1
|
Sun L, Ayele Shewa W, Bossy K, Dagnew M. Partial denitrification in rope-type biofilm reactors: Performance, kinetics, and microflora using internal vs. external carbon sources. BIORESOURCE TECHNOLOGY 2024; 404:130890. [PMID: 38788803 DOI: 10.1016/j.biortech.2024.130890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Stable nitrite accumulation through partial denitrification (PDN) represents an efficient pathway to support the anammox process, but limited studies explored the internal wastewater carbon sources and biofilm processes. This study assessed the viability of the PDN process, biofilm community evolution, and functional enzyme formation in rope-type biofilm media reactors using primary effluent (PE) and anaerobically pretreated wastewater carbon sources for the first time. Comparison was made with external carbon (acetate) under varied pH and biofilm thicknesses, maintaining a favourable sCOD: NO3-N ratio of 3. The wastewater's internal carbon resulted in thinner biofilms; nevertheless, modest nitrite accumulation (0.24 g/m2/d) occurred only at elevated pH. The highest nitrite accumulation (0.79 g/m2/d) was exhibited in the biofilm thickness-controlled acetate-fed reactor, featuring porous biofilms dominated by denitrifier Thauera (10.24 %) and imbalance between Nar, Nap, and Nir reductases. Using internal wastewater carbon sources offers a sustainable avenue for adopting the PDN process in full-scale application.
Collapse
Affiliation(s)
- Lin Sun
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Wudneh Ayele Shewa
- Bishop Water Inc., 203-16 Edward Street South, Arnprior, ON K7S 3W4, Canada
| | - Kevin Bossy
- Bishop Water Inc., 203-16 Edward Street South, Arnprior, ON K7S 3W4, Canada
| | - Martha Dagnew
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada.
| |
Collapse
|
2
|
Yang Y, Li G, Li Z, Lu L. The roles of typical emerging pollutants on N 2O emissions during biological nitrogen removal from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172851. [PMID: 38685430 DOI: 10.1016/j.scitotenv.2024.172851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
N2O as a potent greenhouse gas often generates in the biological nitrogen removal (BNR) processes during wastewater treatment, which makes BNR become an important greenhouse gas emission source. The emerging pollutants (EPs) are ubiquitous in wastewater and they have shown to influence the BNR processes. However, the deep discussion on potential impacts of EPs on N2O emissions during BNR is rare. Moreover, the experimental parameters for EPs investigation in most of literatures are generally not in line with real-world BNR processes, which calls for deep elucidating the roles of EPs on N2O production and emission. In this work, a critical review summarizes the existing literature about influences of typical EPs on N2O emissions and associated mechanisms during BNR, and it discusses the impacts of some easily overlooked factors, such as real EPs environmental concentrations, EPs bioaccumulation, and multiple EPs coexistence on N2O emissions. This review will provide an insight into exploring and mitigating threats posed by typical EPs on N2O emissions.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Guifeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhida Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
3
|
Qadeer A, Khan A, Khan NM, Wajid A, Ullah K, Skalickova S, Chilala P, Slama P, Horky P, Alqahtani MS, Alreshidi MA. Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals. Heliyon 2024; 10:e31728. [PMID: 38845989 PMCID: PMC11153202 DOI: 10.1016/j.heliyon.2024.e31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Aamir Khan
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Noor Muhammad Khan
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University Dera Ismail Khan, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Kaleem Ullah
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 RH, UK
| | | |
Collapse
|
4
|
Xiang Z, Xu Y, Dong W, Zhao Y, Chen X. Effects of sliver nanoparticles on nitrogen removal by the heterotrophic nitrification-aerobic denitrification bacteria Zobellella sp. B307 and their toxicity mechanisms. MARINE POLLUTION BULLETIN 2024; 203:116381. [PMID: 38692001 DOI: 10.1016/j.marpolbul.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Due to the widespread use of sliver nanoparticles (AgNPs), a large amount of AgNPs has inevitably been released into the environment, and there is growing concern about the toxicity of AgNPs to nitrogen-functional bacteria. In addition to traditional anaerobic denitrifying bacteria, heterotrophic nitrification-aerobic denitrification (HNAD) bacteria are also important participants in the nitrogen cycle. However, the mechanisms by which AgNPs influence HNAD bacteria have yet to be explicitly demonstrated. In this study, the inhibitory effects of different concentrations of AgNPs on a HNAD bacteria Zobellella sp. B307 were investigated, and the underlying mechanism was explored by analyzing the antioxidant system and the activities of key denitrifying enzymes. Results showed that AgNPs could inhibit the growth and the HNAD ability of Zobellella sp. B307. AgNPs could accumulate on the surface of bacterial cells and significantly destroyed the cell membrane integrity. Further studies demonstrated that the presence of high concentration of AgNPs could result in the overproduction of reactive oxygen species (ROS) and related oxidative stress in the cells. Furthermore, the catalytic activities of key denitrifying enzymes (nitrate reductase (NAR), nitrite reductase (NIR), and nitrous oxide reductase (N2OR)) were significantly suppressed under exposure to a high concentration of AgNPs (20 mg·L-1), which might be responsible for the inhibited nitrogen removal performance of strain B307. This work could improve our understanding of the inhibitory effect and underlying mechanism of AgNPs on HNAD bacteria.
Collapse
Affiliation(s)
- Zhuangzhuang Xiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yibo Xu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenlong Dong
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Xi Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
5
|
Sarkar J, Naskar A, Nath A, Gangopadhyay B, Tarafdar E, Das D, Chakraborty S, Chattopadhyay D, Acharya K. Innovative utilization of harvested mushroom substrate for green synthesis of silver nanoparticles: A multi-response optimization approach. ENVIRONMENTAL RESEARCH 2024; 248:118297. [PMID: 38281560 DOI: 10.1016/j.envres.2024.118297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
In this work, harvested mushroom substrate (HMS) has been explored for the first time through a comprehensive optimization study for the green synthesis of silver nanoparticles (AgNPs). A multiple response central composite design with three parameters: pH of the reaction mixture, temperature, and incubation period at three distinct levels was employed in the optimization study. The particle size of AgNPs, UV absorbance, and the percentage of Ag/Cl elemental ratio were considered as the response parameters. For each response variable examined the model used was found to be significant (P < 0.05). The ideal conditions were: pH 8.9, a temperature of 59.4 °C, and an incubation period of 48.5 h. The UV-visible spectra of AgNPs indicated that the absorption maxima for AgNP-3 were 414 nm, 420 for AgNPs-2, and 457 for AgNPs-1. The XRD analysis of AgNPs-3 and AgNPs-2 show a large diffraction peak at ∼38.2°, ∼44.2°, ∼64.4°, and ∼77.4°, respectively, which relate to the planes of polycrystalline face-centered cubic (fcc) silver. Additionally, the XRD result of AgNPs-1, reveals diffraction characteristics of AgCl planes (111, 200, 220, 311, 222, and 400). The TEM investigations indicated that the smallest particles were synthesized at pH 9 with average diameters of 35 ± 6 nm (AgNPs-3). The zeta potentials of the AgNPs are -36 (AgNPs-3), -28 (AgNPs-2), and -19 (AgNPs-1) mV, respectively. The distinct IR peak at 3400, 1634, and 1383 cm-1 indicated the typical vibration of phenols, proteins, and alkaloids, respectively. The AgNPs were further evaluated against gram (+) strain Bacillus subtilis (MTCC 736) and gram (-) strain Escherichia coli (MTCC 68). All of the NPs tested positive for antibacterial activity against both bacterial strains. The study makes a sustainable alternative to disposing of HMS to achieve the Sustainable Development Goals (SDGs).
Collapse
Affiliation(s)
- Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, PIN-700019, India
| | - Arghya Naskar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, PIN-700019, India
| | - Anirban Nath
- Department of Genetics and Plant Breeding, Institute of Agricultural Science, University of Calcutta, Kolkata, West Bengal, PIN-700019, India
| | - Bhuman Gangopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal, PIN-700019, India
| | - Entaj Tarafdar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, PIN-700019, India
| | - Diptosh Das
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, PIN-700019, India
| | - Somsubhra Chakraborty
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, PIN-721302, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal, PIN-700019, India; Center for Research in Nano Science and Nano Technology, University of Calcutta, Kolkata - 700106, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, PIN-700019, India.
| |
Collapse
|
6
|
Wu H, Zeng W, Wu L, Lu S, Peng Y. Mechanisms of endogenous and exogenous partial denitrification in response to different carbon/nitrogen ratios: Transcript levels, nitrous oxide production, electron transport. BIORESOURCE TECHNOLOGY 2024; 399:130558. [PMID: 38460557 DOI: 10.1016/j.biortech.2024.130558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Nitrite as an important substrate for Anammox can be provided by partial denitrification (PD). In this study, endogenous partial denitrification (EdPD) and exogenous partial denitrification (ExPD) sludge were domesticated and their nitrite transformation rate reached 74.4% and 83.4%, respectively. The impact of four carbon/nitrogen (C/N) ratios (1.5, 3.0, 5.0 and 6.0) on nitrous oxide (N2O) emission and denitrification functional genes expression in both PD systems were investigated. Results showed that elevated C/N ratios enhanced most denitrification genes expression, but in EdPD, high nitrite levels suppressed nosZ genes expression (from 9.4% to 1.4%), leading to increased N2O emission (0 to 3.4%). EdPD also exhibited lower electron transfer system activity, resulting in slower nitrogen oxide conversion efficiency and more stable nitrite accumulation compared to ExPD. These findings offer insights for optimizing PD systems under varying water quality conditions.
Collapse
Affiliation(s)
- Hongan Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Sijia Lu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Hu C, He G, Yang Y, Wang N, Zhang Y, Su Y, Zhao F, Wu J, Wang L, Lin Y, Shao L. Nanomaterials Regulate Bacterial Quorum Sensing: Applications, Mechanisms, and Optimization Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306070. [PMID: 38350718 PMCID: PMC11022734 DOI: 10.1002/advs.202306070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Anti-virulence therapy that interferes with bacterial communication, known as "quorum sensing (QS)", is a promising strategy for circumventing bacterial resistance. Using nanomaterials to regulate bacterial QS in anti-virulence therapy has attracted much attention, which is mainly attributed to unique physicochemical properties and excellent designability of nanomaterials. However, bacterial QS is a dynamic and multistep process, and there are significant differences in the specific regulatory mechanisms and related influencing factors of nanomaterials in different steps of the QS process. An in-depth understanding of the specific regulatory mechanisms and related influencing factors of nanomaterials in each step can significantly optimize QS regulatory activity and enhance the development of novel nanomaterials with better comprehensive performance. Therefore, this review focuses on the mechanisms by which nanomaterials regulate bacterial QS in the signal supply (including signal synthesis, secretion, and accumulation) and signal transduction cascade (including signal perception and response) processes. Moreover, based on the two key influencing factors (i.e., the nanomaterial itself and the environment), optimization strategies to enhance the QS regulatory activity are comprehensively summarized. Collectively, applying nanomaterials to regulate bacterial QS is a promising strategy for anti-virulence therapy. This review provides reference and inspiration for further research on the anti-virulence application of nanomaterials.
