristic of resistance to mtETC inhibitors. Using Illumina whole-genome sequencing, we have identified both a copy number variation (∼2×) and a single-nucleotide polymorphism (C276F) associated with pfdhodh in SB1-A6. We have characterized the role of both genetic lesions by mimicking the copy number variation via episomal expression of pfdhodh and introducing the identified single nucleotide polymorphism (SNP) using CRISPR-Cas9 and assessed their contributions to drug resistance. Although both of these genetic polymorphisms have been previously identified as contributing to both DSM-1 and atovaquone resistance, SB1-A6 represents a unique genotype in which both alterations are present in a single line, suggesting that the combination contributes to the panresistant phenotype. This novel mechanism of resistance to mtETC inhibition has critical implications for the development of future drugs targeting the bc 1 complex or de novo pyrimidine synthesis that could help guide future antimalarial combination therapies and reduce the rapid development of drug resistance in the field.
Collapse
|
21
|
Relitti N, Federico S, Pozzetti L, Butini S, Lamponi S, Taramelli D, D'Alessandro S, Martin RE, Shafik SH, Summers RL, Babij SK, Habluetzel A, Tapanelli S, Caldelari R, Gemma S, Campiani G. Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity. Eur J Med Chem 2021; 215:113227. [PMID: 33601312 DOI: 10.1016/j.ejmech.2021.113227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022]
Abstract
Due to the surge in resistance to common therapies, malaria remains a significant concern to human health worldwide. In chloroquine (CQ)-resistant (CQ-R) strains of Plasmodium falciparum, CQ and related drugs are effluxed from the parasite's digestive vacuole (DV). This process is mediated by mutant isoforms of a protein called CQ resistance transporter (PfCRT). CQ-R strains can be partially re-sensitized to CQ by verapamil (VP), primaquine (PQ) and other compounds, and this has been shown to be due to the ability of these molecules to inhibit drug transport via PfCRT. We have previously developed a series of clotrimazole (CLT)-based antimalarial agents that possess inhibitory activity against PfCRT (4a,b). In our endeavor to develop novel PfCRT inhibitors, and to perform a structure-activity relationship analysis, we synthesized a new library of analogues. When the benzhydryl system was linked to a 4-aminoquinoline group (5a-f) the resulting compounds exhibited good cytotoxicity against both CQ-R and CQ-S strains of P. falciparum. The most potent inhibitory activity against the PfCRT-mediated transport of CQ was obtained with compound 5k. When compared to the reference compound, benzhydryl analogues of PQ (5i,j) showed a similar activity against blood-stage parasites, and a stronger in vitro potency against liver-stage parasites. Unfortunately, in the in vivo transmission blocking assays, 5i,j were inactive against gametocytes.
Collapse
Affiliation(s)
- Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Pascal 36, 20133, Milan, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Sarah D'Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133, Milan, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Robert L Summers
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Simone K Babij
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Piazza Cavour 19F, 62032, Camerino, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Sofia Tapanelli
- School of Pharmacy, University of Camerino, Piazza Cavour 19F, 62032, Camerino, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy.
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| |
Collapse
|
22
|
Madhav H, Hoda N. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. Eur J Med Chem 2020; 210:112955. [PMID: 33131885 DOI: 10.1016/j.ejmech.2020.112955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023]
Abstract
Malaria is an endemic disease, prevalent in tropical and subtropical regions which cost half of million deaths annually. The eradication of malaria is one of the global health priority nevertheless, current therapeutic efforts seem to be insufficient due to the emergence of drug resistance towards most of the available drugs, even first-line treatment ACT, unavailability of the vaccine, and lack of drugs with a new mechanism of action. Intensification of antimalarial research in recent years has resulted into the development of single dose multistage therapeutic agents which has advantage of overcoming the antimalarial drug resistance. The present review explored the current progress in the development of new promising antimalarials against prominent target proteins that have the potential to be a clinical candidate. Here, we also reviewed different aspects of drug resistance and highlighted new drug candidates that are currently in a clinical trial or clinical development, along with a few other molecules with excellent antimalarial activity overs ACTs. The summarized scientific value of previous approaches and structural features of antimalarials related to the activity are highlighted that will be helpful for the development of next-generation antimalarials.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| |
Collapse
|
23
|
Schalkwijk J, Allman EL, Jansen PAM, de Vries LE, Verhoef JMJ, Jackowski S, Botman PNM, Beuckens-Schortinghuis CA, Koolen KMJ, Bolscher JM, Vos MW, Miller K, Reeves SA, Pett H, Trevitt G, Wittlin S, Scheurer C, Sax S, Fischli C, Angulo-Barturen I, Jiménez-Diaz MB, Josling G, Kooij TWA, Bonnert R, Campo B, Blaauw RH, Rutjes FPJT, Sauerwein RW, Llinás M, Hermkens PHH, Dechering KJ. Antimalarial pantothenamide metabolites target acetyl-coenzyme A biosynthesis in Plasmodium falciparum. Sci Transl Med 2020; 11:11/510/eaas9917. [PMID: 31534021 DOI: 10.1126/scitranslmed.aas9917] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/07/2018] [Accepted: 03/28/2019] [Indexed: 01/09/2023]
Abstract
Malaria eradication is critically dependent on new therapeutics that target resistant Plasmodium parasites and block transmission of the disease. Here, we report that pantothenamide bioisosteres were active against blood-stage Plasmodium falciparum parasites and also blocked transmission of sexual stages to the mosquito vector. These compounds were resistant to degradation by serum pantetheinases, showed favorable pharmacokinetic properties, and cleared parasites in a humanized mouse model of P. falciparum infection. Metabolomics revealed that coenzyme A biosynthetic enzymes converted pantothenamides into coenzyme A analogs that interfered with parasite acetyl-coenzyme A anabolism. Resistant parasites generated in vitro showed mutations in acetyl-coenzyme A synthetase and acyl-coenzyme A synthetase 11. Introduction and reversion of these mutations in P. falciparum using CRISPR-Cas9 gene editing confirmed the roles of these enzymes in the sensitivity of the malaria parasites to pantothenamides. These pantothenamide compounds with a new mode of action may have potential as drugs against malaria parasites.
Collapse
Affiliation(s)
- Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Erik L Allman
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802 USA
| | - Patrick A M Jansen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Laura E de Vries
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | | | | | | | - Karen Miller
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacy A Reeves
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Helmi Pett
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Scheurer
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sibylle Sax
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christoph Fischli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | | | - Gabrielle Josling
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802 USA
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,TropIQ Health Sciences, Nijmegen, Netherlands
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802 USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA
| | | | | |
Collapse
|
24
|
Tam DNH, Tawfik GM, El-Qushayri AE, Mehyar GM, Istanbuly S, Karimzadeh S, Tu VL, Tiwari R, Van Dat T, Nguyen PTV, Hirayama K, Huy NT. Correlation between anti-malarial and anti-haemozoin activities of anti-malarial compounds. Malar J 2020; 19:298. [PMID: 32825818 PMCID: PMC7441662 DOI: 10.1186/s12936-020-03370-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Despite noticeable improvement in anti-malarial treatment, rapid growth of resistant malaria strains points out the need for continuous development of novel anti-malarials to fight the disastrous infection. Haemozoin is considered as a novel inhibitory pathway for new anti-malarial drugs, therefore, this study aimed to systematically review all articles investigating the correlation between anti-malarial and anti-haemozoin activities of anti-malarial compounds. Methods A literature search was conducted on 22 October 2017 in eight databases for relevant in vitro articles reporting the correlation between anti-malarial and anti-haemozoin of anti-malarial compounds, based on the constructed search terms and inclusion criteria. ToxRtool was used to assess quality of each study. Results A total of ten articles were included in the review. In vitro anti-malarial and anti-haemozoin activity had a good correlation for quinolines for sensitive strains (R2 ranging from 0.66 to 0.95) and xanthones (Spearman ρ = 0.886). However, these correlations were reached after removing some compounds which had non-detectable anti-malarial or anti-haemozoin effects. Other structures (acridines, pyrolidines) showed negligible correlation with Spearman ρ ranging from 0.095 to 0.381 for acridines, and r varying from 0.54 to 0.62 for pyrolidines. Some good correlations were only shown in a logarithmic manner or when the anti-malarial activity was normalized. Conclusion The results raised a relative relationship between anti-haemozoin and in vitro anti-malarial activities. Some studies reported compounds that were effective in the inhibition of haemozoin formation, but failed to inhibit the parasite survival and vice versa. The correlation results in these studies were calculated after these compounds were removed from their analysis. The ability of anti-malarial compounds to accumulate inside the reaction site might strengthen their anti-malarial activity.
Collapse
Affiliation(s)
- Dao Ngoc Hien Tam
- Asia Shine Trading & Service CO. LTD., Ho Chi Minh City, Vietnam.,Online Research Club, Nagasaki, Japan
| | - Gehad Mohamed Tawfik
- Online Research Club, Nagasaki, Japan.,Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr Ehab El-Qushayri
- Online Research Club, Nagasaki, Japan.,Faculty of Medicine, Minia University, Minia, 61519, Egypt
| | - Ghaleb Muhammad Mehyar
- Online Research Club, Nagasaki, Japan.,Southwest Physicians Associates S.C., 2955 W 95th St, Evergreen Park, IL, 60805, USA
| | - Sedralmontaha Istanbuly
- Online Research Club, Nagasaki, Japan.,Faculty of Medicine, University of Aleppo, Aleppo, Syrian Arab Republic
| | - Sedighe Karimzadeh
- Online Research Club, Nagasaki, Japan.,School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vo Linh Tu
- Online Research Club, Nagasaki, Japan.,University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ranjit Tiwari
- Online Research Club, Nagasaki, Japan.,Faculty of Medicine, Institute of Medicine, Tribhuvan University, Kathmandu, 44600, Nepal
| | - Truong Van Dat
- Online Research Club, Nagasaki, Japan.,University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
| |
Collapse
|
25
|
Shafik SH, Cobbold SA, Barkat K, Richards SN, Lancaster NS, Llinás M, Hogg SJ, Summers RL, McConville MJ, Martin RE. The natural function of the malaria parasite's chloroquine resistance transporter. Nat Commun 2020; 11:3922. [PMID: 32764664 PMCID: PMC7413254 DOI: 10.1038/s41467-020-17781-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/15/2020] [Indexed: 01/27/2023] Open
Abstract
The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key contributor to multidrug resistance and is also essential for the survival of the malaria parasite, yet its natural function remains unresolved. We identify host-derived peptides of 4-11 residues, varying in both charge and composition, as the substrates of PfCRT in vitro and in situ, and show that PfCRT does not mediate the non-specific transport of other metabolites and/or ions. We find that drug-resistance-conferring mutations reduce both the peptide transport capacity and substrate range of PfCRT, explaining the impaired fitness of drug-resistant parasites. Our results indicate that PfCRT transports peptides from the lumen of the parasite's digestive vacuole to the cytosol, thereby providing a source of amino acids for parasite metabolism and preventing osmotic stress of this organelle. The resolution of PfCRT's native substrates will aid the development of drugs that target PfCRT and/or restore the efficacy of existing antimalarials.