Collapse
Affiliation(s)
- Chen Hu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Guixin He
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yujun Yang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Ning Wang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yanli Zhang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yuan Su
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
- Stomatology CenterShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)Foshan528399China
| | - Fujian Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Junrong Wu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Linlin Wang
- Hainan General Hospital·Hainan Affiliated Hospital of Hainan medical UniversityHaikou570311China
| | - Yuqing Lin
- Shenzhen Luohu People's HospitalShenzhen518000China
| | - Longquan Shao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
8
|
Sharma C, Verma M, Abidi SMS, Shukla AK, Acharya A. Functional fluorescent nanomaterials for the detection, diagnosis and control of bacterial infection and biofilm formation: Insight towards mechanistic aspects and advanced applications. Colloids Surf B Biointerfaces 2023; 232:113583. [PMID: 37844474 DOI: 10.1016/j.colsurfb.2023.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Infectious diseases resulting from the high pathogenic potential of several bacteria possesses a major threat to human health and safety. Traditional methods used for screening of these microorganisms face major issues with respect to detection time, selectivity and specificity which may delay treatment for critically ill patients past the optimal time. Thus, a convincing and essential need exists to upgrade the existing methodologies for the fast detection of bacteria. In this context, increasing number of newly emerging nanomaterials (NMs) have been discovered for their effective use and applications in the area of diagnosis in bacterial infections. Recently, functional fluorescent nanomaterials (FNMs) are extensively explored in the field of biomedical research, particularly in developing new diagnostic tools, nanosensors, specific imaging modalities and targeted drug delivery systems for bacterial infection. It is interesting to note that organic fluorophores and fluorescent proteins have played vital role for imaging and sensing technologies for long, however, off lately fluorescent nanomaterials are increasingly replacing these due to the latter's unprecedented fluorescence brightness, stability in the biological environment, high quantum yield along with high sensitivity due to enhanced surface property etc. Again, taking advantage of their photo-excitation property, these can also be used for either photothermal and photodynamic therapy to eradicate bacterial infection and biofilm formation. Here, in this review, we have paid particular attention on summarizing literature reports on FNMs which includes studies detailing fluorescence-based bacterial detection methodologies, antibacterial and antibiofilm applications of the same. It is expected that the present review will attract the attention of the researchers working in this field to develop new engineered FNMs for the comprehensive diagnosis and treatment of bacterial infection and biofilm formation.
Collapse
Affiliation(s)
- Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Eid AM, Sayed OM, Hozayen W, Dishisha T. Mechanistic study of copper oxide, zinc oxide, cadmium oxide, and silver nanoparticles-mediated toxicity on the probiotic Lactobacillus reuteri. Drug Chem Toxicol 2023; 46:825-840. [PMID: 35930385 DOI: 10.1080/01480545.2022.2104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
The use of metal/metal oxide nanoparticles (NPs) in consumer products has increased dramatically. Accordingly, human exposure to these NPs has increased. Lactobacillus reuteri, a member of the beneficial gut microbiota, is essential for human health. In the present study, the toxic effect of three metal oxides (CuO, ZnO, and CdO) and one metal (Ag) NPs on L. reuteri were investigated in vitro. L. reuteri was susceptible to all the prepared NPs in a dose-dependent manner, visualized as an increase in the zones of inhibition and a significant reduction in the maximum specific growth rates (µmax). The minimal inhibitory concentrations were 5.8, 26, 560, and 560 µg/mL for CdO-, Ag-, ZnO-, and CuO-NPs, respectively, and the respective minimal bactericidal concentrations were 60, 70, 1500, and 1500 µg/mL. Electron microscopic examinations revealed the adsorption of the prepared NPs on L. reuteri cell surface, causing cell wall disruption and morphological changes. These changes were accompanied by significant leakage of cellular protein content by 214%, 191%, 112%, and 101% versus the untreated control when L. reuteri was treated with CdO-, Ag-, CuO-, and ZnO-NPs, respectively. NPs also induced oxidative damage, where the malondialdehyde level was significantly increased, and glutathione content was significantly decreased. Quantifying the DNA damage using comet assay showed that CuONPs had the maximum DNA tail length (8.2 px vs. 2.1 px for the control). While CdONPs showed the maximum percentage of DNA in tail (15.5% vs. 3.1%). This study provides a mechanistic evaluation of the NPs-mediated toxicity to a beneficial microorganism.
Collapse
Affiliation(s)
- Aya M Eid
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Osama M Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University Qantra, Ismailia, Egypt
| | - Walaa Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
10
|
Bauer EM, Talone A, Imperatori P, Briancesco R, Bonadonna L, Carbone M. The Addition of Co into CuO-ZnO Oxides Triggers High Antibacterial Activity and Low Cytotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2823. [PMID: 37947668 PMCID: PMC10649786 DOI: 10.3390/nano13212823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
In the present work, a simple two-step method is proposed for mixed oxide synthesis aimed at the achievement of antibacterial nanomaterials. In particular, Cu, Zn and Co have been selected to achieve single-, double- and triple-cation oxides. The synthesized samples are characterized by XRD, IR, SEM and EDX, indicating the formation of either crystalline or amorphous hydrocarbonate precursors. The oxides present one or two crystalline phases, depending on their composition; the triple-cation oxides form a solid solution of tenorite. Also, the morphology of the samples varies with the composition, yielding nanoparticles, filaments and hydrangea-like microaggregates. The antibacterial assays are conducted against E. coli and indicate an enhanced efficacy, especially displayed by the oxide containing 3% Co and 9% Zn incorporated into the CuO lattice. The oxides with the highest antibacterial properties are tested for their cytotoxicity, indicating a low toxicity impact, in line with literature data.
Collapse
Affiliation(s)
- Elvira Maria Bauer
- Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Via Salaria Km 29.3, 00015 Monterotondo, Italy; (E.M.B.); (P.I.)
| | - Alessandro Talone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Patrizia Imperatori
- Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Via Salaria Km 29.3, 00015 Monterotondo, Italy; (E.M.B.); (P.I.)
| | - Rossella Briancesco
- National Center for Water Safety, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy; (R.B.); (L.B.)
| | - Lucia Bonadonna
- National Center for Water Safety, Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy; (R.B.); (L.B.)
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy;
| |
Collapse
|
11
|
Yang S, Anthony SE, Jenrich M, In 't Zandt MH, Strauss J, Overduin PP, Grosse G, Angelopoulos M, Biskaborn BK, Grigoriev MN, Wagner D, Knoblauch C, Jaeschke A, Rethemeyer J, Kallmeyer J, Liebner S. Microbial methane cycling in sediments of Arctic thermokarst lagoons. GLOBAL CHANGE BIOLOGY 2023; 29:2714-2731. [PMID: 36811358 DOI: 10.1111/gcb.16649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/27/2023] [Indexed: 05/31/2023]
Abstract
Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4 ) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 μmol g-1 , with highly depleted δ13 C-CH4 values ranging from -89‰ to -70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 μmol g-1 with comparatively enriched δ13 C-CH4 values of -54‰ to -37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.
Collapse
Affiliation(s)
- Sizhong Yang
- GFZ German Research Center for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Sara E Anthony
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
| | - Maren Jenrich
- Permafrost Research Section, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Michiel H In 't Zandt
- Department of Microbiology, RIBES, Radboud University, Nijmegen, the Netherlands
- Netherlands Earth System Science Center, Utrecht University, Utrecht, the Netherlands
| | - Jens Strauss
- Permafrost Research Section, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany
| | - Pier Paul Overduin
- Permafrost Research Section, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany
| | - Guido Grosse
- Permafrost Research Section, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Michael Angelopoulos
- Permafrost Research Section, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany
| | - Boris K Biskaborn
- Polar Terrestrial Environmental Systems Section, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany
| | - Mikhail N Grigoriev
- Laboratory of General Geocryology, Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russia
| | - Dirk Wagner
- GFZ German Research Center for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Christian Knoblauch
- Institute of Soil Science, Universität Hamburg, Hamburg, Germany
- Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Andrea Jaeschke
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
| | - Janet Rethemeyer
- Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany
| | - Jens Kallmeyer
- GFZ German Research Center for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
| | - Susanne Liebner
- GFZ German Research Center for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
12
|
Li X, Cong Y, Ovais M, Cardoso MB, Hameed S, Chen R, Chen M, Wang L. Copper-based nanoparticles against microbial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1888. [PMID: 37037205 DOI: 10.1002/wnan.1888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/12/2023]
Abstract
Drug-resistant bacteria and highly infectious viruses are among the major global threats affecting the human health. There is an immediate need for novel strategies to tackle this challenge. Copper-based nanoparticles (CBNPs) have exhibited a broad antimicrobial capacity and are receiving increasing attention in this context. In this review, we describe the functionalization of CBNPs, elucidate their antibacterial and antiviral activity as well as applications, and briefly review their toxicity, biodistribution, and persistence. The limitations of the current study and potential solutions are also shortly discussed. The review will guide the rational design of functional nanomaterials for antimicrobial application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Xiumin Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Mateus Borba Cardoso
- The Soft and Biological Matter Division, Brazilian Synchrotron Light Laboratory, Institute of Chemistry, University of Campinas, CEP 13083-970 Campinas, São Paulo, CP, 6154, Brazil
| | - Saima Hameed
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Chen
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100083, China
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Pang R, Shao B, Chen Q, Shi H, Xie B, Soliman M, Tai J, Su Y. The co-occurrent microplastics and nano-CuO showed antagonistic inhibitory effects on bacterial denitrification: Interaction of pollutants and regulations on functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160892. [PMID: 36521594 DOI: 10.1016/j.scitotenv.2022.160892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The wide occurrence of microplastics (MPs) and nanoparticles resulted in their inevitable coexistence in environment. However, the joint effects of these two types of particulate emerging contaminants on denitrification have seldomly been investigated. Herein, non-biodegradable polyvinyl chloride, polypropylene, polyethylene and biodegradable polyhydroxyalkanoate (PHA) MPs were chosen to perform the co-occurrent effects with nano copper oxide (nano-CuO). Both the nano-CuO and MPs inhibited the denitrification process, and biodegradable PHA-MPs showed severer inhibition than non-biodegradable MPs. However, the presence of MPs significantly alleviated the inhibition of nano-CuO, suggesting an antagonistic effect. Other than MPs decreasing copper ion release from nano-CuO, MPs and nano-CuO formed agglomerations and induced lower levels of oxidative stress compared to individual exposure. Transcriptome analysis indicated that the co-occurrent MPs and nano-CuO induced different regulation on denitrifying genes (e. g. nar and nor) compared to individual ones. Also, the expressions of genes involved in denitrification-associated metabolic pathways, including glycolysis and NADH electron transfer, were down-regulated by nano-CuO or MPs, but exhibiting recovery under the co-occurrent conditions. This study firstly discloses the antagonistic effect of nano-CuO and MPs on environmental process, and these findings will benefit the systematic evaluation of MPs environmental behavior and co-occurrent risk with other pollutants.
Collapse
Affiliation(s)
- Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Boqun Shao
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mostafa Soliman
- Ministry of Agriculture and Land Reclamation, Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods (QCAP Egypt), Giza 12311, Egypt
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
14
|
Regulation of Staphylococcus aureus Virulence and Application of Nanotherapeutics to Eradicate S. aureus Infection. Pharmaceutics 2023; 15:pharmaceutics15020310. [PMID: 36839634 PMCID: PMC9960757 DOI: 10.3390/pharmaceutics15020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus is a versatile pathogen known to cause hospital- and community-acquired, foodborne, and zoonotic infections. The clinical infections by S. aureus cause an increase in morbidity and mortality rates and treatment costs, aggravated by the emergence of drug-resistant strains. As a multi-faceted pathogen, it is imperative to consolidate the knowledge on its pathogenesis, including the mechanisms of virulence regulation, development of antimicrobial resistance, and biofilm formation, to make it amenable to different treatment strategies. Nanomaterials provide a suitable platform to address this challenge, with the potential to control intracellular parasitism and multidrug resistance where conventional therapies show limited efficacy. In a nutshell, the first part of this review focuses on the impact of S. aureus on human health and the role of virulence factors and biofilms during pathogenesis. The second part discusses the large diversity of nanoparticles and their applications in controlling S. aureus infections, including combination with antibiotics and phytochemicals and the incorporation of antimicrobial coatings for biomaterials. Finally, the limitations and prospects using nanomaterials are highlighted, aiming to foster the development of novel nanotechnology-driven therapies against multidrug-resistant S. aureus.
Collapse
|
15
|
Ye J, Chen X. Current Promising Strategies against Antibiotic-Resistant Bacterial Infections. Antibiotics (Basel) 2022; 12:antibiotics12010067. [PMID: 36671268 PMCID: PMC9854991 DOI: 10.3390/antibiotics12010067] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Infections caused by antibiotic-resistant bacteria (ARB) are one of the major global health challenges of our time. In addition to developing new antibiotics to combat ARB, sensitizing ARB, or pursuing alternatives to existing antibiotics are promising options to counter antibiotic resistance. This review compiles the most promising anti-ARB strategies currently under development. These strategies include the following: (i) discovery of novel antibiotics by modification of existing antibiotics, screening of small-molecule libraries, or exploration of peculiar places; (ii) improvement in the efficacy of existing antibiotics through metabolic stimulation or by loading a novel, more efficient delivery systems; (iii) development of alternatives to conventional antibiotics such as bacteriophages and their encoded endolysins, anti-biofilm drugs, probiotics, nanomaterials, vaccines, and antibody therapies. Clinical or preclinical studies show that these treatments possess great potential against ARB. Some anti-ARB products are expected to become commercially available in the near future.
Collapse
|
16
|
Wu M, Zhang Z, Zhang X, Dong L, Liu C, Chen Y. Propionibacterium freudenreichii-Assisted Approach Reduces N 2O Emission and Improves Denitrification via Promoting Substrate Uptake and Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16895-16906. [PMID: 36366772 DOI: 10.1021/acs.est.2c05674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
N2O emission is often encountered during biodenitrification. In this paper, a new approach of using microorganisms to promote substrate uptake and metabolism to reduce denitrification intermediate accumulation was reported. With the introduction of Propionibacterium freudenreichii to a biodenitrification system, N2O and nitrite accumulation was, respectively, decreased by 74 and 60% and the denitrification efficiency was increased by 150% at the time of 24 h with P. freudenreichii/groundwater denitrifier of 1/5 (OD600). Propionate, produced by P. freudenreichii, only accelerated nitrate removal and was not the main reason for the decreased intermediate accumulation. The proteomic and enzyme analyses revealed that P. freudenreichii stimulated biofilm formation by upregulating proteins involved in porin forming, putrescine biosynthesis, spermidine/putrescine transport, and quorum sensing and upregulated transport proteins, which facilitated the uptake of the carbon source, nitrate, and Fe and Mo (the required catalytic sites of denitrification enzymes). Further investigation revealed that P. freudenreichii activated the methylmalonyl-CoA pathway in the denitrifier and promoted it to synthesize heme/heme d1, the groups of denitrification enzymes and electron transfer proteins, which upregulated the expression of denitrifying enzyme proteins and enhanced the ratio of NosZ to NorB, resulting in the increase of generation, transfer, and consumption of electrons in biodenitrification. Therefore, a significant reduction in the denitrification intermediate accumulation and an improvement in the denitrification efficiency were observed.
Collapse
Affiliation(s)
- Meirou Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhiqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Road, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
17
|
He J, Hong M, Xie W, Chen Z, Chen D, Xie S. Progress and prospects of nanomaterials against resistant bacteria. J Control Release 2022; 351:301-323. [PMID: 36165865 DOI: 10.1016/j.jconrel.2022.09.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/18/2022]
Abstract
Drug-resistant bacterial infections are increasingly heightening, which lead to more severe illness, higher cost of treatment and increased risk of death. Nanomaterials-based therapy, an "outrider", serving as a kind of innovative antimicrobial therapeutics, showing promise in replacing antimicrobial agents and enhancing the activity of antibiotics, generally bases on the various inorganic and/or organic materials. When the size of those materials is below to a certain nano-level and the content of nanomaterials is above a certain amount, they are lethal to the resistant bacteria, which bypass the traditional bacterial resistance mechanisms. This review highlights the effect of nanomaterials in combating extracellular/intracellular bacteria and eradicating biofilms. Based on the studies searched on the Web of Science through relevant keywords, this review article starts with analyzing the current situation, resistance mechanisms, and treatment difficulties of bacteria resistance. Then, the efficacy of nanomaterials against resistant bacteria and their mechanisms (e.g., physical impairment, biofilm lysis, regulating bacterial metabolism, protein and DNA replication as well as enhancing the antibiotics concentration in infected cells) are collected. Lastly, the factors affecting the antibacterial efficacy are argued from the side of nanomatrials and bacterium, which followed by the emerging challenges and recent perspectives of achieving higher targeting released nanomaterials as antibacterial therapeutics.
Collapse
Affiliation(s)
- Jian He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mian Hong
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Wenqing Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China.
| |
Collapse
|
18
|
Kamel SM, Elgobashy SF, Omara RI, Derbalah AS, Abdelfatah M, El-Shaer A, Al-Askar AA, Abdelkhalek A, Abd-Elsalam KA, Essa T, Kamran M, Elsharkawy MM. Antifungal Activity of Copper Oxide Nanoparticles against Root Rot Disease in Cucumber. J Fungi (Basel) 2022; 8:911. [PMID: 36135636 PMCID: PMC9505343 DOI: 10.3390/jof8090911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Metal oxide nanoparticles have recently garnered interest as potentially valuable substances for the management of plant diseases. Copper oxide nanoparticles (Cu2ONPs) were chemically fabricated to control root rot disease in cucumbers. A scanning electron microscope (SEM), X-ray diffraction (XRD) and photoluminescence (PL) were employed to characterize the produced nanoparticles. Moreover, the direct antifungal activity of Cu2ONPs against Fusarium solani under laboratory, greenhouse, and field conditions were also evaluated. In addition, the induction of host-plant resistance by Cu2ONPs was confirmed by the results of enzyme activities (catalase, peroxidase, and polyphenoloxidase) and gene expression (PR-1 and LOX-1). Finally, the effect of Cu2ONPs on the growth and productivity characteristics of the treated cucumber plants was investigated. The average particle size from all the peaks was found to be around 25.54 and 25.83 nm for 0.30 and 0.35 Cu2O, respectively. Under laboratory conditions, the study found that Cu2ONPs had a greater inhibitory effect on the growth of Fusarium solani than the untreated control. Cu2ONP treatment considerably reduced the disease incidence of the root rot pathogen in cucumber plants in both greenhouse and field environments. Defense enzyme activity and defense genes (PR1 and LOX1) transcription levels were higher in cucumber plants treated with Cu2ONPs and fungicide than in the untreated control. SEM analysis revealed irregularities, changes, twisting, and plasmolysis in the mycelia, as well as spore shrinking and collapsing in F. solani treated with Cu2ONPs, compared to the untreated control. The anatomical analysis revealed that cucumber plants treated with Cu2ONPs had thicker cell walls, root cortex, and mesophyll tissue (MT) than untreated plants. Cucumber growth and yield characteristics were greatly improved after treatment with Cu2ONPs and fungicide. To the best of our knowledge, employing Cu2ONPs to treat cucumber rot root disease is a novel strategy that has not yet been reported.
Collapse
Affiliation(s)
- Said M. Kamel
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Samah F. Elgobashy
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Reda I. Omara
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Aly S. Derbalah
- Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Mahmoud Abdelfatah
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Abdelhamed El-Shaer
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg ElArab City 21934, Egypt
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Tarek Essa
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Mohsen Mohamed Elsharkawy
- Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| |
Collapse
|
19
|
Pop R, Tăbăran AF, Ungur AP, Negoescu A, Cătoi C. Helicobacter Pylori-Induced Gastric Infections: From Pathogenesis to Novel Therapeutic Approaches Using Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071463. [PMID: 35890358 PMCID: PMC9318142 DOI: 10.3390/pharmaceutics14071463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Helicobacter pylori is the first formally recognized bacterial carcinogen and the most important single digestive pathogen responsible for the induction of gastroduodenal diseases such as gastritis, peptic ulcer, and, finally, gastric neoplasia. The recently reported high rates of antimicrobial drug resistance hamper the current therapies of H. pylori, with therapeutic failure reaching up to 40% of patients. In this context, new treatment options and strategies are urgently needed, but the successful development of these new therapeutic tools is conditioned by the understanding of the high adaptability of H. pylori to the gastric acidic environment and the complex pathogenic mechanism. Due to several advantages, including good antibacterial efficiency, possible targeted delivery, and long tissular persistence, silver nanoparticles (AgNPs) offer the opportunity of exploring new strategies to improve the H. pylori therapy. A new paradigm in the therapy of H. pylori gastric infections using AgNPs has the potential to overcome the current medical limitations imposed by the H. pylori drug resistance, which is reported for most of the current organic antibiotics employed in the classical therapies. This manuscript provides an extensive overview of the pathology of H. pylori-induced gastritis, gastric cancer, and extradigestive diseases and highlights the possible benefits and limitations of employing AgNPs in the therapeutic strategies against H. pylori infections.