Collapse
Affiliation(s)
- Sarah H Shafik
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon A Cobbold
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Kawthar Barkat
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sashika N Richards
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nicole S Lancaster
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Simon J Hogg
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robert L Summers
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Malcolm J McConville
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Rowena E Martin
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
26
|
Boonyalai N, Vesely BA, Thamnurak C, Praditpol C, Fagnark W, Kirativanich K, Saingam P, Chaisatit C, Lertsethtakarn P, Gosi P, Kuntawunginn W, Vanachayangkul P, Spring MD, Fukuda MM, Lon C, Smith PL, Waters NC, Saunders DL, Wojnarski M. Piperaquine resistant Cambodian Plasmodium falciparum clinical isolates: in vitro genotypic and phenotypic characterization. Malar J 2020; 19:269. [PMID: 32711538 PMCID: PMC7382038 DOI: 10.1186/s12936-020-03339-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND High rates of dihydroartemisinin-piperaquine (DHA-PPQ) treatment failures have been documented for uncomplicated Plasmodium falciparum in Cambodia. The genetic markers plasmepsin 2 (pfpm2), exonuclease (pfexo) and chloroquine resistance transporter (pfcrt) genes are associated with PPQ resistance and are used for monitoring the prevalence of drug resistance and guiding malaria drug treatment policy. METHODS To examine the relative contribution of each marker to PPQ resistance, in vitro culture and the PPQ survival assay were performed on seventeen P. falciparum isolates from northern Cambodia, and the presence of E415G-Exo and pfcrt mutations (T93S, H97Y, F145I, I218F, M343L, C350R, and G353V) as well as pfpm2 copy number polymorphisms were determined. Parasites were then cloned by limiting dilution and the cloned parasites were tested for drug susceptibility. Isobolographic analysis of several drug combinations for standard clones and newly cloned P. falciparum Cambodian isolates was also determined. RESULTS The characterization of culture-adapted isolates revealed that the presence of novel pfcrt mutations (T93S, H97Y, F145I, and I218F) with E415G-Exo mutation can confer PPQ-resistance, in the absence of pfpm2 amplification. In vitro testing of PPQ resistant parasites demonstrated a bimodal dose-response, the existence of a swollen digestive vacuole phenotype, and an increased susceptibility to quinine, chloroquine, mefloquine and lumefantrine. To further characterize drug sensitivity, parental parasites were cloned in which a clonal line, 14-B5, was identified as sensitive to artemisinin and piperaquine, but resistant to chloroquine. Assessment of the clone against a panel of drug combinations revealed antagonistic activity for six different drug combinations. However, mefloquine-proguanil and atovaquone-proguanil combinations revealed synergistic antimalarial activity. CONCLUSIONS Surveillance for PPQ resistance in regions relying on DHA-PPQ as the first-line treatment is dependent on the monitoring of molecular markers of drug resistance. P. falciparum harbouring novel pfcrt mutations with E415G-exo mutations displayed PPQ resistant phenotype. The presence of pfpm2 amplification was not required to render parasites PPQ resistant suggesting that the increase in pfpm2 copy number alone is not the sole modulator of PPQ resistance. Genetic background of circulating field isolates appear to play a role in drug susceptibility and biological responses induced by drug combinations. The use of latest field isolates may be necessary for assessment of relevant drug combinations against P. falciparum strains and when down-selecting novel drug candidates.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chantida Praditpol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Watcharintorn Fagnark
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Kirakarn Kirativanich
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Piyaporn Saingam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chaiyaporn Chaisatit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Paphavee Lertsethtakarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Panita Gosi
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Worachet Kuntawunginn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Pattaraporn Vanachayangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Michele D Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Mark M Fukuda
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chanthap Lon
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Philip L Smith
- Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910, USA
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - David L Saunders
- U.S. Army Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Mariusz Wojnarski
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand
| |
Collapse
|
27
|
Sinha S, Radotra BD, Medhi B, Batovska DI, Markova N, Sehgal R. Ultrastructural alterations in Plasmodium falciparum induced by chalcone derivatives. BMC Res Notes 2020; 13:290. [PMID: 32539868 PMCID: PMC7296763 DOI: 10.1186/s13104-020-05132-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/06/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Chalcones (1, 3-diaryl-2-propen-1-ones) and their derivatives are widely explored from the past decade for its antimalarial activity. To elucidate their mechanism of action on the malaria parasite, the ultrastructural changes with the action of these derivatives in different organelles of the parasite were studied in vitro. Infected RBCs [CQ sensitive (MRC-2) and CQ resistant (RKL-9) Plasmodium strain] were treated with three chalcone derivatives 1, 2 and 3 and standard drugs, i.e., CQ and artemisinin at twice their respective IC50 values for 24 h and then harvested, washed, fixed, embedded and stained to visualize ultra-structure changes before and after intervention of treatment under in vitro condition through transmission electron microscope. Results The ultrastructural changes demonstrate the significant disturbance of all parasite membranes, including those of the nucleus, mitochondria and food vacuole, in association with a marked reduction of ribosomes in the trophozoites and cessation of developing schizonts which suggest multiple mechanisms of action by which chalcone derivatives act on the malaria parasite. The present study opens up perspectives for further exploration of these derivatives in vivo malaria model to discover more about its effect and mechanism of action.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - B D Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Daniela I Batovska
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadezhda Markova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rakesh Sehgal
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
28
|
Yu Y, Zhao Q, Zhu S, Dong H, Huang B, Liang S, Wang Q, Wang H, Yu S, Han H. Molecular characterization of serine/threonine protein phosphatase of Eimeria tenella. J Eukaryot Microbiol 2020; 67:510-520. [PMID: 32358794 DOI: 10.1111/jeu.12798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Avian coccidiosis is a widespread and economically significant poultry disease caused by several Eimeria species, including Eimeria tenella. Previously, E. tenella serine/threonine protein phosphatase (EtSTP) was found to be differentially expressed in drug-sensitive (DS) and drug-resistant strains using RNA-seq. In the present study, we found that transcription and translation levels of EtSTP were higher in diclazuril-resistant (DZR) strains and maduramicin-resistant (MRR) strains than in DS strains using quantitative real-time PCR (qPCR) and Western blotting. Enzyme activity results indicated that the catalytic activity of EtSTP was higher in the two drug-resistant strains than in DS strains. Western blot and qPCR analysis also showed that expression levels of EtSTP were higher in unsporulated oocysts (UO) and second-generation merozoites (SM). Indirect immunofluorescence localization showed that EtSTP was located in most areas of the parasite with the exception of refractile bodies, and fluorescence intensity was enhanced during development. In vitro inhibition experiments showed that the ability of sporozoites (SZ) to invade cells was significantly decreased after treatment with anti-rEtSTP antibody. These results indicated that EtSTP acted mainly during the developmental and reproductive stages of the parasite and may be related to the resistance of coccidia to external drug pressure.
Collapse
Affiliation(s)
- Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| |
Collapse
|
29
|
Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature 2020; 582:104-108. [PMID: 32427965 DOI: 10.1038/s41586-020-2220-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/20/2020] [Indexed: 11/09/2022]
Abstract
Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant-but not those who are susceptible-to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.