Collapse
|
20
|
Zhang Y, Xie Z, Lu C, Guo J, Chen Z, Li H, Song Y, Han Y, Hou Y. Study on the electron transfer capability of porphyrin ring and the mechanisms in the catalytic denitrification. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Hu W, Wu Y, Bian Y, Zheng X, Chen Y, Dong L, Chen Y. Joint effects of carbon nanotubes and copper oxide nanoparticles on fermentation metabolism towards Saccharofermentans acetigenes: Enhancing environmental adaptability and transcriptional expression. BIORESOURCE TECHNOLOGY 2021; 336:125318. [PMID: 34049169 DOI: 10.1016/j.biortech.2021.125318] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
In this study, the joint effects of widely used copper oxide nanoparticles (CuO NPs) and multi-walled carbon nanotubes (MWCNTs) on the fermentation metabolism of a model acetogenic bacterium Saccharofermentans acetigenes were investigated and the underlying mechanisms were further explored. The presence of sole CuO NPs or MWCNTs severely inhibited the acetate generation, while their co-existences did not further decrease the acetate yield as expected. Further analysis indicated the joint effects facilitated the enhancement of bacterial stimulus response to the environment and interspecies communication, which improved adaptive capacity to the adverse environment involved in nanomaterials. Meanwhile, the co-existence reduced inhibitory effects of sole nanomaterial on the gene expressions and catalytic activities of key enzymes involved in glycolysis and pyruvate metabolism. Therefore, the joint effects could enhance environmental adaptation of S. acetigenes and transcriptional expressions of key enzymes for acetic acid production-related processes, alleviating the inhibition of CuO NPs to acetate production.
Collapse
Affiliation(s)
- Wanying Hu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yaozhi Bian
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yuexi Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
22
|
Wang H, Chen N, Feng C, Deng Y. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146521. [PMID: 34030330 DOI: 10.1016/j.scitotenv.2021.146521] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Nitrate, as the most stable form of nitrogen pollution, widely exists in aquatic environment, which has great potential threat to ecological environment and human health. Heterotrophic denitrification, as the most economical and effective method to treat nitrate wastewater, has been widely and deeply studied. From the perspective of heterotrophic denitrification, this review discusses nitrate removal in the aquatic environment, and the behaviors of different carbon source types were classified and summarized to explain the cyclical evolution of carbon and nitrogen in global biochemical processes. In addition, the denitrification process, electron transfer as well as denitrifying and hydrolyzing microorganisms among different carbon sources were analyzed and compared, and the commonness and characteristics of the denitrification process with various carbon sources were revealed. This study provides theoretical support and technical guidance for further improvement of denitrification technologies.
Collapse
Affiliation(s)
- Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
23
|
Fatima F, Siddiqui S, Khan WA. Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era. Biol Trace Elem Res 2021; 199:2552-2564. [PMID: 33030657 DOI: 10.1007/s12011-020-02394-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 01/21/2023]
Abstract
Microorganisms are highly resistant to the antibiotics that are commonly used and thus are becoming serious public health problem. There is an urgent need for new approaches to monitor microbial behavior, and hence, nanomaterial can be a very promising solution. Nanotechnology has led to generation of novel antimicrobial agents such as gold, silver, zinc, copper, poly-£-lysine, iron, and chitosan which have shown remarkable potential, demonstrating their applicability as proficient antibiotic agents against various pathogenic bacterial species. The antimicrobial nanoproduct physically kills the organism's cell membranes that prevent the production of drug-resistant microorganisms. These nanosized particles can also be used as diagnostic agents, targeted drug delivery vehicle, noninvasive imaging technologies, and in vivo visual monitoring of tumors angiogenesis. These nanomaterials provide a promising platform for diagnostics, prognostic, drug delivery, and treatment of diseases by means of nanoengineered products/devices. This owes to their small size, prolonged antimicrobial efficacy with insignificant toxicity creating less environmental hazard or toxicity. Scientists address several problems such as health, bioethical problems, toxicity risks, physiological, and pharmaceutical concerns related with the usage of NPs as antimicrobial agents as current research lack adequate data and information on the safe use of certain tools and materials.
Collapse
Affiliation(s)
- Faria Fatima
- Department of Agriculture, Integral Institute of Agricultural Sciences and Technology, Integral University, Lucknow, 226026, India.
| | - Saba Siddiqui
- Department of Agriculture, Integral Institute of Agricultural Sciences and Technology, Integral University, Lucknow, 226026, India
| | - Waqar Ahmad Khan
- Department of Business Management, Ishik University, Kurdistan, Erbil, Iraq
| |
Collapse
|
24
|
Wang C, Gao H, Chen J, Wang P, Zhang J, Hu Y, Pan Y. Long-term effects of decabromodiphenyl ether on denitrification in eutrophic lake sediments: Different sensitivity of six-type denitrifying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145147. [PMID: 33609823 DOI: 10.1016/j.scitotenv.2021.145147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 05/28/2023]
Abstract
The widespread use of polybrominated diphenyl ethers inevitably results in their increased release into natural waters and subsequent deposition in sediments. However, their long-term effects on the bacteria participating in each step of denitrification in eutrophic lake sediments are still unknown. Here, we conducted a one-year microcosm experiment to determine the long-term effects of decabromodiphenyl ether (BDE-209), at low (2 mg kg-1 dry weight) and high (20 mg kg-1 dry weight) contamination levels, on six-type denitrifying bacteria and their activities in sediments collected from Taihu Lake, a typical eutrophic lake in China. At the end of the experiment, sediment denitrifying reductase activities were inhibited by BDE-209 at both levels, with the greatest inhibition seen for nitric oxide reductase activity. The higher nitrate concentration in the contaminated sediments was attributed to the inhibition of nitrate reductase activities. The abundances of six-type denitrifying genes (narG, napA, nirK, nirS, norB, and nosZ) significantly decreased under high BDE-209 treatment, and narG and napA genes were more sensitive to the toxicity of BDE-209. The results from pyrosequencing showed that BDE-209, at either treatment concentration, decreased the six-type denitrifying bacterial diversities and altered their community composition. This shift of six-type denitrifying bacterial communities might also be driven by the debrominated products concentrations of BDE-209 and variations in sediment inorganic nitrogen concentrations. In particular, some genera from phylum Proteobacteria such as Pseudomonas, Cupriavidus, and Azoarcus were decreased significantly because of BDE-209 and its debrominated products.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
25
|
Mortimer M, Wang Y, Holden PA. Molecular Mechanisms of Nanomaterial-Bacterial Interactions Revealed by Omics-The Role of Nanomaterial Effect Level. Front Bioeng Biotechnol 2021; 9:683520. [PMID: 34195180 PMCID: PMC8236600 DOI: 10.3389/fbioe.2021.683520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Nanotechnology is employed across a wide range of antibacterial applications in clinical settings, food, pharmaceutical and textile industries, water treatment and consumer goods. Depending on type and concentration, engineered nanomaterials (ENMs) can also benefit bacteria in myriad contexts including within the human body, in biotechnology, environmental bioremediation, wastewater treatment, and agriculture. However, to realize the full potential of nanotechnology across broad applications, it is necessary to understand conditions and mechanisms of detrimental or beneficial effects of ENMs to bacteria. To study ENM effects, bacterial population growth or viability are commonly assessed. However, such endpoints alone may be insufficiently sensitive to fully probe ENM effects on bacterial physiology. To reveal more thoroughly how bacteria respond to ENMs, molecular-level omics methods such as transcriptomics, proteomics, and metabolomics are required. Because omics methods are increasingly utilized, a body of literature exists from which to synthesize state-of-the-art knowledge. Here we review relevant literature regarding ENM impacts on bacterial cellular pathways obtained by transcriptomic, proteomic, and metabolomic analyses across three growth and viability effect levels: inhibitory, sub-inhibitory or stimulatory. As indicated by our analysis, a wider range of pathways are affected in bacteria at sub-inhibitory vs. inhibitory ENM effect levels, underscoring the importance of ENM exposure concentration in elucidating ENM mechanisms of action and interpreting omics results. In addition, challenges and future research directions of applying omics approaches in studying bacterial-ENM interactions are discussed.
Collapse
Affiliation(s)
- Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, China
| | - Ying Wang
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Patricia A Holden
- Bren School of Environmental Science and Management and Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
26
|
Khorsandi K, Keyvani-Ghamsari S, Khatibi Shahidi F, Hosseinzadeh R, Kanwal S. A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. J Drug Target 2021; 29:941-959. [PMID: 33703979 DOI: 10.1080/1061186x.2021.1895818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial infections are an important cause of mortality worldwide owing to the prevalence of drug resistant bacteria. Bacteria develop resistance against antimicrobial drugs by several mechanisms such as enzyme inactivation, reduced cell permeability, modifying target site or enzyme, enhanced efflux because of high expression of efflux pumps, biofilm formation or drug-resistance gene expression. New and alternative ways such as nanoparticle (NP) applications are being established to overcome the growing multidrug-resistance in bacteria. NPs have unique antimicrobial characteristics that make them appropriate for medical application to overcome antibiotic resistance. The proposed antibacterial mechanisms of NPs are cell membrane damage, changing cell wall penetration, reactive oxygen species (ROS) production, effect on DNA and proteins, and impact on biofilm formation. The present review mainly focuses on discussing various mechanisms of bacterial drug resistance and the applications of NPs as alternative antibacterial systems. Combination therapy of NPs and antibiotics as a novel approach in medicine towards antimicrobial resistance is also discussed.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Simab Kanwal
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| |
Collapse
|
27
|
Amaro F, Morón Á, Díaz S, Martín-González A, Gutiérrez JC. Metallic Nanoparticles-Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? Microorganisms 2021; 9:364. [PMID: 33673231 PMCID: PMC7917771 DOI: 10.3390/microorganisms9020364] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
The rapid spread of antibiotic resistances among bacteria demands novel strategies for infection control, and metallic nanoparticles appear as promising tools because of their unique size and tunable properties that allow their antibacterial effects to be maximized. Furthermore, their diverse mechanisms of action towards multiple cell components have suggested that bacteria could not easily develop resistance against nanoparticles. However, research published over the last decade has proven that bacteria can indeed evolve stable resistance mechanisms upon continuous exposure to metallic nanoparticles. In this review, we summarize the currently known individual and collective strategies employed by bacteria to cope with metallic nanoparticles. Importantly, we also discuss the adverse side effects that bacterial exposure to nanoparticles may have on antibiotic resistance dissemination and that might constitute a challenge for the implementation of nanoparticles as antibacterial agents. Overall, studies discussed in this review point out that careful management of these very promising antimicrobials is necessary to preserve their efficacy for infection control.
Collapse
Affiliation(s)
- Francisco Amaro
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (Á.M.); (S.D.); (A.M.-G.); (J.C.G.)
| | | | | | | | | |
Collapse
|
28
|
Wu B, Zhou M, Song L, Xu Q, Dai X, Chai X. Mechanism insights into polyhydroxyalkanoate-regulated denitrification from the perspective of pericytoplasmic nitrate reductase expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142083. [PMID: 32920393 DOI: 10.1016/j.scitotenv.2020.142083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
For enhanced biological nutrient removal (BNR) process, the polyhydroxyalkanoate (PHA) can be used as an eco-friendly internal as well as external substrate for regulating the growth of heterotrophic denitrifiers and promoting the denitrification process for deep nitrogen removal from wastewater. However, the exact mechanisms by which PHA impacts bacterial metabolism and affects the electron transfer of denitrification remain unknown. In this study, the in-depth mechanism investigation for PHA-mediated denitrification based on the jointly applied transcriptomic, proteomic and Western Blotting techniques was performed on a model denitrifier, Pseudomonas stutzeri. Results showed that PHA dramatically fostered the growth of Pseudomonas stutzeri, resulting in improved nitrate removal efficiency from 32.8% to 45.8%. Comparison of protein expression profiles indicated that PHA promoted the expression of enzyme NapB and NapA by approximately 10.34 and 20.01 times, respectively, which were both in charge of reduction from nitrate to nitrite. Based on transcriptional sequencing and Tandem Mass Tags, the correlation results also showed that differential proteins and genes with the same expression trend were positively correlated (R2 = 0.427, p-value<0.033). Western Blotting approach was further developed to confirm the up-regulated expression of target protein with the higher proportion of PHA in carbon source of the medium, which proved the reliability of proteomics results. All the findings presented here are believed to deepen the understanding of microbial mechanism about PHA-enhanced denitrification from the novel perspective of associated electron-transfer enzymatic proteins.
Collapse
Affiliation(s)
- Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meng Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Liyan Song
- Environmental Microbiology and Ecology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science (CAS), 266 Fangzheng Avenue, Chongqing 400714, China
| | - Qinqin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
29
|
Hou W, Zhang Y, Zhang Y, Yue Q, Wang L, Min T, Wang H. Label-free proteomics study on Shewanella putrefaciens regulated by ε-poly-lysine treatment. J Appl Microbiol 2021; 131:791-800. [PMID: 33289172 DOI: 10.1111/jam.14954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/09/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023]
Abstract
AIMS The purpose of this study was to investigate the regulatory mechanism of ε-PL on Shewanella putrefaciens. METHODS AND RESULTS Proteomics analysis of inhibitory effect of ε-PL against S. putrefaciens was performed by label-free quantitative assay based on high-resolution mass spectrometry (MS). Quantification of 2206 proteins was obtained with high confidence, and a total of 36 differentially expressed proteins (DEPs), with 10 and 26 proteins showing upregulation and downregulation, respectively, were identified. Upon Go functional enrichment, 11, 5 and 8 specific Go terms in biological processes, molecular functions and cellular components were identified, respectively. Six KEGG pathways, including 'ribosome', were significantly enriched. Among the ribosome pathway, there were seven DEPs and all of them were distributed on large and small subunits of ribosome. CONCLUSIONS The significant downregulation of proteins, large subunits of ribosomal proteins RP-L18, L30 and L27, small subunits ribosomal proteins S16 and S20, and RNA polymerase β' subunit protein rpoC were the critical action sites of ε-PL to inhibit S. putrefaciens growth. SIGNIFICANCE AND IMPACT OF THE STUDY Shewanella putrefaciens is one of the representative fish-spoilage bacteria regardless of fish type, and poses significant problems for the fish brewery. A better understanding of the antibacterial mechanism of ε-PL on S. putrefaciens could make important contributions to development of biological control strategies of these economically important pathogens.
Collapse
Affiliation(s)
- W Hou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Y Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Y Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Q Yue
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - L Wang
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - T Min
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - H Wang
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| |
Collapse
|
30
|
Li P, Gao Z, Tan Z, Xiao J, Wei L, Chen Y. New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's). BIOFOULING 2021; 37:1-35. [PMID: 33618584 DOI: 10.1080/08927014.2020.1869725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Orthopedic device related infections (ODRI's) represent a difficult to treat situation owing to their biofilm based nature. Biofilm infections once established are difficult to eradicate even with an aggressive treatment regimen due to their recalcitrance towards antibiotics and immune attack. The involvement of antibiotic resistant pathogens as the etiological agent further worsens the overall clinical picture, pressing on the need to look into alternative treatment strategies. The present review highlightes the microbiological challenges associated with treatment of ODRI's due to biofilm formation on the implant surface. Further, it details the newer anti-infective modalities that work either by preventing biofilm formation and/or through effective disruption of the mature biofilms formed on the medical implant. The study, therefore aims to provide a comprehensive insight into the newer anti-biofilm interventions (non-antibiotic approaches) and a better understanding of their mechanism of action essential for improved management of orthopedic implant infections.
Collapse
Affiliation(s)
- Ping Li
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Zhenwu Gao
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Zhenwei Tan
- Department of Orthopedics, Western Theater Air Force Hospital of PLA, Chengdu, China
| | - Jun Xiao
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Li Wei
- Nursing Department, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yirui Chen
- Department of Orthopedics, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
31
|
Rasheed PA, Pandey RP, Jabbar KA, Mahmoud KA. Platinum nanoparticles/Ti3C2Tx (MXene) composite for the effectual electrochemical sensing of Bisphenol A in aqueous media. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Mycosinthetized Ag, CuO and ZnO nanoparticles from a promising Trichoderma harzianum strain and their antifungal potential against important phytopathogens. Sci Rep 2020; 10:20499. [PMID: 33235262 PMCID: PMC7687894 DOI: 10.1038/s41598-020-77294-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 11/18/2022] Open
Abstract
Fungal green biosynthesis of nanoparticles (NPs) is a promising eco-friendly method for mass-scale production. In the present study Ag, CuO and ZnO nanoparticles were biogenically synthetized using a cell filtrate of a strain of Trichoderma harzianum as a reducer and stabilizer agent. The structure, morphology and physicochemical properties of the NPs were characterized through transmission electron microscopy, dynamic light scattering, wide angle X-ray scattering and thermogravimetric analysis. Since nanotechnology could offer promising applications in agricultural area, we evaluated the ability of the NPs to reduce the growth of important fungal phytopathogens as Alternaria alternata, Pyricularia oryzae and Sclerotinia sclerotiorum. Silver and CuO NPs reduced significantly the mycelial growth of A. alternata and P. oryzae in a dose dependent manner. This is the first report of a multiple extracellular biosynthesis of NPs from T. harzianum and the first time that CuO and ZnO NPs were obtained from this fungus. In addition, we highlighted the rapid production of NPs, as well as, the potential of Ag and CuO for the control of phytopathogens. On the other hand, the three types of NPs could be easily and sustainably produced on a large scale with the chance of having multiple applications in biotechnological processes.
Collapse
|
33
|
Koju R, Miao S, Liang B, Joshi DR, Bai Y, Liu R, Qu J. Transcriptional and metabolic response against hydroxyethane-(1,1-bisphosphonic acid) on bacterial denitrification by a halophilic Pannonibacter sp. strain DN. CHEMOSPHERE 2020; 252:126478. [PMID: 32197179 DOI: 10.1016/j.chemosphere.2020.126478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Biological denitrification is an environmentally sound pathway for the elimination of nitrogen pollution in wastewater treatment. Extreme environmental conditions, such as the co-existence of toxic organic pollutants, can affect biological denitrification. However, the potential underlying mechanism remains largely unexplored. Herein, the effect of a model pollutant, hydroxyethane-(1,1-bisphosphonic acid) (HEDP), a widely applied and consumed bisphosphonate, on microbial denitrification was investigated by exploring the metabolic and transcriptional responses of an isolated denitrifier, Pannonibacter sp. strain DN. Results showed that nitrate removal efficiency decreased from 85% to 50% with an increase in HEDP concentration from 0 to 3.5 mM, leading to nitrite accumulation of 204 mg L-1 in 3.5 mM HEDP. This result was due to the lower bacterial population count and reduction in the live cell percentage. Further investigation revealed that HEDP caused a decrease in membrane potential from 0.080 ± 0.005 to 0.020 ± 0.002 with the increase in HEDP from 0 to 3.5 mM. This hindered electron transfer, which is required for nitrate transformation into nitrogen gas. Moreover, transcriptional profiling indicated that HEDP enhanced the genes involved in ROS (O2-) scavenging, thus protecting cells against oxidative stress damage. However, the suppression of genes responsible for the production of NADH/FADH2 in tricarboxylic acid cycle (TCA), NADH catalyzation (NADH dehydrogenase) in (electron transport chain) ETC system and denitrifying genes, especially nor and nir, in response to 2.5 mM HEDP were identified as the key factor inhibiting transfer of electron from TCA cycle to denitrifying enzymes through ETC system.
Collapse
Affiliation(s)
- Rashmi Koju
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Miao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kritipur, 44613, Nepal
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing, 100085, China.
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing, 100085, China
| | - Juihui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Beijing, 100085, China
| |
Collapse
|
34
|
Ma TF, Chen YP, Fang F, Yan P, Shen Y, Kang J, Nie YD. Effects of ZnO nanoparticles on aerobic denitrifying bacteria Enterobacter cloacae strain HNR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138284. [PMID: 32276046 DOI: 10.1016/j.scitotenv.2020.138284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The aerobic denitrification process is a promising and cost-effective alternative to the conventional nitrogen removal process. Widely used ZnO nanoparticles (NPs) will inevitably reach wastewater treatment plants, and cause adverse impacts on aerobic denitrification and nitrogen removal. Therefore, a full understanding of the responses and adaption of aerobic denitrifiers to ZnO NPs is essential to develop effective strategies to reduce adverse effects on wastewater treatment. In this study, the responses and adaption to ZnO NPs were investigated of a wild type strain (WT) and a resistant type strain (Re) of aerobic denitrifying bacteria Enterobacter cloacae strain HNR. When exposed to 0.75 mM ZnO NPs, the nitrate removal efficiency of Re was 11.2% higher than that of WT. To prevent ZnO NPs entering cells by adsorption, the production of extracellular polymeric substances (EPS) of WT and Re strains increased 13.2% and 43.9%, respectively. The upregulations of amino sugar and carbohydrate-related metabolism contributed to the increase of EPS production, and the increased nitrogen metabolism contributed to higher activities of nitrate and nitrite reductases. Interestingly, cationic antimicrobial peptide resistance contributed to resist Zn (II) released by ZnO NPs, and many antioxidative stress-related metabolism pathways were upregulated to resist the oxidative stress resulting from ZnO NPs. These findings will guide efforts to improve the aerobic denitrification process in an environment polluted by NPs, and promote the application of aerobic denitrification technologies.