Collapse
|
30
|
Bwire GM, Ngasala B, Mikomangwa WP, Kilonzi M, Kamuhabwa AAR. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci Rep 2020; 10:3500. [PMID: 32103124 PMCID: PMC7044163 DOI: 10.1038/s41598-020-60549-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
In Tanzania, chloroquine was replaced by sulphadoxine- pyrimethamine (SP) as a first-line for treatment of uncomplicated malaria. Due to high resistance in malaria parasites, SP lasted for only 5 years and by the end of 2006 it was replaced with the current artemisinin combination therapy. We therefore, set a study to determine the current genotypic mutations associated with Plasmodium falciparum resistance to artemisinin, partner drugs and chloroquine. Parasites DNA were extracted from dried blood spots collected by finger-prick from Tanzanian malaria infected patients. DNA were sequenced using MiSeq then genotypes were translated into drug resistance haplotypes at Wellcome Sanger Institute, UK. About 422 samples were successful sequenced for K13 gene (marker for artemisinin resistance), the wild type (WT) was found in 391 samples (92.7%) whereby 31 samples (7.3%) had mutations in K13 gene. Of 31 samples with mutations, one sample had R561H, a mutation that has been associated with delayed parasite clearance in Southeast Asia, another sample had A578S, a mutation not associated with artemisinin whilst 29 samples had K13 novel mutations. There were no mutations in PGB, EXO, P23_BP and PfMDR1 at position 86 and 1246 (markers for resistance in artemisinin partner drugs) but 270 samples (60.4%) had mutations at PfMDR1 Y184F. Additionally, genotyped PfCRT at positions 72-76 (major predictors for chroquine resistance), found WT gene in 443 out of 444 samples (99.8%). In conclusion, this study found mutations in K13-propeller gene and high prevalence of chloroquine susceptible P. falciparum in Southeast of Tanzania.
Collapse
Affiliation(s)
- George M Bwire
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania.
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Wigilya P Mikomangwa
- Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| | - Manase Kilonzi
- Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences, P.O. Box 65013, Dar es Salaam, Tanzania
| |
Collapse
|
31
|
Aguiar L, Biosca A, Lantero E, Gut J, Vale N, Rosenthal PJ, Nogueira F, Andreu D, Fernàndez-Busquets X, Gomes P. Coupling the Antimalarial Cell Penetrating Peptide TP10 to Classical Antimalarial Drugs Primaquine and Chloroquine Produces Strongly Hemolytic Conjugates. Molecules 2019; 24:molecules24244559. [PMID: 31842498 PMCID: PMC6943437 DOI: 10.3390/molecules24244559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022] Open
Abstract
Recently, we disclosed primaquine cell penetrating peptide conjugates that were more potent than parent primaquine against liver stage Plasmodium parasites and non-toxic to hepatocytes. The same strategy was now applied to the blood-stage antimalarial chloroquine, using a wide set of peptides, including TP10, a cell penetrating peptide with intrinsic antiplasmodial activity. Chloroquine-TP10 conjugates displaying higher antiplasmodial activity than the parent TP10 peptide were identified, at the cost of an increased hemolytic activity, which was further confirmed for their primaquine analogues. Fluorescence microscopy and flow cytometry suggest that these drug-peptide conjugates strongly bind, and likely destroy, erythrocyte membranes. Taken together, the results herein reported put forward that coupling antimalarial aminoquinolines to cell penetrating peptides delivers hemolytic conjugates. Hence, despite their widely reported advantages as carriers for many different types of cargo, from small drugs to biomacromolecules, cell penetrating peptides seem unsuitable for safe intracellular delivery of antimalarial aminoquinolines due to hemolysis issues. This highlights the relevance of paying attention to hemolytic effects of cell penetrating peptide-drug conjugates.
Collapse
Affiliation(s)
- Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
| | - Arnau Biosca
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; (A.B.); (E.L.); (X.F.-B.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Elena Lantero
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; (A.B.); (E.L.); (X.F.-B.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jiri Gut
- School of Medicine, University of California at San Francisco, 1001 Potrero Avenue, San Francisco, San Francisco, CA 94110, USA; (J.G.); (P.J.R.)
| | - Nuno Vale
- Departamento de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Philip J. Rosenthal
- School of Medicine, University of California at San Francisco, 1001 Potrero Avenue, San Francisco, San Francisco, CA 94110, USA; (J.G.); (P.J.R.)
| | - Fátima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal;
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain;
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, 08036 Barcelona, Spain; (A.B.); (E.L.); (X.F.-B.)
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal;
- Correspondence:
| |
Collapse
|
32
|
Kannan G, Di Cristina M, Schultz AJ, Huynh MH, Wang F, Schultz TL, Lunghi M, Coppens I, Carruthers VB. Role of Toxoplasma gondii Chloroquine Resistance Transporter in Bradyzoite Viability and Digestive Vacuole Maintenance. mBio 2019; 10:e01324-19. [PMID: 31387907 PMCID: PMC6686041 DOI: 10.1128/mbio.01324-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous pathogen that can cause encephalitis, congenital defects, and ocular disease. T. gondii has also been implicated as a risk factor for mental illness in humans. The parasite persists in the brain as slow-growing bradyzoites contained within intracellular cysts. No treatments exist to eliminate this form of parasite. Although proteolytic degradation within the parasite lysosome-like vacuolar compartment (VAC) is critical for bradyzoite viability, whether other aspects of the VAC are important for parasite persistence remains unknown. An ortholog of Plasmodium falciparum chloroquine resistance transporter (CRT), TgCRT, has previously been identified in T. gondii To interrogate the function of TgCRT in chronic-stage bradyzoites and its role in persistence, we knocked out TgCRT in a cystogenic strain and assessed VAC size, VAC digestion of host-derived proteins and parasite autophagosomes, and the viability of in vitro and in vivo bradyzoites. We found that whereas parasites deficient in TgCRT exhibit normal digestion within the VAC, they display a markedly distended VAC and their viability is compromised both in vitro and in vivo Interestingly, impairing VAC proteolysis in TgCRT-deficient bradyzoites restored VAC size, consistent with a role for TgCRT as a transporter of products of digestion from the VAC. In conjunction with earlier studies, our current findings suggest a functional link between TgCRT and VAC proteolysis. This study provides further evidence of a crucial role for the VAC in bradyzoite persistence and a new potential VAC target to abate chronic Toxoplasma infection.IMPORTANCE Individuals chronically infected with the intracellular parasite Toxoplasma gondii are at risk of experiencing reactivated disease that can result in progressive loss of vision. No effective treatments exist for chronic toxoplasmosis due in part to a poor understanding of the biology underlying chronic infection and a lack of well-validated potential targets. We show here that a T. gondii transporter is functionally linked to protein digestion within the parasite lysosome-like organelle and that this transporter is necessary to sustain chronic infection in culture and in experimentally infected mice. Ablating the transporter results in severe bloating of the lysosome-like organelle. Together with earlier work, this study suggests the parasite's lysosome-like organelle is vital for parasite survival, thus rendering it a potential target for diminishing infection and reducing the risk of reactivated disease.