Collapse
Affiliation(s)
- Teng-Fei Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research lnstitute Co., Ltd., Chongqing 400069, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research lnstitute Co., Ltd., Chongqing 400069, China
| | - Jia Kang
- North China Univ Water Resources & Elect Power, Key Lab Water Environment Simulatation & Governance Henan, Zhengzhou 460046, Henan, China
| | - Yu-Dong Nie
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
35
|
Zhang Y, Pan X, Liao S, Jiang C, Wang L, Tang Y, Wu G, Dai G, Chen L. Quantitative Proteomics Reveals the Mechanism of Silver Nanoparticles against Multidrug-Resistant Pseudomonas aeruginosa Biofilms. J Proteome Res 2020; 19:3109-3122. [PMID: 32567865 DOI: 10.1021/acs.jproteome.0c00114] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decline of clinically effective antibiotics has made it necessary to develop more effective antimicrobial agents, especially for refractory biofilm-related infections. Silver nanoparticles (AgNPs) are a new type of antimicrobial agent that can eradicate biofilms and reduce bacterial resistance, but its anti-biofilm mechanism has not been elucidated. In this study, we investigated the molecular mechanism of AgNPs against multidrug-resistant Pseudomonas aeruginosa by means of anti-biofilm tests, scanning electron microscopy (SEM), and tandem mass tag (TMT)-labeled quantitative proteomics. The results of anti-biofilm tests demonstrated that AgNPs inhibited the formation of P. aeruginosa biofilm and disrupted its preformed biofilm. SEM showed that when exposed to AgNPs, the structure of the P. aeruginosa biofilm was destroyed, along with significant reduction of its biomass. TMT-labeled quantitative proteomic analysis revealed that AgNPs could defeat the P. aeruginosa biofilm in multiple ways by inhibiting its adhesion and motility, stimulating strong oxidative stress response, destroying iron homeostasis, blocking aerobic and anaerobic respiration, and affecting quorum sensing systems. Our findings offer a new insight into clarifying the mechanism of AgNPs against biofilms, thus providing a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Yapeng Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xuanhe Pan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Shijing Liao
- Department of Clinical Laboratory, The First People's Hospital of Yueyang, Yueyang 414000, China
| | - Congyuan Jiang
- Hunan Anson Biotechnology Company Ltd., Changsha 410008, China
| | - Linqian Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yurong Tang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Gan Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
36
|
Zhang H, Shi J, Su Y, Li W, Wilkinson KJ, Xie B. Acute toxicity evaluation of nanoparticles mixtures using luminescent bacteria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:484. [PMID: 32617676 DOI: 10.1007/s10661-020-08444-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/21/2020] [Indexed: 05/24/2023]
Abstract
As the application of nanoparticles (NPs) and their release to the environment has increased, it is important to verify their toxicity, with a special emphasis on particle solubilization and the interaction of NP mixtures. In the current study, a model luminescent bacteria, Vibrio fischeri, was employed to test the acute toxicity of individual NPs and their binary mixtures, including metal NPs (ZnNPs, CuNPs) and metal oxide NPs (ZnONPs, CuONPs). The independent action model was used to reflect the synergistic, additive, or antagonistic interactions of binary mixtures of these NPs. The results showed that the median effective concentration (EC50) inhibited the luminescence of V. fischeri were 20.5, 4.1, 11.6, and 118.7 mg L-1 for ZnNPs, CuNPs, ZnONPs, and CuONPs, respectively, suggesting that the toxicity of these NPs to V. fischeri were as the following order: CuNPs > ZnONPs > ZnNPs > CuONPs. The combined effect of NPs were found to be antagonistic for CuNPs-ZnONPs and CuNPs-CuONPs, synergistic for CuONPs-ZnNPs, CuNPs-ZnNPs, and ZnONPs-CuONPs, and additive for ZnNPs-ZnONPs, revealing a complex pattern of possible interactions. The differences of dissolved metal ions partly accounted for the different combined toxicity of binary mixtures of NPs. The findings have important implications for better understanding the true environmental risk of NP mixtures.
Collapse
Affiliation(s)
- Haijing Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianhong Shi
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Weiying Li
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Kevin J Wilkinson
- Department of Chemistry, University of Montreal, Montreal, QC, H3C3J7, Canada
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
37
|
Liu S, Wang M, Li T, Chen Q. Response of an aerobic denitrifier to titanium dioxide nanoparticles exposure. ENVIRONMENTAL TECHNOLOGY 2020; 41:1446-1454. [PMID: 30328776 DOI: 10.1080/09593330.2018.1537310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The cytotoxicity of titanium dioxide nanoparticles (TiO2 NPs) to microorganisms has attracted great attention over the past few decades. As an important participator in the nitrogen cycle, aerobic denitrifiers have been proven to be negatively affected by TiO2 NPs, but the mechanism of this effect remains unclear. In this study, the bacteria-nanoparticle interaction was investigated by exposing an aerobic denitrifier, Pseudomonas stutzeri PCN-1 to different concentrations of TiO2 NPs at the dark condition, in order to investigate the cytotoxicity mechanism. The results illustrated that aerobic denitrification was inhibited at different TiO2 NPs concentrations from 1 to 128 mg/L, accompanied by the postponement of nitrate reduction and the accumulations of nitrite and nitrous oxide. But this inhibitory effect was mitigated with increasing TiO2 NPs concentrations. Further studies revealed that expressions of aerobic denitrification genes were also inhibited with the presence of TiO2 NPs, and the inhibition effect on napA and nirS genes was more significant than that on nosZ and cnorB, which might directly bring about the delayed nitrate reduction and hindered nitrite transfer. Moreover, the decreased toxicities at higher TiO2 NPs concentrations could be attributed to the formation of larger aggregates (>1000 nm), which greatly reduced the chance for direct interactions between NPs and bacterial membranes, as well as the interruption of denitrifying genes expressions. These findings were meaningful for the formation of deep insights into the mechanism of TiO2 NPs cytotoxicity as well as the development of strategies to control the negative effect of nanoparticles in the environment.Aerobic denitrification characteristics of strain PCN-1 under different carbon sources.
Collapse
Affiliation(s)
- Shufeng Liu
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Ming Wang
- Yellow River Institute of Hydraulic Research, Zhengzhou, People's Republic of China
| | - Tingting Li
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Qian Chen
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, People's Republic of China
| |
Collapse
|
38
|
Zhao S, Su X, Wang Y, Yang X, Bi M, He Q, Chen Y. Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N 2O emission. CHEMOSPHERE 2020; 245:125394. [PMID: 31862554 DOI: 10.1016/j.chemosphere.2019.125394] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/09/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Nanopesticides are widely applied in modern agricultural systems to replace traditional pesticides, which inevitably leads to their accumulation in soils. Nanopesticides based on copper oxide nanoparticles (CuO NPs) may affect the soil nitrogen cycle, such as the denitrification process; however, the mechanism remains unclear. Here, acute exposure experiments for 60 h were conducted to explore the effects of CuO NPs (10, 100, 500 mg kg-1) on denitrification. In this study, Cu speciation, activities of denitrifying enzymes, electron transport system activity (ETSA), expression of denitrifying functional genes, composition of bacterial communities and reactive oxygen species (ROS) were determined. In all treatments, Cu ions was the dominant form and responsible for the toxicity of CuO NPs. The results indicated that CuO NPs treatments at 500 mg kg-1 remarkably inhibited denitrification, led to an 11-fold increase in NO3- accumulation and N2O emission rates decrease by 10.2-24.1%. In the denitrification process, the activities of nitrate reductase and nitric oxide reductase reduced by 21.1-42.1% and 10.3-16.3%, respectively, which may be a reason for the negative effect of CuO NPs. In addition, ETSA was significantly inhibited with CuO NPs applications, which reflects the ability of denitrification to accept electrons. Denitrifying functional genes and bacterial communities composition were changed, thus further influencing the denitrification process. ROS analysis showed that there were no significant differences among NPs treatments. This research improves the understanding of CuO NPs impact on soil denitrification. Further attention should be paid to the nitrogen transformation in agricultural soils in the presence of nanopesticides.
Collapse
Affiliation(s)
- Shuyuan Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiaoxuan Su
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yiyu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xiangyu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Mohan Bi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
39
|
Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles. NANOMATERIALS 2020; 10:nano10030550. [PMID: 32197515 PMCID: PMC7153614 DOI: 10.3390/nano10030550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
We investigated the transcriptomic response and epigenetic changes in the lungs of mice exposed to inhalation of copper(II) oxide nanoparticles (CuO NPs) (8 × 105 NPs/m3) for periods of 3 days, 2 weeks, 6 weeks, and 3 months. A whole genome transcriptome and miRNA analysis was performed using next generation sequencing. Global DNA methylation was assessed by ELISA. The inhalation resulted in the deregulation of mRNA transcripts: we detected 170, 590, 534, and 1551 differentially expressed transcripts after 3 days, 2 weeks, 6 weeks, and 3 months of inhalation, respectively. Biological processes and pathways affected by inhalation, differed between 3 days exposure (collagen formation) and longer treatments (immune response). Periods of two weeks exposure further induced apoptotic processes, 6 weeks of inhalation affected the cell cycle, and 3 months of treatment impacted the processes related to cell adhesion. The expression of miRNA was not affected by 3 days of inhalation. Prolonged exposure periods modified miRNA levels, although the numbers were relatively low (17, 18, and 38 miRNAs, for periods of 2 weeks, 6 weeks, and 3 months, respectively). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis based on miRNA–mRNA interactions, revealed the deregulation of processes implicated in the immune response and carcinogenesis. Global DNA methylation was not significantly affected in any of the exposure periods. In summary, the inhalation of CuO NPs impacted on both mRNA and miRNA expression. A significant transcriptomic response was already observed after 3 days of exposure. The affected biological processes and pathways indicated the negative impacts on the immune system and potential role in carcinogenesis.