Collapse
Affiliation(s)
- Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aric J Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - My-Hang Huynh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Fengrong Wang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matteo Lunghi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Development of artemisinin resistance in malaria therapy. Pharmacol Res 2019; 146:104275. [DOI: 10.1016/j.phrs.2019.104275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/23/2023]
|
34
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Angew Chem Int Ed Engl 2019; 58:3300-3345. [PMID: 29846032 DOI: 10.1002/anie.201802416] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Indexed: 12/31/2022]
Abstract
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.
Collapse
Affiliation(s)
- Stefano Agnello
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Silvia Gazzola
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
35
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Eine strukturelle Evaluierung medizinalchemischer Strategien gegen Wirkstoffresistenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201802416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Agnello
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Michael Brand
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Mathieu F. Chellat
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Silvia Gazzola
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
36
|
Subramanian G, Sadeer A, Mukherjee K, Kojima T, Tripathi P, Naidu R, Tay SW, Pang JH, Pullarkat SA, Chandramohanadas R. Evaluation of ferrocenyl phosphines as potent antimalarials targeting the digestive vacuole function of Plasmodium falciparum. Dalton Trans 2019; 48:1108-1117. [DOI: 10.1039/c8dt04263b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ferrocenyl phosphines targeting the digestive vacuole function of the malaria parasite, Plasmodium falciparum.
Collapse
Affiliation(s)
- Gowtham Subramanian
- Pillar of Engineering Product Development (EPD)
- Singapore University of Technology and Design (SUTD)
- Singapore 487372
- Singapore
| | - Abdul Sadeer
- Division of Chemistry & Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University Singapore
- Singapore
| | - Kalyani Mukherjee
- Pillar of Engineering Product Development (EPD)
- Singapore University of Technology and Design (SUTD)
- Singapore 487372
- Singapore
| | - Tadayuki Kojima
- Division of Chemistry & Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University Singapore
- Singapore
| | - Pallavi Tripathi
- Pillar of Engineering Product Development (EPD)
- Singapore University of Technology and Design (SUTD)
- Singapore 487372
- Singapore
| | - Renugah Naidu
- Pillar of Engineering Product Development (EPD)
- Singapore University of Technology and Design (SUTD)
- Singapore 487372
- Singapore
| | - Shan Wen Tay
- Division of Chemistry & Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University Singapore
- Singapore
| | - Jia Hao Pang
- Division of Chemistry & Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University Singapore
- Singapore
| | - Sumod A. Pullarkat
- Division of Chemistry & Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University Singapore
- Singapore
| | - Rajesh Chandramohanadas
- Pillar of Engineering Product Development (EPD)
- Singapore University of Technology and Design (SUTD)
- Singapore 487372
- Singapore
| |
Collapse
|
37
|
Heller LE, Roepe PD. Quantification of Free Ferriprotoporphyrin IX Heme and Hemozoin for Artemisinin Sensitive versus Delayed Clearance Phenotype Plasmodium falciparum Malarial Parasites. Biochemistry 2018; 57:6927-6934. [PMID: 30513202 DOI: 10.1021/acs.biochem.8b00959] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We use Plasmodium falciparum culture synchronization, optimized heme and hemozoin extraction protocols, and mass spectrometry to quantify the abundance of free ferriprotoporphyrin IX (FPIX) heme and crystallized FPIX (hemozoin; Hz) for various growth stages of intraerythrocytic P. falciparum malarial parasites. Because of altered cell cycle kinetics for delayed clearance phenotype (DCP) parasites relative to that of the control, we test whether FPIX and Hz abundances differ for DCP and control parasites.
Collapse
Affiliation(s)
- Laura E Heller
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology , Georgetown University , 37th and O Streets Northwest , Washington, D.C. 20057 , United States
| | - Paul D Roepe
- Department of Chemistry and Department of Biochemistry and Cellular and Molecular Biology , Georgetown University , 37th and O Streets Northwest , Washington, D.C. 20057 , United States
| |
Collapse
|
38
|
Evidence for Regulation of Hemoglobin Metabolism and Intracellular Ionic Flux by the Plasmodium falciparum Chloroquine Resistance Transporter. Sci Rep 2018; 8:13578. [PMID: 30206341 PMCID: PMC6134138 DOI: 10.1038/s41598-018-31715-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum multidrug resistance constitutes a major obstacle to the global malaria elimination campaign. Specific mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) mediate resistance to the 4-aminoquinoline drug chloroquine and impact parasite susceptibility to several partner agents used in current artemisinin-based combination therapies, including amodiaquine. By examining gene-edited parasites, we report that the ability of the wide-spread Dd2 PfCRT isoform to mediate chloroquine and amodiaquine resistance is substantially reduced by the addition of the PfCRT L272F mutation, which arose under blasticidin selection. We also provide evidence that L272F confers a significant fitness cost to asexual blood stage parasites. Studies with amino acid-restricted media identify this mutant as a methionine auxotroph. Metabolomic analysis also reveals an accumulation of short, hemoglobin-derived peptides in the Dd2 + L272F and Dd2 isoforms, compared with parasites expressing wild-type PfCRT. Physiologic studies with the ionophores monensin and nigericin support an impact of PfCRT isoforms on Ca2+ release, with substantially reduced Ca2+ levels observed in Dd2 + L272F parasites. Our data reveal a central role for PfCRT in regulating hemoglobin catabolism, amino acid availability, and ionic balance in P. falciparum, in addition to its role in determining parasite susceptibility to heme-binding 4-aminoquinoline drugs.
Collapse
|
39
|
Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun 2018; 9:3314. [PMID: 30115924 PMCID: PMC6095916 DOI: 10.1038/s41467-018-05652-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022] Open
Abstract
The widely used antimalarial combination therapy dihydroartemisinin + piperaquine (DHA + PPQ) has failed in Cambodia. Here, we perform a genomic analysis that reveals a rapid increase in the prevalence of novel mutations in the Plasmodium falciparum chloroquine resistance transporter PfCRT following DHA + PPQ implementation. These mutations occur in parasites harboring the K13 C580Y artemisinin resistance marker. By introducing PfCRT mutations into sensitive Dd2 parasites or removing them from resistant Cambodian isolates, we show that the H97Y, F145I, M343L, or G353V mutations each confer resistance to PPQ, albeit with fitness costs for all but M343L. These mutations sensitize Dd2 parasites to chloroquine, amodiaquine, and quinine. In Dd2 parasites, multicopy plasmepsin 2, a candidate molecular marker, is not necessary for PPQ resistance. Distended digestive vacuoles were observed in pfcrt-edited Dd2 parasites but not in Cambodian isolates. Our findings provide compelling evidence that emerging mutations in PfCRT can serve as a molecular marker and mediator of PPQ resistance. Increasing resistance of Plasmodium falciparum strains to piperaquine (PPQ) in Southeast Asia is of concern and resistance mechanisms are incompletely understood. Here, Ross et al. show that mutations in the P. falciparum chloroquine resistance transporter are rapidly increasing in prevalence in Cambodia and confer resistance to PPQ.
Collapse
|
40
|
Park KS, Malik SK, Lee JH, Karim AM, Lee SH. Commentary: Malaria elimination in India and regional implications. Front Microbiol 2018; 9:992. [PMID: 29867890 PMCID: PMC5963121 DOI: 10.3389/fmicb.2018.00992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/27/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sumera Kausar Malik
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Jung Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Asad Mustafa Karim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea.,Department of Bioinformatics, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| |
Collapse
|
41
|
Molecular characterization and functional analysis of Eimeria tenella malate dehydrogenase. Parasitol Res 2018; 117:2053-2063. [PMID: 29740696 DOI: 10.1007/s00436-018-5875-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Eimeria tenella is a serious intracellular parasite that actively invades cecal epithelial cells of chickens. The widespread use of drugs causes severe resistance to Eimeria tenella. We detected that malate dehydrogenase (MDH), one of the differentially expressed genes, was upregulated in diclazuril-resistant and maduramicin-resistant strains through transcriptome sequencing. In this study, we cloned and expressed MDH of E. tenella (EtMDH). Quantitative real-time polymerase chain reactions (qPCR) and Western blots were used to analyze the expression of EtMDH in resistant and sensitive strains, indicating EtMDH was upregulated in two resistant strains at the messenger RNA and protein levels. Enzyme activity was tested through absorbance measurement and the EtMDH activity increased in two resistant strains. Expression levels of EtMDH in four developmental stages of E. tenella were tested through qPCR and Western blot. Invasion inhibition assays explored if EtMDH was involved in invasion of DF-1 cells by E. tenella sporozoites. Indirect immunofluorescence assays investigated EtMDH distribution during parasite development in DF-1 cells invaded by E. tenella sporozoites. Experimental results showed that EtMDH may be related to drug resistance of E. tenella during its development and invasion. EtMDH may be an effective molecular marker for detection of E. tenella drug resistance.
Collapse
|
42
|
Transmembrane solute transport in the apicomplexan parasite Plasmodium. Emerg Top Life Sci 2017; 1:553-561. [PMID: 33525850 DOI: 10.1042/etls20170097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
Apicomplexa are a large group of eukaryotic, single-celled parasites, with complex life cycles that occur within a wide range of different microenvironments. They include important human pathogens such as Plasmodium, the causal agent of malaria, and Toxoplasma, which causes toxoplasmosis most often in immunocompromised individuals. Despite environmental differences in their life cycles, these parasites retain the ability to obtain nutrients, remove waste products, and control ion balances. They achieve this flexibility by relying on proteins that can deliver and remove solutes. This reliance on transport proteins for essential functions makes these pathways excellent potential targets for drug development programmes. Transport proteins are frequently key mediators of drug resistance by their ability to remove drugs from their sites of action. The study of transport processes mediated by integral membrane proteins and, in particular, identification of their physiological functions and localisation, and differentiation from host orthologues has already established new validated drug targets. Our understanding of how apicomplexan parasites have adapted to changing environmental challenges has also increased through the study of their transporters. This brief introduction to membrane transporters of apicomplexans highlights recent discoveries focusing on Plasmodium and emphasises future directions.
Collapse
|
43
|
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 2017; 23:917-928. [PMID: 28777791 DOI: 10.1038/nm.4381] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023]
Abstract
The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria.