Collapse
|
40
|
Wu L, Zhu G, Zhang X, Si Y. Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135711. [PMID: 31791784 DOI: 10.1016/j.scitotenv.2019.135711] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/17/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
The environmental toxicity of silver nanoparticles (AgNPs) is currently the focus of intensive research. However, the mechanisms underlying the cytotoxic effects of AgNPs on denitrifying microbes have yet to be explicitly demonstrated. Herein, Pseudomonas stutzeri was used to explore the effects of AgNPs on denitrification and cytotoxicity. The denitrification efficiency decreased from 94.91% in the AgNP-free treatment to 87.66%, 60.51% and 36.10% with treatments of 3.125, 6.25 and 12.5 mg/L AgNPs, respectively. The inhibition and delay in the denitrification process from treatment with AgNPs likely occurred through alteration of the viability and metabolic activity of P. stutzeri. Flow cytometry analysis indicated that the early apoptotic rates of P. stutzeri were 8.72%, 30.60%, and 48.60% with treatments of 3.125, 6.25, and 12.5 mg/L AgNPs, respectively. Results for scanning electron microscope (SEM) imaging, ζ-potential analysis, lactate dehydrogenase (LDH) release and malondialdehyde (MDA) production assays demonstrated adsorption of AgNPs on the cell surface, which altered membrane potential and mediated lipid peroxidation; these events eventually resulted in the aberration of cell morphology. Transmission electron microscopy (TEM) images and measurements of Ag content distribution by ICP-MS indicated that AgNPs were easily internalized by P. stutzeri, which increased the accumulation of reactive oxygen species (ROS). Furthermore, the presence of AgNPs also greatly inhibited expression of genes napA, nirS, cnorB, and nosZ, thereby reducing the activities of nitrate reductase (NAR) and nitrite reductase (NIR). These findings will help further our understanding of the mechanism underlying AgNPs cytotoxicity, and provide the means to evaluate the negative effect of nanoparticles in the environment.
Collapse
Affiliation(s)
- Lingli Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Guangsen Zhu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xiaoxue Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
41
|
Antimicrobial Nanostructured Coatings: A Gas Phase Deposition and Magnetron Sputtering Perspective. MATERIALS 2020; 13:ma13030784. [PMID: 32046363 PMCID: PMC7040917 DOI: 10.3390/ma13030784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
Counteracting the spreading of multi-drug-resistant pathogens, taking place through surface-mediated cross-contamination, is amongst the higher priorities in public health policies. For these reason an appropriate design of antimicrobial nanostructured coatings may allow to exploit different antimicrobial mechanisms pathways, to be specifically activated by tailoring the coatings composition and morphology. Furthermore, their mechanical properties are of the utmost importance in view of the antimicrobial surface durability. Indeed, the coating properties might be tuned differently according to the specific synthesis method. The present review focuses on nanoparticle based bactericidal coatings obtained via magneton-spattering and supersonic cluster beam deposition. The bacteria–NP interaction mechanisms are first reviewed, thus making clear the requirements that a nanoparticle-based film should meet in order to serve as a bactericidal coating. Paradigmatic examples of coatings, obtained by magnetron sputtering and supersonic cluster beam deposition, are discussed. The emphasis is on widening the bactericidal spectrum so as to be effective both against gram-positive and gram-negative bacteria, while ensuring a good adhesion to a variety of substrates and mechanical durability. It is discussed how this goal may be achieved combining different elements into the coating.
Collapse
|
42
|
Itohiya H, Matsushima Y, Shirakawa S, Kajiyama S, Yashima A, Nagano T, Gomi K. Organic resolution function and effects of platinum nanoparticles on bacteria and organic matter. PLoS One 2019; 14:e0222634. [PMID: 31536547 PMCID: PMC6752831 DOI: 10.1371/journal.pone.0222634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Rapid progress has been made in terms of metal nanoparticles studied in numerous fields. Metal nanoparticles have also been used in medical research, and antibacterial properties and anticancer effects have been reported. However, the underlying mechanism responsible for these effects has not been fully elucidated. Therefore, the present study focused on platinum nanoparticles (PtNPs) and examined their antibacterial properties and functional potential for decomposing organic matter, considering potential applications in the dental field. PtNPs were allowed to react with dental-related bacteria (Streptococcus mutans; Enterococcus faecalis, caries; Porphyromonas gingivalis, and endodontic and periodontal lesions). Antibacterial properties were evaluated by measuring colony formation. In addition, PtNPs were allowed to react with albumin and lipopolysaccharides (LPSs), and the functional potential to decompose organic matter was evaluated. All evaluations were performed in vitro. Colony formation in all bacterial species was completely suppressed by PtNPs at concentrations of >5 ppm. The addition of PtNPs at concentrations of >10 ppm significantly increased fragmentation and decomposition. The addition of PtNPs at concentrations of >125 pico/mL to 1 EU/mL LPS resulted in significant amounts of decomposition and elimination. The results revealed that PtNPs had antibacterial effects against dental-related bacteria and proteolytic potential to decompose proteins and LPS, an inflammatory factor associated with periodontal disease. Therefore, the use and application of PtNPs in periodontal and endodontic treatment is considered promising.
Collapse
Affiliation(s)
- Hiroo Itohiya
- Department of Periodontology, Tsurumi University, School of Dental Medicine, Tsurumi, Tsurumi ku, Yokohama, Japan
| | - Yuji Matsushima
- Department of Periodontology, Tsurumi University, School of Dental Medicine, Tsurumi, Tsurumi ku, Yokohama, Japan
| | - Satoshi Shirakawa
- Department of Periodontology, Tsurumi University, School of Dental Medicine, Tsurumi, Tsurumi ku, Yokohama, Japan
| | - Sohtaro Kajiyama
- Department of Periodontology, Tsurumi University, School of Dental Medicine, Tsurumi, Tsurumi ku, Yokohama, Japan
| | - Akihiro Yashima
- Department of Periodontology, Tsurumi University, School of Dental Medicine, Tsurumi, Tsurumi ku, Yokohama, Japan
| | - Takatoshi Nagano
- Department of Periodontology, Tsurumi University, School of Dental Medicine, Tsurumi, Tsurumi ku, Yokohama, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University, School of Dental Medicine, Tsurumi, Tsurumi ku, Yokohama, Japan
- * E-mail:
| |
Collapse
|
43
|
Recent advancements of nanomaterials as coatings and biocides for the inhibition of sulfate reducing bacteria induced corrosion. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as Promising Alternative in the Infection Treatment. Int J Mol Sci 2019; 20:E3806. [PMID: 31382674 PMCID: PMC6696612 DOI: 10.3390/ijms20153806] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 02/01/2023] Open
Abstract
Both the prevalence of antibiotic resistance and the increased biofilm-associated infections are boosting the demand for new advanced and more effective treatment for such infections. In this sense, nanotechnology offers a ground-breaking platform for addressing this challenge. This review shows the current progress in the field of antimicrobial inorganic-based nanomaterials and their activity against bacteria and bacterial biofilm. Herein, nanomaterials preventing the bacteria adhesion and nanomaterials treating the infection once formed are presented through a classification based on their functionality. To fight infection, nanoparticles with inherent antibacterial activity and nanoparticles acting as nanovehicles are described, emphasizing the design of the carrier nanosystems with properties targeting the bacteria and the biofilm.
Collapse
Affiliation(s)
- María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, Madrid 28040, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain.
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, Madrid 28040, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, Madrid 28040, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain
| |
Collapse
|
45
|
Ilves M, Kinaret PAS, Ndika J, Karisola P, Marwah V, Fortino V, Fedutik Y, Correia M, Ehrlich N, Loeschner K, Besinis A, Vassallo J, Handy RD, Wolff H, Savolainen K, Greco D, Alenius H. Surface PEGylation suppresses pulmonary effects of CuO in allergen-induced lung inflammation. Part Fibre Toxicol 2019; 16:28. [PMID: 31277695 PMCID: PMC6612204 DOI: 10.1186/s12989-019-0309-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 06/04/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Copper oxide (CuO) nanomaterials are used in a wide range of industrial and commercial applications. These materials can be hazardous, especially if they are inhaled. As a result, the pulmonary effects of CuO nanomaterials have been studied in healthy subjects but limited knowledge exists today about their effects on lungs with allergic airway inflammation (AAI). The objective of this study was to investigate how pristine CuO modulates allergic lung inflammation and whether surface modifications can influence its reactivity. CuO and its carboxylated (CuO COOH), methylaminated (CuO NH3) and PEGylated (CuO PEG) derivatives were administered here on four consecutive days via oropharyngeal aspiration in a mouse model of AAI. Standard genome-wide gene expression profiling as well as conventional histopathological and immunological methods were used to investigate the modulatory effects of the nanomaterials on both healthy and compromised immune system. RESULTS Our data demonstrates that although CuO materials did not considerably influence hallmarks of allergic airway inflammation, the materials exacerbated the existing lung inflammation by eliciting dramatic pulmonary neutrophilia. Transcriptomic analysis showed that CuO, CuO COOH and CuO NH3 commonly enriched neutrophil-related biological processes, especially in healthy mice. In sharp contrast, CuO PEG had a significantly lower potential in triggering changes in lungs of healthy and allergic mice revealing that surface PEGylation suppresses the effects triggered by the pristine material. CONCLUSIONS CuO as well as its functionalized forms worsen allergic airway inflammation by causing neutrophilia in the lungs, however, our results also show that surface PEGylation can be a promising approach for inhibiting the effects of pristine CuO. Our study provides information for health and safety assessment of modified CuO materials, and it can be useful in the development of nanomedical applications.