Collapse
Affiliation(s)
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
44
|
Srbljanović J, Štajner T, Konstantinović J, Terzić-Jovanović N, Uzelac A, Bobić B, Šolaja BA, Djurković-Djaković O. Examination of the antimalarial potential of experimental aminoquinolines: poor in vitro effect does not preclude in vivo efficacy. Int J Antimicrob Agents 2017; 50:461-466. [PMID: 28668677 DOI: 10.1016/j.ijantimicag.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/23/2017] [Accepted: 06/10/2017] [Indexed: 11/26/2022]
Abstract
Malaria remains a major disease in the developing world and globally is the most important parasitic disease causing significant morbidity and mortality. Because of widespread resistance to conventional antimalarials, including chloroquine (CQ), new drugs are urgently needed. Here we report on the antimalarial efficacy, both in vitro and in vivo, of a series of aminoquinoline derivatives with adamantane or benzothiophene as a carrier. In vitro efficacy was evaluated by a lactate dehydrogenase (LDH) assay in cultures of a CQ-sensitive (3D7) and CQ-resistant (Dd2) strain of Plasmodium falciparum. Of a series of 26 screened compounds, 12 that exerted a growth inhibition rate of ≥50% were further examined in vitro to determine the 50% inhibitory concentration (IC50) values. Nine compounds shown in preliminary experiments to be non-toxic in vivo were evaluated in C57BL/6 mice infected with Plasmodium berghei ANKA strain using a modified Thompson test. All nine compounds examined in vivo prolonged the survival of treated versus untreated mice, four of which afforded ≥60% survival. Most notably, two of these compounds, both with the adamantane carrier, afforded complete cure (100% survival and parasite clearance). Interestingly, one of these compounds had no in vitro effect against the CQ-resistant P. falciparum strain. Better in vivo compared with in vitro results suggest a role for compound metabolites rather than the compounds themselves. The results presented here point to adamantane as a carrier that enhances the antimalarial potential of aminoquinolines.
Collapse
Affiliation(s)
- Jelena Srbljanović
- Institute for Medical Research, University of Belgrade, Dr Subotića 4, P.O. Box 39, 11129 Belgrade 102, Serbia
| | - Tijana Štajner
- Institute for Medical Research, University of Belgrade, Dr Subotića 4, P.O. Box 39, 11129 Belgrade 102, Serbia
| | - Jelena Konstantinović
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | | | - Aleksandra Uzelac
- Institute for Medical Research, University of Belgrade, Dr Subotića 4, P.O. Box 39, 11129 Belgrade 102, Serbia
| | - Branko Bobić
- Institute for Medical Research, University of Belgrade, Dr Subotića 4, P.O. Box 39, 11129 Belgrade 102, Serbia
| | - Bogdan A Šolaja
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia; Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Olgica Djurković-Djaković
- Institute for Medical Research, University of Belgrade, Dr Subotića 4, P.O. Box 39, 11129 Belgrade 102, Serbia.
| |
Collapse
|
45
|
A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine. mBio 2017; 8:mBio.00303-17. [PMID: 28487425 PMCID: PMC5424201 DOI: 10.1128/mbio.00303-17] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ) in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ) resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90) or 50% parasite killing (50% lethal dose [LD50]). This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite’s acidic digestive vacuole as the primary mode of both the bis-aminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates. The global agenda to eliminate malaria depends on the continued success of artemisinin-based combination therapies (ACTs), which target the asexual blood stages of the intracellular parasite Plasmodium. Partial resistance to artemisinin, however, is now established in Southeast Asia, exposing the partner drugs to increased selective pressure. Plasmodium falciparum resistance to the first-line partner piperaquine (PPQ) is now spreading rapidly in Cambodia, resulting in clinical treatment failures. Here, we report that a variant form of the Plasmodium falciparum chloroquine resistance transporter, harboring a C101F mutation edited into the chloroquine (CQ)-resistant Dd2 isoform prevalent in Asia, can confer PPQ resistance in cultured parasites. This was accompanied by a loss of CQ resistance. Biochemical assays showed that PPQ, like CQ, inhibits the detoxification of reactive heme that is formed by parasite-mediated catabolism of host hemoglobin. We propose that novel PfCRT variants emerging in the field could contribute to a multigenic basis of PPQ resistance.
Collapse
|
46
|
Faist J, Hinteregger C, Seebacher W, Saf R, Mäser P, Kaiser M, Weis R. New derivatives of 7-chloroquinolin-4-amine with antiprotozoal activity. Bioorg Med Chem 2017; 25:941-948. [DOI: 10.1016/j.bmc.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022]
|
47
|
Muhamad P, Thiengsusuk A, Phompradit P, Na-Bangchang K. In vitro sensitivity of antimalarial drugs and correlation with clinico-parasitological response following treatment with a 3-day artesunate-mefloquine combination in patients with falciparum malaria along the Thai-Myanmar border. Acta Trop 2017; 166:257-261. [PMID: 27866919 DOI: 10.1016/j.actatropica.2016.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/10/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022]
Abstract
A 3-day artesunate-mefloquine combination therapy has been using as first-line treatment for acute uncomplicated Plasmodium falciparum malaria in Thailand since 1995 on the background of mefloquine resistance. The aim of the present study was to assess sensitivity of P. falciparum isolates (n=44) in an area along the Thai-Myanmar border (year 2009) to artesunate, mefloquine, chloroquine and quinine, including their correlation with clinico-parasitological response. Twenty, 19, and 5 isolates were collected from patients with 'Adequate Clinical and Parasitological Response (ACPR)', 'Late Parasitological Failure (LPF)' and 're-infection', respectively. The IC50 of artesunate and mefloquine were significantly higher in patients with LPF compared with ACPR and re-infection. The proportion of isolates with declined artesunate or mefloquine sensitivity in the LPF group (47.4%) was significantly higher than the ACPR group (5.0%). A weak but statistical significant correlation (r=0.384, p=0.01) was observed between IC50 values of artesunate and parasite clearance time (PCT). There was no significant relationship between in vitro sensitivity of parasite isolates to chloroquine or quinine and clinical response. In vitro susceptibility of P. falciparum isolates to artesunate and mefloquine may be used as a useful reliable tool to predict clinico-pathological response following a 3-day artesunate-mefloquine combination therapy.
Collapse
|
48
|
Bingeman TS, Perlman DH, Storey DG, Lewis IA. Digestomics: an emerging strategy for comprehensive analysis of protein catabolism. Curr Opin Biotechnol 2016; 43:134-140. [PMID: 28025112 DOI: 10.1016/j.copbio.2016.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 11/29/2022]
Abstract
When cells mobilize nutrients from protein, they generate a fingerprint of peptide fragments that reflects the net action of proteases and the identities of the affected proteins. Analyzing these mixtures falls into a grey area between proteomics and metabolomics that is poorly served by existing technology. Herein, we describe an emerging digestomics strategy that bridges this gap and allows mixtures of proteolytic fragments to be quantitatively mapped with an amino acid level of resolution. We describe recent successes using this technique, including a case where digestomics provided the link between hemoglobin digestion by the malaria parasite and the world-wide distribution of chloroquine resistance. We highlight other areas of microbiology and cancer research that are well-suited to this emerging technology.
Collapse
Affiliation(s)
- Travis S Bingeman
- Department of Biological Science, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4
| | - David H Perlman
- Department of Biological Science, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4
| | - Douglas G Storey
- Department of Biological Science, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4
| | - Ian A Lewis
- Department of Biological Science, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4.
| |
Collapse
|
49
|
Evolution of Fitness Cost-Neutral Mutant PfCRT Conferring P. falciparum 4-Aminoquinoline Drug Resistance Is Accompanied by Altered Parasite Metabolism and Digestive Vacuole Physiology. PLoS Pathog 2016; 12:e1005976. [PMID: 27832198 PMCID: PMC5104409 DOI: 10.1371/journal.ppat.1005976] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022] Open
Abstract
Southeast Asia is an epicenter of multidrug-resistant Plasmodium falciparum strains. Selective pressures on the subcontinent have recurrently produced several allelic variants of parasite drug resistance genes, including the P. falciparum chloroquine resistance transporter (pfcrt). Despite significant reductions in the deployment of the 4-aminoquinoline drug chloroquine (CQ), which selected for the mutant pfcrt alleles that halted CQ efficacy decades ago, the parasite pfcrt locus is continuously evolving. This is highlighted by the presence of a highly mutated allele, Cam734 pfcrt, which has acquired the singular ability to confer parasite CQ resistance without an associated fitness cost. Here, we used pfcrt-specific zinc-finger nucleases to genetically dissect this allele in the pathogenic setting of asexual blood-stage infection. Comparative analysis of drug resistance and growth profiles of recombinant parasites that express Cam734 or variants thereof, Dd2 (the most common Southeast Asian variant), or wild-type pfcrt, revealed previously unknown roles for PfCRT mutations in modulating parasite susceptibility to multiple antimalarial agents. These results were generated in the GC03 strain, used in multiple earlier pfcrt studies, and might differ in natural isolates harboring this allele. Results presented herein show that Cam734-mediated CQ resistance is dependent on the rare A144F mutation that has not been observed beyond Southeast Asia, and reveal distinct impacts of this and other Cam734-specific mutations on CQ resistance and parasite growth rates. Biochemical assays revealed a broad impact of mutant PfCRT isoforms on parasite metabolism, including nucleoside triphosphate levels, hemoglobin catabolism and disposition of heme, as well as digestive vacuole volume and pH. Results from our study provide new insights into the complex molecular basis and physiological impact of PfCRT-mediated antimalarial drug resistance, and inform ongoing efforts to characterize novel pfcrt alleles that can undermine the efficacy of first-line antimalarial drug regimens. Point mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) earlier thwarted the clinical efficacy of chloroquine, the former gold standard, and constitute a major determinant of parasite susceptibility to antimalarial drugs. Recently, we reported that the highly mutated Cambodian PfCRT isoform Cam734 is fitness-neutral in terms of parasite growth, unlike other less fit isoforms such as Dd2 that are outcompeted by wild-type parasites in the absence of CQ pressure. Using pfcrt-specific zinc-finger nucleases to genetically dissect the Cam734 allele, we report that its unique constituent mutations directly contribute to CQ resistance and collectively offset fitness costs associated with intermediate mutational steps. We also report that these mutations can contribute to resistance or increased sensitivity to multiple first-line partner drugs. Using isogenic parasite lines, we provide evidence of changes in parasite metabolism associated with the Cam734 allele compared to Dd2. We also observe a close correlation between CQ inhibition of hemozoin formation and parasite growth, and provide evidence that Cam734 PfCRT can modulate drug potency depending on its membrane electrochemical gradient. Our data highlight the capacity of PfCRT to evolve new states of antimalarial drug resistance and to offset associated fitness costs through its impact on parasite physiology and hemoglobin catabolism.
Collapse
|
50
|
Richards SN, Nash MN, Baker ES, Webster MW, Lehane AM, Shafik SH, Martin RE. Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite's Chloroquine Resistance Transporter. PLoS Pathog 2016; 12:e1005725. [PMID: 27441371 PMCID: PMC4956231 DOI: 10.1371/journal.ppat.1005725] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023] Open
Abstract
Mutations in the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite’s digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite’s hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite’s survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite’s hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding clinically-relevant observations of inverse drug susceptibilities in the malaria parasite. In acquiring resistance to one drug, many pathogens and cancer cells become hypersensitive to other drugs. This phenomenon could be exploited to combat existing drug resistance and to delay the emergence of resistance to new drugs. However, much remains to be understood about the mechanisms that underlie drug hypersensitivity in otherwise drug-resistant microbes. Here, we describe two mechanisms by which the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) causes the malaria parasite to become hypersensitive to structurally-diverse drugs. First, we show that an antimalarial drug that normally exerts its killing effect within the parasite’s digestive vacuole is also able to bind extremely tightly to certain forms of PfCRT. This activity will block the natural, essential function of the protein and thereby provide the drug with an additional killing effect. The second mechanism arises when a cytosolic-acting drug that normally sequesters within the digestive vacuole is leaked back into the cytosol via PfCRT. In both cases, mutations that suppress hypersensitivity also abrogate the ability of PfCRT to transport chloroquine, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding and exploiting the hypersensitivity of chloroquine-resistant parasites to several of the current antimalarials.
Collapse
Affiliation(s)
- Sashika N. Richards
- Research School of Biology, Australian National University, Canberra, Australia
| | - Megan N. Nash
- Research School of Biology, Australian National University, Canberra, Australia
| | - Eileen S. Baker
- Research School of Biology, Australian National University, Canberra, Australia
| | - Michael W. Webster
- Research School of Biology, Australian National University, Canberra, Australia
| | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australia
| | - Sarah H. Shafik
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rowena E. Martin
- Research School of Biology, Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|