Collapse
Affiliation(s)
- Marit Ilves
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Pia Anneli Sofia Kinaret
- Institute of Biotechnology, University of Helsinki, 00790, Helsinki, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, 33100, Tampere, Finland
| | - Joseph Ndika
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Piia Karisola
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Veer Marwah
- Institute of Biotechnology, University of Helsinki, 00790, Helsinki, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, 33100, Tampere, Finland
| | - Vittorio Fortino
- Institute of Biotechnology, University of Helsinki, 00790, Helsinki, Finland.,Biomedicine Institute, University of Eastern Finland, 70211, Kuopio, Finland
| | | | - Manuel Correia
- National Food Institute, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Nicky Ehrlich
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Alexandros Besinis
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.,Plymouth University Peninsula Schools of Medicine and Dentistry, University of Plymouth, John Bull Building, Tamar Science Park, Plymouth, PL6 8BU, UK
| | - Joanne Vassallo
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Richard D Handy
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Henrik Wolff
- Finnish Institute of Occupational Health, 00250, Helsinki, Finland.,Department of Pathology, University of Helsinki, 00014, Helsinki, Finland
| | - Kai Savolainen
- Finnish Institute of Occupational Health, 00250, Helsinki, Finland
| | - Dario Greco
- Institute of Biotechnology, University of Helsinki, 00790, Helsinki, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, 33100, Tampere, Finland
| | - Harri Alenius
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland. .,Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
46
|
Su Y, Wu D, Xia H, Zhang C, Shi J, Wilkinson KJ, Xie B. Metallic nanoparticles induced antibiotic resistance genes attenuation of leachate culturable microbiota: The combined roles of growth inhibition, ion dissolution and oxidative stress. ENVIRONMENT INTERNATIONAL 2019; 128:407-416. [PMID: 31078875 DOI: 10.1016/j.envint.2019.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
The dissemination and propagation of antibiotic resistance genes (ARGs) is an emerging global health concern, and the potential effects of nanomaterials on ARGs fates have drawn much attention recently. In the current study, the effects of metallic nanoparticles on ARGs occurrence of leachate culturable microbiota were investigated by four typical metal and metal oxide nanoparticles (Cu, Zn, CuO, and ZnO). The ARGs diversity was remarkably decreased during the cultivation and enrichment of leachate microbiota, and their abundances decreased for 1.4-3.2 orders of magnitude. The presence of nanoparticles facilitated the ARGs attenuation, and the magnitude of effects depended on types of nanoparticles and ARGs. Metal oxide nanoparticles caused more remarkable effects than metal nanoparticles. Mechanism analysis indicated that bacterial growth was inhibited, and the dissolved metal ions from nanoparticles partially contributed to nanoparticles decreasing ARGs. Flow cytometry experiments further confirmed that nanoparticles could enter bacterial cells, and then induce excessive reactive oxygen species (ROS) generation and increase membrane permeability. Finally, the possible mechanisms were put forward, and the structural equation models (SEM) differentiated the contribution of different factors shaping ARGs. The dissolved metal ions and growth inhibition caused by nanoparticles decreased ARGs transfer frequencies via exerting excessive metal stress and lowering population density. On the other hand, nanoparticles were incorporated into the cells, and then induced the generation of ROS, which might facilitate ARGs horizontal transfer via increasing membrane permeability, or decrease ARGs via the damage of genomic and plasmid DNA. Therefore, nanoparticles could affect ARGs fates via several ways, and combined effects finally determined the ARGs variations.
Collapse
Affiliation(s)
- Yinglong Su
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Dong Wu
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huipeng Xia
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Congyan Zhang
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jianhong Shi
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kevin J Wilkinson
- Department of Chemistry, University of Montreal, Montreal, QC H3C3J7, Canada
| | - Bing Xie
- Key Laboratory for Urban and Ecological Restoration of Shanghai, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
47
|
Kooter I, Ilves M, Gröllers-Mulderij M, Duistermaat E, Tromp PC, Kuper F, Kinaret P, Savolainen K, Greco D, Karisola P, Ndika J, Alenius H. Molecular Signature of Asthma-Enhanced Sensitivity to CuO Nanoparticle Aerosols from 3D Cell Model. ACS NANO 2019; 13:6932-6946. [PMID: 31188557 PMCID: PMC6750904 DOI: 10.1021/acsnano.9b01823] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/12/2019] [Indexed: 06/08/2023]
Abstract
More than 5% of any population suffers from asthma, and there are indications that these individuals are more sensitive to nanoparticle aerosols than the healthy population. We used an air-liquid interface model of inhalation exposure to investigate global transcriptomic responses in reconstituted three-dimensional airway epithelia of healthy and asthmatic subjects exposed to pristine (nCuO) and carboxylated (nCuOCOOH) copper oxide nanoparticle aerosols. A dose-dependent increase in cytotoxicity (highest in asthmatic donor cells) and pro-inflammatory signaling within 24 h confirmed the reliability and sensitivity of the system to detect acute inhalation toxicity. Gene expression changes between nanoparticle-exposed versus air-exposed cells were investigated. Hierarchical clustering based on the expression profiles of all differentially expressed genes (DEGs), cell-death-associated DEGs (567 genes), or a subset of 48 highly overlapping DEGs categorized all samples according to "exposure severity", wherein nanoparticle surface chemistry and asthma are incorporated into the dose-response axis. For example, asthmatics exposed to low and medium dose nCuO clustered with healthy donor cells exposed to medium and high dose nCuO, respectively. Of note, a set of genes with high relevance to mucociliary clearance were observed to distinctly differentiate asthmatic and healthy donor cells. These genes also responded differently to nCuO and nCuOCOOH nanoparticles. Additionally, because response to transition-metal nanoparticles was a highly enriched Gene Ontology term (FDR 8 × 10-13) from the subset of 48 highly overlapping DEGs, these genes may represent biomarkers to a potentially large variety of metal/metal oxide nanoparticles.
Collapse
Affiliation(s)
- Ingeborg Kooter
- The
Netherlands Organization for Applied Scientific Research, TNO, P.O. Box 80015, Utrecht 3584 CB, The Netherlands
| | - Marit Ilves
- Human
Microbiome Research, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki 00290, Finland
| | - Mariska Gröllers-Mulderij
- The
Netherlands Organization for Applied Scientific Research, TNO, P.O. Box 80015, Utrecht 3584 CB, The Netherlands
| | | | - Peter C. Tromp
- The
Netherlands Organization for Applied Scientific Research, TNO, P.O. Box 80015, Utrecht 3584 CB, The Netherlands
| | - Frieke Kuper
- The
Netherlands Organization for Applied Scientific Research, TNO, P.O. Box 80015, Utrecht 3584 CB, The Netherlands
| | - Pia Kinaret
- Faculty
of Medicine and Life Sciences, University
of Tampere, Tampere FI-33014, Finland
- Institute
of Biotechnology, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Kai Savolainen
- Finnish
Institute of Occupational Health, P.O.
Box 40, Helsinki 00014, Finland
| | - Dario Greco
- Faculty
of Medicine and Life Sciences, University
of Tampere, Tampere FI-33014, Finland
- Institute
of Biotechnology, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Piia Karisola
- Human
Microbiome Research, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki 00290, Finland
| | - Joseph Ndika
- Human
Microbiome Research, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki 00290, Finland
| | - Harri Alenius
- Human
Microbiome Research, Faculty of Medicine, University of Helsinki, P.O. Box 21, Helsinki 00290, Finland
- Institute
of Environmental Medicine, Karolinska Institutet, P.O. Box 210, Stockholm SE-17176, Sweden
| |
Collapse
|
48
|
Chen Z, Gao SH, Jin M, Sun S, Lu J, Yang P, Bond PL, Yuan Z, Guo J. Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium. ENVIRONMENT INTERNATIONAL 2019; 125:65-74. [PMID: 30710801 DOI: 10.1016/j.envint.2019.01.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The widespread use of CuO nanoparticles (NPs) results in their continuous release into the environment, which could pose risks to public health and to microbial ecosystems. Following consumption, NPs will initially enter into sewer systems and interact with and potentially influence sewer microbial communities. An understanding of the response of microbes in sewers, particularly sulfate-reducing bacteria (SRB), to the CuO NPs induced stress is important as hydrogen sulfide produced by SRB can cause sewer corrosion and odour emissions. In this study, we elucidated how the anabolic and catabolic processes of a model SRB, Desulfovibrio vulgaris Hidenborough (D. vulgaris), respond to CuO NPs. Physiological analyses indicated that the exposure of the culture to CuO NPs at elevated concentrations (>50 mg/L) inhibited both its anabolic and catabolic activities, as revealed by lowered cell proliferation and sulfate reduction rate. The antibacterial effects of CuO NPs were mainly attributed to the overproduction of reactive oxygen species. Transcriptomic analysis indicated that genes encoding for flagellar assembly and some genes involved in electron transfer and respiration were down-regulated, while genes for the ferric uptake regulator (Fur) were up-regulated. Moreover, the CuO NPs exposure significantly up-regulated genes involved in protein synthesis and ATP synthesis. These results suggest that CuO NPs inhibited energy conversion, cell mobility, and iron starvation to D. vulgaris. Meanwhile, D. vulgaris attempted to respond to the stress of CuO NPs by increasing protein and ATP synthesis. These findings offer new insights into the bacterial-nanoparticles interaction at the transcriptional level, and advance our understanding of impacts of CuO NPs on SRB in the environment.
Collapse
Affiliation(s)
- Zhaoyu Chen
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Environmental Science & Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shu-Hong Gao
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Min Jin
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Shengjie Sun
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ji Lu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ping Yang
- Department of Environmental Science & Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
49
|
Kaur S, Khatri M, Arya SK, Singh G. Stimulating effect of nanoparticles and salts on thermo and halo-tolerant cell-bonded laccase synthesis in Acinetobacter sp. UIETPU. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Maleke M, Valverde A, Vermeulen JG, Cason E, Gomez-Arias A, Moloantoa K, Coetsee-Hugo L, Swart H, van Heerden E, Castillo J. Biomineralization and Bioaccumulation of Europium by a Thermophilic Metal Resistant Bacterium. Front Microbiol 2019; 10:81. [PMID: 30761115 PMCID: PMC6363818 DOI: 10.3389/fmicb.2019.00081] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Rare earth metals are widely used in the production of many modern technologies. However, there is concern that supply cannot meet the growing demand in the near future. The extraction from low-grade sources such as geothermal fluids could contribute to address the increasing demand for these compounds. Here we investigated the interaction and eventual bioaccumulation of europium (Eu) by a thermophilic bacterium, Thermus scotoductus SA-01. We demonstrated that this bacterial strain can survive in high levels (up to 1 mM) of Eu, which is hundred times higher than typical concentrations found in the environment. Furthermore, Eu seems to stimulate the growth of T. scotoductus SA-01 at low (0.01-0.1 mM) concentrations. We also found, using TEM-EDX analysis, that the bacterium can accumulate Eu both intracellularly and extracellularly. FT-IR results confirmed that carbonyl and carboxyl groups were involved in the biosorption of Eu. Infrared and HR-XPS analysis demonstrated that Eu can be biomineralized by T. scotoductus SA-01 as Eu2(CO3)3. This suggests that T. scotoductus SA-01 can potentially be used for the biorecovery of rare earth metals from geothermal fluids.
Collapse
Affiliation(s)
- Maleke Maleke
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Angel Valverde
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Jan-G Vermeulen
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Errol Cason
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Alba Gomez-Arias
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- Institution of Groundwater Studies, University of the Free State, Bloemfontein, South Africa
| | - Karabelo Moloantoa
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Liza Coetsee-Hugo
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| | - Hendrik Swart
- Department of Physics, University of the Free State, Bloemfontein, South Africa
| | - Esta van Heerden
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- iWATER Solutions, Bloemfontein, South Africa
| | - Julio Castillo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|